

TPS53317A

ZHCSED1A - NOVEMBER 2015 - REVISED NOVEMBER 2015

TPS53317A 用于 **DDR** 存储器终端的 **6A** 输出、**D-CAP+** 模式、同步降压 集成 **FET** 转换器

1 特性

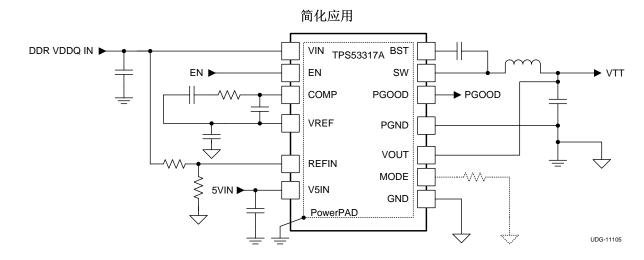
- 采用 TI 专有的集成金属氧化物半导体场效应晶体管 (MOSFET) 和封装技术
- 支持 DDR 内存终止,具有高达 6A 的持续输出源 电流或者吸收电流
- 外部跟踪
- 最少的外部组件数
- 0.9V 至 6V 转换电压
- D-CAP+™ 模式架构
- 支持所有多层片式陶瓷输出电容器和 SP/POSCAP
- 可选跳跃 (SKIP) 模式或者强制 CCM
- 轻量级负载与重负载下的优化效率
- 可选 600kHz 或者1MHz 开关频率
- 可选过流限制 (OCL)
- 过压、过热和断续欠压保护
- 可调输出电压范围为 0.45V 至 2V
- 3.5mm x 4mm 20 引脚超薄四方扁平无引线 (VQFN) 封装

2 应用

- 用于 DDR、DDR2、DDR3 和 DDR4 的存储器终端稳压器
- VTT 终止
- 用于 0.9V 至 6V 输入电源轨的低电压应用

3 说明

TPS53317A 器件是一款设计为主要用于 DDR 终端的集成场效应晶体管 (FET) 同步降压稳压器。 它能够提供一个值为 ½ V_{DDQ}的经稳压输出,此输出具有吸收电流和源电流功能。 TPS53317A 器件采用 D-CAP+ 运行模式,简单易用,所需外部组件数较少并可提供快速瞬态响应。 该器件还可用于其他电流要求高达 6A 的负载点 (POL) 稳压应用。此外,该器件支持具有严格电压调节功能的 6A 完整灌电流输出。

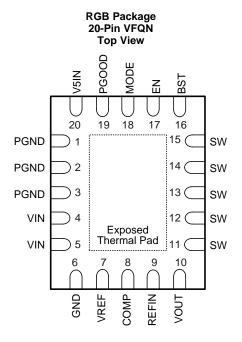

该器件具有两种开关频率设定值(600kHz 和 1MHz),可提供集成压降支持、外部跟踪功能、预偏置启动、输出软放电、集成自举开关、电源正常功能、V5IN 引脚欠压锁定 (UVLO) 保护功能,支持采用陶瓷和 SP/POSCAP 电容。 该器件支持的输入电压最高可达 6V,而输出电压在 0.45V 至 2.0V 范围内可调。

TPS53317A 器件采用 3.5mm × 4mm 20 引脚超薄四方扁平无引线 (VQFN) 封装(绿色环保,符合 RoHS标准并且无铅),其中应用了 TI 专有的集成 MOSFET和封装技术,其额定运行温度范围为 -40°C 至 85°C。

器件信息(1)

	HH H /C'			
器件型号	封装	封装尺寸 (标称值)		
TPS53317A	VQFN (20)	3.50mm × 4.00mm		

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。


	目录	:		
1 2 3 4 5	特性	8	7.3 Feature Description	15 19 19
6	Specifications 4 6.1 Absolute Maximum Ratings 4 6.2 ESD Ratings 4 6.3 Recommended Operating Conditions 4 6.4 Thermal Information 5 6.5 Electrical Characteristics 5 6.6 Typical Characteristics 7	9 10 11	Power Supply Recommendations	
7	Detailed Description 10 7.1 Overview 10 7.2 Functional Block Diagram 10	12	11.3 静电放电警告 11.4 Glossary 机械、封装和可订购信息	26

4 修订历史记录

Cł	nanges from Original (November 2015)	to Revision A Page	ge
•	文档状态已由产品预览更改为量产数据。		

5 Pin Configuration and Functions

Pin Functions

P	IN			
NAME NO.		I/O ⁽¹⁾	DESCRIPTION	
BST	16	ı	Power supply for internal high-side gate driver. Connect a 0.1-µF bootstrap capacitor between this pin and the SW pin. Include a series boot resistor when the voltage spike on switching node is above 7 V.	
COMP	8	0	Connect an R-C-C network between this pin and VREF for loop compensation.	
EN	17	I	nable pin (3.3-V logic compatible).	
GND	6	-	Analog ground.	
MODE	18	I	Allows selection of different operation modes. (See 表 1)	
	1			
PGND	2	G	Power ground.	
	3			
PGOOD	19	0	Open drain power good output. Connect pullup resistor.	
REFIN	9	1	External tracking reference input. Apply voltage between 0.45 V to 2.0 V. For non-tracking mode, connect REFIN to VREF via resistor divider.	
	11			
	12			
SW	13	I/O	Switching node output.	
	14			
	15			
V5IN	20	I	5-V power supply for analog circuits and gate drive.	
VIN	4		Down cumply input pin	
VIIN	5		Power supply input pin.	
VOUT	10	I	Output voltage monitor input pin.	
VREF	7	0	2.0-V reference output. Connect a ceramic capacitor with a value of 0.22-µF or greater between this pin and GND.	

⁽¹⁾ I = Input, O = Output, G = Ground

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
	BST (with respect to SW), V5IN, VIN	-0.3	7	
	BST	-0.3	14	
Input voltage range	EN	-0.3	7	V
	MODE, REFIN	-0.3	3.6	
	VOUT	-1	3.6	
	sw	-2	7	
	SW (transient 20 ns and E = 5 µJ)	-3		
Output voltage range	COMP, VREF	-0.3	3.6	V
	PGOOD	-0.3	7	
	PGND	-0.3	0.3	
Operating junction temp	perature, T _J	-40	150	°C
_ead temperature 1,6 mm (1/16 inch) from case for 10 seconds			300	°C
Storage temperature, T	stg	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
\/		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
	BST (with respect to SW), EN, VIN	-0.1	6.5	
	V5IN	4.5	6.5	
Input voltage range	BST	-0.1	13.5	V
	SW	-1.0	6.5	
	VOUT, MODE, REFIN	-0.1	3.5	
	COMP	-0.1	3.5	
Output valtage range	VREF		2	V
Output voltage range	PGOOD	-0.1	6.5	V
	PGND	-0.1	0.1	
Operating temperature	Operating temperature range, T _A		85	°C

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾					
		20 PINS				
$R_{\theta JA}$	Junction-to-ambient thermal resistance	35.5	°C/W			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	39.6	°C/W			
$R_{\theta JB}$	Junction-to-board thermal resistance	12.4	°C/W			
ΨЈТ	Junction-to-top characterization parameter	0.5	°C/W			
ΨЈВ	Junction-to-board characterization parameter	12.5	°C/W			
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	3.7	°C/W			

