

LP3878-ADJ ZHCS589D -MAY 2005-REVISED FEBRUARY 2015

LP3878-ADJ 用于 1V 至 5V 应用的微功耗 800mA 低噪声"陶瓷稳定"可调 节稳压器

特性

- 输入电源电压: 2.5V 至 16V
- 输出电压范围: 1V 至 5.5V
- 设计用于与低等效串联电阻 (ESR) 陶瓷电容搭配使
- 极低输出噪声
- 8 引脚小外形尺寸 (SO) PowerPAD™ 和晶圆级小 外形无引线 (WSON) 表面贴装封装
- 关断模式下的静态电流 < 10μA
- 任意负载条件下的接地引脚电流均较低
- 过温和过流保护
- -40°C 至 125°C 的工作结温范围

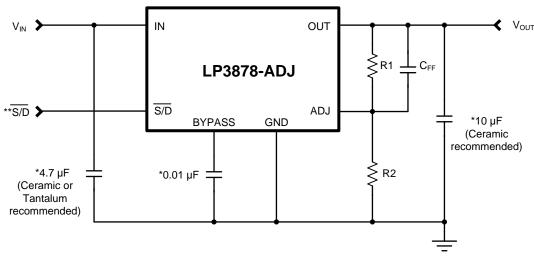
2 应用

- 专用集成电路 (ASIC) 电源:
 - 台式机、笔记本电脑和图形卡
 - 机顶盒、打印机和复印机
- 数字信号处理 (DSP) 和现场可编程门阵列 (FPGA)
- 开关模式电源 (SMPS) 后置稳压器
- 医疗仪器

3 说明

LP3878-ADJ 是一款 800mA 可调输出稳压器,设计用 于使需要低至 1V 输出电压的应用获得高性能和低噪

凭借优化的垂直集成 PNP (VIP) 工艺, LP3878-ADJ 提供了以下出色性能:


- 接地引脚电流: 800mA 负载下的典型值为 5.5mA; 100μA 负载下的典型值为 180μA。
- 低功耗关断: 当 SHUTDOWN 引脚拉为低电平 时, LP3878-ADJ 消耗的静态电流不到 10μA。
- 精密输出:确保室温下的输出电压精度为 1%。
- 低噪声: 使用 10nF 旁路电容后, 宽带输出噪声仅 为 18µV(典型值)。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
1 D0070 AD 1	SO PowerPAD (8)	4.89mm × 3.90mm
LP3878-ADJ	WSON (8)	4.00mm x 4.00mm

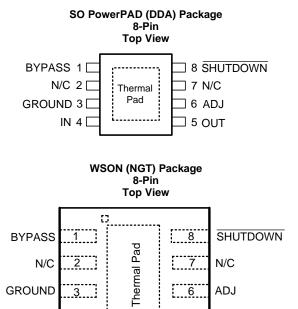
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

基本应用电路

- * 图中显示的电容值是保证稳定性的最低要求。 选用更大的输出电容可改善动态响应。 输出电容必须满足 ESR 要求 (请参见Application Information)。
- ** 必须主动禁止 SHUTDOWN(或 S/D)引脚(请参见Device Functional Modes)。 如果不使用该引脚,请将其连接 至 IN (引脚 4)。

_	
	— .
	70
	- 210

1	特性 1	7.4 Device Functional Modes	12
2	应用 1	8 Application and Implementation	13
3	说明 1	8.1 Application Information	13
4	修订历史记录 2	8.2 Typical Application	13
5	Pin Configuration and Functions3	9 Power Supply Recommendations	17
6	Specifications4	10 Layout	17
•	6.1 Absolute Maximum Ratings	10.1 Layout Guidelines	17
	6.2 ESD Ratings	10.2 Layout Example	17
	6.3 Recommended Operating Conditions	10.3 Power Dissipation	17
	6.4 Thermal Information	11 器件和文档支持	18
	6.5 Electrical Characteristics5	11.1 文档支持	
	6.6 Typical Characteristics6	11.2 商标	18
7	Detailed Description 11	11.3 静电放电警告	18
	7.1 Overview 11	11.4 术语表	18
	7.2 Functional Block Diagram	12 机械、封装和可订购信息	18
	7.3 Feature Description		


4 修订历史记录

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

• 己删除 VIP 的商标符号 - 不再是商标;在手册顶部导航栏处添加了参考设计图标	1
Deleted soldering info - now in POA	4
Changed wording of footnote 5 to Ab Max Ratings	4
Changed I _{OUT} to I _{OUT} throughout document	5
Changed wording of Reverse Input-Output Voltage	11
Changed outpin pin to OUT pin	15
Added new paragraph to Noise Bypass Capacitor subsection	15
Changes from Revision B (April 2013) to Revision C	
enanged nem retroise b (ripin 2010) to retroion o	Page
 已添加 引脚配置和功能部分, ESD 额定值表,特性描述部分,器件功能模式,应用和实施部分,电布局部分,器件和文档支持部分以及机械、封装和可订购信息部分;更新了热特性值 	
• 已添加 引脚配置和功能部分,ESD 额定值表,特性描述部分,器件功能模式,应用和实施部分,电	·····································
• 已添加 引脚配置和功能部分,ESD 额定值表,特性描述部分,器件功能模式,应用和实施部分,电布局部分,器件和文档支持部分以及机械、封装和可订购信息部分;更新了热特性值	已源相关建议部分, 1 Page

