

TPS3852

ZHCSFP5 - NOVEMBER 2016

TPS3852 具备可编程窗口看门狗定时器的高精度电压监控器

1 特性

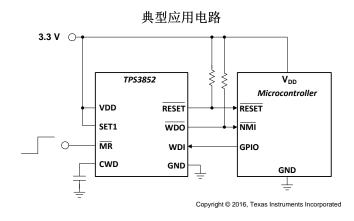
- VDD 输入电压范围: 1.6V 至 6.5V
- 0.8% 电压阈值精度
- 低电源电流: I_{DD} = 10µA(典型值)
- 用户可通过编程设定看门狗超时
- 经过出厂编程的高精度看门狗和复位定时器:
 - ±15% 精度 WDT 和 RST 延迟
- 漏极开路输出
- 手动复位输入 (MR)
- 高精度欠压监控
 - 支持 1.8V 到 5V 共模电压轨
 - 支持 4% 和 7% 阈值
 - 0.5% 迟滞
- 看门狗禁用功能
- 采用 3mm x 3mm、8 引脚超薄小外形尺寸无引线 (VSON) 封装

2 应用

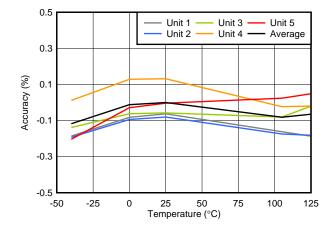
- 安全关键型 应用
- 远程信息处理控制单元
- 高度可靠的工业系统
- 病患监控
- 工业控制系统
- 现场可编程逻辑门阵列 (FPGA) 和专用集成电路 (ASIC)
- 微控制器和数字信号处理器 (DSP)

3 说明

TPS3852 是一款集成有窗口看门狗定时器的高精度电压监控器。TPS3852 包含一个高精度欠压监测器,其在额定温度范围(-40°C 至 +125°C)内的欠压阈值(V_{ITN})精度达 0.8%。此外,TPS3852 还包含高精度迟滞,因此是紧容差系统的理想之选。监控器 RESET 延迟 具有 一个精度为 15% 的高精度延迟定时器。


TPS3852 配有一个可编程的窗口看门狗定时器,广泛适用于各类应用。专用看门狗输出 (WDO) 有助于提高分辨率,从而帮助确定出现故障情况的根本原因。看门狗超时可通过外部电容编程,也可以采用工厂编程的默认延迟设置。在开发过程中,可以将看门狗禁用,从而避免出现不必要的看门狗超时。

TPS3852 采用小型 3.00mm × 3.00mm、8 引脚超薄 小外形尺寸无引线 (VSON) 封装。

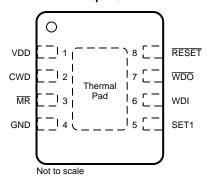

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
TPS3852	VSON (8)	3.00mm × 3.00mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

欠压阈值 (V_{ITN}) 精度与温度间的关系

1	特性1		7.4 Device Functional Modes	15
2	应用 1	8	Application and Implementation	16
3	说明		8.1 Application Information	16
4	修订历史记录		8.2 Typical Application	19
5	Pin Configuration and Functions	9	Power Supply Recommendations	<mark>22</mark>
6	Specifications	10	Layout	22
•	6.1 Absolute Maximum Ratings		10.1 Layout Guidelines	22
	6.2 ESD Ratings		10.2 Layout Example	22
	6.3 Recommended Operating Conditions 4	11	器件和文档支持	23
	6.4 Thermal Information		11.1 器件支持	<u>23</u>
	6.5 Electrical Characteristics5		11.2 文档支持	23
	6.6 Timing Requirements		11.3 接收文档更新通知	23
	6.7 Typical Characteristics 8		11.4 社区资源	23
7	Detailed Description 11		11.5 商标	
	7.1 Overview 11		11.6 静电放电警告	
	7.2 Functional Block Diagram 11		11.7 Glossary	
	7.3 Feature Description	12	机械、封装和可订购信息	24


4 修订历史记录

日期	修订版本	注释
2016 年 11 月	*	最初发布版本。

5 Pin Configuration and Functions

Pin Functions

NAME	NO.	I/O	DESCRIPTION					
CWD	2	_	Programmable watchdog timeout input. Watchdog timeout is set by connecting a capacitor between this pin and ground. Furthermore, this pin can also be connected by a 10-k Ω resistor to VDD, or leaving unconnected (NC) further enables the selection of the preset watchdog timeouts; see the <i>Timing Requirements</i> table. When using a capacitor, the TPS3852 determines the window watchdog upper boundary with Δ 式 1. See 表 3 and the <i>CWD Functionality</i> section for additional information.					
GND	4	_	Ground pin					
MR	3	I	Manual reset pin. A logical low on this pin issues a $\overline{\text{RESET}}$. This pin is internally pulled up to V_{DD} . $\overline{\text{RESET}}$ remains low for a fixed reset delay (t_{RST}) time after $\overline{\text{MR}}$ is deasserted (high).					
RESET	8	0	Reset output. Connect \overline{RESET} using a 1-k Ω to 100-k Ω resistor to the desired pullup voltage rail (V _{PU}). \overline{RESET} goes low when V _{DD} goes below the undervoltage threshold (V _{ITN}). When V _{DD} is within the normal operating range, the \overline{RESET} timeout-counter starts. At completion, \overline{RESET} goes high. During startup, the state of \overline{RESET} is undefined below the specified power-on-reset (POR) voltage (V _{POR}). Above POR, \overline{RESET} goes low and remains low until the monitored voltage is within the correct operating range (above V _{ITN} +V _{HYST}) and the \overline{RESET} timeout is complete.					
SET1	5	Ţ	Logic input. Grounding the SET1 pin disables the watchdog timer.					
VDD	1	1	Supply voltage pin. For noisy systems, connecting a 0.1-μF bypass capacitor is recommended.					
WDI	6	I	Watchdog input. A falling transition (edge) must occur at this pin between the lower (t _{WDL(max)}) and upper (t _{WDL(min)}) window boundaries in order for WDO to not assert. When the watchdog is not in use, the SET1 pin can be used to disable the watchdog. The input at WDI is ignored when RESET or WDO are low (asserted) and also when the watchdog is disabled. If the watchdog is disabled, then WDI cannot be left unconnected and must be driven to either VDD or GND.					
WDO	7	0	Watchdog output. Connect \overline{WDO} with a 1-k Ω to 100-k Ω resistor to the desired pullup voltage rail (V _{PU}). \overline{WDO} goes low (asserts) when a watchdog timeout occurs. \overline{WDO} only asserts when \overline{RESET} is high. When a watchdog timeout occurs, \overline{WDO} goes low (asserts) for the set \overline{RESET} timeout delay (t _{RST}). When \overline{RESET} goes low, \overline{WDO} is in a high-impedance state.					
Thermal page	d	_	Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.					