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended free-air temperature range, V_{V5IN} = 5.0 V, PGND = GND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY: VOLT	AGE, CURRENTS AND 5-V UVLO					
I _{VINSD}	VIN shutdown current	EN = 'LO'		0.02	5	μA
V _{V5IN}	V5IN supply voltage	V5IN voltage range	4.5	5.0	6.5	V
I _{V5IN}	V5IN supply current	EN ='HI', V5IN supply current, f _{SW} = 600 kHz		1.1	2	mA
I _{V5INSD}	V5IN shutdown current	EN = 'LO', V5IN shutdown current		0.2	7.0	μA
V _{V5UVLO}	V5IN UVLO	Ramp up; EN = 'HI'	4.20	4.37	4.50	V
V _{V5UVHYS}	V5IN UVLO hysteresis	Falling hysteresis		440		mV
V _{VREFUVLO}	REF UVLO ⁽¹⁾	Rising edge of VREF, EN = 'HI'		1.8		V
V _{VREFUVHYS}	REF UVLO hysteresis (1)			100		mV
V _{POR5VFILT}	Reset	OVP latch is reset by V5IN falling below the reset threshold	1.5	2.3	3.1	V
VOLTAGE FEET	DBACK LOOP: VREF, VOUT, AND VOLTAGE	GM AMPLIFIER				
.,	0.1.1.11	V _{REFIN} = 1 V, No droop	-1%	0%	1%	
V _{OUTTOL}	Output voltage accuracy	V _{REFIN} = 0.6 V, No droop	-1%	0%	1%	
.,	VREF	I _{VREF} = 0 μA	1.98	2.00	2.02	V
V_{VREF}		I _{VREF} = 50 μA	1.975	2.000	2.025	
I _{REFSNK}	VREF sink current	V _{VREF} = 2.05 V		2.5		mA
9м	Transconductance			1.00		mS
V _{CM}	Common mode input voltage range ⁽¹⁾		0		2	V
V_{DM}	Differential mode input voltage		0		80	mV
I _{COMPSNK}	COMP pin maximum sinking current	$V_{COMP} = 2 \text{ V}, (V_{REFIN} - V_{OUT}) = 80$ mV		80		μΑ
I _{COMPSRC}	COMP pin maximum sourcing current	V _{COMP} = 2 V		-80		μA
V _{OFFSET}	Input offset voltage	T _A = 25°C		0		mV
R _{DSCH}	Output voltage discharge resistance			42		Ω
f_ _{3dbVL}	–3dB Frequency ⁽¹⁾		4.5	6.0	7.5	MHz
CURRENT SEN	SE: CURRENT SENSE AMPLIFIER, OVERCU	JRRENT AND ZERO CROSSING				
A _{CSINT}	Internal current sense gain	Gain from the current of the low- side FET to PWM comparator when PWM = "OFF"	43	53	57	mV/A
I _{OCL}	Positive overcurrent limit (valley)			7.6		Α
I _{OCL(neg)}	Negative overcurrent limit (valley)			-9.3		Α
V _{ZXOFF}	Zero crossing comp internal offset			0		mV

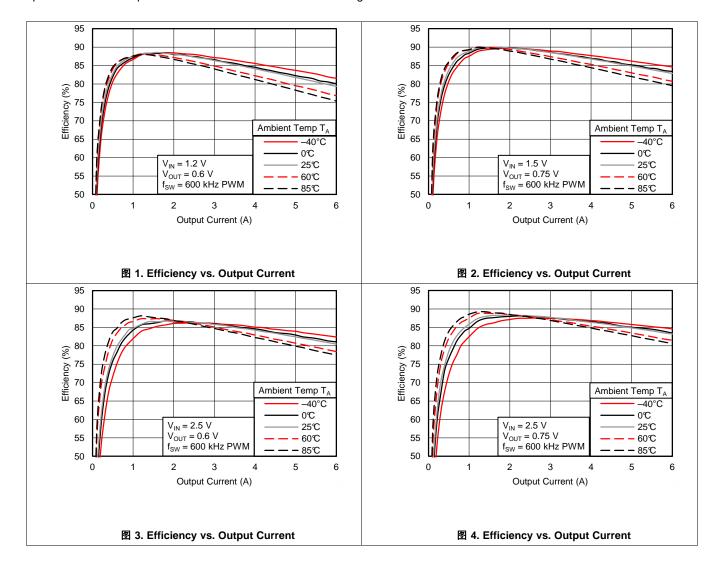
⁽¹⁾ Ensured by design, not production tested.

Electrical Characteristics (continued)

over recommended free-air temperature range, V_{V5IN} = 5.0 V, PGND = GND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PROTECTION:	OVP, UVP, PGOOD, and THERMAL SHUTDOV	VN	<u> </u>			
V _{PGDLL}	PGOOD deassert to lower (PGOOD → Low)	Measured at the VOUT pin wrt/ V _{REFIN}		84%		
V _{PGHYSHL}	PGOOD high hysteresis			8%		
V_{PGDLH}	PGOOD de-assert to higher (PGOOD → Low)	Measured at the VOUT pin wrt/ V _{REFIN}		116%		
$V_{PGHYSHH}$	PGOOD high hysteresis			-8%		
V _{INMINPG}	Minimum VIN voltage for valid PGOOD	Measured at the VIN pin with a 2-mA sink current on PGOOD pin. V5IN is grounded here. (2)	0.9	1.3	1.5	V
V _{OVP}	OVP threshold	Measured at the VOUT pin wrt/ V _{REFIN,} V _{REFIN} = 1 V	117%	120%	123%	
V_{UVP}	UVP threshold	Measured at the VOUT pin wrt/ V _{REFIN} , device latches OFF, begins soft-stop, V _{REFIN} = 1 V	65%	68%	71%	
TH _{SD}	Thermal shutdown ⁽¹⁾	Latch off controller, attempt softstop.		145		°C
TH _{SD(hys)}	Thermal Shutdown hysteresis ⁽¹⁾	Controller re-starts after temperature has dropped		10		°C
DRIVERS: BOO	T STRAP SWITCH					
R _{DSONBST}	Internal BST switch on-resistance	I _{BST} = 10 mA, T _A = 25°C			10	Ω
I _{BSTLK}	Internal BST switch leakage current	V _{BST} = 14 V, V _{SW} = 7 V			1	μΑ
TIMERS: ON-TII	ME, MINIMUM OFF-TIME, SS, AND I/O TIMING	S				
t _{oneshotc}	PWM one-shot ⁽¹⁾	$V_{VIN} = 5 \text{ V}, V_{VOUT} = 1.05 \text{ V}, f_{SW} = 1$ MHz		210		ns
ONESHOTE		V _{VIN} = 5 V, V _{VOUT} = 1.05 V, f _{SW} = 600 kHz		310		_
t _{MIN(off)}	Minimum OFF time	$\begin{aligned} &V_{VIN} = 5 \text{ V, } V_{VOUT} = 1.05 \text{ V, } f_{SW} = 1 \\ &MHz, \text{ DRVL on,} \\ &SW = PGND, V_{VOUT} < V_{REFIN} \end{aligned}$		270		ns
t _{INT(SS)}	Soft-start time	From V _{OUT} ramp starting to V _{OUT} =95%, default setting		1.6		ms
t _{INT(SSDLY)}	Internal soft-start delay time	From $V_{VREF} = 2 V$ to V_{OUT} is ready to ramp up		260		μs
t _{PGDDLY}	PGOOD startup delay time	At external tracking, the time from VOUT is ready to ramp up		8		ms
t _{PGDPDLYH}	PGOOD high propagation delay time	50 mV over drive, rising edge	0.8	1	1.2	ms
t _{PGDPDLYL}	PGOOD low propagation delay time	50 mV over drive, falling edge		10		μs
t _{OVPDLY}	OVP delay time	Time from the VOUT pin out of +20% of REFIN to OVP fault		10		μs
tuvdlyen	Undervoltage fault enable delay	Time from EN_INT going high to undervoltage fault is ready		2		ms
*UVULYEN	Shaci voltage lault ellable delay	External tracking from VOUT ramp starts		8		1113
t _{UVPDLY}	UVP delay time	Time from the VOUT pin out of –32% of REFIN to UVP fault		256		μs
LOGIC PINS: I/O	O VOLTAGE AND CURRENT					
	PGOOD pull-down voltage	PGOOD low impedance, I _{SINK} = 4 mA, V _{V5IN} = 4.5 V			0.3	V
	PGOOD leakage current	PGOOD high impedance, forced to 5.5 V	-1	0	1	μΑ
	EN logic high	EN, VCCP logic	2			V
	EN logic low	EN, VCCP logic			0.5	V
	EN input current				1	μA

