

TPIC74101-Q1 降压和升压开关模式稳压器

1 特性

- 符合汽车应用要求
- 具有符合 AEC-Q100 的下列结果:
 - 器件人体模型 (HBM) 静电放电 (ESD) 分类等级 1B: 引脚 7 (L2), 引脚 8 (VOUT), 引脚 9 (5Vg)
 - 器件 HBM ESD 分类等级 2: 引脚 1–6 以及引脚 10–20
 - 器件充电器件模型 (CDM) ESD 分类等级 C4B
- 开关模式稳压器
 - $5V \pm 2\%$, 降压模式
 - $5V \pm 3\%$, 低功耗、升压或升压/降压切换模式
- 开关频率: 380kHz (典型值)
- 输入工作范围: 1.5V 至 40V (V_{driver})
 - 1A 负载电流能力
 - 200mA 负载电流能力, 低至 2V 输入 (V_{driver}) 时
 - 120mA 负载电流能力, 低至 1.5V 输入 (V_{driver}) 时
- 使能功能
- 低功耗工作模式
- 开关式 5V 稳压输出 5Vg, 具有限流功能
- 可编程的转换率和频率调制, 应对电磁干扰 (EMI) 问题
- 复位功能, 具有去毛刺脉冲定时器和可编程延迟
- 警报功能, 用于欠压检测和指示
- 耐热增强型封装, 可实现高效的热管理

2 应用

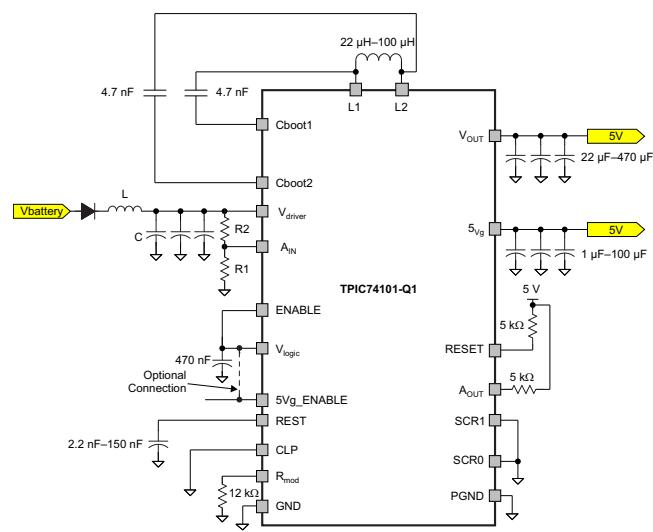
- 车用信息娱乐 & 仪表板
- 车身电子装置

3 说明

TPIC74101-Q1 是一款开关模式稳压器, 通过集成开关实现电压模式控制。此器件具有宽输入电压范围, 可借助外部元件 (LC 组合) 将输出稳压至 $5V \pm 2\%$ 。

TPIC74101-Q1 具有复位功能, 可检测并指示 5V 输出电源轨何时超出规定容限。此复位延迟可通过 RESET 引脚上的外部定时电容进行编程。此外, 该器件还具备警报 (A_{OUT}) 功能, 当输入电源轨 V_{driver} 低于预定值 (通过 A_{IN} 引脚设置) 时会激活此功能。

TPIC74101-Q1 提供了一种频率调制方案, 可最大程度降低 EMI。该器件通过时钟调制器对开关频率进行调制, 以降低频段中的干扰能量。


5Vg 输出是一种开关式 5V 稳压输出, 其内置限流功能, 当通过电源线为容性负载供电时, 可防止 RESET 引脚被置为有效。此功能通过 5Vg_ENABLE 引脚进行控制。如果此输出 (5Vg 输出) 接地短路, 则会进入斩波模式以进行自我保护。但在此故障期间, V_{OUT} 上的输出纹波电压会有所增加。

器件信息⁽¹⁾

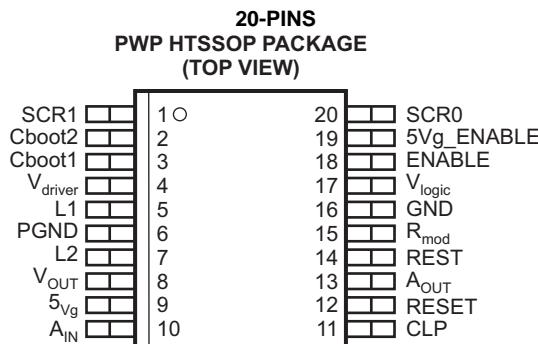
器件型号	封装	封装尺寸 (标称值)
TPIC74101-Q1	HTSSOP (20)	6.50mm x 4.40mm

(1) 要了解所有可用封装, 请见数据表末尾的可订购产品附录。

简化电路原理图

目录

1	特性	1	7.2	Functional Block Diagram	10
2	应用	1	7.3	Feature Description	11
3	说明	1	7.4	Device Functional Modes	14
4	修订历史记录	2	8	Application and Implementation	17
5	Pin Configuration and Functions	3	8.1	Application Information	17
6	Specifications	4	8.2	Typical Application	17
6.1	Absolute Maximum Ratings	4	9	Power Supply Recommendations	20
6.2	ESD Ratings	4	10	Layout	20
6.3	Recommended Operating Conditions	4	10.1	Layout Guidelines	20
6.4	Thermal Information	5	10.2	Layout Example	23
6.5	Dissipation Rating	5	11	器件和文档支持	25
6.6	Electrical Characteristics	5	11.1	商标	25
6.7	Typical Characteristics	7	11.2	静电放电警告	25
7	Detailed Description	10	11.3	术语表	25
7.1	Overview	10	12	机械封装和可订购信息	25


4 修订历史记录

Changes from Original (October 2011) to Revision A

Page

- | | |
|---|---|
| • 已添加 引脚配置和功能部分, ESD 额定值表, 特性描述部分, 器件功能模式, 应用和实施部分, 电源相关建议部分, 布局部分, 器件和文档支持部分以及机械、封装和可订购信息部分..... | 1 |
|---|---|

5 Pin Configuration and Functions

P0021-02

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
SCR1	1	I	Programmable slew-rate control
Cboot2	2	I	External bootstrap capacitor
Cboot1	3	I	External bootstrap capacitor
V _{driver}	4	I	Input voltage source
L1	5	I	Inductor input (an external Schottky diode ⁽¹⁾ to GND must be connected to L1)
PGND	6	I	Power ground
L2	7	I	Inductor output
V _{OUT}	8	O	5-V regulated output
5Vg	9	O	Switched 5-V supply
A _{IN}	10	I	Programmable alarm setting
CLP	11	I/O	Low-power operation mode (digital input)
RESET	12	O	Reset function (open drain)
A _{OUT}	13	O	Alarm output (open drain)
REST	14	O	Programmable reset timer delay
R _{mod}	15	I	Main switching frequency modulation setting to minimize EMI
GND	16	I	Ground
V _{logic}	17	O	Supply decoupling output (may be used as a 5-V supply for logic-level inputs)
ENABLE	18	I	Switch-mode regulator enable/disable
5Vg_ENABLE	19	I	Switched 5-V voltage regulator output enable/disable
SCR0	20	I	Programmable slew-rate control

Exposed thermal pad of the package should be connected to GND or left floating.

(1) Maximum 0.4 V at 1 A and 125°C

6 Specifications

6.1 Absolute Maximum Ratings

over recommended operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Unregulated input voltage, $V_{(\text{driver})}$	⁽²⁾	-0.5	40	V
Unregulated inputs, $V_{(\text{AIN})}$, $V_{(\text{ENABLE})}$	⁽²⁾	-0.5	40	V
Bootstrap voltages	$V_{(\text{Cboot1})}$		52	V
	$V_{(\text{Cboot2})}$		14	V
Switch mode voltages	$V_{(\text{L1})}$	-1	40	V
	$V_{(\text{L2})}$	-1	7	V
Logic input voltages, $V_{(\text{Rmod})}$, $V_{(\text{SCR0})}$, $V_{(\text{SCR1})}$, $V_{(\text{CLP})}$, and $V_{(5\text{Vg_ENABLE})}$	⁽²⁾	-0.5	7	V
Low output voltages, $V_{(\text{RESET})}$, $V_{(\text{AOUT})}$, $V_{(\text{logic})}$, and $V_{(\text{REST})}$	⁽²⁾	-0.5	7	V
Continuous power dissipation, P_D		See Dissipation Rating		
Operating virtual junction temperature range, T_J		-40	150	°C
Operating ambient temperature range, T_A		-40	125	°C
Lead temperature (soldering, 10 s), $T_{(\text{LEAD})}$			260	°C
Storage temperature, T_{stg}		-65	125	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to ground.

6.2 ESD Ratings

			VALUE	UNIT
$V_{(\text{ESD})}$	Electrostatic discharge	Human body model (HBM), per JEDEC	Pin 7 (L2), pin 8 (V_{OUT}), Pin 9 (5Vg)	± 800
			Pins 1–6 and 10–20	± 2000
	Charged device model (CDM), per JEDEC		Corner pins (SCR1, A _{IN} , SCR0, and CLP)	± 750
			Other pins	± 750

6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
Unregulated input voltage, $V_{(\text{driver})}$		6		24	V
Unregulated input voltages, $V_{(\text{AIN})}$ and $V_{(\text{ENABLE})}$		0		24	V
Switch-mode pins	$V_{(\text{L1})}$	-1		17	V
	$V_{(\text{L2})}$	5		5.5	
Bootstrap voltages	$V_{(\text{Cboot1})}$			$V_{(\text{driver})} + 10$	V
	$V_{(\text{Cboot2})}$			8	
Logic levels (I/O), $V_{(\text{Rmod})}$, $V_{(\text{logic})}$, $V_{(\text{SCR0})}$, $V_{(\text{SCR1})}$, $V_{(5\text{Vg_ENABLE})}$, $V_{(\text{RESET})}$, $V_{(\text{AOUT})}$, $V_{(\text{CLP})}$, and $V_{(\text{REST})}$		0		5.25	V
Operating ambient temperature range, T_A		-40		125	°C
Logic levels (I/O), $V_{(\text{SCR0})}$, $V_{(\text{SCR1})}$, $V_{(\text{CLP})}$ directly connected to $V_{(\text{logic})}$		$V_{(\text{logic})}$		$V_{(\text{logic})}$	V

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TPIC74101-Q1	UNIT
		PWP	
		20 PINS	
$R_{\theta JA}^{(2)}$	Junction-to-ambient thermal resistance	32	°C/W
$R_{\theta JA}^{(3)}$	Junction-to-ambient thermal resistance	37.9	
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	22.7	
$R_{\theta JB}$	Junction-to-board thermal resistance	20.2	
Ψ_{JT}	Junction-to-top characterization parameter	0.7	
Ψ_{JB}	Junction-to-board characterization parameter	19.9	
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	1.8	

- (1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).
 (2) The thermal data is based on using 2-oz copper trace with at least four square inches of copper footprint for heat dissipation. The copper pad is soldered to the thermal land pattern. Correct attachment procedure must be incorporated.
 (3) The thermal data is based on using 1-oz copper trace with at least four square inches of copper footprint for heat dissipation. The copper pad is soldered to the thermal land pattern. Correct attachment procedure must be incorporated.