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage range	VDD	-0.3	7	V
Output voltage range	RESET, WDO	-0.3	7	V
\/altana vanana	SET1, WDI, MR	-0.3	7	V
Voltage ranges	CWD, CRST	-0.3	$V_{DD} + 0.3^{(2)}$	V
Output pin current			±20	mA
Input current (all pins)			±20	mA
Continuous total power dissipa	tion	See Thermal Information		
	Operating junction, T _J ⁽³⁾	-40	150	°C
Temperature	Operating free-air temperature, T _A ⁽³⁾	-40	150	°C
	Storage, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{DD}	Supply pin voltage	1.6		6.5	V
V _{SET1}	SET1 pin voltage	0		6.5	V
$V_{\overline{MR}}$	MR pin voltage	0		6.5	V
C _{CWD}	Watchdog timing capacitor	0.1 (1)		1000 ⁽¹⁾	nF
CWD	Pull-up resistor to VDD	9	10	11	kΩ
R _{PU}	Pull-up resistor, RESET and WDO	1	10	100	kΩ
I _{RESET}	RESET pin current			10	mA
I _{WDO}	Watchdog output current			10	mA
TJ	Junction Temperature	-40		125	°C

⁽¹⁾ Using a C_{CWD} capacitor of 0.1 nF or 1000 nF gives a t_{WDU(typ)} of 62.74 ms or 77.45 seconds, respectively.

²⁾ The absolute maximum rating is V_{DD} + 0.3 V or 7.0 V, whichever is smaller.

⁽³⁾ Assume that $T_J = T_A$ as a result of the low dissipated power in this device.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

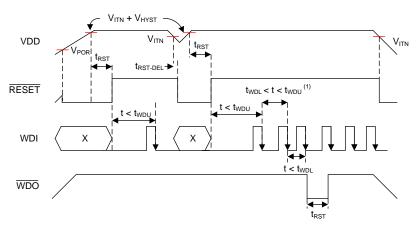
		TPS3852	
	THERMAL METRIC ⁽¹⁾	DRB (VSON)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	50.7	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	51.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	25.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	25.8	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	7.1	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics

At $V_{ITN} + V_{HYST} \le V_{DD} \le 6.5 \text{ V}$ over the operating temperature range of $-40^{\circ}\text{C} \le T_A$, $T_J \le 125^{\circ}\text{C}$, unless otherwise noted. The open-drain pull-up resistors are 10 k Ω for each output. Typical values are at $T_J = 25^{\circ}\text{C}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
GENERAL	CHARACTERISTICS					
V _{DD} ⁽¹⁾	Supply voltage		1.6		6.5	V
I _{DD}	Supply Current			10	19	μΑ
RESET FU	NCTION					
V _{POR} (2)	Power-on reset voltage	$I_{\overline{RESET}} = 15 \mu A, V_{OL(MAX)} = 0.25 V$			0.8	V
V _{UVLO} ⁽³⁾	Under Voltage Lock Out Voltage			1.35		V
V _{ITN}	Undervoltage threshold accuracy, entering RESET	V _{DD} falling	V _{ITN} – 0.8%		V _{ITN} + 0.8%	
V _{HYST}	Hysteresis voltage	V _{DD} rising	0.2%	0.5%	0.8%	
ImR	MR pin internal pull-up current	V _{MR} = 0 V	500	620	700	nA
WINDOW V	WATCHDOG FUNCTION					
I _{CWD}	CWD pin charge current	CWD = 0.5 V	337	375	413	nA
V_{CWD}	CWD pin threshold voltage		1.192	1.21	1.228	V
V _{OL}	RESET, WDO output low	$VDD = 5 V,$ $I_{\overline{RESET}} = I_{\overline{WDO}} = 3 \text{ mA}$			0.4	V
I _D	RESET, WDO output leakage current, open- drain	$VDD = V_{ITN} + V_{HYST},$ $V_{RESET} = V_{WDO} = 6.5 \text{ V}$			1	μA
V _{IL}	Low-level input voltage (MR, SET1)				0.25	V
V _{IH}	High-level input voltage (MR, SET1)		0.8			V
V _{IL(WDI)}	Low-level input voltage (WDI)				0.3 × V _{DD}	V
V _{IH(WDI)}	High-level input voltage (WDI)		0.8 × V _{DD}			V


During power on, V_{DD} must be a minimum 1.6 V for at least 300 μ s before \overline{RESET} correlates with V_{DD} . When V_{DD} falls below V_{POR} , \overline{RESET} and \overline{WDO} are undefined. When V_{DD} falls below UVLO, \overline{RESET} is driven low.

6.6 Timing Requirements

At $V_{ITN} + V_{HYST} \le V_{DD} \le 6.5 \text{ V}$ over the operating temperature range of $-40^{\circ}\text{C} \le T_A$, $T_J \le 125^{\circ}\text{C}$, unless otherwise noted. The open-drain pull-up resistors are 10 k Ω for each output. Typical values are at $T_J = 25^{\circ}\text{C}$.

			MIN	TYP	MAX	UNIT
t _{INIT}	CWD pin evaluation period			381		μs
	Minimum MR, SET1 pin pulse duration			1		μs
	Startup delay			300		μs
RESET	FUNCTION					'
t _{RST}	Reset timeout period		170	200	230	ms
	V to DECET dates	$V_{DD} = V_{ITN} + V_{HYST} + 2.5\%$		35		
t _{RST-DEL} V _{DD} to RESET delay		V _{DD} = V _{ITN} - 2.5%		17		μs
t _{MR-DEL}	MR to RESET delay			200		ns
Watchd	og Function					
	Window watchdog lower boundary	CWD = NC, SET1 = $0^{(1)}$	V	Vatchdog disabled	t	
		CWD = NC, SET1 = 1 ⁽¹⁾	680	800	920	ms
t_{WDL}		CWD = $10k\Omega$ to VDD, SET1 = $0^{(1)}$	V	Vatchdog disabled	d	
		CWD = $10k\Omega$ to VDD, SET1 = $1^{(1)}$	1.5	1.85	2.2	ms
		CWD = NC, SET1 = 0 ⁽¹⁾	V	Vatchdog disabled	t	
		CWD = NC, SET1 = 1 ⁽¹⁾	1360	1600	1840	ms
t_{WDU}	Window watchdog upper boundary	CWD = $10k\Omega$ to VDD, SET1 = $0^{(1)}$	V	Vatchdog disabled	d	
		CWD = $10k\Omega$ to VDD, SET1 = $1^{(1)}$	9.3	11.0	12.7	ms
t _{WD} -	Setup time required for part to response being enabled	ond to changes on WDI after		150		μs
·	Minimum WDI pulse width			50		ns
t _{WD-DEL}	WDI to WDO Delay			50		ns