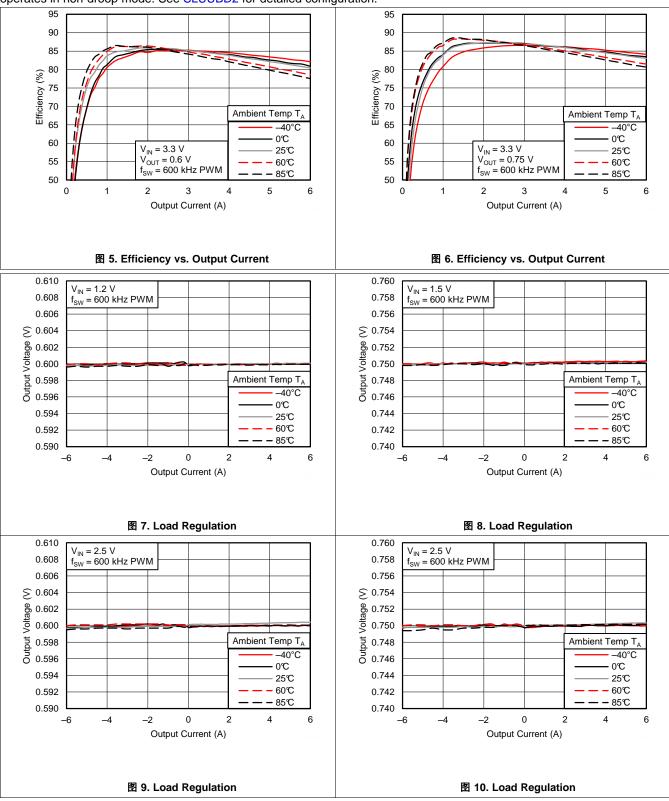
Electrical Characteristics (continued)


over recommended free-air temperature range, $V_{VSIN} = 5.0 \text{ V}$, PGND = GND (unless otherwise noted)

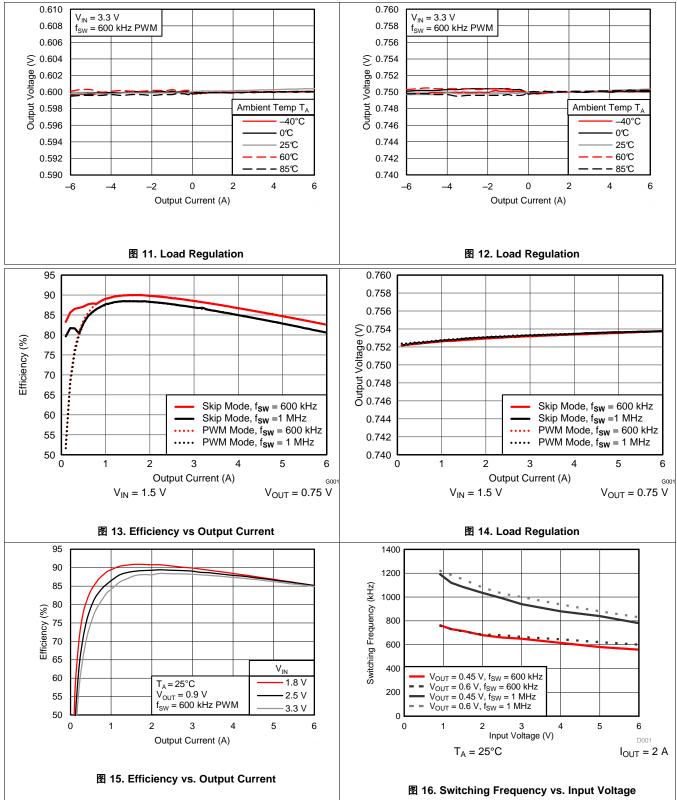
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Threshold 1	80	130	180	
	Threshold 2	200	250	300	
	Threshold 3	370	420	470	
MODE threshold voltage (3)	Threshold 4	550	600	650	mV
	Threshold 5	830	880	930	
	Threshold 6	1200	1250	1300	
	Threshold 7	1765	1800	1850	
MODE current			15		μΑ

⁽³⁾ See 表 1 for descriptions of MODE parameters.

6.6 Typical Characteristics

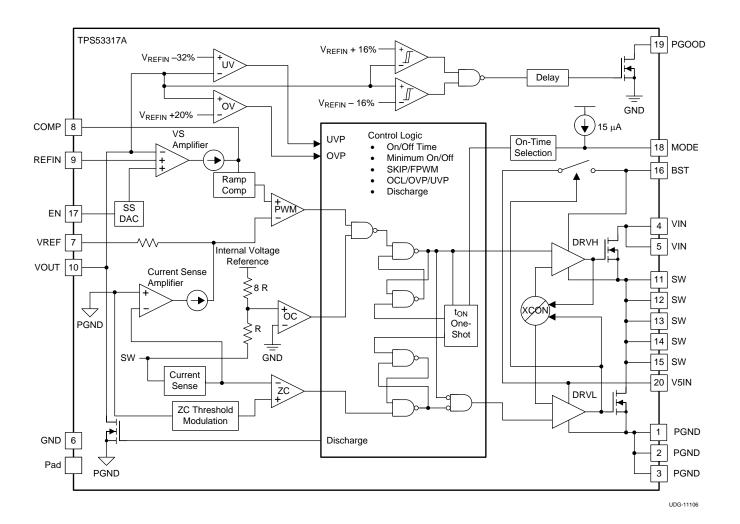

Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and operates in non-droop mode. See SLUUBD2 for detailed configuration.

Typical Characteristics (接下页)


Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and operates in non-droop mode. See SLUUBD2 for detailed configuration.

Typical Characteristics (接下页)

Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and operates in non-droop mode. See SLUUBD2 for detailed configuration.


7 Detailed Description

7.1 Overview

The TPS53317A device is a D-CAP+™ mode adaptive on-time converter. Integrated high-side and low-side FETs support a maximum of 6-A DC output current. The converter automatically operates in discontinuous conduction mode (DCM) to optimize light-load efficiency. Multiple switching frequencies are provided to enable optimization of the power train for the cost, size and efficiency requirements of the design (see 表 1).

In adaptive on-time converters, the controller varies the on-time as a function of input and output voltage to maintain a nearly constant frequency during steady-state conditions. In conventional constant on-time converters, each cycle begins when the output voltage crosses to a fixed reference level. However, in the TPS53317A device, the cycle begins when the current feedback reaches an error voltage level which is the amplified difference between the reference voltage and the feedback voltage.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 PWM Operation

Referring to <a>8 17, in steady state, continuous conduction mode, the converter operates in the following way.