5 Pin Configuration and Functions

Pin Functions

IN

OUT

PIN					
NAME	NUMBER	1/0	DESCRIPTION		
ADJ	6	ı	Provides feedback to error amplifier from the resistive divider that sets the output voltage.		
BYPASS	1	_	The capacitor connected between BYPASS and GROUND lowers output noise voltage level and is required for loop stability.		
GROUND	3	_	evice ground.		
IN	4	I	nput source voltage.		
N/C	2		DO NOT CONNECT. Device pin 2 is reserved for post packaging test and calibration of the LP3878-ADJ V_{ADJ} accuracy. This pin must be left floating. Do not connect to any potential. Do not connect to ground. Any attempt to do pin continuity testing on device pin 2 is discouraged. Continuity test results will be variable depending on the actions of the factory calibration. Aggressive pin continuity testing (high voltage, or high current) on device pin 2 may activate the trim circuitry forcing V_{ADJ} to move out of tolerance.		
N/C	7		No internal connection.		
OUT	5	0	Regulated output voltage.		
SHUTDOWN	8	I	Output is enabled above turnon threshold voltage. Pull down to turn off regulator output.		
Thermal Pad	_	_	The exposed thermal pad on the bottom of the package should be connected to a copper thermal pad on the PCB under the package. The use of thermal vias to remove heat from the package into the PCB is recommended. Connect the thermal pad to ground potential or leave floating. Do not connect the thermal pad to any potential other than the same ground potential seen at device pin 3. For additional information on using TI's Non Pull Back WSON package, see Application Note <i>AN-1187</i> , SNOA401.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

	MIN	MAX	UNIT
SHUTDOWN pin		1	kV
Power dissipation ⁽³⁾	Interna	lly Limited	
Input supply voltage (survival), V _{IN}	-0.3	16	V
ADJ pin	-0.3	6	V
Output voltage (survival), V _{OUT} ⁽⁴⁾	-0.3	6	V
l _{OUT} (survival)	Short-Circ	uit Protected	
Input – output voltage (survival), V _{IN} – V _{OUT} ⁽⁵⁾	-0.3	16	V
Storage temperature, T _{stg}	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2) If Military- or Aerospace-specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- (3) The maximum allowable power dissipation is a function of the maximum junction temperature, T_{J(MAX)}, the junction-to-ambient thermal resistance, R_{θJA}, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature is calculated using: P_(MAX) = (T_{J(MAX)} T_A) / R_{θJA}. The value of R_{θJA} for the WSON (NGT) and SO PowerPAD (DDA) packages are specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the WSON package, see Application Note AN-1187, SNOA401. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.
- (4) If used in a dual-supply system where the regulator load is returned to a negative supply, the LP3878-ADJ output must be diode-clamped to ground.
- (5) The PNP pass element contains a parasitic diode between the IN pin and the OUT pin that is normally reverse-biased. Forcing the OUT pin voltage above the IN pin voltage will turn on this diode and may induce a latch-up mode which can damage the part (see *Application and Implementation*).

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{IN}	Supply input voltage	2.5	16	V
V _{SD}	SHUTDOWN input voltage		V_{IN}	V
I _{OUT}	Output current		800	mA
T_J	Operating junction temperature	-40	125	°C

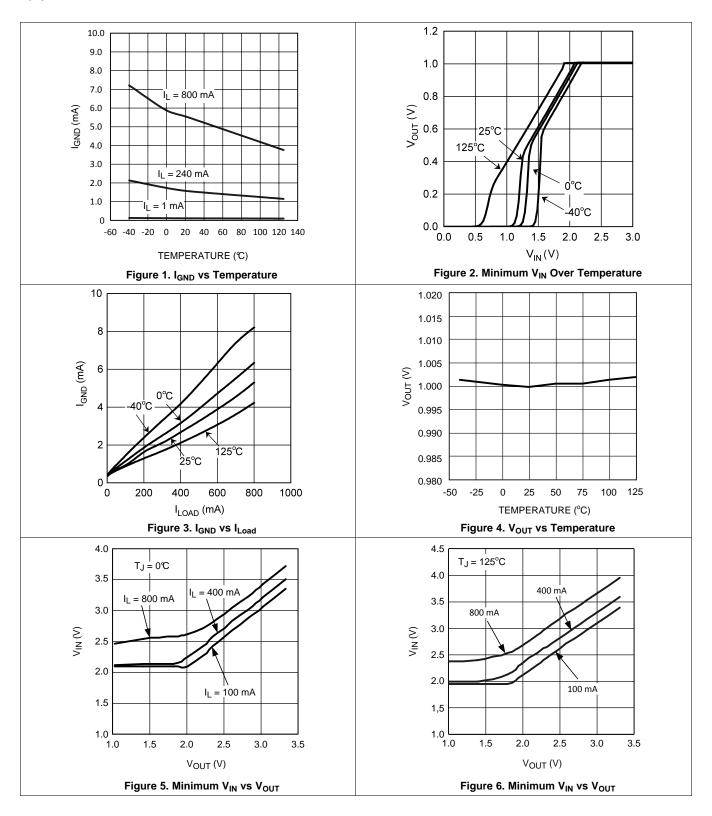
6.4 Thermal Information

		LP387		
	THERMAL METRIC ⁽¹⁾	DDA	NGT	UNIT
		8 P		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	42.5	38.1	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	54.0	27.9	
$R_{\theta JB}$	Junction-to-board thermal resistance	26.5	15.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	8.0	0.2	*C/VV
ΨЈВ	Junction-to-board characterization parameter	26.4	15.3	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	3.6	4.5	