(1) SET1 = 0 means $V_{SET1} < V_{IL}$, SET1 = 1 means $V_{SET1} > V_{IH}$

(1) See 🛭 2 for WDI timing requirements.

图 1. Timing Diagram

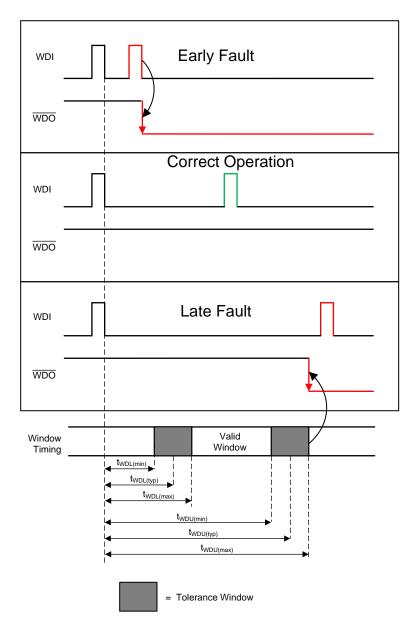
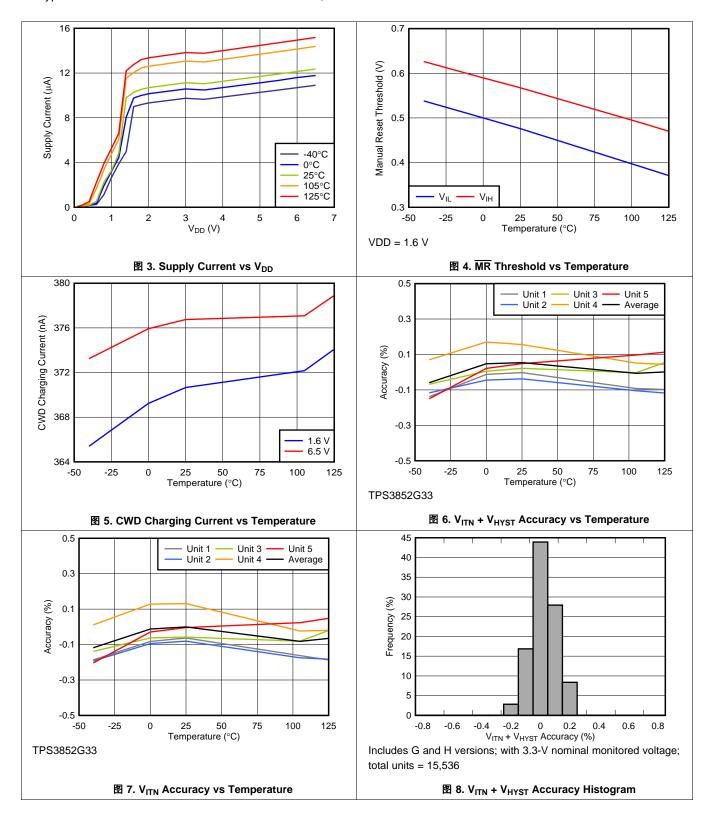
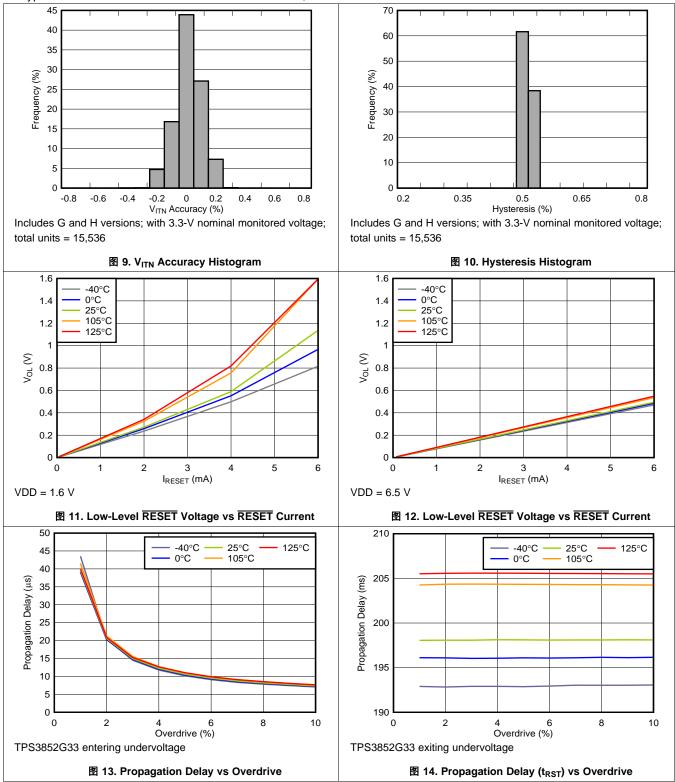
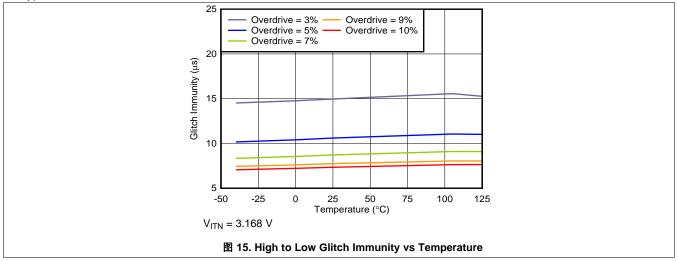