Starting with the condition that the top FET is off and the bottom FET is on, the current feedback (V_{CS}) is higher than the error amplifier output (V_{COMP}). V_{CS} falls until it hits V_{COMP} , which contains a component of the output ripple voltage. V_{CS} is not directly accessible by measuring signals on pins of TPS53317A device. The PWM comparator senses where the two waveforms cross and triggers the on-time generator.

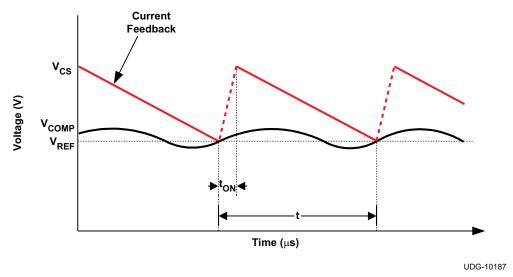


图 17. D-CAP+™ Mode Basic Waveforms

The current feedback is an amplified and filtered version of the voltage between PGND and SW during low-side FET on-time. The device also provides a single-ended voltage (V_{OUT}) feedback to increase the system accuracy and reduce the dependence of circuit performance on layout.

7.3.2 PWM Frequency and Adaptive On-Time Control

In general, the on-time (at the SW node) can be estimated by 公式 1.

$$t_{ON} = \frac{V_{OUT}}{V_{IN}} \times \frac{1}{f_{SW}}$$

where

f_{SW} is the frequency selected by the connection of the MODE pin

(1)

The on-time pulse is sent to the top FET. The inductor current and the current feedback rises to peak value. Each ON pulse is latched to prevent double pulsing. Switching frequency settings are shown in 表 1.

7.3.3 Light-Load Power Saving Features

The TPS53317A device has an automatic pulse-skipping mode to provide excellent efficiency over a wide load range. The converter senses inductor current and prevents negative flow by shutting off the low-side gate driver. This saves power by eliminating re-circulation of the inductor current. Further, when the bottom FET shuts off, the converter enters discontinuous mode, and the switching frequency decreases, thus reducing switching losses as well.

The device also provides a special light-load power saving feature, called ripple reduction. Essentially, it reduces the on-time in SKIP mode to effectively reduce the output voltage ripple associated with using an all MLCC capacitor output power stage design.

7.3.4 Power Sequences

7.3.4.1 Non-Tracking Startup

The TPS53317A device can be configured for non-tracking application. When non-tracking is configured, output voltage is regulated to the REFIN voltage which taps off the voltage dividers from the 2-V reference voltage. Either the EN pin or the V5IN pin can be used to start up the device. The device uses internal voltage servo DAC to provide a 1.6-ms soft-start time during soft-start initialization. (See 🗵 19.)

In a non-tracking application, the output voltage is determined by the resistive divider between the VREF pin and the REFIN pin.

$$V_{OUT} = V_{REF} \times \frac{R2}{R1 + R2} \tag{2}$$

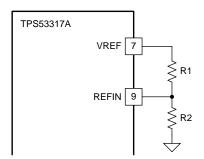


图 18. Non-Tracking Configuration

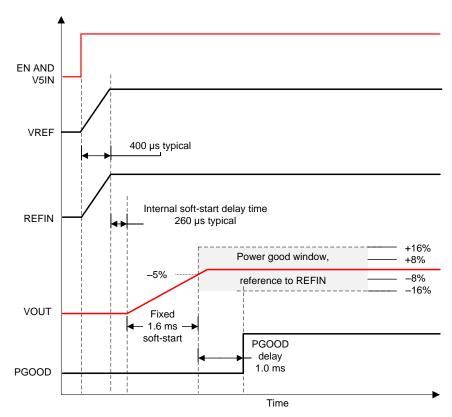


图 19. Non-Tracking Startup Timing

7.3.4.2 Tracking Startup

The TPS53317A device can also be configured for tracking application. When tracking configuration is desired, output voltage is also regulated to the REFIN voltage which comes from an external power source. In order for the device to differentiate between a non-tracking configuration or a tracking configuration, there is a minimum delay time of 260 µs required between the time when VREF reaches 2 V to the time when the REFIN pin voltage can be applied, in order for the device to track properly (see ₹ 22). The valid REFIN voltage range is between 0.45 V and 2 V.

In a tracking application, the output voltage should be one half of the VDDQ voltage. VDDQ can be VIN or it can be an additional voltage rail. Thus, R1= R2 both in 图 20 and 图 21.

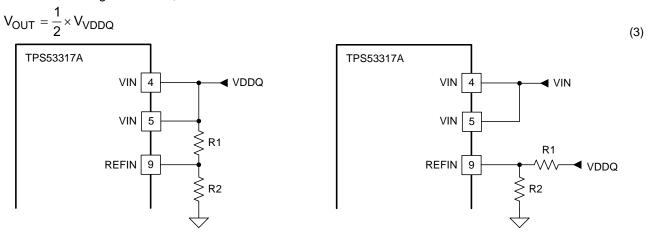


图 20. Tracking Configuration 1

图 21. Tracking Configuration 2

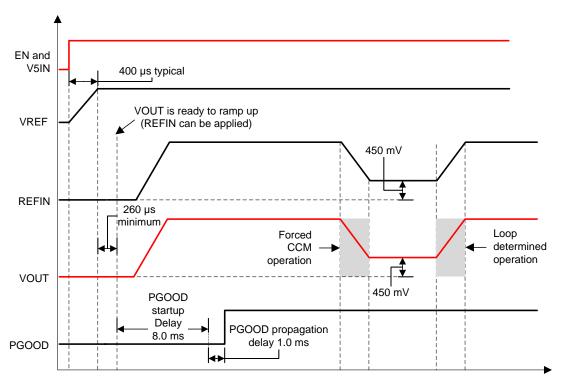


图 22. Tracking Startup Timing

Select PWM mode for an application that requires external tracking, because the output voltage can not be decreased during a no-load condition when the device operates in SKIP mode.

7.3.5 Protection Features

The TPS53317A device offers many features to protect the converter power train as well as the system electronics.

7.3.5.1 5-V Undervoltage Protection (UVLO)

The TPS53317A device continuously monitors the voltage on the V5IN pin to ensure that the voltage level is high enough to bias the device properly and to provide sufficient gate drive potential to maintain high efficiency. The converter starts with approximately 4.3 V and has a nominal 440 mV of hysteresis. If the 5-V UVLO limit is reached, the converter transitions the phase node into an off function, and the converter remains in the off state until the device is reset by cycling the 5-V supply until the 5-V POR is reached (2.3-V nominal). The power input does not have a UVLO function.

7.3.5.2 Power Good Signals

The TPS53317A device has one open-drain *power good* (PGOOD) pin. During startup, there is a 1-ms power good high propagation delay. The PGOOD pin de-asserts as soon as the EN pin is pulled low or an undervoltage condition on V5IN or any other fault is detected.

7.3.5.3 Output Overvoltage Protection (OVP)

In addition to the power good function described above, the TPS53317A device has additional OVP and UVP thresholds and protection circuits.

An OVP condition is detected when the output voltage is approximately 120% \times V_{REFIN}. In this case, the converter de-asserts the PGOOD signals and performs the overvoltage protection function. During OVP, the low-side FET is always on before triggering a negative overcurrent. When a negative OC is also tripped, the low-side FET is no longer continuously on, and pulsed signals are generated to limit the negative inductor current. When the VOUT pin voltage drops below 250 mV, the low-side FET turns off and the converter latches off. The converter remains in the off state until the device is reset by cycling the 5-V supply until the 5-V POR is reached (2.3-V nominal) or when the EN pin is toggled off and on.