6.5 Dissipation Rating

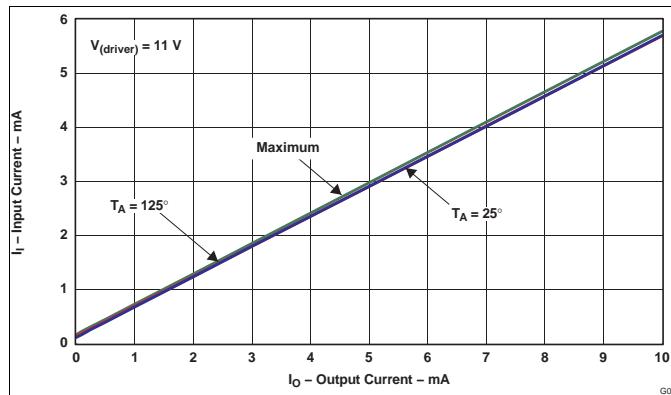
$R_{\theta JA}$	$T_A \leq 25^\circ\text{C}$ POWER RATING	DERATING FACTOR ABOVE $T_A = 25^\circ\text{C}$	$T_A = 85^\circ\text{C}$ POWER RATING	$T_A = 125^\circ\text{C}$ POWER RATING
32°C/W	3.9 W	31.25 mW/°C	2.03 W	0.781 W
40°C/W	3.125 W	25 mW/°C	1.625 W	0.625 W

6.6 Electrical Characteristics

$V_{(\text{driver})} = 6 \text{ V to } 17 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C , unless otherwise noted

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{(\text{driver})}$	Unregulated input voltage	1.5	40		V
$V_{(\text{driver})}$	Start-up condition voltage	$I_O = 600 \text{ mA}$		5	V
S_{OM}	Soft-start ramp	$C_O = 36 \mu\text{F}$ (min) to $220 \mu\text{F}$ (max)	4	20	V/ms
		$C_O = 220 \mu\text{F}$ (min) to $470 \mu\text{F}$ (max) ⁽¹⁾	2	20	
$I_{(\text{standby})}$	Standby current	ENABLE = low	10	20	μA
I_q	Quiescent current	$CLP = 0 \text{ V}$, $V_{(\text{driver})} = 11 \text{ V}$, $I_O = 0 \text{ mA}$	110	160	μA
V_O	Output voltage	DC	5		V
V_O	Buck mode		2%		
	Low-Power or Boost or Boost/buck crossover mode		3%		
I_O	Output current	$V_{(\text{driver})} \geq 7 \text{ V}$	1		A
$I_O(\text{Boost})$	Output current, boost mode	$V_{(\text{driver})} = 2 \text{ V}$, see Note ⁽²⁾	200		mA
		$V_{(\text{driver})} = 1.5 \text{ V}$, see Note ⁽²⁾	120		
I_{PPn}	Internal peak current limit (normal mode)	⁽¹⁾	1.75	2.5	A
I_{PPI}	Internal peak current limit (low-power mode)	⁽¹⁾	0.75	1.25	A
I_P	Peak current	$V_{(\text{driver})} = 16 \text{ V}$, $I_O = 1 \text{ A}$, and $L = 33 \mu\text{H}$	1.5		A
$V_{(\text{driver})}$	Boost/buck crossover voltage window	See Note ⁽³⁾	5	5.9	V
T_{ot}	Thermal shutdown ⁽⁴⁾		160	180	200
					°C

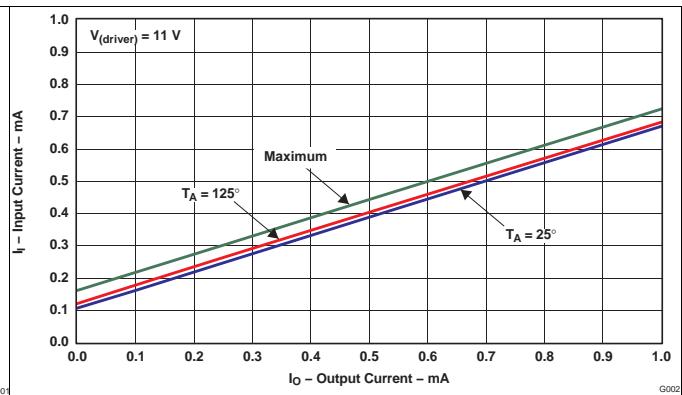
- (1) Ensured by characterization
 (2) Tested with inductor having following characteristics: $L = 33 \mu\text{H}$, $R_{\text{max}} = 0.1 \Omega$, $I_R = 1.8 \text{ A}$. Output current must be verified in application when inductor R_{max} (ESR) is increased.
 (3) Ensured by characterization. For further details, see the [Buck/Boost Transitioning](#) section.
 (4) Ensured by characterization; hysteresis 15°C (typical)


Electrical Characteristics (continued)

$V_{(\text{driver})} = 6 \text{ V to } 17 \text{ V}$, $T_A = -40^\circ\text{C to } 125^\circ\text{C}$, unless otherwise noted

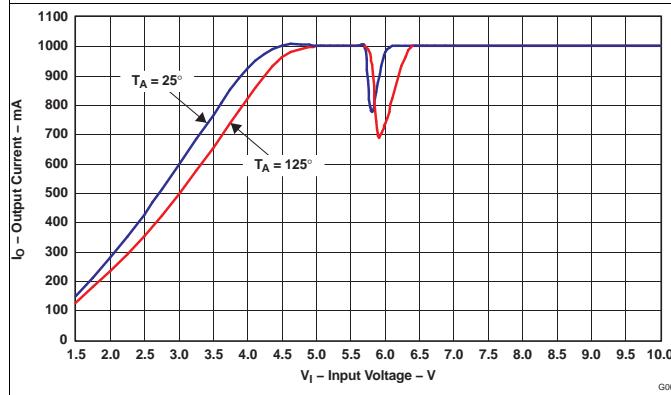
PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
5Vg OUTPUT AND ENABLE					
$r_{DS(\text{on})}$	On-state resistance		140	225	$\text{m}\Omega$
I_O	Output current		400		mA
V_I	5Vg_ENABLE input-voltage range		-0.5	V_O	V
V_{IH}	5Vg_ENABLE threshold high voltage	$V_{(5Vg)} = 5 \text{ V}$	2.5	3	3.5
V_{IL}	5Vg_ENABLE threshold low voltage	$V_{(5Vg)} = 0 \text{ V}$	1.5	2	2.5
$V_{(\text{hys})}$	Hysteresis voltage		0.5	1	V
$r_{(\text{pd})}$	Internal pulldown resistor		300	500	850
ENABLE					
V_I	ENABLE input-voltage range		-0.5	40	V
V_{IH}	ENABLE threshold high voltage	$8 \text{ V} \leq V_{(\text{driver})} \leq 17 \text{ V}$	2.5	3	3.5
		$6 \text{ V} \leq V_{(\text{driver})} < 8 \text{ V}$	1.9	2.5	3.5
V_{IL}	ENABLE threshold low voltage	$V_O = 5 \text{ V}$	1.5	1.85	2.5
$V_{(\text{hys})}$	Hysteresis voltage	$8 \text{ V} \leq V_{(\text{driver})} \leq 17 \text{ V}$	0.5	1	V
		$6 \text{ V} \leq V_{(\text{driver})} < 8 \text{ V}$	0.1		
RESET					
$V_{(th)}$	RESET threshold voltage		4.51	4.65	4.79
$V_{(\text{RESET})}$	RESET tolerance			3%	
$t_{(\text{RESET})}$	RESET time	$C_{(\text{REST})} = 10 \text{ nF}$	8	10	12
		$C_{(\text{REST})} = 100 \text{ nF}$, see Note ⁽¹⁾	80	100	120
V_{OL}	RESET output low voltage	$I_{\text{sink}} = 5 \text{ mA}$		450	
		$I_{\text{sink}} = 1 \text{ mA}$		84	mV
$t_{(\text{deglitch})}$	RESET deglitch time	See Note ⁽¹⁾	8	10	12.5
ALARM					
V_I	Alarm input-voltage range		-0.5	40	V
V_{IL}	Alarm threshold low voltage		2.2	2.3	2.35
V_{IH}	Alarm threshold high voltage		2.43	2.5	2.58
$V_{(\text{hys})}$	Hysteresis voltage			240	mV
V_{OL}	Alarm output low voltage	$I_{\text{sink}} = 5 \text{ mA}$		450	
		$I_{\text{sink}} = 1 \text{ mA}$		84	mV
LOW-POWER MODE (PULSE MODE) PFM					
$I_{O(\text{LPM})}$	Load current in low-power mode	$V_{(\text{driver})} < 7 \text{ V}$		50	mA
$I_{(\text{avg})}$	Average input current	$V_{(\text{driver})} = 11 \text{ V}$, $I_O = 5 \text{ mA}$, CLP = low		3.55	mA
V_O	Output-voltage tolerance	$V_O = 5 \text{ V}$		2.4%	3%
DIGITAL LOW-POWER MODE (CLP)					
V_{IH}	High-level CLP input threshold voltage	Normal mode		2.6	V
V_{IL}	Low-level CLP input threshold voltage	Low-power mode		1.15	V
SWITCHING PARAMETERS					
$f_{(\text{sw})}$	Switching frequency	$V_{(\text{Rmod})} = 0 \text{ V}$, modulator OFF		380	kHz
$f_{(\text{sw})\text{ac}}$	Operating-frequency accuracy	$f_{(\text{sw})} = 380 \text{ kHz}$		20%	
$f_{(\text{sw})\text{min}}$	Modulation minimum frequency		230	285	385
$f_{(\text{sw})\text{max}}$	Modulation maximum frequency		390	480	590
$f_{(\text{mod})\text{span}}$	Modulation span			220	kHz
$f_{(\text{mod})}$	Modulation frequency	$R_{\text{mod}} = 12 \text{ k}\Omega \pm 1\%$		28	kHz
$f_{(\text{mod})\text{ac}}$	Modulation-frequency accuracy			12%	

6.7 Typical Characteristics


(Reference L1 Pin, see [Figure 10](#) through [Figure 12](#))

Maximum characteristic specified by design.

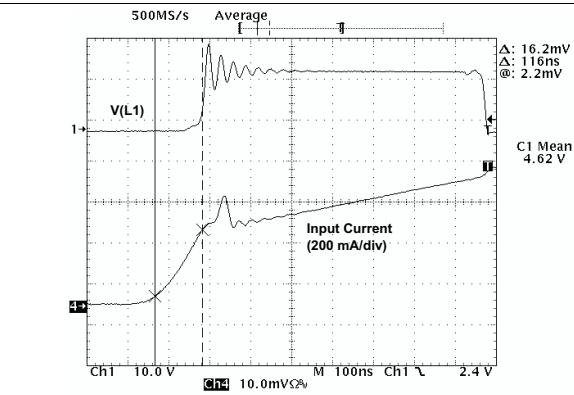
$I_O = 0 \text{ mA}–10 \text{ mA}$


Figure 1. Low-Power Mode Current

Maximum characteristic specified by design.

$I_O = 0 \text{ mA}–1 \text{ mA}$

Figure 2. Low-Power-Mode Current



(1) Typical representation of input voltage vs output load current at $T_A = 25^\circ\text{C}$ and 125°C , after the correct power-up sequence is invoked.

(2) The dip in the output current at 5.8 V is caused by the buck/boost transition of the IC.

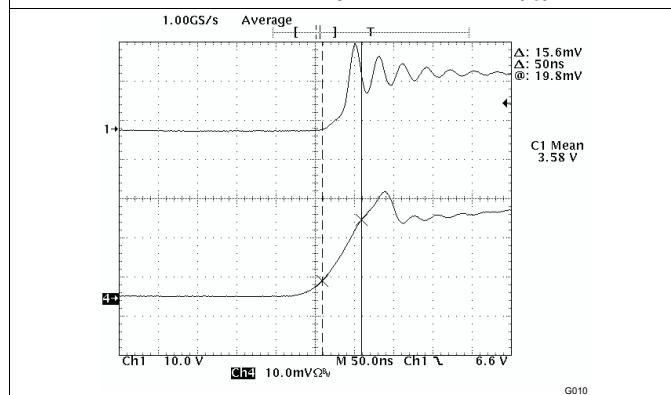

(3) The output current is clipped to 1 A by the measurement setup.