图 2. TPS3852 Window Watchdog Timing

6.7 Typical Characteristics

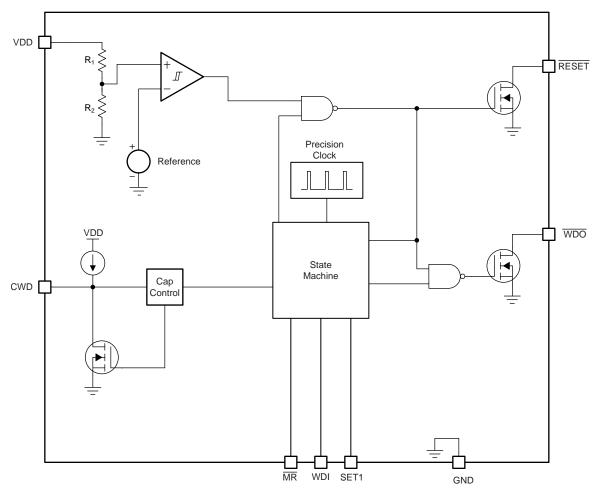

All Typical Characteristics curves are taken at 25°C with, 1.6 V ≤ VDD ≤ 6.5 V unless other wise noted.


Typical Characteristics (接下页)

All Typical Characteristics curves are taken at 25°C with, 1.6 V ≤ VDD ≤ 6.5 V unless other wise noted.

Typical Characteristics (接下页)

All Typical Characteristics curves are taken at 25°C with, 1.6 V ≤ VDD ≤ 6.5 V unless other wise noted.



7 Detailed Description

7.1 Overview

The TPS3852 is a high-accuracy voltage supervisor with an integrated window watchdog timer. This device includes a precision undervoltage supervisor with a threshold that achieves 0.8% accuracy over the specified temperature range of –40°C to +125°C. In addition, the TPS3852 includes accurate hysteresis on the threshold, making the device ideal for use with tight tolerance systems where voltage supervisors must ensure a RESET before the minimum supply tolerance of the microprocessor or system-on-a-chip (SoC) is reached.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

(1) Note: $R_1 + R_2 = 4.5M\Omega$

7.3 Feature Description

7.3.1 **RESET**

Connect \overline{RESET} to V_{PU} through a 1-k Ω to 100-k Ω pullup resistor. \overline{RESET} remains high (deasserted) when V_{DD} is greater than the negative threshold voltage (V_{ITN}). If V_{DD} falls below the negative threshold (V_{ITN}), then \overline{RESET} is asserted, driving the \overline{RESET} pin to low impedance. When V_{DD} rises above V_{ITN} + V_{HYST} , a delay circuit is enabled that holds \overline{RESET} low for a specified reset delay period (t_{RST}). When the reset delay has elapsed, the \overline{RESET} pin goes to a high-impedance state and uses a pullup resistor to hold \overline{RESET} high. The pullup resistor must be connected to the desired voltage rail to allow other devices to be connected at the correct interface voltage. To ensure proper voltage levels, give some consideration when choosing the pullup resistor values. The pullup resistor value is determined by output logic low voltage (V_{OL}), leakage current (I_D), and the current through the \overline{RESET} pin I_{RESET} .

7.3.2 Manual Reset MR

The manual reset (\overline{MR}) input allows a processor or other logic circuits to initiate a reset. A logic low on \overline{MR} causes \overline{RESET} to assert. After \overline{MR} returns to a logic high and V_{DD} is above $V_{ITN} + V_{HYST}$, \overline{RESET} is deasserted after the reset delay time (t_{RST}) . If \overline{MR} is not controlled externally, then \overline{MR} can either be connected to V_{DD} or left floating because the \overline{MR} pin is internally pulled up. When \overline{MR} is asserted, the watchdog is disabled and all signals input to WDI are ignored.

7.3.3 UV Fault Detection

The TPS3852 features undervoltage detection for common rails between 1.8 V and 5 V. The voltage is monitored on the input rail of the device. If V_{DD} drops below V_{ITN} , then RESET is asserted (driven low). When V_{DD} is above $V_{ITN} + V_{HYST}$, RESET deasserts after t_{RST} , as shown in \boxtimes 16. The internal comparator has built-in hysteresis that provides some noise immunity and ensures stable operation. Although not required in most cases, for noisy applications, good analog design practice is to place a 1-nF to 100-nF bypass capacitor close to the VDD pin to reduce sensitivity to transient voltages on the monitored signal.

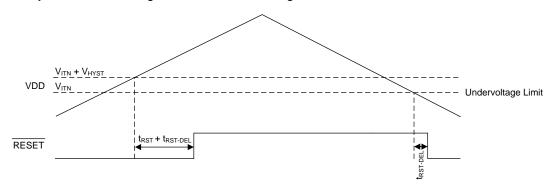


图 16. Undervoltage Detection

7.3.4 Watchdog Mode

This section provides information for the watchdog mode of operation.

7.3.4.1 SET1

The SET1 pin can enable and disable the watchdog timer. If SET1 is set to GND, the watchdog timer is disabled and WDI is ignored. When the watchdog is disabled $\overline{\text{WDO}}$ will be in a high impedance state. If the watchdog timer is disabled, drive the WDI pin to either GND or VDD to ensure that there is no increase in I_{DD} . When SET1 is logic high, the watchdog operates normally. The SET1 pin can be changed dynamically; however, if the watchdog is going from disabled to enabled there is a setup time $t_{WD\text{-setup}}$ where the watchdog does not respond to changes on WDI, as shown in $\boxed{8}$ 17.

Feature Description (接下页)



图 17. Enabling and Disabling the Watchdog

7.3.4.2 Window Watchdog Timer

This section provides information for the window watchdog mode of operation. A window watchdog is typically employed in safety critical applications where a traditional watchdog timer is inadequate. In a traditional watchdog there is a maximum time in which a pulse must be issued to prevent the reset from occurring. In a window watchdog the pulse must be issued between a maximum lower window time $(t_{WDL(max)})$ and the minimum upper window time $(t_{WDL(min)})$ set by the CWD pin.

7.3.4.3 Watchdog Input WDI

WDI is the watchdog timer input that controls the $\overline{\text{WDO}}$ output. The WDI input is triggered by the falling edge of the input signal. For the first pulse, the watchdog acts as a traditional watchdog timer; thus, the first pulse must be issued before $t_{\text{WDU(min)}}$. After the first pulse, to ensure proper functionality of the watchdog timer, always issue the WDI pulse within the window of $t_{\text{WDL(max)}}$ and $t_{\text{WDU(min)}}$. If the pulse is issued in this region, then $\overline{\text{WDO}}$ remains unasserted. Otherwise, the device asserts $\overline{\text{WDO}}$, putting the $\overline{\text{WDO}}$ pin into a low-impedance state.