7.3.5.4 Output Undervoltage Protection (UVP)

Output undervoltage protection works in conjunction with the current protection described in the *Overcurrent Protection* and *Overcurrent Limit* sections. If the output voltage drops below 68% of V_{REFIN}, after approximately a 250-µs delay, the device stops switching and enters hiccup mode. After a hiccup waiting time, a restart is attempted. If the fault condition is not cleared, hiccup mode operation may continue indefinitely.

7.3.5.5 Overcurrent Protection

Both positive and negative overcurrent protection are provided in the TPS53317A device.

- Overcurrent Limit (OCL)
- Negative OCL

7.3.5.5.1 Overcurrent Limit

If the sensed current value is above the OCL setting, the converter delays the next ON pulse until the current drops below the OCL limit. Current limiting occurs on a pulse-by-pulse basis. The device uses a valley current limiting scheme where the DC OCL trip point is the OCL limit plus half of the inductor ripple current. The typical valley OCL threshold is 7.6 A or 5.4 A (depending on mode selection). The average output current limit calculation is shown in 公式 4.

During the overcurrent protection event, the output voltage droops if the duty cycle cannot satisfy output voltage requirements and continues to droop until the UVP limit is reached. Then, the converter de-asserts the PGOOD pin, and then enters hiccup mode after a 250-µs delay. The converter remains in hiccup mode until the fault is cleared.

$$I_{OCL(dc)} = I_{OCL(valley)} + \frac{1}{2} \times I_{P-P}$$
(4)

7.3.5.5.2 Negative OCL

The negative OCL circuit acts when the converter is sinking current from the output capacitor(s). The converter continues to act in a *valley* mode, the typical value of the negative OCL set point is –9.3 A or –6.5 A (depending on mode selection).

7.3.6 Thermal Protection

The TPS53317A device has an internal temperature sensor. When the temperature reaches a nominal 145°C, the device shuts down until the temperature decreases by approximately 10°C, when the converter restarts.

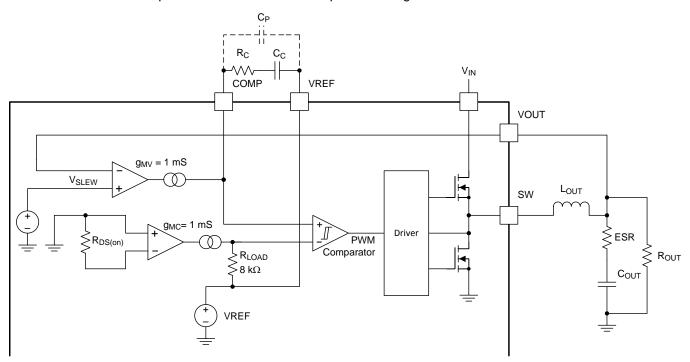
7.4 Device Functional Modes

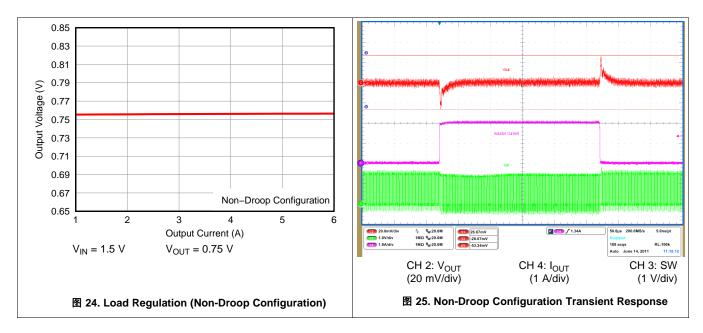
7.4.1 Non-Droop Configuration

The TPS53317A device can be configured as a non-droop solution. The benefit of a non-droop approach is that load regulation is flat, therefore, in a system where tight DC tolerance is desired, the non-droop approach is recommended. For the Intel system agent application, non-droop is recommended as the standard configuration.

The non-droop approach can be implemented by connecting a resistor and a capacitor between the COMP and the VREF pins. The purpose of the type II compensation is to obtain high DC feedback gain while minimizing the phase delay at unity gain cross over frequency of the converter.

The value of the resistor (R_C) can be calculated using the desired unity gain bandwidth of the converter, and the value of the capacitor (C_C) can be calculated by knowing where the zero location is desired. The capacitor C_P is optional, but recommended. Its appropriate capacitance value can be calculated using the desired pole location.




图 23. Non-Droop Mode Basic Implementation

Device Functional Modes (接下页)

图 24 shows shows the load regulation using non-droop configuration.

 \boxtimes 25 shows the transient response of the device using non-droop configuration, where $C_{OUT} = 3 \times 47 \mu F$. The applied step load is from 0 A to 2 A.

7.4.2 Droop Configuration

The terminology for droop is the same as *load line* or *voltage positioning* as defined in the Intel CPU V_{CORE} specification. Based on the actual tolerance requirement of the application, load-line set points can be defined to maximize either cost savings (by reducing output capacitors) or power reduction benefits.

Accurate droop voltage response is provided by the finite gain of the droop amplifier. The equation for droop voltage is shown in 公式 5.

$$V_{DROOP} = \frac{A_{CSINT} \times I_{OUT}}{R_{DROOP} \times g_{M}}$$

where

- low-side on-resistance is used as the current sensing element
- A_{CSINT} is a constant, which nominally is 53 mV/A.
- I_{OUT} is the DC current of the inductor, or the load current
- R_{DROOP} is the value of resistor from the COMP pin to the VREF pin
- g_M is the transconductance of the droop amplifier with nominal value of 1 mS
 (5)

公式 6 can be used to easily derive R_{DROOP} for any load line slope/droop design target.

$$R_{LOAD_LINE} = \frac{V_{DROOP}}{I_{OUT}} = \frac{A_{CSINT}}{R_{DROOP} \times g_{M}} \therefore R_{DROOP} = \frac{A_{CSINT}}{R_{LOAD_LINE} \times g_{M}}$$
 (6)

Choose a value for the R_{DROOP} resistor that is below 20 k Ω . More than 20 k Ω of droop resistance may cause the loop to become unstable.

Device Functional Modes (接下页)

图 26 shows the basic implementation of the droop mode using the TPS53317A device.

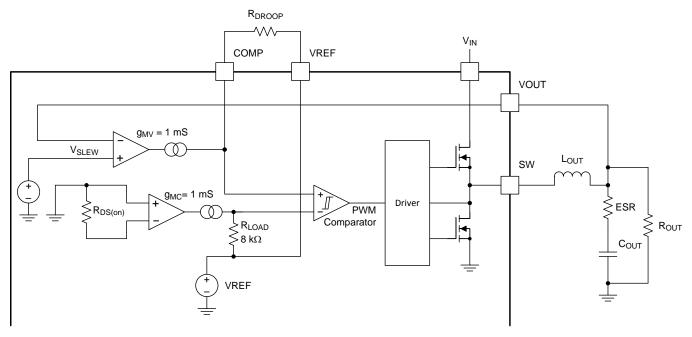


图 26. DROOP Mode Basic Implementation

The droop (voltage positioning) method was originally recommended to reduce the number of external output capacitors required. The effective transient voltage range is increased because of the active voltage positioning (see \bigseparcolor{1}{27}).