Figure 3. Typical Input Voltage ($V_{(\text{driver})}$) vs Maximum Output Load Current (I_O)

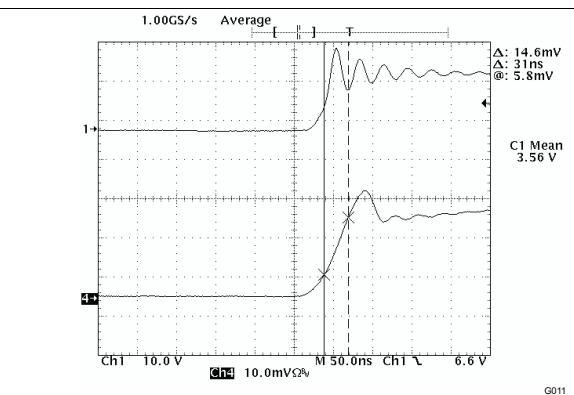
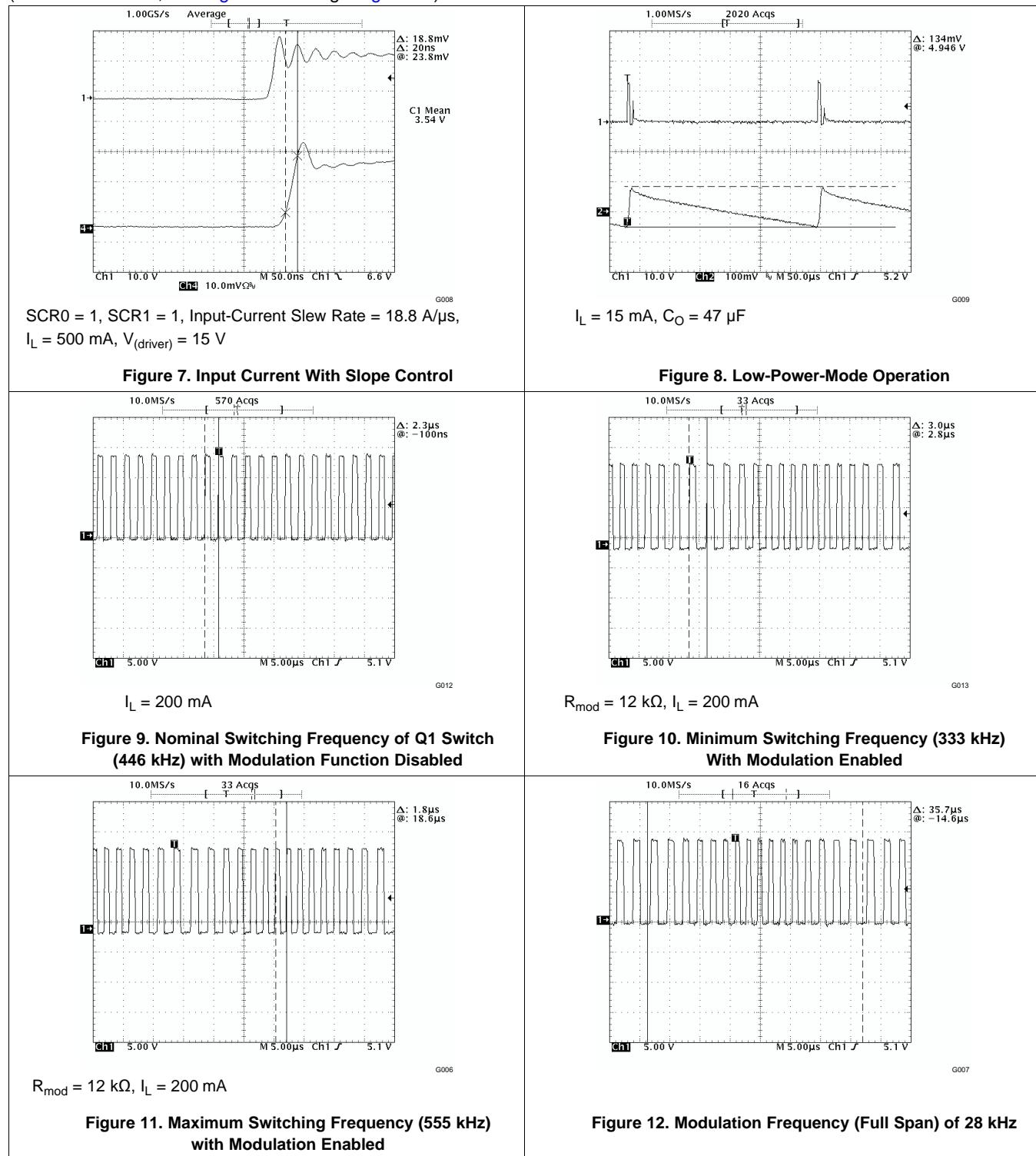

$\text{SCR0} = 0$, $\text{SCR1} = 0$, Input-Current Slew Rate = $2.8 \text{ A}/\mu\text{s}$, $I_L = 500 \text{ mA}$, $V_{(\text{driver})} = 15 \text{ V}$

Figure 4. Input Current With Slope Control

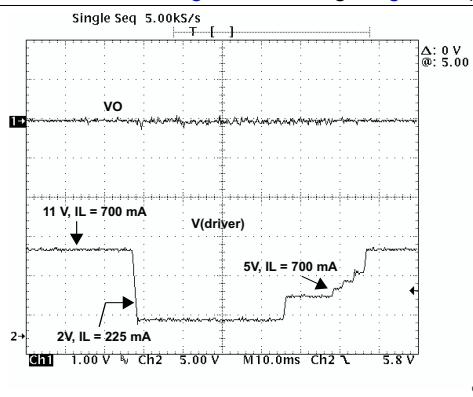
$\text{SCR1} = 0$, $\text{SCR0} = 1$, Input-Current Slew Rate = $6.25 \text{ A}/\mu\text{s}$, $I_L = 500 \text{ mA}$, $V_{(\text{driver})} = 15 \text{ V}$

Figure 5. Input Current With Slope Control

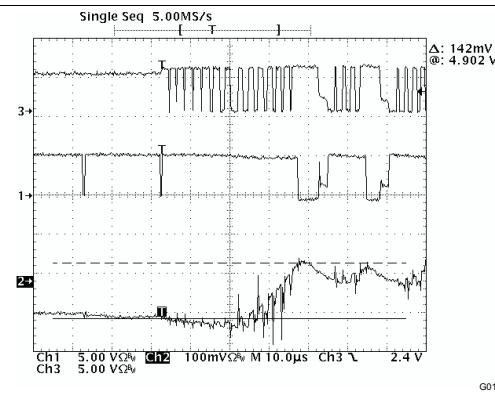


$\text{SCR1} = 1$, $\text{SCR0} = 0$, Input-Current Slew Rate = $9.4 \text{ A}/\mu\text{s}$, $I_L = 500 \text{ mA}$, $V_{(\text{driver})} = 15 \text{ V}$

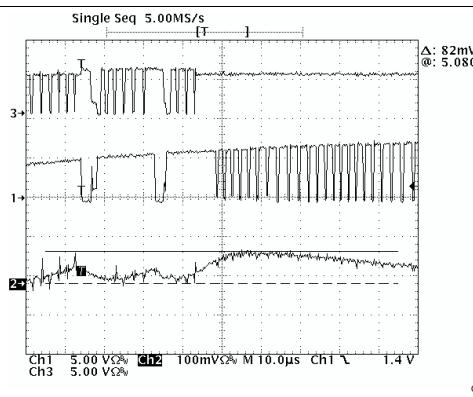
Figure 6. Input Current With Slope Control


Typical Characteristics (continued)

(Reference L1 Pin, see [Figure 10](#) through [Figure 12](#))



Typical Characteristics (continued)


(Reference L1 Pin, see [Figure 10](#) through [Figure 12](#))

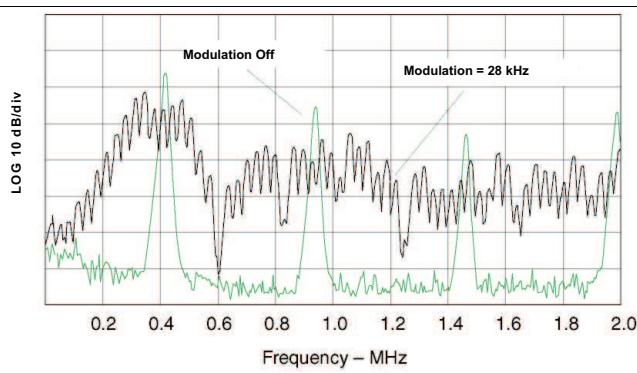

Figure 13. Input Voltage Excursions (Similar to Low-Crank Conditions)

Figure 14. Switch-Mode Regulator Transition From Buck Mode to Boost Mode

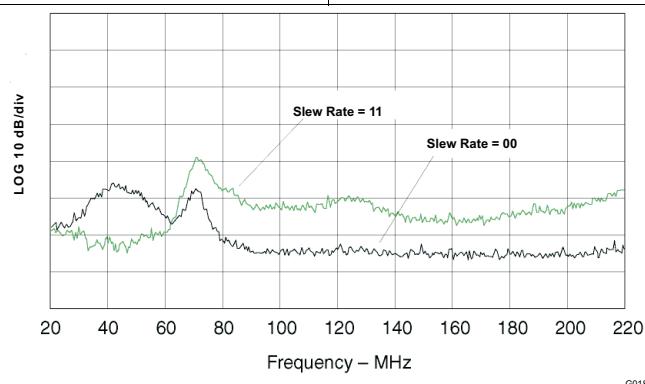


Figure 15. Switch-Mode Regulator Transition From Boost Mode to Buck Mode

These values represent conducted EMI results of a test board for display purposes only. Actual results may vary greatly depending on board layout and external components and must be verified in actual application

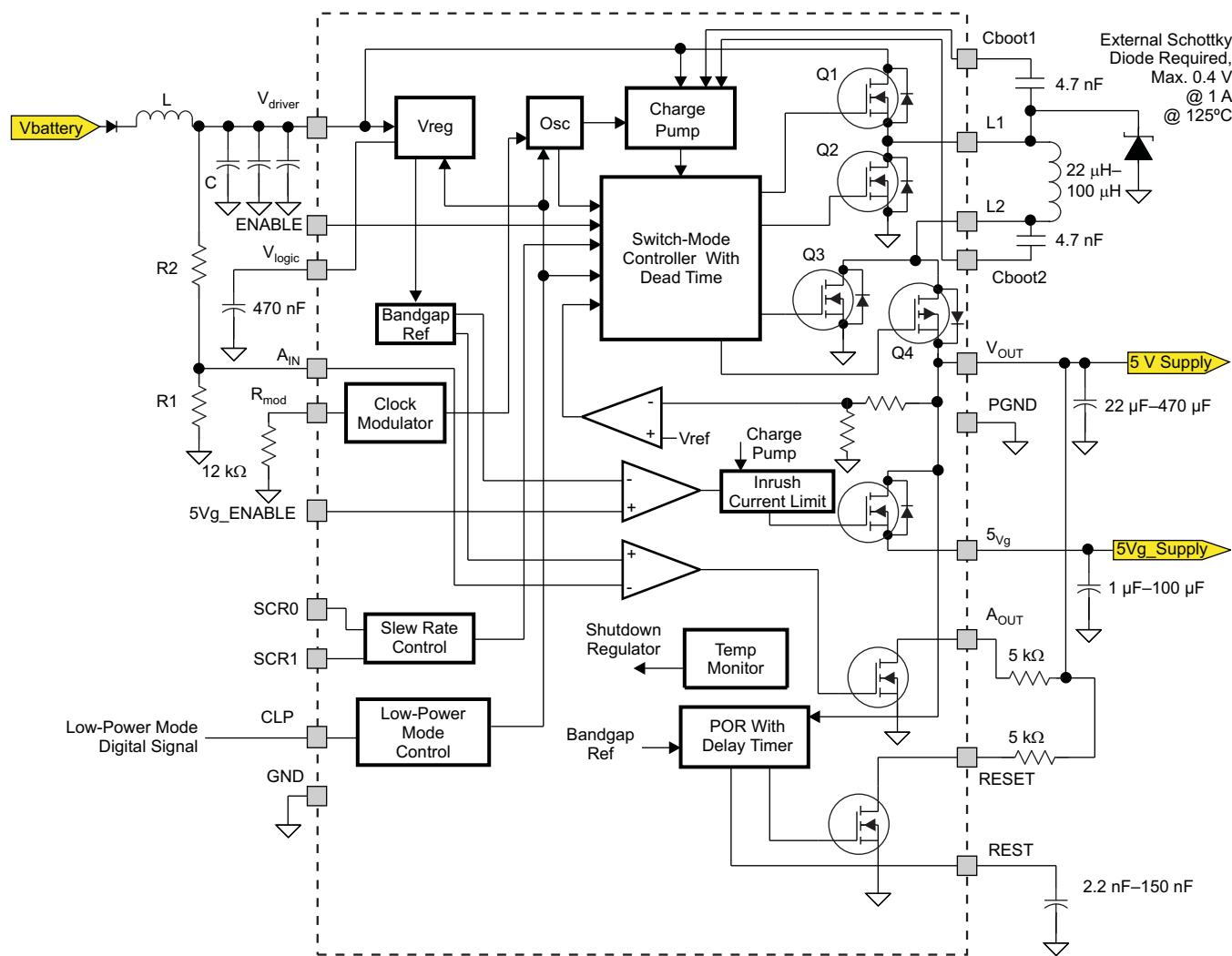
Figure 16. Conducted Emissions on Test Board Showing Effects of Switching-Frequency Modulation

These values represent conducted EMI results of a test board for display purposes only. Actual results may vary greatly depending on board layout and external components and must be verified in actual application.