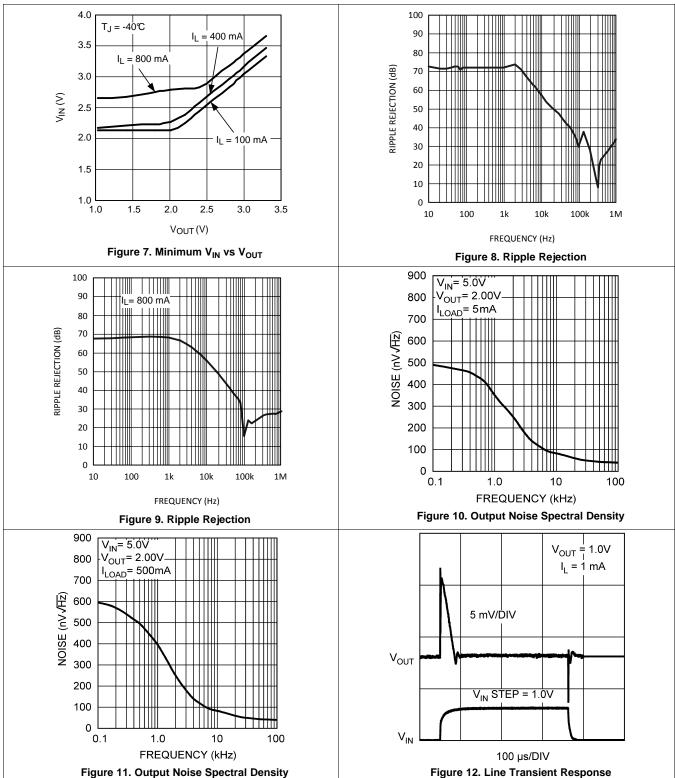
⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

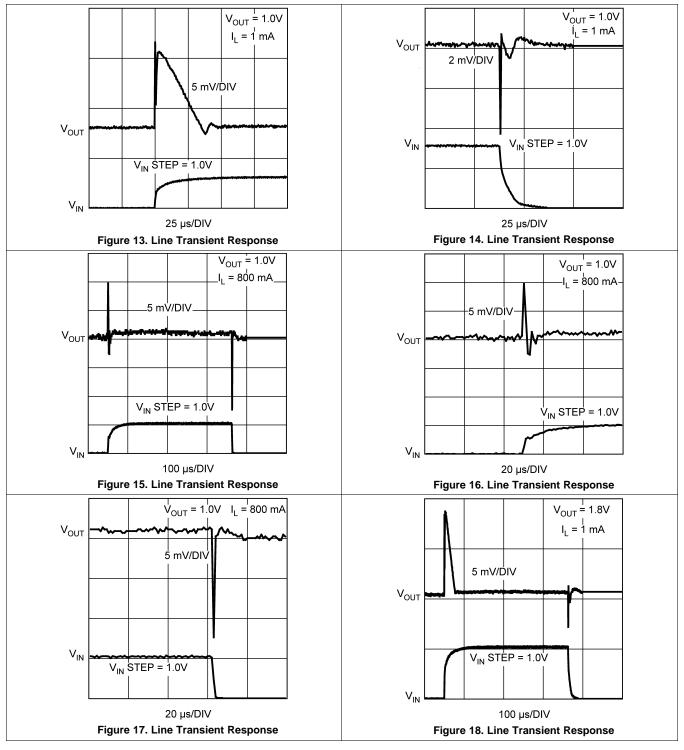
Limits are specified through design, testing, or correlation. The limits are used to calculate TI's Average Outgoing Quality Level (AOQL). Unless otherwise specified: $T_J = 25$ °C, $V_{IN} = 3$ V, $V_{OUT} = 1$ V, $I_{OUT} = 1$ mA, $C_{OUT} = 10$ μ F, $C_{IN} = 4.7$ μ F, $V_{\overline{SD}} = 2$ VV $_{\overline{SD}}$, $C_{BYPASS} = 10$ nF.