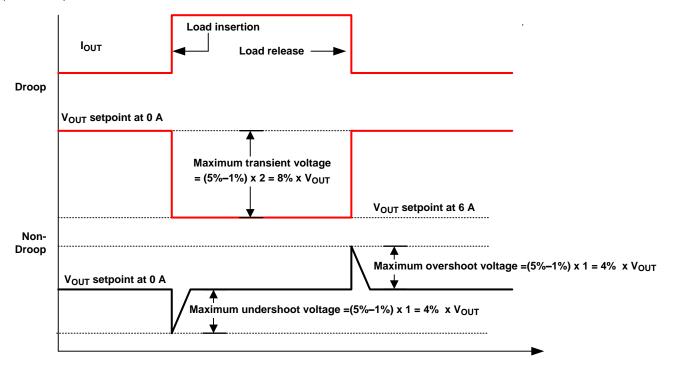


图 27. DROOP vs Non-DROOP in Transient Voltage Window

Device Functional Modes (接下页)

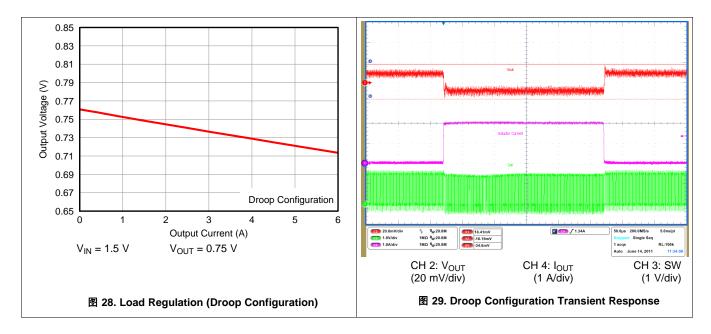

In applications where the DC and the AC tolerances are not separated, (meaning that there is no strict DC tolerance requirement) the droop method can be used.

表 1. Mode Definitions

MODE	MODE RESISTANCE (kΩ)	LIGHT-LOAD POWER SAVING MODE	SWITCHING FREQUENCY (f _{SW})	OVERCURRENT LIMIT (OCL) VALLEY (A)
1	0		600 kHz	7.6
2	12	SKIP	600 kHz	5.4
3	22		1 MHz	5.4
4	33		1 MHz	7.6
5	47		600 kHz	7.6
6	68	PWM	600 kHz	5.4
7	100		1 MHz	5.4
8	OPEN		1 MHz	7.6

 ${\bf 8}$ 28 shows the load regulation of the 1.5-V rail using an R_{DROOP} value of 6.8 k Ω .

 \boxtimes 29 shows the transient response of the TPS53317A device using droop configuration and $C_{OUT} = 3 \times 47 \mu F$. The applied step load is from 0 A to 2 A.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS53317A device is a FET-integrated synchronous buck regulator designed mainly for DDR termination. It can provide a regulated output at ½ VDDQ with both sink and source capability. The device employs D-CAP+ mode operation that provides ease-of-use, low external component count and fast transient response.

8.2 Typical Applications

8.2.1 DDR4 SDRAM Application

This DDR4 application requires a tight load tolerance, fast transient response, and sinking current capability, the design uses a non-droop PWM configuration.

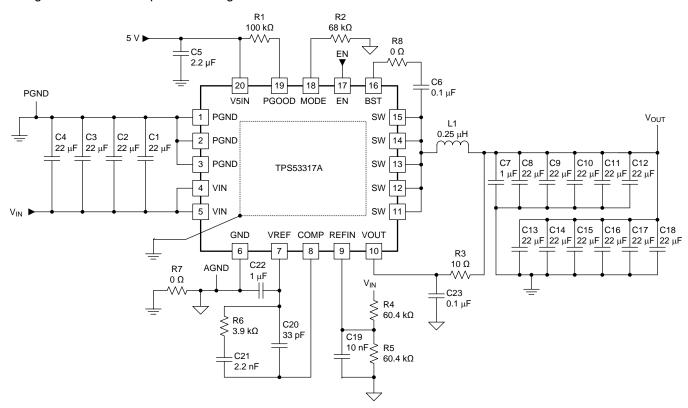


图 30. DDR4 SDRAM Application

8.2.1.1 Design Requirements

- Input voltage : V_{IN} = 1.2 V
- Output voltage: V_{OUT} = 0.6 V
- Maximum load step size of 3 A @ slew rate 7 A/µs (-1.5 A to 1.5 A)
- DC +AC + Ripple voltage regulation limit at sense point: ±42 mV (0.642 V overshoot, 0.558 V undershoot)
- Maximum load: I_{MAX} = 2.5 A

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Step 1. Determine Configuration

Because this DDR4 application requires a tight load tolerance, fast transient response, and sinking current capability, the design uses a non-droop PWM configuration. Choose 600-kHz switching frequency due to the duty cycle and minimim off-time of the device, and set an overcurrent (OC) valley limit of 5.4 A due to the maximum load requirement of 2.5 A. Referring to $\frac{1}{8}$ 1 select an R_{MODE} value of 68 kΩ.

8.2.1.2.2 Step 2. Select Inductor

Smaller inductor values have better transient performance but higher ripple and lower efficiency. High values have the opposite characteristics. It is common practice to limit the ripple current to 30% to 50% of the maximum current. Choose 50% to allow use of a smaller inductor for faster transient performance.

$$\Delta I_{P-P} = 2.5 A \times 0.5 = 1.25 A$$

$$L = \frac{1}{f_{SW} \times \Delta I_{P-P}} \times V_{OUT} \times (1 - D)$$
(7)

where

Because this device operates in DCAP+ mode, the frequency and duty cycle vary based on the input voltage, the output voltage and load. With a 2.5-A load, a 1.2-V input voltage and 0.60 V output voltage, f_{SW} is experimentally measured at approximately 800 kHz and duty cycle of 0.55. Therefore L is calculated as shown in $\Delta \vec{x}$ 10.

$$L = \frac{1}{(800 \text{ kHz} \times 1.25 \text{ A})} \times 0.6V \times 0.45 = 0.270 \text{ }\mu\text{H}$$
(9)

Choose the closest standard value, 0.25 µH.

8.2.1.2.3 Step 3. Determine Output Capacitance

Use 公式 10 to calculate the output capacitance for a desired maximum overshoot.

$$C_{OUT(min),OS} = \frac{\Delta I_{OUT}^2 \times L}{2 \times V_{OUT} \times V_{OS}}$$

where

- C_{OUT(min),OS} is the minimum output capacitance for a desired overshoot
- ΔI_{OUT} is the maximum output current change in the application
- V_{OUT} = desired output voltage
- V_{OS} is the desired output voltage change due to overshoot

Choose a value of 30 mV to account for normal output voltage ripple.

$$C_{OUT(min),OS} = \frac{(3 \text{ A})^2 \times 0.25 \,\mu\text{H}}{2 \times 0.6 \,V \times 0.03 \,V} = 62.5 \,\mu\text{F}$$
(11)

Use 公式 12 to calculate the necessary output capacitance for a desired maximum undershoot.

$$C_{OUT\,(min\,),US} = \frac{\Delta I_{OUT}^2 \times L \times \left(\frac{V_{OUT}}{V_{IN}} \times t_{SW} + t_{MIN\,(off)}\right)}{2 \times V_{OUT} \times V_{US} \times \left(\frac{V_{IN} - V_{OUT}}{V_{IN}} \times t_{SW} - t_{MIN\,(off)}\right)}$$

where

- C_{OUT(min),US} is the minimum output capacitance for a desired undershoot
- V_{US} is the desired output voltage change due to overshoot
- t_{SW} is the period of switch node
- t_{MIN(off)} is the minimum off-time (270 ns) (12)

Again, choose 30 mV to account for normal output voltage ripple.

$$C_{OUT (min),US} = \frac{(3 \text{ A})^2 \times 0.25 \,\mu\text{H} \times \left(\frac{0.6 \,V}{1.2 \,V} \times \frac{1}{800 \,k\text{Hz}} + 270 \,n\text{s}\right)}{2 \times 0.6 \,V \times 0.03 \,V \times \left(\frac{1.2 \,V - 0.6 \,V}{1.2 \,V} \times \frac{1}{800 \,k\text{Hz}} - 270 \,n\text{s}\right)} = 157.6 \,\mu\text{F}$$
(13)

The undershoot requirements determine, so there must be a minimum of 157.6 µF. Because this is a DDR application where size is also a consideration, this design uses only ceramic capacitors. To account for voltage de-rating of capacitors and provide additional margin, this design includes eleven 22-µF output capacitors.