Figure 17. Conducted Emissions on Test Board Showing Effects of Minimum and Maximum Slew Rate Settings

7 Detailed Description

7.1 Overview


The TPIC74101-Q1 is a buck/boost switch-mode regulator that operates in a power-supply concept to ensure a stable output voltage with input voltage excursions and specified load range.

The device provides an alarm indicator and reset output to interface with systems that require supervisory function.

The switching regulator offers a clock modulator and a current-mode slew-rate control for the internal switching transistor (Q1) to minimize EMI.

An internal low- $r_{DS(on)}$ switch has a current-limit feature to prevent inadvertent reset when turning on the 5V_g output.

7.2 Functional Block Diagram

B0130-01

NOTE: All component values are typical.

7.3 Feature Description

7.3.1 Switch-Mode Input/Output Pins (L1, L2)

The external inductor for the switch-mode regulator is connected between pins L1 and L2. This inductor is placed close to the pins to minimize parasitic effects. For stability, an inductor with 20 μ H to 100 μ H should be used.

7.3.2 Supply Pin (V_{driver})

The input voltage of the device is connected to the V_{driver} pin. This input line requires a filter capacitor to minimize noise. A low-ESR aluminum or tantalum input capacitor is recommended. The relevant parameters for the input capacitor are the voltage rating and RMS current rating. The voltage rating should be approximately 1.5 times the maximum applied voltage for an aluminum capacitor and 2 times for a tantalum capacitor. In buck mode, the RMS current is $I_{\text{OUT}} \times \sqrt{D - D^2}$, where D is the duty cycle and its maximum RMS current value is reached when D = 50% with $I_{\text{RMS}} = I_{\text{OUT}}/2$. In boost mode, the RMS current is $0.3 \times \Delta I$, where ΔI is the peak-to-peak ripple current in the inductor. To achieve this, ESR ceramic capacitors are used in parallel with the aluminum or tantalum capacitors.

7.3.3 Internal Supply Decoupling Pin (V_{logic})

The V_{logic} pin is used to decouple the internal power-supply noise by use of a 470-nF capacitor. This pin can also be used as an output supply for the logic-level inputs for this device (SCR0, SCR1, ENABLE, CLP, and 5Vg_ENABLE).

7.3.4 Input Voltage Monitoring Pin (A_{IN})

The A_{IN} pin is used to program the threshold voltage for monitoring and detecting undervoltage conditions on the input supply. A maximum of 40 V may be applied to this pin and the voltage at this pin may exceed the $V_{(\text{driver})}$ input voltage without effecting the device operation. The resistor divider network is programmed to set the undervoltage detection threshold on this pin (see the application schematic). The input has a typical hysteresis of 200 mV with a typical upper limit threshold of 2.5 V and a typical lower limit threshold of 2.3 V. When $V_{(\text{AIN})}$ falls below 2.3 V, $V_{(\text{AOUT})}$ is asserted low; when $V_{(\text{AIN})}$ exceeds 2.5 V, $V_{(\text{AOUT})}$ is in the high-impedance state.

The equations to set the upper and lower thresholds of $V_{(\text{AIN})}$ are:

Upper:

$$V_{(\text{driver})} = 2.5 \text{ V} \times \frac{R_1 + R_2}{R_1}$$

Lower:

$$V_{(\text{driver})} = 2.3 \text{ V} \times \frac{R_1 + R_2}{R_1} \quad (1)$$

7.3.5 Input Undervoltage Alarm Pin (A_{OUT})

The A_{OUT} pin is an open-drain output that asserts low when the input voltage falls below the set threshold on the A_{IN} input.

7.3.6 Reset Delay Timer Pin (REST)

The REST pin sets the desired delay time to assert the RESET pin low after the 5-V supply has exceeded 4.65 V (typical). The delay can be programmed in the range of 2.2 ms to 150 ms using capacitors in the range of 2.2 nF to 150 nF. The delay time is calculated using the following equation:

$$\text{RESET delay} = C_{(\text{REST})} \times 1 \text{ ms, where } C_{(\text{REST})} \text{ has nF units}$$

7.3.7 Reset Pin (RESET)

The RESET pin is an open-drain output. The power-on reset output is asserted low until the output voltage exceeds the 4.65-V threshold and the reset delay timer has expired. Additionally, whenever the ENABLE pin is low, RESET is immediately asserted low regardless of the output voltage.

Feature Description (continued)

7.3.8 Main Regulator Output Pin (V_{OUT})

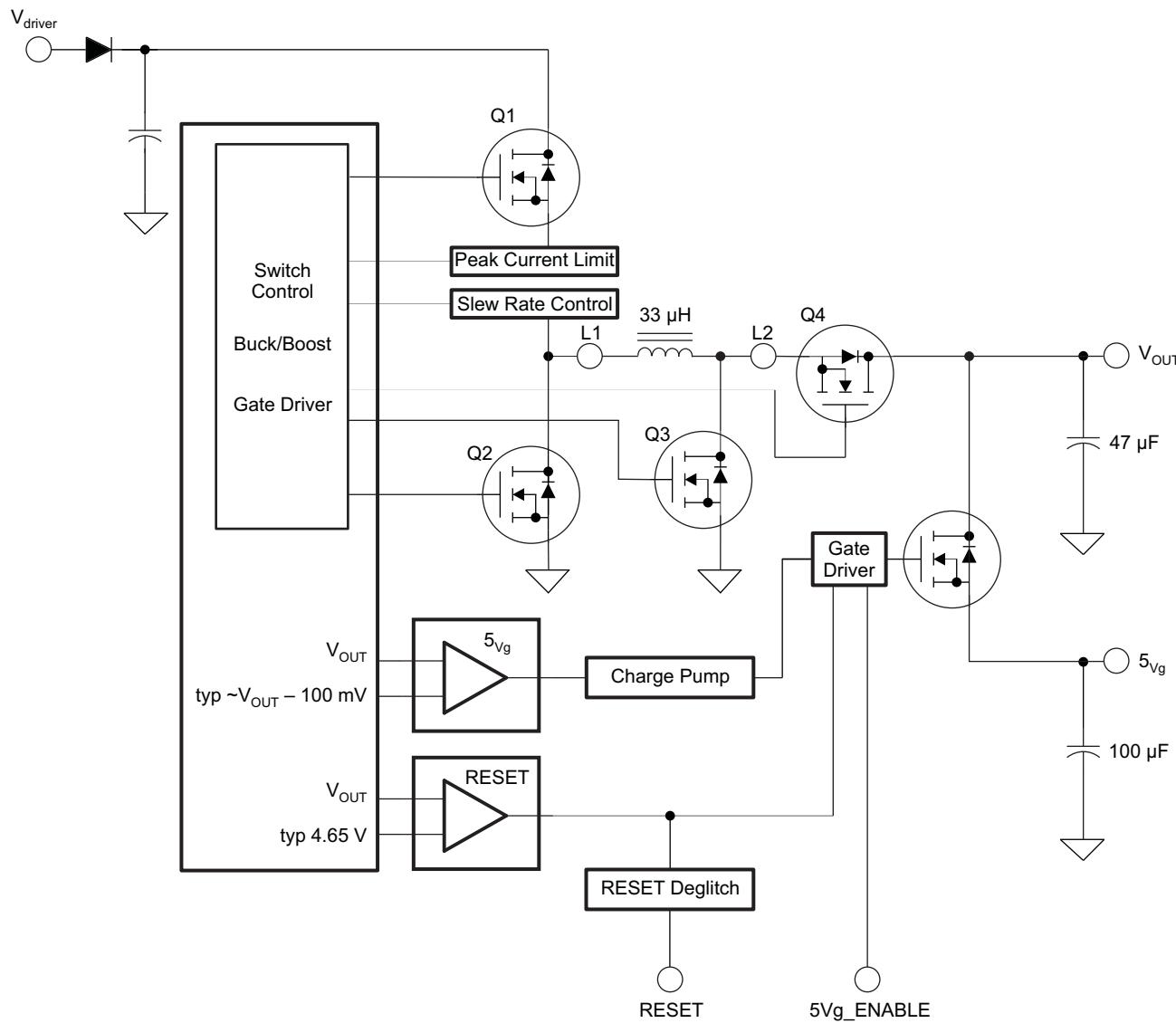
The V_{OUT} pin is the output of the switch-mode regulated supply. This pin requires a filter capacitor with low-ESR characteristics to minimize output ripple voltage. For stability, a capacitor with 22 μ F to 470 μ F should be used. The total capacitance at pin V_{OUT} and pin 5Vg must be less than or equal to 470 μ F.

7.3.9 Low-Power-Mode Pin (CLP)

The CLP pin controls the low-power mode of the device. An external low digital signal switches the device to low-power mode or normal mode when the input is high.

7.3.10 Switch-Output Pin (5Vg)

The 5Vg pin switches the 5-V regulated output. The output voltage of the regulator can be enabled or disabled using this low- $r_{DS(on)}$ internal switch. This switch has a current-limiting function to prevent generation of a reset signal at turnon caused by the capacitive load on the output or overload condition. When the switch is enabled, the regulated output may deviate and drop momentarily to a tolerance of 7% until the 5Vg capacitor is fully charged. This deviation depends on the characteristics of the capacitors on V_{OUT} and 5Vg.


7.3.11 5Vg-Enable Pin (5Vg_ENABLE)

The 5Vg_ENABLE is a logic-level input for enabling the switch output on 5Vg.

For the functional pin, 5Vg_ENABLE results in [Table 1](#):

Table 1. 5Vg_ENABLE, Functional Pin

5Vg_ENABLE	FUNCTION
0	5Vg is off
Open (internal pulldown = 500 k Ω)	5Vg is off
1	5Vg is on

Figure 18. Current-Limit Switched Output 5Vg

7.3.12 Slew-Rate Control Pins (SCR0, SCR1)

The slew rate of the switching transistor Q1 is set using the SCR0 and SCR1 pins.

Table 2 shows the values of the slew rate (SR):

Table 2. Slew Rate Values (SR)

SCR1	SCR0	SR _{Q1}
0	0	Slow
0	1	Medium-slow
1	0	Medium-fast
1	1	Fast

See the converter efficiency plots in the *Typical Characteristics* section to determine power dissipation.

7.3.13 Modulator Frequency Setting (Pin R_{mod})

The R_{mod} pin adjusts the clock modulator frequency. A resistor of $R_{mod} = 12\text{ k}\Omega$ generates a modulation frequency of 28 kHz. The modulator function may be disabled by connecting R_{mod} to GND and the device operates with the nominal frequency. The modulator function cannot be activated during IC operation, only at IC start-up.

7.3.14 Ground Pin (PGND)

The PGND pin is the power ground for the device.

7.3.15 Enable Pin (ENABLE)

The ENABLE pin allows the enabling and disabling of the switch mode regulator. A maximum of 40 V may be applied to this pin to enable the device and increasing it above the $V_{(driver)}$ input voltage does not affect the device operation.

Table 3 describes the functionality of the ENABLE pin.

Table 3. Functionality of the ENABLE Pin

ENABLE	FUNCTION
0	V_{reg} is off.
Open	Undefined
1	V_{reg} is on.