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
			0.99	1.00	1.01				
V_{ADJ}	Adjust pin voltage	1 mA ≤ I _{OUT} ≤ 800 mA, 3 V ≤ V _{IN} ≤ 6 V	0.98	1.00	1.02	V			
▼ ADJ	Adjust pili voltage	1 mA \leq I _{OUT} \leq 800 mA, 3 V \leq V _{IN} \leq 6 V -40° C \leq T _J \leq 125 $^{\circ}$ C	0.97		1.03				
A)/ /A)/	0 1 1 1 1 1 1 1 1	3 V ≤ V _{IN} ≤ 16 V	$V \le V_{IN} \le 16 V$			0/ 0/			
$\Delta V_{OUT}/\Delta V_{IN}$	Output voltage line regulation	3 V ≤ V _{IN} ≤ 16 V, –40°C ≤ T _J ≤ 125°C			0.032	%/V			
		I _{OUT} = 800 mA, V _{OUT} ≥ V _{OUT(NOM)} - 1%		2.5					
V _{IN(MIN)}		$I_{OUT} = 800 \text{ mA}, V_{OUT} \ge V_{OUT(NOM)} - 1\%$ -40°C \le T _J \le 125°C			3.1				
	Minimum input voltage	$I_{OUT} = 800 \text{ mA}, V_{OUT} \ge V_{OUT(NOM)} - 1\%$ $0 \le T_J \le 125^{\circ}\text{C}$		2.5		.,			
	required to maintain output regulation	$I_{OUT} = 800 \text{ mA}, V_{OUT} \ge V_{OUT(NOM)} - 1\%$ $0 \le T_J \le 125^{\circ}\text{C}, -40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$			2.8	V			
		I _{OUT} = 750 mA, V _{OUT} ≥ V _{OUT(NOM)} – 1%		2.5					
		$I_{OUT} = 750 \text{ mA}, V_{OUT} \ge V_{OUT(NOM)} - 1\%$ -40°C \le T _J \le 125°C			3.0				
		I _{OUT} = 100 μA		1	2				
V_{DOUT}		I _{OUT} = 100 μA, −40°C ≤ T _J ≤ 125°C			3	mV			
	Dropout voltage ⁽¹⁾ V _{OUT} = 3.8 V	I _{OUT} = 200 mA		150	200				
		I _{OUT} = 200 mA, −40°C ≤ T _J ≤ 125°C			300				
		I _{OUT} = 800 mA		475	600				
		$I_{OUT} = 800 \text{ mA}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$			1100				
		Ι _{ΟυΤ} = 100 μΑ		180	200				
		I _{OUT} = 100 μA, −40°C ≤ T _J ≤ 125°C			225	μΑ			
		I _{OUT} = 200 mA		1.5	2				
I _{GND}	Ground pin current	$I_{OUT} = 200 \text{ mA}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$			3.5				
		I _{OUT} = 800 mA		5.5	8.5	mA			
		$I_{OUT} = 800 \text{ mA}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$			15				
I _{OUT(PK)}	Peak output current	V _{OUT} ≥ V _{OUT(NOM)} - 5%		1200					
I _{OUT(MAX)}	Short-circuit current	$R_L = 0 \Omega \text{ (steady state)}$		1300		mA			
e _n	Output noise voltage (RMS)	Bandwidth = 100 Hz to 100 kHz, C _{BYPASS} = 10 nF		18		μV _(RMS)			
$\Delta V_{OUT}/\Delta V_{IN}$	Ripple rejection	f = 1 kHz		60		dB			
I _{ADJ}	ADJ pin bias current (sourcing)	I _{OUT} = 800 mA		200		nA			
SHUTDOWN I					'				
		V _H = Output ON		1.4					
		V _H = Output ON, −40°C ≤ T _J ≤ 125°C			1.6				
\/ 	SHUTDOWN input voltage	V _L = Output OFF, I _{IN} ≤ 10 μA		0.20		\/			
V_{SD}	Si 10 i DOWN iriput voltage	V_L = Output OFF, I_{IN} ≤ 10 μA -40°C ≤ T_J ≤ 125°C	0.04			V			
		V _{OUT} ≤ 10 mV, I _{IN} ≤ 50 μA		0.6					
		V _{SD} = 0 V		0.02					
	0.000	$V_{SD} = 0 \text{ V}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$			-1	_			
I _{SD}	SHUTDOWN input current	$V_{\overline{SD}} = 5 \text{ V}$		5		μΑ			
		$V_{SD} = 5 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$			15				

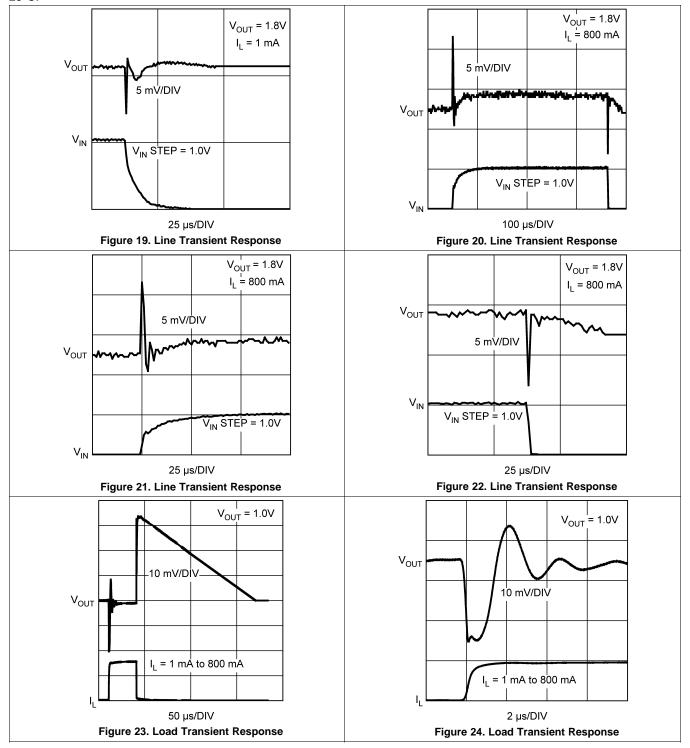
⁽¹⁾ Dropout voltage specification applies only if $V_{\rm IN}$ is sufficient so that it does not limit regulator operation.


6.6 Typical Characteristics

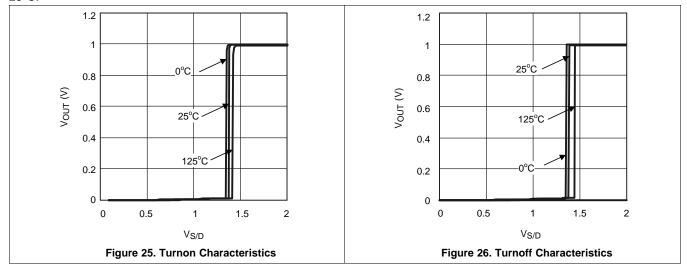
Unless otherwise specified: V_{IN} = 3.3 V, V_{OUT} = 1 V, I_{OUT} = 1 mA, C_{IN} = 4.7 μ F, C_{OUT} = 10 μ F, $V_{\overline{SD}}$ = 2 V, C_{BYP} = 10 nF, T_J = 25°C.



Unless otherwise specified: $V_{IN} = 3.3 \text{ V}$, $V_{OUT} = 1 \text{ V}$, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = 4.7 \mu\text{F}$, $C_{OUT} = 10 \mu\text{F}$, $V_{\overline{SD}} = 2 \text{ V}$, $C_{BYP} = 10 \text{ nF}$, $T_J = 25^{\circ}\text{C}$.