8.2.1.2.4 Step 4. Input Capacitance

This design requires sufficient input capacitance to filter the input current from the host source. Use 公式 14 to calculate the necessary input capacitance.

$$C_{IN(min)} = I_{out} \times \frac{D \times (1 - D)}{\Delta V_{IN(P-P)} \times f_{SW}}$$

where

•
$$\Delta V_{IN(P-P)}$$
 is the desired input voltage ripple (typically 1% of the input voltage) (14)

$$C_{IN(min)} = 2.5 A \times \frac{0.55 \times (1 - 0.55)}{12 \text{ mV} \times 800 \text{ kHz}} = 64.45 \,\mu\text{F}$$
 (15)

As with the output capacitance selection, this design accounts for voltage de-rating of capacitors and provides additional margin, using four 22-µF input capacitors.

8.2.1.2.5 Step 5. Compensation Network

In order to achieve stable operation, the crossover frequency should be less than 1/5 of the switching frequency.

$$f_{CO} = \frac{1}{2\pi} \times \frac{g_M}{C_{OUT}} \times \frac{R_C}{R_S} = 80 \text{ kHz}$$

where

•
$$R_S = 53 \text{ m}\Omega$$
 (16)

Account for capacitor de-rating here and set the value of C_{OUT} to 160 μF, so that 公式 17 is true.
$$R_C = \frac{f_{CO} \times R_S \times 2\pi \times C_{OUT}}{g_M} = \frac{80 \ kHz \times 53 \ m\Omega \times 2\pi \times 160 \ \mu F}{1 \ mS} = 4.26 \ k\Omega \tag{17}$$

Choose an R_C value of 3.9 kΩ. Determine C_C by choosing the value of the zero created by R_C and C_C. Using the relationship described in 公式 18.

$$f_z = \frac{f_{CO}}{5} = \frac{1}{2\pi \times R_C \times C_C} \tag{18}$$

公式 18 yields a C_{C} value of 2.55 nF. Choose the closest common capacitor value of 2.2 nF. To determine a value for C_P , first consider the relationship described in 公式 19.

$$f_p = \frac{1}{2\pi \times R_C \times \frac{C_C \times C_P}{C_C + C_P}} \approx \frac{1}{2\pi \times R_C \times C_P}$$
• $C_C >> C_P$ (19)

Because
$$C_C >> C_P$$
, set the pole to be two times the switching frequency as described in $\Delta \vec{x}$ 20.
$$C_P \cong \frac{1}{2\pi \times R_C \times 2f_{SW}} = \frac{1}{2\pi \times 3.9 \ k\Omega \times 2 \times 800 \ kHz} = 25.5 \ pF \tag{20}$$

To boost the gain margin, set C_P to 33 pF.

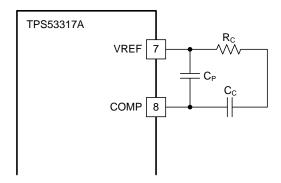
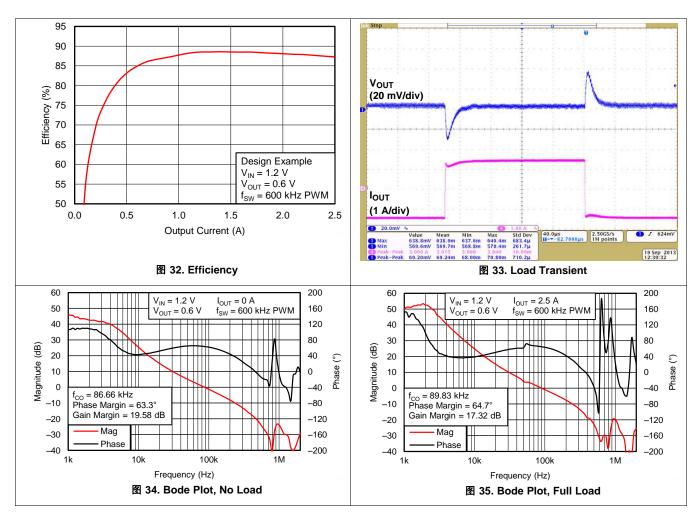
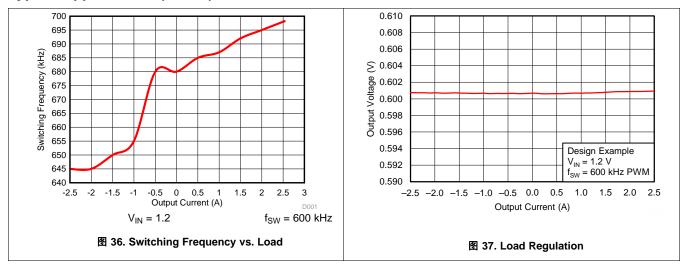



图 31. Compensation Network Circuit


8.2.1.2.6 Peripheral Component Selection

As described in 表 1, connect a 0.22-μF capacitor from the VREF pin to GND and connect a 0.1-μF bootstrap capacitor from the SW pin to the BST pin. Because the PGOOD pin is open drain, connect a pullup resistor between it and the 5-V rail.