7.3.16 Bootstrap Pins (Cboot1 and Cboot2)

An external bootstrap capacitor is required for driving the internal high-side MOSFET switch. A 4.7-nF ceramic capacitor is typically required.

7.4 Device Functional Modes

7.4.1 Clock Modulator

To minimize EMI issues associated with the switch-mode regulator, the device offers an integrated clock modulator. The function of the clock modulator is to modulate the switching frequency and to distribute the energy over the wave band.

The average switching frequency is 380 kHz (typical) and varies between 285 kHz and 480 kHz at a rate set by the R_{mod} resistor. A typical value of 12 k Ω on the R_{mod} pin relates to a 28-kHz modulation frequency. The clock modulator function can only be activated during IC start-up, not during IC operation.

Equation 2 is for the modulation frequency.

$$f_{(mod)} \text{ (Hz)} = (-2.2 \times R_{mod}) + 54.5 \text{ kHz}, \quad (2)$$

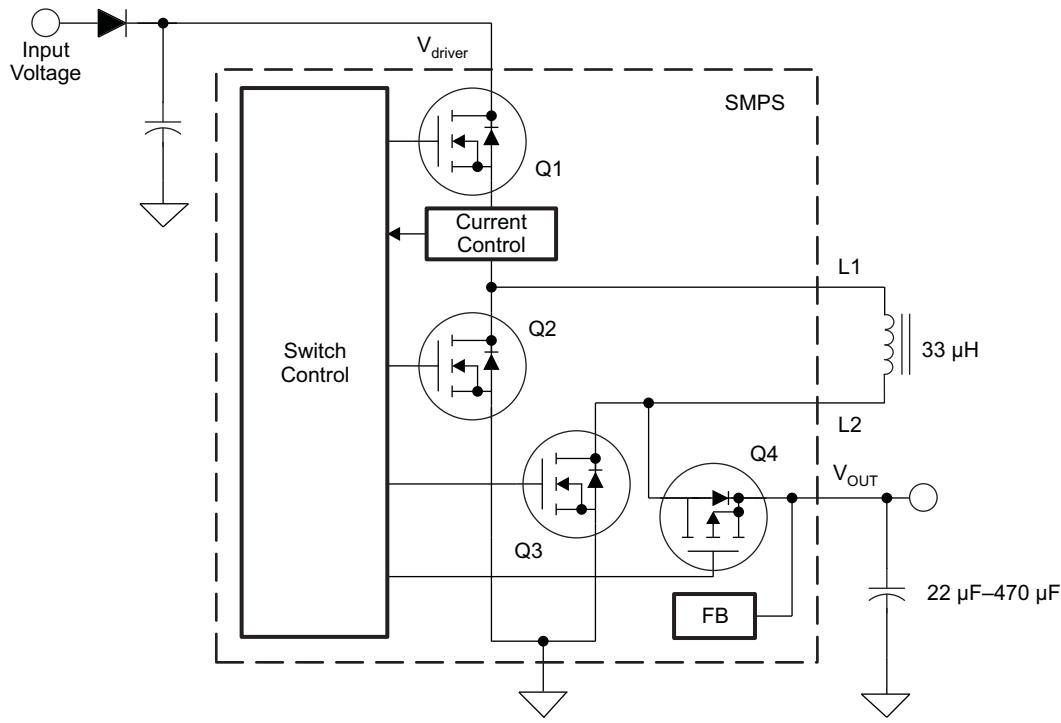
when $R_{mod} = 8\text{ k}\Omega$ to $16\text{ k}\Omega$. Bigger resistor values like $100\text{ k}\Omega$ are also allowed for R_{mod} .

7.4.2 Buck/Boost Transitioning

The operation mode switches automatically between buck and boost modes depending on the input voltage of $V_{(driver)}$ and output load conditions. During start up, when $V_{(driver)}$ is less than 5.8 V (typical), the device starts in boost mode and continues to run in boost mode until $V_{(driver)}$ exceeds 5.8 V; at which time, the device switches over to buck mode. In buck mode, the device continues to run in buck mode until it is required to switch back to boost to hold regulation. This crossover window to switch to boost mode is when $V_{(driver)}$ is between 5.8 V and 5 V and depends on the loading conditions. When $V_{(driver)}$ drops below 5.8 V but the device is holding regulation (~2%), the device remains in buck mode. However, when $V_{(driver)}$ is within the 5.8-V to 5-V window and V_{OUT} drops to 4.9 V, the device crosses over to boost mode to hold regulation. In boost mode, the device remains in

Device Functional Modes (continued)

boost mode until $V_{(\text{driver})}$ exceeds 5.8 V; at which time, the device enters the buck mode. When the device is operating in boost mode and $V_{(\text{driver})}$ is in the crossover window of 5.8 V to 5 V, the output regulation may contain a higher than normal ripple and only maintain a 3% tolerance. This ripple and tolerance depends on the loading and improves with a higher loading condition. When the device is operated with low-power mode active (CLP = low) and high output currents (>50 mA), the buck/boost transitioning can cause a reset signal at the RESET pin.


7.4.3 Buck SMPS

In buck mode, the duty cycle of transistor Q1 sets the voltage V_{OUT} . The duty cycle of transistor Q1 varies 10% to 99% depending on the input voltage, $V_{(\text{driver})}$. If the peak inductor current (measured by Q1) exceeds 450 mA (typical), Q2 is turned on for this cycle (synchronized rectification). Otherwise, the current recirculates through Q2 as a free-wheeling diode. The detection for synchronous or asynchronous mode is done cycle-by-cycle.

To avoid a cross-conduction current between Q1 and Q2, an inherent delay is incorporated when switching Q1 off and Q2 on and vice versa.

In buck mode, transistor Q3 is not required and is switched off. Transistor Q4 is switched on to reduce power dissipation.

The switch timings for transistors Q3 and Q4 are not considered. In buck mode, the logical control of the transistors does not change.

Figure 19. Buck/Boost Switch Mode Configuration

7.4.4 Boost SMPS

In boost mode, the duty cycle of transistor Q3 controls the output voltage V_{OUT} . The duty cycle is internally adjusted 5% to 85% depending on the internally sensed voltage of the output. Synchronized rectification occurs when $V_{(\text{driver})}$ is below 5 V.

To avoid a discharging of the buffer capacitor, a simultaneous switching on of Q3 and Q4 is not allowed. An inherent delay is incorporated between Q3 switching off and Q4 switching on and vice versa.

In boost mode, transistor Q2 is not required and remains off. Transistor Q1 is switched on for the duration of the boost-mode operation (serves as a supply line).

Device Functional Modes (continued)

The switch timings of transistors Q1 and Q2 are not considered. In boost mode, the logical control of the transistors does not change.

7.4.5 Extension of the Input Voltage Range on $V_{(driver)}$

To ensure a stable 5-V output voltage with the output load in the specified range, the $V_{(driver)}$ supply must be greater than or equal to 5 V for greater than 1 ms (typical). After a period of 1 ms (typical), the logic may be supplied by the V_{OUT} regulator and the $V_{(driver)}$ supply may be capable of operating down to 1.5 V.

The switch-mode regulator does not start at $V_{(driver)}$ less than 5 V.

7.4.6 Low-Power Mode

To reduce quiescent current and to provide efficient operation, the regulator enters a pulsed mode.

The device enters this mode by a logic-level low on this pin.

Automatic low-power mode is not available. The low-power-mode function is not available in boost mode. The device leaves low-power mode during boost mode regardless of the logic level on the CLP pin.

7.4.7 Temperature and Short-Circuit Protection

To prevent thermal destruction, the device offers overtemperature protection to disable the IC. Also, short-circuit protection is included for added protection on V_{OUT} and 5Vg.

7.4.8 Switch Output Pin (5Vg) Current Limitation

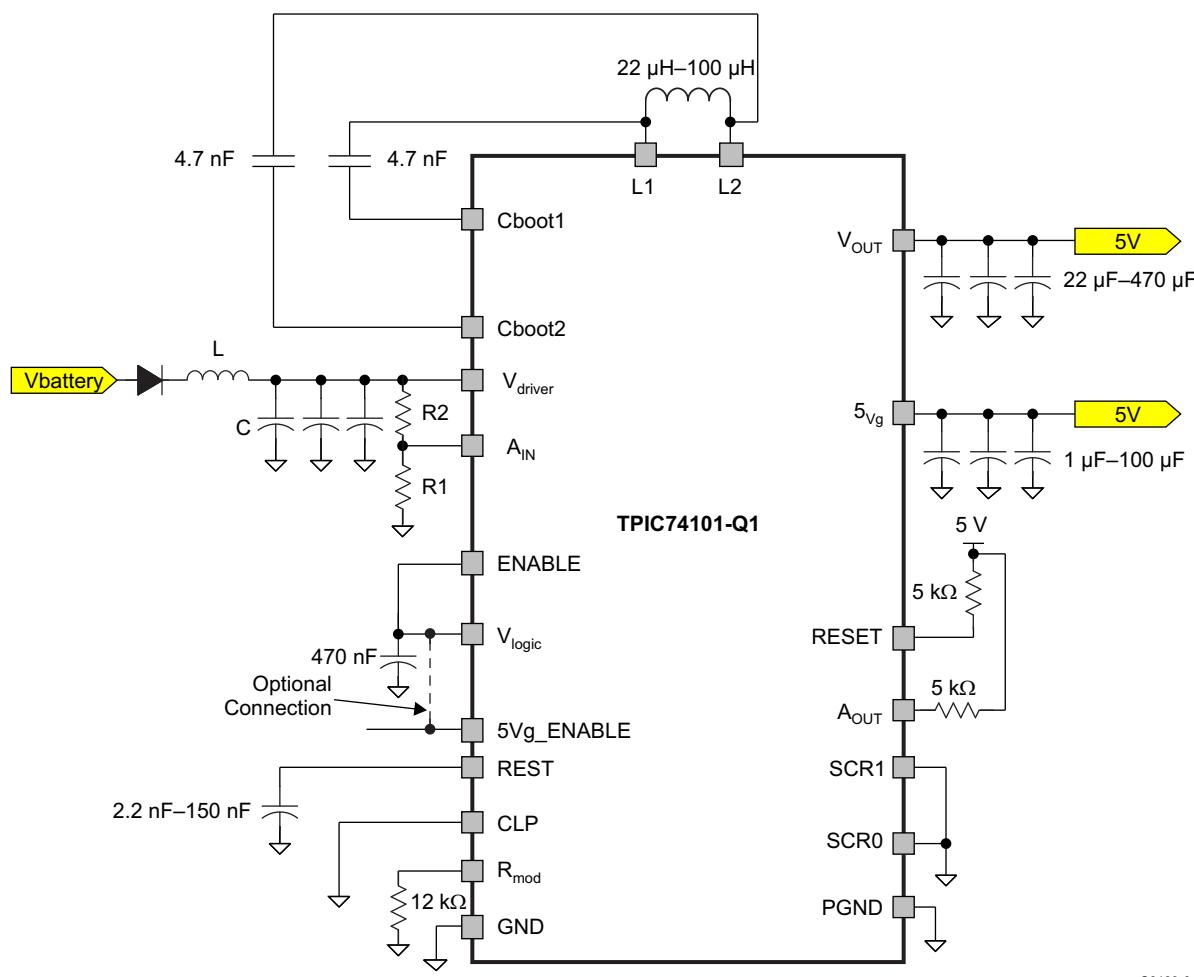
A charge pump drives the internal FET, which switches the primary output voltage V_{OUT} to the 5Vg pin. Protection is implemented to prevent the output voltage from dropping below its specified value while enabling the secondary output voltage. An explanation of the block diagram (see Figure 1) is given by the following example:

- Device is enabled, output voltage V_{OUT} is up and stable.
- 5Vg is enabled (pin 5Vg_ENABLE set to high) with load resistance connected to 5Vg pin.
- If output voltage V_{OUT} drops below typical ($V_{OUT} - 100$ mV), the charge pump of the 5Vg FET is switched off and the FET remains on for a while as the gate voltage drops slowly.
- If V_{OUT} drops below the RESET threshold of 4.65 V (typical), the FET of the secondary output voltage 5Vg is switched off (gate drawn to ground level).
- A deglitch time ensures that a device reset does not occur if V_{OUT} drops to the reset level during the 5Vg turnon phase.
- If V_{OUT} rises above typical ($V_{OUT} + 100$ mV), the charge pump of the 5Vg FET is switched on and drives the gate of the 5Vg FET on.