The watchdog input (WDI) is a digital pin. In order to ensure there is no increase in I_{DD} , drive the WDI pin to either VDD or GND at all times. Putting the pin to an intermediate voltage can cause an increase in supply current (I_{DD}) because of the architecture of the digital logic gates. When RESET is asserted, the watchdog is disabled and all signals input to WDI are ignored. When RESET is no longer asserted, the device resumes normal operation and no longer ignores the signal on WDI. If the watchdog is disabled, drive the WDI pin to either VDD or GND.

7.3.4.4 CWD

The CWD pin provides the user the functionality of both high precision factory programmed window watchdog timing options and user programmable window watchdog timing. The CWD pin can be either pulled-up to V_{DD} through a resistor, have an external capacitor to ground, or be left floating. Every time that the part issues a reset event and the supply voltage is above V_{ITN} the part will try to determine, which of these three options is connected to the pin. There is an internal state machine that the device goes through to determine which option is connected to the CWD pin. The state machine can take up to 381 μ s to determine if the CWD pin is left floating, pulled-up through a resistor, or connected to a capacitor.

If the CWD pin is being pulled up to V_{DD} using a pull-up resistor then a 10-k Ω resistor should be used.

Feature Description (接下页)

7.3.4.5 Watchdog Output WDO

The TPS3852 features a window watchdog with an independent watchdog output (WDO). The independent watchdog output gives the flexibility to flag when there is a fault in the watchdog timing without performing an entire system reset. For legacy applications WDO can be tied to RESET. While the RESET output is not asserted the WDO signal will maintain normal operation. However, when the RESET signal is asserted the WDO pin will go into a high impedance state. This is due to using the standard RESET timing options when a fault occurs on WDO. Once RESET is unasserted the window watchdog timer will resume normal operation.

7.4 Device Functional Modes

表 1 summarises the functional modes of TPS3852.

表 1. Device Functional Modes

V _{DD}	WDI	WDO	RESET
$V_{DD} < V_{POR}$	_	_	Undefined
$V_{POR} \le V_{DD} < V_{DD(min)}$	Ignored	High	Low
$V_{DD(min)} \le V_{DD} \le V_{ITN} + V_{HYST}^{(1)}$	Ignored	High	Low
$V_{DD} > V_{ITN}^{(2)}$	t _{WDL(max)} < t _{PULSE} < t _{WDU(min)} (3)	High	High
	$t_{PULSE} > t_{WDU(min)}^{(3)}$	Low	High
	t _{PULSE} < t _{WDL(max)} (3)	Low	High

- Only valid before V_{DD} has gone above V_{ITN} + V_{HYST}
- Only valid after V_{DD} has gone above V_{ITN} + V_{HYST} Where t_{PULSE} is the time between falling edges on WDI

7.4.1 V_{DD} is Below V_{POR} ($V_{DD} < V_{POR}$)

When V_{DD} is less than V_{POR} , \overline{RESET} is undefined and can be either high or low. The state of \overline{RESET} largely depends on the load that the \overline{RESET} pin is experiencing.

7.4.2 Above Power-On-Reset, But Less Than $V_{DD(min)}$ ($V_{POR} \le V_{DD} < V_{DD(min)}$)

When the voltage on V_{DD} is less than $V_{DD(min)}$, and greater than or equal to V_{POR} , the \overline{RESET} signal is asserted (logic low). When \overline{RESET} is asserted, the watchdog output \overline{WDO} is in a high-impedance state regardless of the WDI signal that is input to the device.

7.4.3 Normal Operation (V_{DD} ≥ V_{DD(min)})

 $\underline{\text{When}}\ V_{\text{DD}}$ is greater than or equal to $V_{\underline{\text{DD}(min)}}$, the $\overline{\text{RESET}}$ signal is determined by V_{DD} . When $\overline{\text{RESET}}$ is asserted, $\overline{\text{WDO}}$ goes to a high-impedance state. $\overline{\text{WDO}}$ is then pulled high through the pullup resistor.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 CWD Functionality

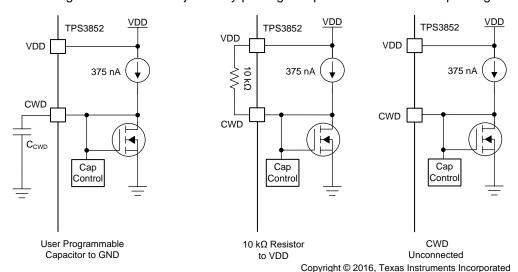


图 18. CWD Charging Circuit

8.1.1.1 Factory-Programmed Timing Options

If using the factory-programmed timing options (listed in $\frac{1}{8}$ 2), the CWD pin must either be unconnected or pulled up to VDD through a 10-kΩ pullup resistor. Using these options enables high-precision, 15% accurate watchdog timing.

表 2. Factory-Programmed Watchdog Timing

INPUT		WATCHDOG LOWER BOUNDARY (t _{WDL})			WATCHDOG UPPER BOUNDARY (t _{WDU})			UNIT
CWD SET1		MIN	TYP	MAX	MIN	TYP	MAX	UNII
NC	0	Watchdog disabled			Watchdog disabled			
	1	680	800	920	1360	1600	1840	ms
10 kΩ to VDD	0	Watch	dog disabled		Watch	dog disabled		
	1	1.5	1.85	2.2	8.8	11.0	13.2	ms

ZHCSFP5-NOVEMBER 2016 www.ti.com.cn

8.1.1.2 Adjustable Capacitor Timing

Adjustable capacitor timing is achievable by connecting a capacitor to the CWD pin. If a capacitor is connected to CWD, then a 375-nA current source charges C_{CWD} until V_{CWD} = 1.21 V. The TPS3852 determines the window watchdog upper boundary with the formula given in 公式 1, where C_{CWD} is in microfarads (µF) and t_{WDU} is in seconds.

$$t_{WDU(typ)}(s) = 77.4 \times C_{CWD}(\mu F) + 0.055(s)$$
 (1)

The TPS3852 is limited to using C_{CWD} capacitors between 100 pF and 1 μ F. Note that 公式 1 is for ideal capacitors, capacitor tolerances cause the actual device timing to vary. For the most accurate timing, use ceramic capacitors with COG dielectric material. As shown in 表 4, when using the minimum capacitance of 100 pF, the watchdog upper boundary is 62.74 ms; whereas with a 1-µF capacitance, the watchdog upper boundary is 77.455 seconds. If a C_{CWD} capacitor is used, 公式 1 can be used to set t_{WDL} the window watchdog upper boundary. $\frac{1}{8}$ 3 shows how t_{WDU} can be used to calculate t_{WDL} .