8.2.1.3 Application Curves

8.2.2 DDR3 SDRAM Application

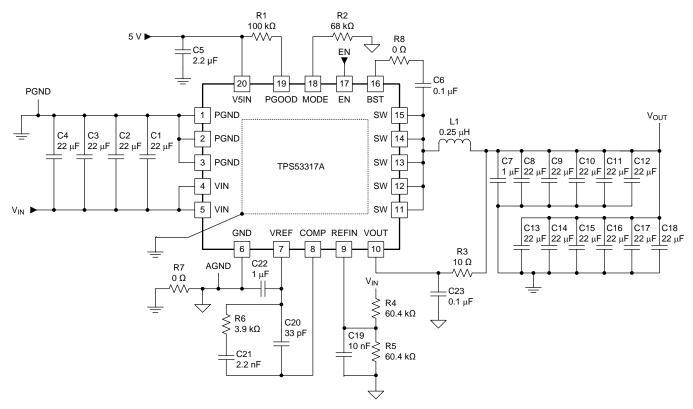


图 38. Typical Application Schematic, DDR3

8.2.2.1 Design Requirements

- V_{IN} = 1.5 V
- V_{OUT} = 0.75 V

8.2.3 Non-Tracking Point-of-Load (POL) Application

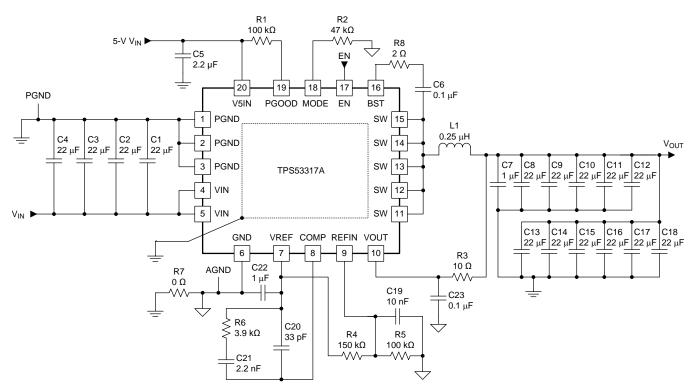
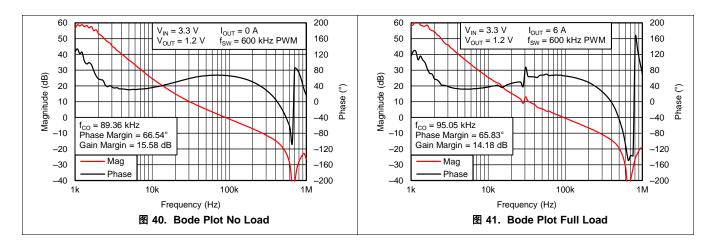



图 39. Typical Application Schematic, Non-Tracking Point-of-Load (POL)

8.2.3.1 Design Requirements

- V_{IN} = 3.3 V
- V_{OUT} = 1.2 V

8.2.3.2 Application Curves

9 Power Supply Recommendations

This device operates from an input voltage supply between 0.9 V and 6 V. This device requires a separate 5-V power supply for analog circuits and gate drive. Use the proper bypass capacitors for both the input supply and the 5-V supply in order to filter noise and to ensure proper device operation.

10 Layout

10.1 Layout Guidelines

Stable power supply operation depends on proper layout. Follow these guidelines for an optimized PCB layout.

- Connect PGND pins to the thermal pad underneath the device. Use four vias to connect the thermal pad to internal ground planes.
- Place VIN, V5IN and VREF decoupling capacitors as close to the device as possible.
- Use wide traces for the VIN, PGND and SW pins. These nodes carry high current and also serve as heat sinks.
- Place feedback and compensation components as close to the device as possible.
- Place COMP and VOUT analog signal traces away from noisy signals (SW, BST).
- The GND pin should connect to the PGND in only one place, through a via or a $0-\Omega$ resistor.

10.2 Layout Example

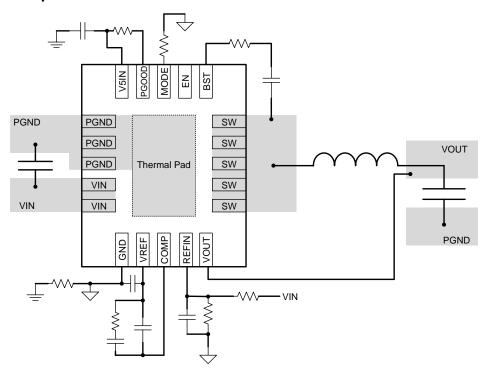


图 42. TPS53317A Board Layout

11 器件和文档支持

11.1 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 商标

D-CAP+, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	. ,	` '			. , ,	(4)	(5)		
TPS53317ARGBR	Active	Production	VQFN (RGB) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	53317A
TPS53317ARGBR.A	Active	Production	VQFN (RGB) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	53317A
TPS53317ARGBT	Active	Production	VQFN (RGB) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	53317A
TPS53317ARGBT.A	Active	Production	VQFN (RGB) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	53317A
TPS53317ARGBTG4	Active	Production	VQFN (RGB) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	53317A
TPS53317ARGBTG4.A	Active	Production	VQFN (RGB) 20	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	53317A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

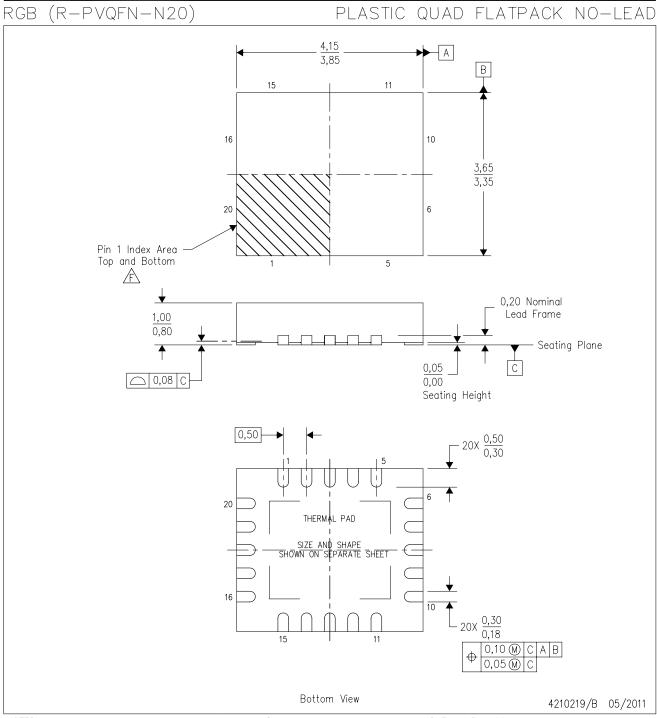
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

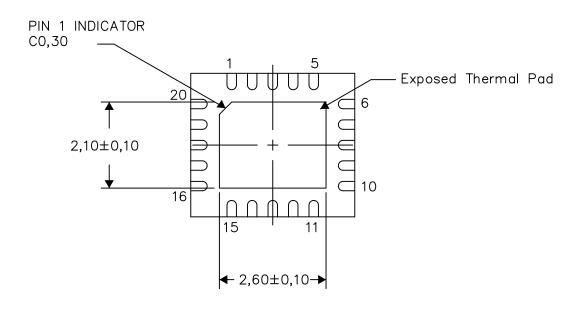
PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.

RGB (R-PVQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

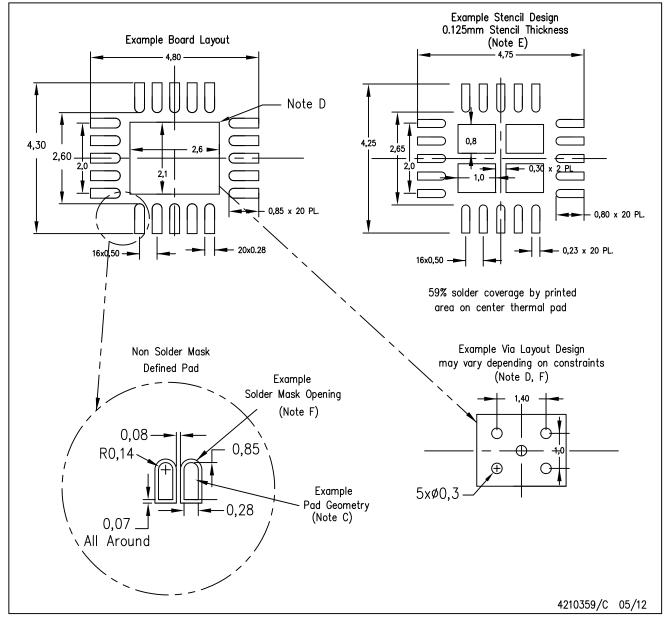
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
Exposed Thermal Pad Dimensions


4210242/C 05/12

NOTE: All linear dimensions are in millimeters

RGB (R-PVQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月