7.4.9 Soft Start

On power up, the device offers a soft-start feature which ramps the output of the regulator at a slew of 10 V/ms. When a reset occurs, the soft start is reenabled. Additionally, if the output capacitor is greater than 220 μ F (typical), the slew rate decreases to a value set by the internal current limit. In boost mode, the soft-start feature is not active.

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPIC74100-Q1 is a switch-mode regulator with integrated switches for voltage-mode control. With the help of external LC components, the device regulates the output to 5V \pm 2% for a wide input voltage range. The device can monitor the output voltage as well as the input voltage.

8.2 Typical Application

- To minimize voltage ripple on the output due to transients, it is recommended to use a low-ESR capacitor on the V_{OUT} line.
- The L and C component values are system application dependent for EMI consideration.

Figure 20. Application Schematic

8.2.1 Design Requirements

Plot the converter efficiency with four different slew rate controls (SCRx) at an input voltage of 11 V and 17 V. The slew rate of the switching transistor Q1 can be changed using the SCR0 and SCR1 pins.

Typical Application (continued)

8.2.2 Detailed Design Procedure

8.2.2.1 Buck Mode

- Select inductor ripple current ΔI_L : for example $\Delta I_L = 0.2 \times I_{OUT}$
- Calculate inductor L

$$L = \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{f_{SW} \times \Delta I_L \times V_{IN}} \quad (H) \quad (3)$$

where f_{SW} is the regulator switching frequency.

- Inductor peak current

$$I_{L,max} = I_{OUT} + \frac{\Delta I_L}{2} \quad (A) \quad (4)$$

- Output voltage ripple

$$\Delta V_{OUT} = \Delta I_L \times \left(ESR + \frac{1}{8 \times f_{SW} \times C_{OUT}} \right) \quad (V_{(p-p)}) \quad (5)$$

Usually, the first term is dominant.

$$C_{OUT} = \frac{I_{pk}(t_{on} + t_{off})}{8 \times V_{ripple}} \quad (F) \quad (6)$$

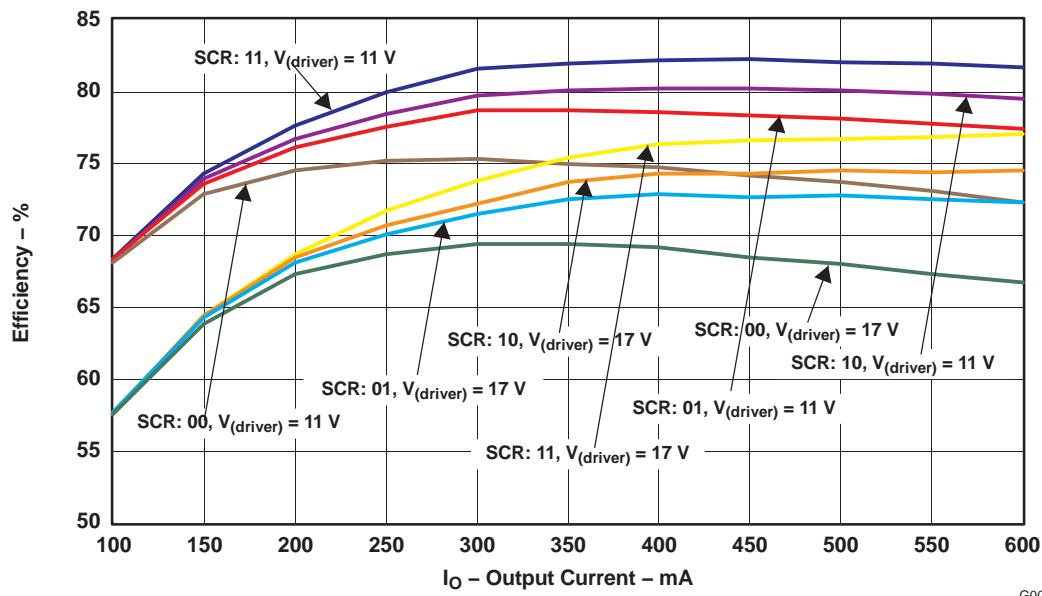
8.2.2.2 Boost Mode

- Select inductor ripple current ΔI_L : for example $\Delta I_L = 0.2 \times I_{IN}$
- Calculate inductor L

$$L = \frac{(V_{OUT} - V_{IN}) \times V_{IN}}{f_{SW} \times \Delta I_L \times V_{OUT}} \quad (H) \quad (7)$$

where f_{SW} is the regulator switching frequency.

- Inductor peak current


$$I_p = I_{L,max} = I_{IN} + \frac{\Delta I_L}{2} \quad (A) \quad (8)$$

- Output voltage ripple

$$\Delta V_{OUT} = I_p \times ESR + \frac{I_{OUT} \times \left(1 - \frac{V_{IN}}{V_{OUT}} \right)}{f_{SW} \times C_{OUT}} \quad (V_{(p-p)}) \quad (9)$$

Typical Application (continued)

8.2.3 Application Curves

G004

NOTE: The average converter efficiency with four different slew rate controls (SCRx) on the Q1 switching FET with input voltage $V_{(\text{driver})} = 11 \text{ V}$ and 17 V , $T_A = 125^\circ\text{C}$.

Figure 21. Converter Efficiency

9 Power Supply Recommendations

The input decoupling capacitors and bootstrap capacitor must be located as close as possible to the device. Ensure that input power supply is clean. To minimize voltage ripple on the output due to transients, it is recommended to use a low-ESR capacitor on the V_{OUT} line. The L and C component values are system application dependent for EMI consideration. TI recommends using a low EMI Inductor with a ferrite-type closed core.

10 Layout

10.1 Layout Guidelines

10.1.1 Switch-Mode Power Supply

The following guidelines are recommended for PCB layout of the TPIC74100 device.

10.1.1.1 Inductor

Use a low-EMI inductor with a ferrite-type closed core. Other types of inductors may be used; however, they must have low-EMI characteristics and be located away from the low-power traces and components in the circuit.

10.1.1.2 Filter Capacitors

Input ceramic filter capacitors should be located in the close proximity of the V_{driver} pin. Surface-mount capacitors are recommended to minimize lead length and reduce noise coupling.

10.1.1.3 Traces and Ground Plane

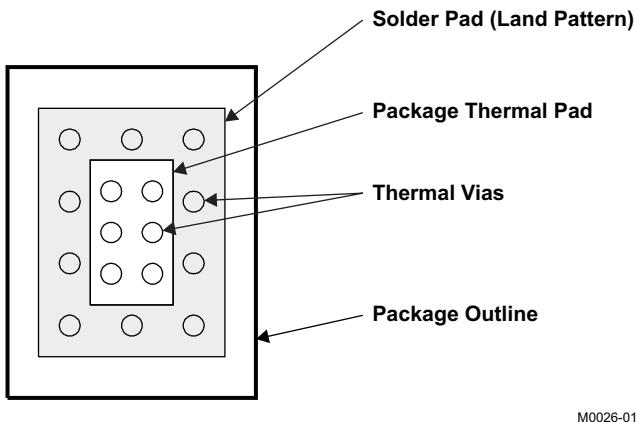
All power (high-current) traces should be thick and as short as possible. The inductor and output capacitors should be as close to each other as possible. This reduces EMI radiated by the power traces due to high switching currents.

In a two-sided PCB, it is recommended to have ground planes on both sides of the PCB to help reduce noise and ground-loop errors. The ground connection for the input and output capacitors and IC ground should be connected to this ground plane.

In a multilayer PCB, the ground plane is used to separate the power plane (where high switching currents and components are placed) from the signal plane (where the feedback trace and components are) for improved performance.

Also, arrange the components such that the switching-current loops curl in the same direction. Place the high-current components such that during conduction, the current path is in the same direction. This prevents magnetic field reversal caused by the traces between the two half-cycles, helping to reduce radiated EMI.

10.1.2 Package and PCB Land Configuration for a Multilayer PCB


To maximize the efficiency of this package for application on a single-layer or multilayer PCB, certain guidelines must be followed when laying out this device on the PCB.

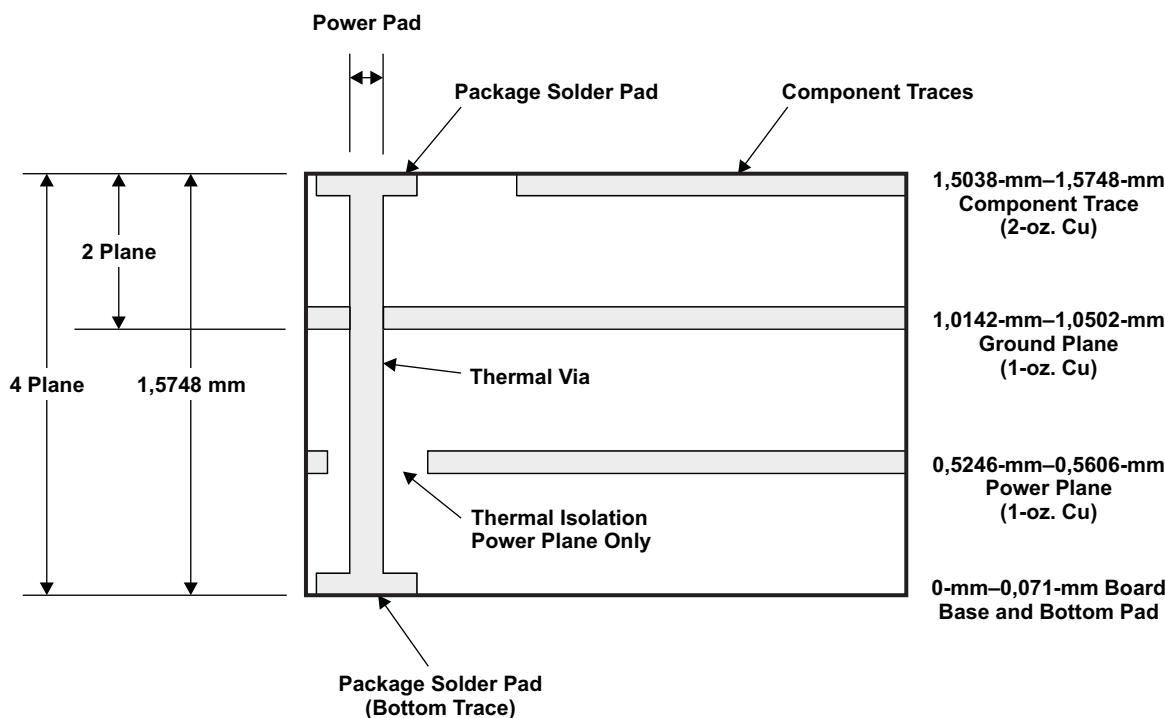
The following information is to be used as a guideline only.

For further information see the *PowerPAD Thermally Enhanced Package* technical brief ([SLMA002](#)).

The following are guidelines for mounting the PowerPAD™ IC on a multilayer PCB with a ground plane.

Layout Guidelines (continued)

M0026-01

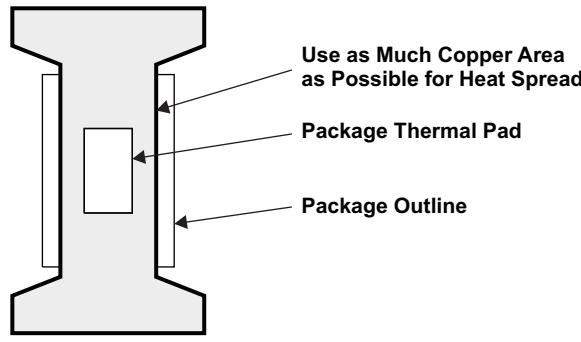

Figure 22. Package and PCB Land Configuration for a Multilayer PCB

10.1.3 Multilayer (Side View)

In a multilayer board application, the thermal vias are the primary method of heat transfer from the package thermal pad to the internal ground plane.