表 3. Programmable CWD Timing

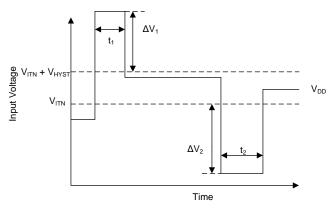
INPUT		WATCHDOG L	OWER BOUNDA	RY (t _{WDL})	WATCHDOG U	LIMIT		
CWD	SET1	MIN TYP		MAX	MIN	MIN TYP		UNIT
-	0	Wa	tchdog disabled		Wa			
C _{CWD}	1	t _{WDU(min)} x 0.5	t _{WDU} x 0.5	t _{WDU(max)} x 0.5	0.85 x t _{WDU(typ)}	t _{WDU(typ)} ⁽¹⁾	1.15 x t _{WDU(typ)}	S

(1) Calculated from 公式 1 using ideal capacitors.

表 4. twou Values for Common Ideal Capacitor Values

6	WATCHDOG U	LINUT		
C _{CWD}	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNIT
100 pF	53.32	62.74	72.15	ms
1 nF	112.5	132.4	152.2	ms
10 nF	704	829	953	ms
100 nF	6625	7795	8964	ms
1 μF	65836	77455	89073	ms

(1) Minimum and maximum values are calculated using ideal capacitors.

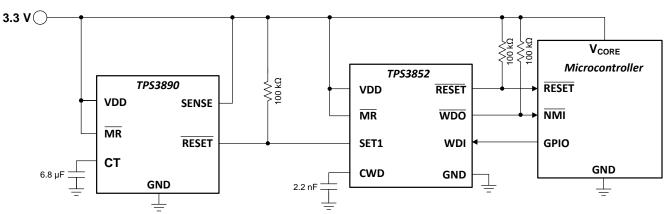

8.1.2 Overdrive Voltage

Forcing a $\overline{\text{RESET}}$ is dependent on two conditions: the amplitude V_{DD} is beyond the trip point (ΔV_1 and ΔV_2), and the length of time that the voltage is beyond the trip point (t_1 and t_2). If the voltage is just under the trip point for a long period of time, $\overline{\text{RESET}}$ asserts and the output is pulled low. However, if V_{DD} is just under the trip point for a few nanoseconds, $\overline{\text{RESET}}$ does not assert and the output remains high. The length of time required for $\overline{\text{RESET}}$ to assert can be changed by increasing the amount V_{DD} goes under the trip point. If V_{DD} is under the trip point by 10%, the amount of time required for the comparator to respond is much faster and causes $\overline{\text{RESET}}$ to assert much quicker than when barely under the trip point voltage. $\Delta \vec{x}$ 2 shows how to calculate the percentage overdrive.

Overdrive =
$$|(V_{DD}/V_{ITX}-1) \times 100\%|$$
 (2)

In 公式 2, V_{ITX} corresponds to the threshold trip point. If V_{DD} is exceeding the positive threshold, $V_{ITN} + V_{HYST}$ is used. V_{ITN} is used when V_{DD} is falling below the negative threshold. In 图 19, t_1 and t_2 correspond to the amount of time that V_{DD} is over the threshold; the propagation delay versus overdrive for V_{ITN} and $V_{ITN} + V_{HYST}$ is illustrated in 图 13 and 图 14, respectively.

The TPS3852 is relatively immune to short positive and negative transients on VDD because of the overdrive voltage.



Copyright © 2016, Texas Instruments Incorporated

图 19. Overdrive Voltage

8.2 Typical Application

A typical application for the TPS3852 is shown in \boxtimes 20. The TPS3852G33 is used to monitor the 3.3-V, V_{CORE} rail powering the microcontroller.

Copyright © 2016, Texas Instruments Incorporated

图 20. Monitoring Supply Voltage and Watchdog Supervision of a Microcontroller

8.2.1 Design Requirements

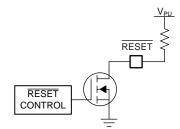
Parameter	Design Requirement	Design Result		
Watchdog Disable For Initialization Period	Watchdog must remain disabled for 7 seconds until logic enables the watchdog timer	7.21 seconds (typ)		
Output Logic Voltage	3.3V CMOS	3.3V CMOS		
Monitored Rail	3.3 V with a 5% threshold	Worst Case V _{ITN} = 3.142 V (- 4.7% threshold)		
Watchdog Window	250 ms, maximum	$t_{WDL(max)} = 135 \text{ ms}, t_{WDU(min)} = 181 \text{ ms}$		
Maximum Device Current Consumption	50 uA	52 uA (worst case) when $\overline{\text{RESET}}$ or $\overline{\text{WDO}}$ is asserted ⁽¹⁾		

⁽¹⁾ Only includes the TPS3852G33 current consumption.

8.2.2 Detailed Design Procedure

8.2.2.1 Monitoring the 3.3V Rail

This application calls for very tight monitoring of the rail with only 5% of variation allowed on the rail. To ensure this requirement is met, the TPS3852G33 was chosen for its -4% threshold. To calculate the worst-case for V_{ITN} , the accuracy must also be taken into account. The worst-case for V_{ITN} can be calculated by $\Delta \vec{x}$ 3:


$$V_{\text{ITN(Worst Case)}} = V_{\text{ITN(typ)}} \times 0.992 = 3.3 \times 0.96 \times 0.992 = 3.142 \text{ V}$$
 (3)

ZHCSFP5 – NOVEMBER 2016 www.ti.com.cn

8.2.2.2 Calculating RESET and WDO Pullup Resistor

The TPS3852 uses an open-drain configuration for the \overline{RESET} circuit, as shown in \boxtimes 21. When the FET is off, the resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET attempts to pull the drain to ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure that V_{OL} is below the maximum value. To choose the proper pullup resistor, there are three key specifications to keep in mind: the pullup voltage (V_{PU}) , the recommended maximum \overline{RESET} pin current $(I_{\overline{RESET}})$, and V_{OL} . The maximum V_{OL} is 0.4 V, meaning that the effective resistor divider created must be able to bring the voltage on the reset pin below 0.4 V with $I_{\overline{RESET}}$ kept below 10 mA. For this example, with a V_{PU} of 3.3 V, a resistor must be chosen to keep $I_{\overline{RESET}}$ below 50 μ A because this value is the maximum consumption current allowed. To ensure this specification is met, a pullup resistor value of 100 k Ω was selected, which sinks a maximum of 33 μ A when \overline{RESET} or \overline{WDO} is asserted. As illustrated in $\overline{\boxtimes}$ 11, when the \overline{RESET} current is at 33 μ A and the low-level output voltage is approximately zero.