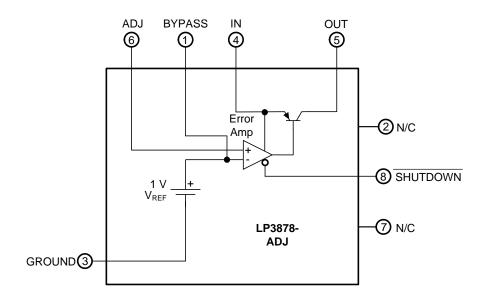
Unless otherwise specified: V_{IN} = 3.3 V, V_{OUT} = 1 V, I_{OUT} = 1 mA, C_{IN} = 4.7 μ F, C_{OUT} = 10 μ F, $V_{\overline{SD}}$ = 2 V, C_{BYP} = 10 nF, T_J = 25°C.



Unless otherwise specified: $V_{IN} = 3.3 \text{ V}$, $V_{OUT} = 1 \text{ V}$, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = 4.7 \mu\text{F}$, $C_{OUT} = 10 \mu\text{F}$, $V_{\overline{SD}} = 2 \text{ V}$, $C_{BYP} = 10 \text{ nF}$, $T_J = 25^{\circ}\text{C}$.

Unless otherwise specified: V_{IN} = 3.3 V, V_{OUT} = 1 V, I_{OUT} = 1 mA, C_{IN} = 4.7 μ F, C_{OUT} = 10 μ F, $V_{\overline{SD}}$ = 2 V, C_{BYP} = 10 nF, T_J = 25°C.

7 Detailed Description


7.1 Overview

The LP3878-ADJ is an adjustable regulator; the output voltage can be set from 1 V to 5.5 V. The device can deliver 800-mA continuous load current. Standard regulator features, such as overcurrent and overtemperature protection, are also included.

The LP3878-ADJ contains other features:

- Low power shutdown current and low ground pin current
- Very low output noise
- 8-lead SO PowerPAD or WSON surface-mount packages to allow for increased power dissipation.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Shutdown Input Operation

The LP3878-ADJ is shut off by pulling the $\overline{SHUTDOWN}$ input low, and turned on by pulling it high. If this feature is not to be used, the $\overline{SHUTDOWN}$ input should be tied to V_{IN} to keep the regulator output on at all times.

To assure proper operation, the signal source used to drive the $\overline{\text{SHUTDOWN}}$ input must be able to swing above and below the specified turnon or turnoff voltage thresholds listed in the *Electrical Characteristics* under $V_{\text{ON/OFF}}$.

7.3.2 Reverse Input-Output Voltage

The PNP power transistor used as the pass element in the LP3878-ADJ contains a parasitic diode between the IN pin and the OUT pin. During normal operation (where the IN pin voltage is higher than the OUT pin voltage) this parasitic diode is reverse-biased. However, if the OUT pin voltage is pulled above the IN pin voltage this diode will turn ON, and current will flow into the LP3878-ADJ OUT pin.

In such cases, a parasitic SCR between the IN pin and the GND pin can latch ON which will allow a high current to flow from the VIN supply, into the IN pin to ground, which can damage the part. In any application where the OUT pin voltage may be higher than the IN pin voltage, even momentarily, an external Schottky diode must be connected from the IN pin to the OUT pin (cathode to IN pin, anode to OUT pin), to limit the reverse voltage across the LP3878-ADJ to 0.3 V (see *Absolute Maximum Ratings*).

7.3.3 Low Output Noise

With a 10-nF capacitor on the BYPASS pin, the output noise is only 18 µV.

7.4 Device Functional Modes

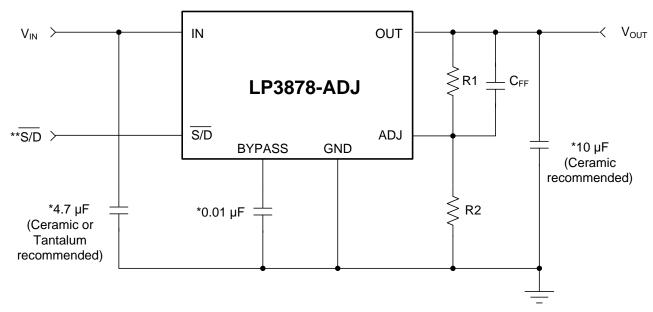
7.4.1 Operation With V_{OUT(TARGET)} + 2 V ≤ V_{IN} ≤ 16 V

The device operates if the input voltage is equal to, or exceeds $V_{OUT(TARGET)} + 2 \text{ V}$. At input voltages below the minimum V_{IN} requirement, the device does not operate correctly and output voltage may not reach target value.

7.4.2 Operation With SHUTDOWN Pin Control

LP3878-ADJ is turned off by pulling the $\overline{SHUTDOWN}$ pin low, and turned on by pulling it high. If this feature is not used, the $\overline{SHUTDOWN}$ pin should be tied to V_{IN} to keep the regulator output on at all times. To assure proper operation, the signal source used to drive the $\overline{SHUTDOWN}$ input must be able to swing above and below the specified turnon and turnoff voltage thresholds listed in the *Electrical Characteristics* under V_L and V_H .

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LP3878-ADJ can provide 800-mA output current with 2.5-V to 6-V output voltage. A minimum 10- μ F output capacitor is required for loop stability. An input capacitor of at least 4.7- μ F is required also. The SHUTDOWN pin must be tied to input if not used. A 10-nF bypass capacitor is required to improve loop stability, it also can reduce noise on the regulator output significantly. A capacitor, C_{FF}, is required to increase phase margin and assure loop stability. Output voltage can be set by two resistors R1 and R2 (see Figure 27), and R2 must be less than 5 k Ω to ensure loop stability.