The efficiency of this method depends on several factors (die area, number of thermal vias, thickness of copper, etc.). See the *PowerPAD Thermally Enhanced Package* technical brief ([SLMA002](#)).

Layout recommendation is to use as much copper area for the power-management section of a single-layer board as possible. In a single-layer board application, the thermal pad is attached to a heat spreader (copper areas) by using a low-thermal-impedance attachment method (solder paste or thermal-conductive epoxy). In both of these cases, it is advisable to use as much copper and as many traces as possible to dissipate the heat.



M0027-01

Figure 23. Multilayer Board (Side View)

Layout Guidelines (continued)

10.1.4 Single-Layer

M0028-01

Figure 24. Land Configuration for Single-Layer PCB

When this attachment method is not implemented correctly, this product may operate inefficiently. Power dissipation capability may be adversely affected when the device is incorrectly mounted onto the circuit board.

10.2 Layout Example

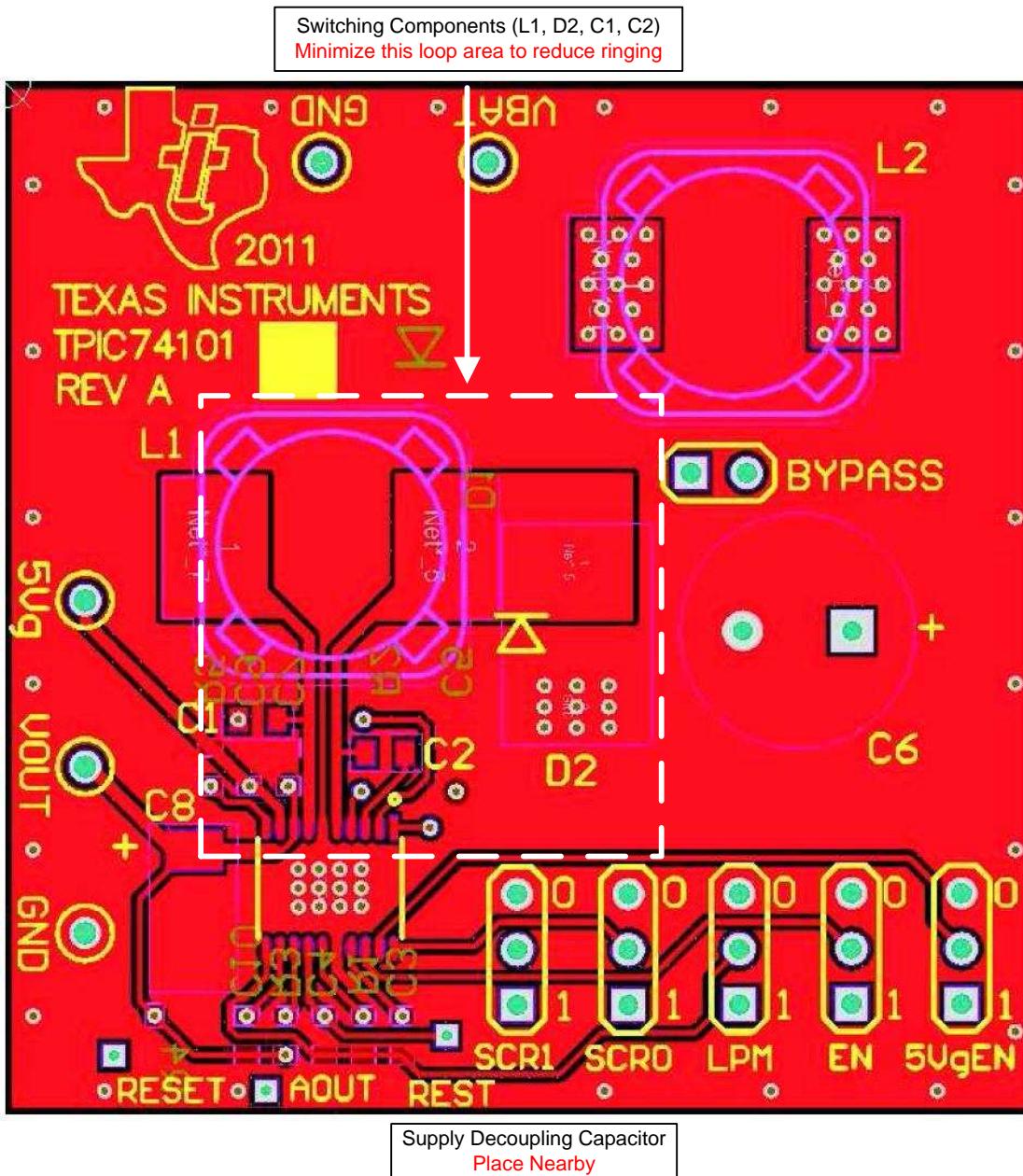
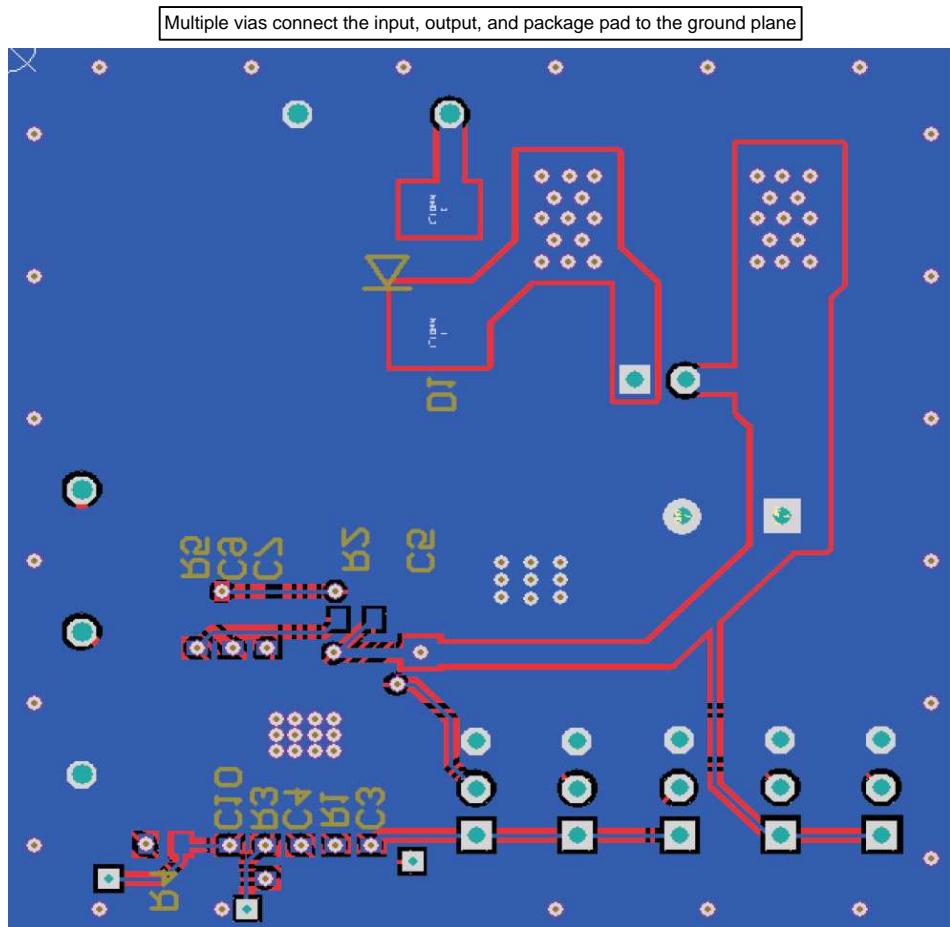



Figure 25. Layout Example 1

Layout Example (continued)

Figure 26. Layout Example 2

11 器件和文档支持

11.1 商标

PowerPAD is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.2 静电放电警告

 这些装置包含有限的内置 ESD 保护。 存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

11.3 术语表

[SLYZ022 — TI 术语表](#)。

这份术语表列出并解释术语、首字母缩略词和定义。

12 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

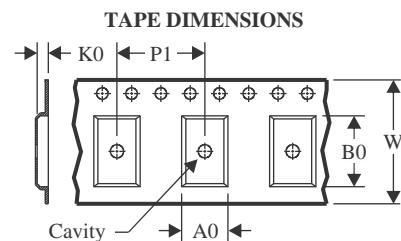
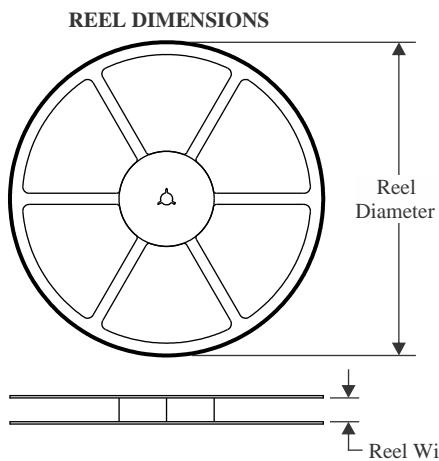
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPIC74101QPWPRQ1	Active	Production	HTSSOP (PWP) 20	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	T74101D5
TPIC74101QPWPRQ1.A	Active	Production	HTSSOP (PWP) 20	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	T74101D5

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

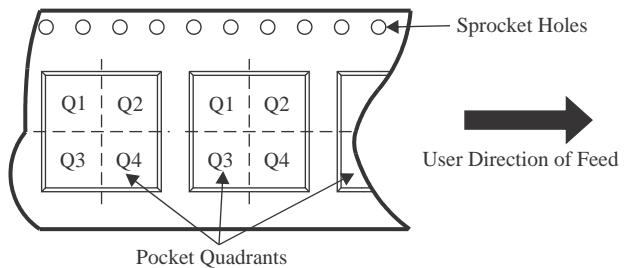
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