Copyright © 2016, Texas Instruments Incorporated

图 21. RESET Open-Drain Configuration

8.2.2.3 Setting the Window Watchdog

As illustrated in 图 18, there are three options for setting the window watchdog. The design specifications in this application require the programmable timing option (external capacitor connected to CWD). When a capacitor is connected to the CWD pin, the window is governed by 公式 4. 公式 4 is only valid for ideal capacitors, any temperature or voltage derating must be accounted for separately.

$$C_{CWD}(\mu F) = \frac{t_{WDU} - 0.055}{77.4} = \frac{0.25 - 0.055}{77.4} = 0.0025 \,\mu F \tag{4}$$

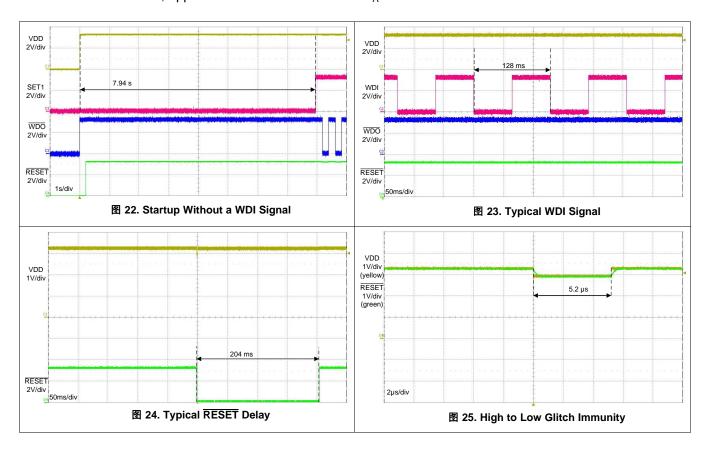
The nearest standard capacitor value to 2.5 nF is 2.2 nF. Selecting 2.2 nF for the C_{CWD} capacitor gives the following minimum and maximum timing parameters:

$$t_{\text{WDU(MIN)}} = 0.85 \times t_{\text{WDU(TYP)}} = 0.85 \times \left(77.4 \times 2.2 \times 10^{-3} + 0.055\right) = 191 \text{ ms}$$
 (5)

$$t_{WDL(MAX)} = 0.5 \times t_{WDU(MAX)} = 0.5 \times \left[1.15 \times \left(77.4 \times 2.2 \times 10^{-3} + 0.055 \right) \right] = 129 \text{ ms}$$
 (6)

Capacitor tolerance also influence $t_{WDU(MIN)}$ and $t_{WDL(MAX)}$. Select a ceramic COG dielectric capacitor for high accuracy. For 2.2 nF, COG capacitors are readily available with a 5% tolerance, which results in a 5% decrease in $t_{WDU(MIN)}$ and a 5% increase in $t_{WDL(MAX)}$, giving 181 ms and 135 ms, respectively. A falling edge must be issued within this window.

8.2.2.4 Watchdog Disabled During Initialization Period


The watchdog is often needed to be disabled during startup to allow for an initialization period. When the initialization period is over, the watchdog timer is turned back on to allow the microcontroller to be monitored by the TPS3852. To achieve this setup SET1 must start at GND. In this design, SET1 is controlled by a TPS3890 supervisor. In this application, the TPS3890 was chosen to monitor V_{DD} as well, which means that RESET on the TPS3890 stays low until V_{DD} rises above V_{ITN} . When V_{DD} comes up, the delay time can be adjusted through the CT capacitor on the TPS3890. With this approach, the RESET delay can be adjusted from a minimum of 25 µs to a maximum of 30 seconds. For this design, a minimum delay of 7 seconds is needed until the watchdog timer is enabled. The CT capacitor calculation (see the TPS3890 data sheet) yields an ideal capacitance of 6.59 µF, giving a closest standard ceramic capacitor value of 6.8 µF. When connecting a 6.8-µF capacitor from CT to GND, the typical delay time is 7.21 seconds. 22 illustrates the typical startup waveform for this circuit when the watchdog input is off. 22 illustrates that when the watchdog is disabled, the 220 output remains high. See the TPS3890 data sheet for detailed information on the TPS3890.

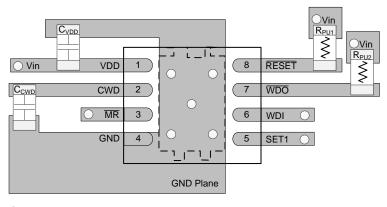
8.2.3 Glitch Immunity

 ${8\over 25}$ shows the high to low glitch immunity for the TPS3852G33 with a ${7\over 20}$ overdrive with V_{DD} starting at 3.3 V. This curve shows that V_{DD} can go below the threshold for 5.2 μ s without RESET asserting.

8.2.4 Application Curves

Unless otherwise stated, application curves were taken at $T_A = 25$ °C.

9 Power Supply Recommendations


These devices are designed to operate from an input supply with a voltage range between 1.6 V and 6.5 V. An input supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is to place a $0.1-\mu F$ capacitor between the VDD pin and the GND pin.

10 Layout

10.1 Layout Guidelines

- Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a 0.1-µF ceramic capacitor as near as possible to the VDD pin.
- If a C_{CWD} capacitor or pull-up resistor is used place them as close as possible to the CWD pin. If the CWD pin is left unconnected make sure to minimize the amount of parasitic capacitance on the pin.
- The pull-up resistors on RESET and WDO should be placed as close to the pin as possible.