8.2 Typical Application

^{*}Capacitor values shown are minimum required to assure stability. Larger output capacitor provides improved dynamic response. Output capacitor must meet ESR requirements (see *Application Information*).

Figure 27. Basic Application Circuit

8.2.1 Design Requirements

DESIGN PARAMETER	VALUE
Input voltage	3.8 V ±10%
Output voltage	1.8 V ±3%
Output current	800 mA (maximum)
Input capacitor	4.7 μF (minimum)
Output capacitor	10 μF (minimum)
Bypass capacitor	10 nF
External resistor R2	1 kΩ (less than 5 kΩ)

^{**}The SHUTDOWN (or S/D) pin must be actively terminated (see *Device Functional Modes*). Tie to IN (pin 4) if not used.

8.2.2 Detailed Design Procedure

8.2.2.1 External Capacitors

Like any low-dropout regulator, the LP3878-ADJ requires external capacitors for regulator stability. These capacitors must be correctly selected for good performance.

8.2.2.1.1 Input Capacitor

A capacitor whose value is at least 4.7 μ F (\pm 20%) is required between the LP3878-ADJ input and ground. A good quality X5R or X7R ceramic capacitor should be used.

Capacitor tolerance and temperature variation must be considered when selecting a capacitor (see *Capacitor Characteristics*) to assure the minimum requirement of input capacitance is met over all operating conditions.

The input capacitor must be located not more than 0.5 inches from the input pin and returned to a clean analog ground. Any good quality ceramic or tantalum capacitor may be used, assuming the minimum input capacitance requirement is met.

8.2.2.1.2 Output Capacitor

The LP3878-ADJ requires a ceramic output capacitor whose size is at least 10 μ F (±20%). A good quality X5R or X7R ceramic capacitor should be used. Capacitance tolerance and temperature characteristics must be considered when selecting an output capacitor.

The LP3878-ADJ is designed specifically to work with ceramic output capacitors, utilizing circuitry which allows the regulator to be stable across the entire range of output current with an ultra-low equivalent series resistance (ESR) output capacitor.

The output capacitor selected must meet the requirement for minimum amount of capacitance and also have an ESR value which is within the stable range. A curve is provided which shows the stable ESR range as a function of load current (see Figure 28).

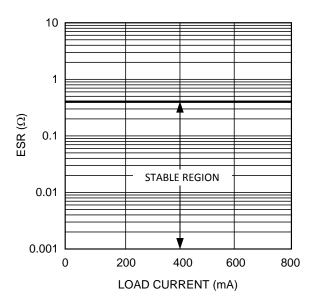


Figure 28. Stable Region for Output Capacitor ESR

NOTE

Important: The output capacitor must maintain its ESR within the stable region over the full operating temperature range of the application to assure stability.

The output capacitor ESR forms a zero which is required to add phase lead near the loop gain crossover frequency, typically in the range of 50 kHz to 200 kHz. The ESR at lower frequencies is of no importance. Some capacitor manufacturers list ESR at low frequencies only, and some give a formula for Dissipation Factor (DF) which can be used to calculate a value for a term referred to as ESR. However, because the DF formula is usually at a much lower frequency than the range listed above, it will give an unrealistically high value. If good quality X5R or X7R ceramic capacitors are used, the actual ESR in the 50-kHz to 200-kHz range will not exceed 25 m Ω . If these are used as output capacitors for the LP3878-ADJ, the regulator stability requirements are satisfied.

It is important to remember that capacitor tolerance and variation with temperature must be taken into consideration when selecting an output capacitor so that the minimum required amount of output capacitance is provided over the full operating temperature range (see *Capacitor Characteristics*).

The output capacitor must be located not more than 0.5 inches from the OUT pin and returned to a clean analog ground.

8.2.2.1.3 Noise Bypass Capacitor

The 10-nF capacitor on the BYPASS pin significantly reduces noise on the regulator output and is required for loop stability. However, the capacitor is connected directly to a high-impedance circuit in the bandgap reference.

Because this circuit has only a few μ A flowing in it, any significant loading on this node will cause a change in the regulated output voltage. For this reason, dc leakage current through the noise bypass capacitor must never exceed 100 nA, and should be kept as low as possible for best output voltage accuracy.

The types of capacitors best suited for the noise bypass capacitor are ceramic and film. High-quality ceramic capacitors with either NPO or COG dielectric typically have very low leakage. 10-nF polypropylene and polycarbonate film capacitors are available in small surface-mount packages and typically have extremely low leakage current.

While the capacitor value on the BYPASS will affect start-up time, this is not intended to be used as a soft-start <u>circuit. There</u> is no dedicated discharge circuitry for this capacitor, and it can be pre-biased if the IN pin, or the <u>SHUTDOWN</u> pin are not at 0 V at start-up.

8.2.2.2 Feedforward Capacitor

The feedforward capacitor designated C_{FF} in Figure 27 is required to increase phase margin and assure loop stability. Improved phase margin also gives better transient response to changes in load or input voltage, and faster settling time on the output voltage when transients occur. C_{FF} forms both a pole and zero in the loop gain, the zero providing beneficial phase lead (which increases phase margin) and the pole adding undesirable phase lag (which should be minimized). The zero frequency is determined both by the value of C_{FF} and R1:

$$f_Z = 1 / (2\pi C_{FF} \times R1) \tag{1}$$

The pole frequency resulting from C_{FF} is determined by the value of C_{FF} and the parallel combination of R1 and R2:

$$f_P = 1 / (2\pi C_{FF} \times (R1 // R2))$$
 (2)

At higher output voltages where R1 is much greater than R2, the value of R2 primarily determines the value of the parallel combination of R1 // R2. This puts the pole at a much higher frequency than the zero. As the regulated output voltage is reduced (and the value of R1 decreases), the parallel effect of R2 diminishes and the two equations become equal (at which point the pole and zero cancel out). Because the pole frequency gets closer to the zero at lower output voltages, the beneficial effects of C_{FF} are increased if the frequency range of the zero is shifted slightly higher for applications with low V_{OUT} (because then the pole adds less phase lag at the loop crossover frequency).