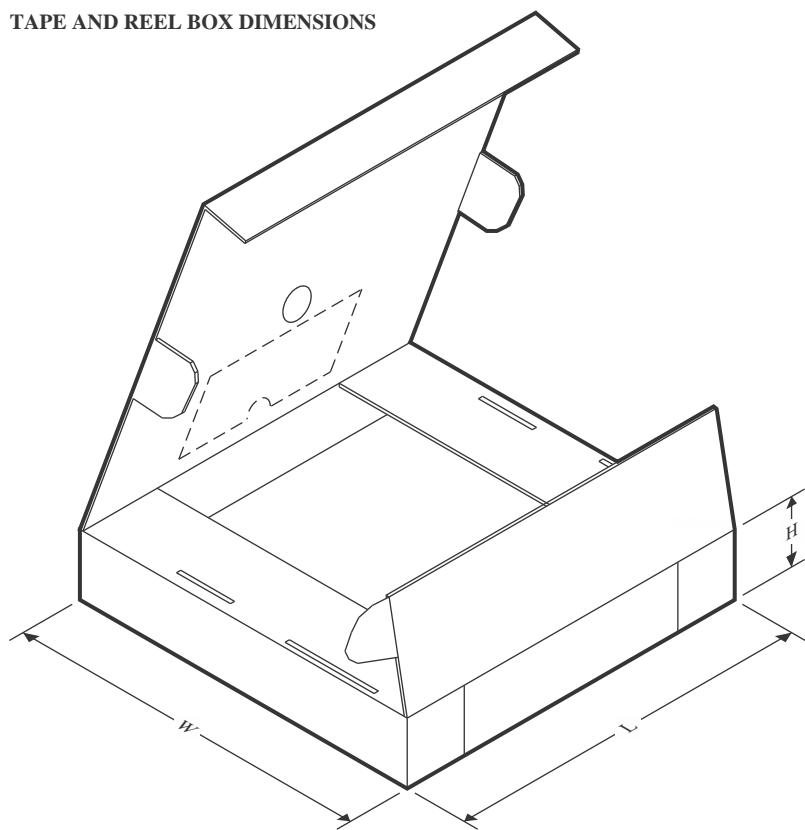


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

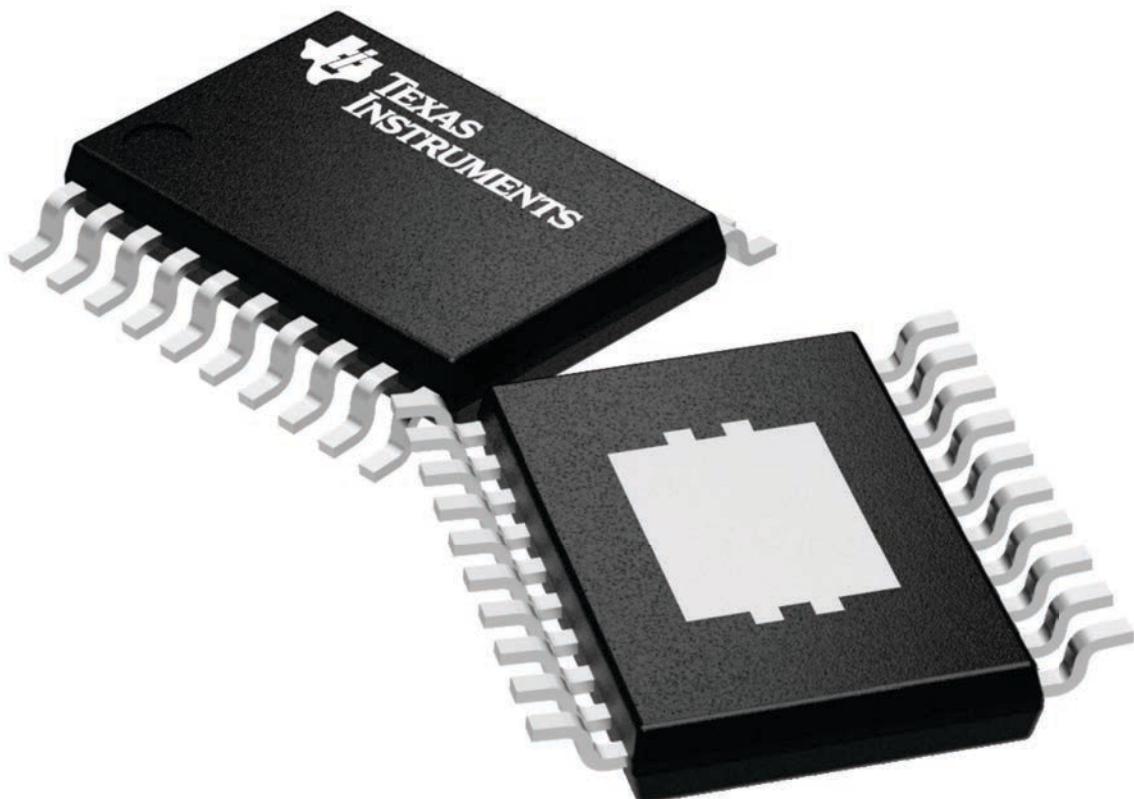
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPIC74101QPWPRQ1	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPIC74101QPWPRQ1	HTSSOP	PWP	20	2000	350.0	350.0	43.0

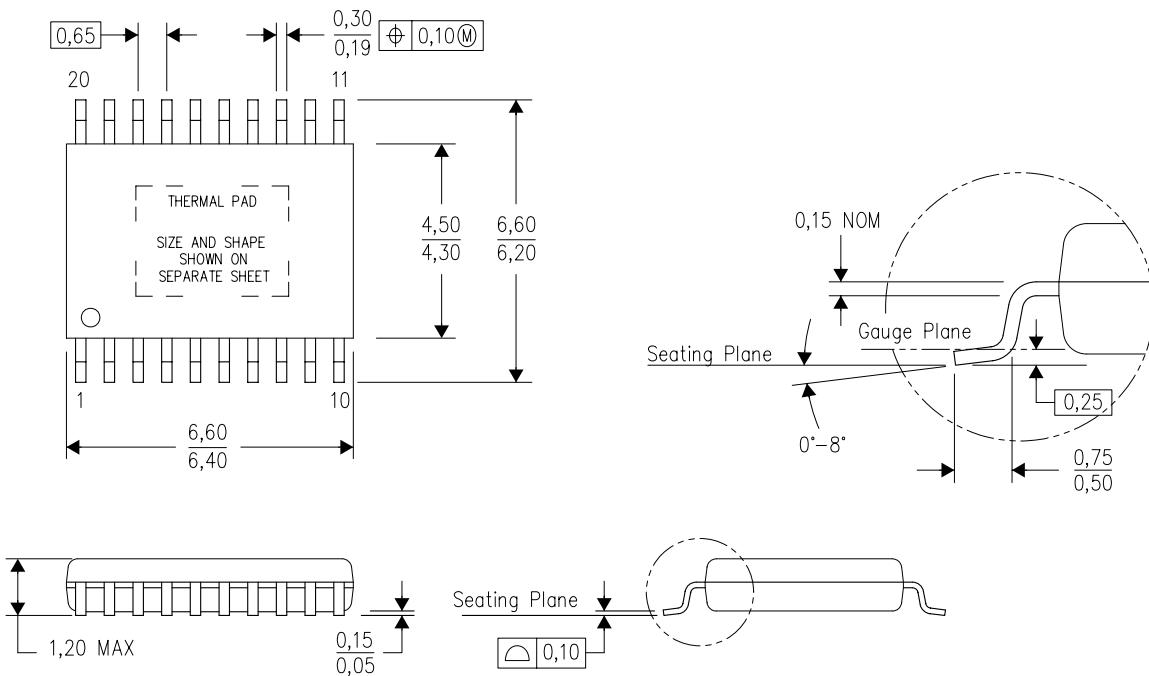
GENERIC PACKAGE VIEW


PWP 20

6.5 x 4.4, 0.65 mm pitch

HTSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE


This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4224669/A

PWP (R-PDSO-G20)

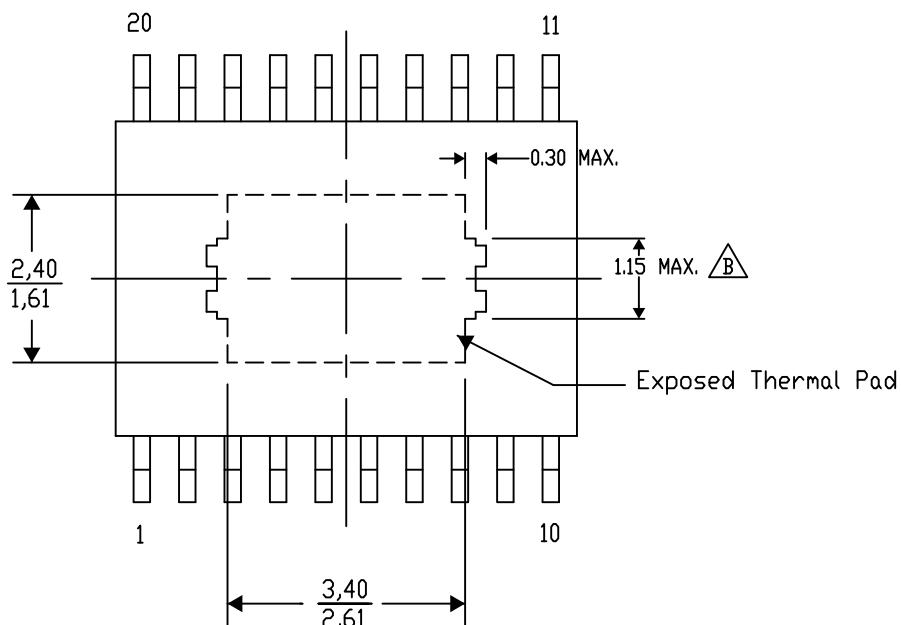
PowerPAD™ PLASTIC SMALL OUTLINE

4073225-4/1 05/11

- NOTES:
- All linear dimensions are in millimeters.
 - This drawing is subject to change without notice.
 - Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
 - This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <<http://www.ti.com>>.
 - See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

PWP (R-PDSO-G20)


PowerPAD™ SMALL PLASTIC OUTLINE

THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

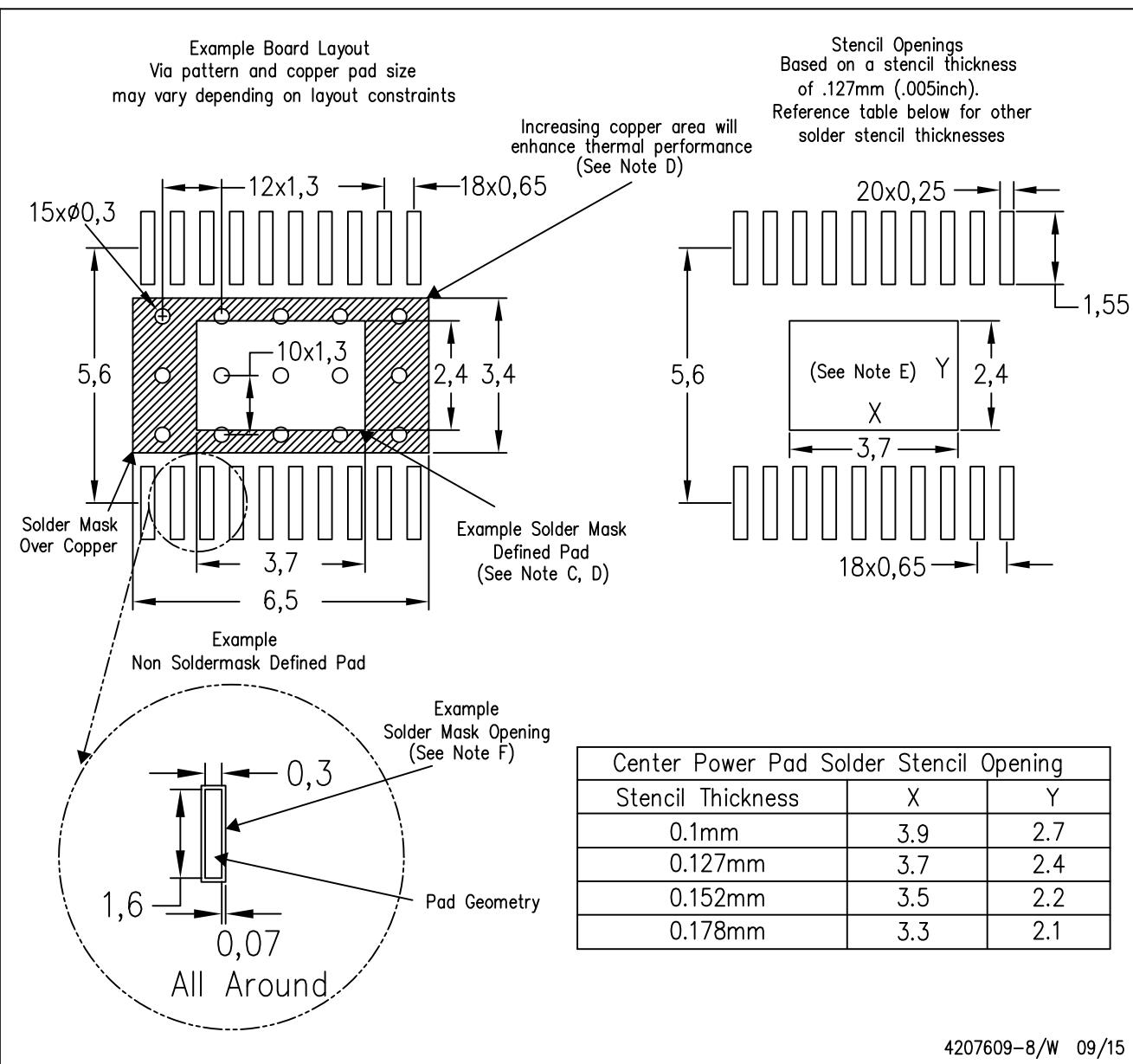
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View

Exposed Thermal Pad Dimensions

4206332-15/AO 01/16


NOTE: A. All linear dimensions are in millimeters

 Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

PWP (R-PDSO-G20)

PowerPAD™ PLASTIC SMALL OUTLINE

- NOTES:
- All linear dimensions are in millimeters.
 - This drawing is subject to change without notice.
 - Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
 - This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <<http://www.ti.com>>. Publication IPC-7351 is recommended for alternate designs.
 - Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
 - Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月