10.2 Layout Example

O Denotes a via

图 26. Typical Layout For TPS3852

11 器件和文档支持

11.1 器件支持

www.ti.com.cn

11.1.1 开发支持

11.1.1.1 评估模块

*TPS3851EVM-780 评估模块*可用于评估此部件。如果使用此评估模块,则必须将 EVM 上的部件更换为TPS3852。

11.1.2 器件命名规则

表 5. 器件命名规则

说明	命名规则	值
TPS3852 (具有窗口看门狗的高精度监控器)	_	_
X	G	V _{ITN} = -4%
(标称阈值,受监视电压标称值的百分比)	Н	V _{ITN} = -7%
yy(y)⁽¹⁾ (受监视电压标称值选项)	33	3.3V

⁽¹⁾ 例如, TPS3852G33 对应的受监视电压标称值为 3.3V, 标称阈值为 -4%。

11.2 文档支持

11.2.1 相关文档

相关文档如下:

- 《TPS3890 延迟可编程的低静态电流、1% 精密监控器》(文献编号: SLVSD65)
- 《TPS3851EVM-780 评估模块》(文献编号: SBVU033)

11.3 接收文档更新通知

如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。

11.4 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

能会

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
TPS3852G33DRBR	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852GA
TPS3852G33DRBR.A	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852GA
TPS3852G33DRBT	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852GA
TPS3852G33DRBT.A	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852GA
TPS3852H33DRBR	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852PA
TPS3852H33DRBR.A	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852PA
TPS3852H33DRBT	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852PA
TPS3852H33DRBT.A	Active	Production	SON (DRB) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	852PA

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

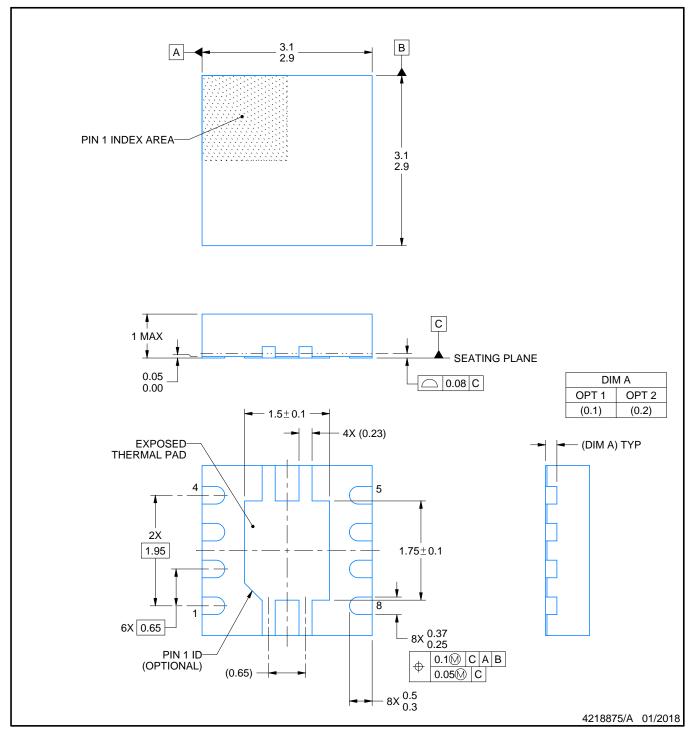
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS3852:

Automotive: TPS3852-Q1

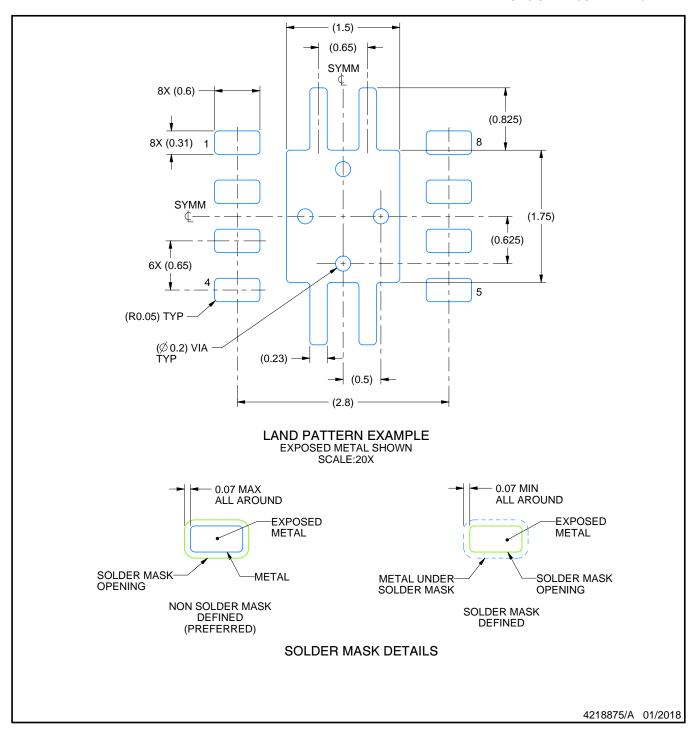
NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203482/L

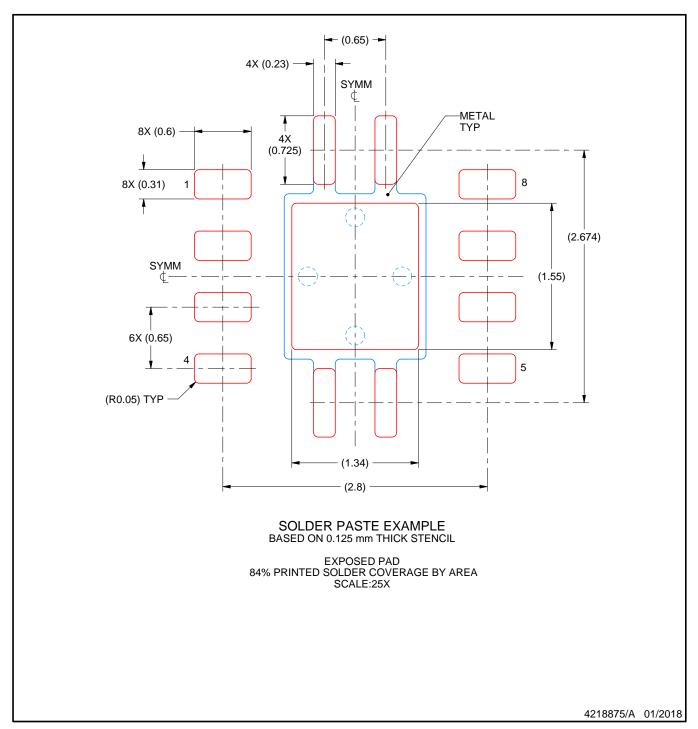
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月