 C_{FF} should be selected to place the pole-zero pair at a frequency where the net phase lead added to the loop at the crossover frequency is maximized. The following design guidelines were obtained from bench testing to optimize phase margin, transient response, and settling time:

For V_{OUT} ≤ 2.5 V: C_{FF} should be selected to set the zero frequency in the range of about 50 kHz to 200 kHz.

For V_{OUT} > 2.5 V: C_{FF} should be selected to set the zero frequency in the range of about 20 kHz to 100 kHz.

8.2.2.3 Capacitor Characteristics

8.2.2.3.1 Ceramic

The LP3878-ADJ was designed to work with ceramic capacitors on the output to take advantage of the benefits they offer: for capacitance values in the 10- μ F range, ceramics are the least expensive and also have the lowest ESR values (which makes them best for eliminating high-frequency noise). The ESR of a typical 10- μ F ceramic capacitor is in the range of 5 m Ω to 10 m Ω , which meets the ESR limits required for stability by the LP3878-ADJ.

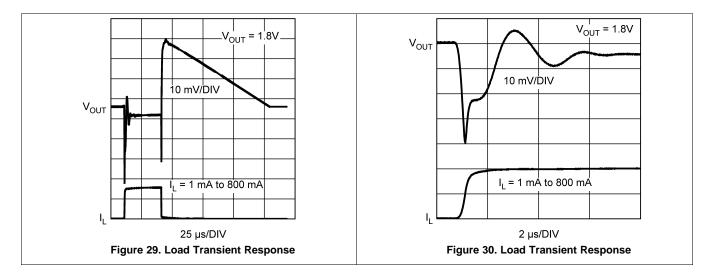
One disadvantage of ceramic capacitors is that their capacitance can vary with temperature. Many large value ceramic capacitors (≥ 2.2 µF) are manufactured with the Z5U or Y5V temperature characteristic, which results in the capacitance dropping by more than 50% as the temperature goes from 25°C to 85°C.

Another significant problem with Z5U and Y5V dielectric devices is that the capacitance drops severely with applied voltage. A typical Z5U or Y5V capacitor can lose 60% of its rated capacitance with half of the rated voltage applied to it.

For these reasons, X7R and X5R type ceramic capacitors must be used on the input and output of the LP3878-ADJ.

8.2.2.4 Setting the Output Voltage

The output voltage is set using resistors R1 and R2 (see Figure 27).


The formula for output voltage is:

$$V_{OUT} = V_{ADJ} \times (1 + (R1 / R2))$$
 (3)

R2 must be less than 5 k Ω to ensure loop stability.

To prevent voltage errors, R1 and R2 must be located near the LP3878-ADJ and connected via traces with no other currents flowing in them (Kelvin connect). The bottom of the R1/R2 divider must be connected directly to the LP3878-ADJ ground pin.

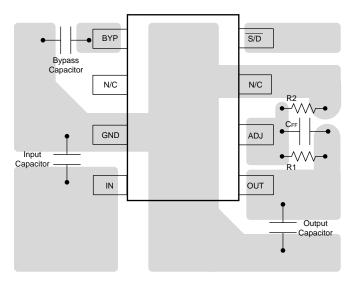
8.2.3 Application Curves

9 Power Supply Recommendations

The LP3878-ADJ is designed to operate from an input voltage supply range between 2.5 V and 16 V. The input voltage range provides adequate headroom in order for the device to have a regulated output. This input supply must be well regulated. An input capacitor of at least 4.7 µF is required.

10 Layout

10.1 Layout Guidelines


Good PC layout practices must be used or instability can be induced because of ground loops and voltage drops. The input and output capacitors must be directly connected to the input, output, and ground pins of the regulator using traces which do not have other currents flowing in them (Kelvin connect).

The best way to do this is to lay out C_{IN} and C_{OUT} near the device with short traces to the IN, OUT, and ground pins. The regulator ground pin should be connected to the external circuit ground so that the regulator and its capacitors have a single point ground.

It should be noted that stability problems have been seen in applications where vias to an internal ground plane were used at the ground points of the IC and the input and output capacitors. This was caused by varying ground potentials at these nodes resulting from current flowing through the ground plane. Using a single-point ground technique for the regulator and its capacitors fixed the problem.

Because high current flows through the traces going into IN and coming from OUT, Kelvin connect the capacitor leads to these pins so there is no voltage drop in series with the input and output capacitors.

10.2 Layout Example

10.3 Power Dissipation

The LP3878-ADJ is offered in the 8-lead SO PowerPAD or WSON surface-mount packages to allow for increased power dissipation compared to the SO-8 and Mini SO-8. For details on thermal performance as well as mounting and soldering specifications, refer to Application Note *AN-1187*, SNOA401.

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

相关文档如下:

应用手册 AN-1187, SNOA401

11.2 商标

PowerPAD is a trademark of Texas Instruments.

11.3 静电放电警告

▲ 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损

11.4 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不 对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com

10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LP3878MR-ADJ/NOPB	Active	Production	SO PowerPAD (DDA) 8	95 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	3878 MRADJ
LP3878MR-ADJ/NOPB.A	Active	Production	SO PowerPAD (DDA) 8	95 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	3878 MRADJ
LP3878MR-ADJ/NOPB.B	Active	Production	SO PowerPAD (DDA) 8	95 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	3878 MRADJ
LP3878MRX-ADJ/NOPB	Active	Production	SO PowerPAD (DDA) 8	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	3878 MRADJ
LP3878MRX-ADJ/NOPB.A	Active	Production	SO PowerPAD (DDA) 8	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	3878 MRADJ
LP3878MRX-ADJ/NOPB.B	Active	Production	SO PowerPAD (DDA) 8	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	3878 MRADJ
LP3878SD-ADJ/NOPB	Active	Production	WSON (NGT) 8	1000 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	3878ADJ
LP3878SD-ADJ/NOPB.A	Active	Production	WSON (NGT) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	3878ADJ
LP3878SD-ADJ/NOPB.B	Active	Production	WSON (NGT) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	3878ADJ
LP3878SDX-ADJ/NOPB	Active	Production	WSON (NGT) 8	4500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	3878ADJ
LP3878SDX-ADJ/NOPB.A	Active	Production	WSON (NGT) 8	4500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	3878ADJ
LP3878SDX-ADJ/NOPB.B	Active	Production	WSON (NGT) 8	4500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	3878ADJ

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

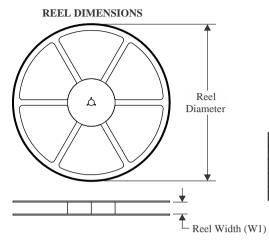
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

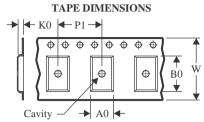
PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

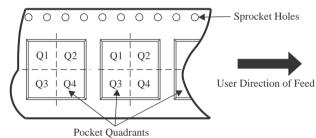
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

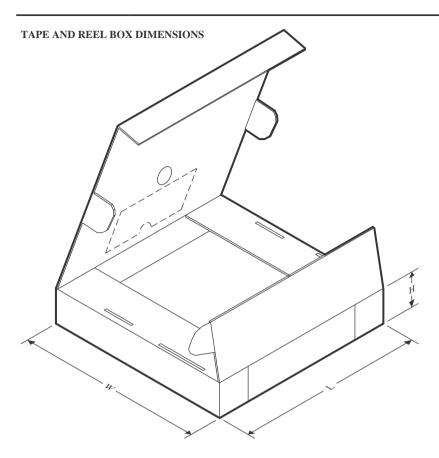

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Jul-2025


TAPE AND REEL INFORMATION

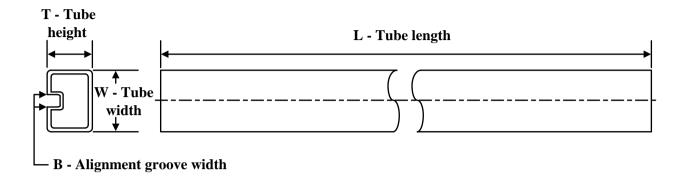
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP3878MRX-ADJ/NOPB	SO PowerPAD	DDA	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LP3878SD-ADJ/NOPB	WSON	NGT	8	1000	177.8	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LP36763D-ADJ/NOPB	WSON	INGT	0	1000	177.0	12.4	4.3	4.3	1.3	0.0	12.0	Qı
LP3878SDX-ADJ/NOPB	WSON	NGT	8	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1

www.ti.com 31-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP3878MRX-ADJ/NOPB	SO PowerPAD	DDA	8	2500	356.0	356.0	36.0
LP3878SD-ADJ/NOPB	WSON	NGT	8	1000	208.0	191.0	35.0
LP3878SDX-ADJ/NOPB	WSON	NGT	8	4500	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Jul-2025

TUBE

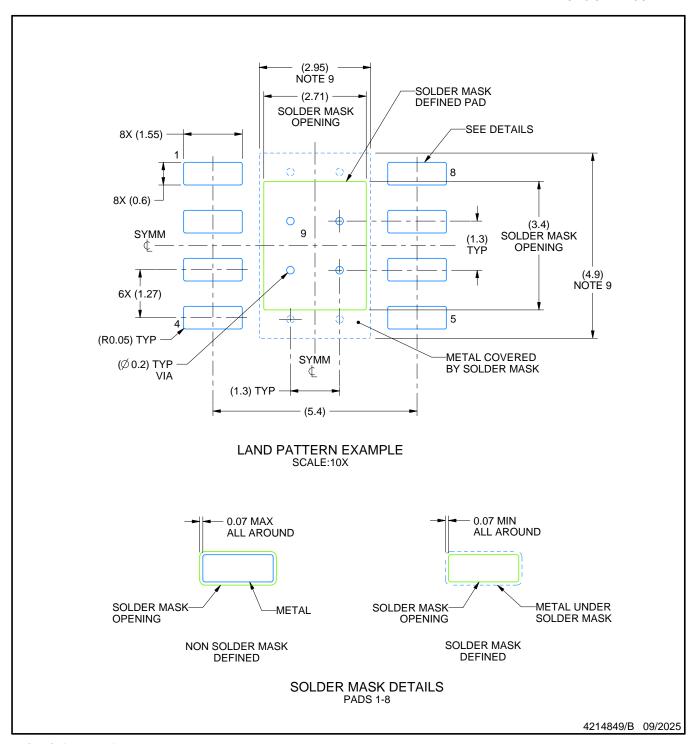


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
LP3878MR-ADJ/NOPB	DDA	HSOIC	8	95	495	8	4064	3.05
LP3878MR-ADJ/NOPB.A	DDA	HSOIC	8	95	495	8	4064	3.05
LP3878MR-ADJ/NOPB.B	DDA	HSOIC	8	95	495	8	4064	3.05

PLASTIC SMALL OUTLINE

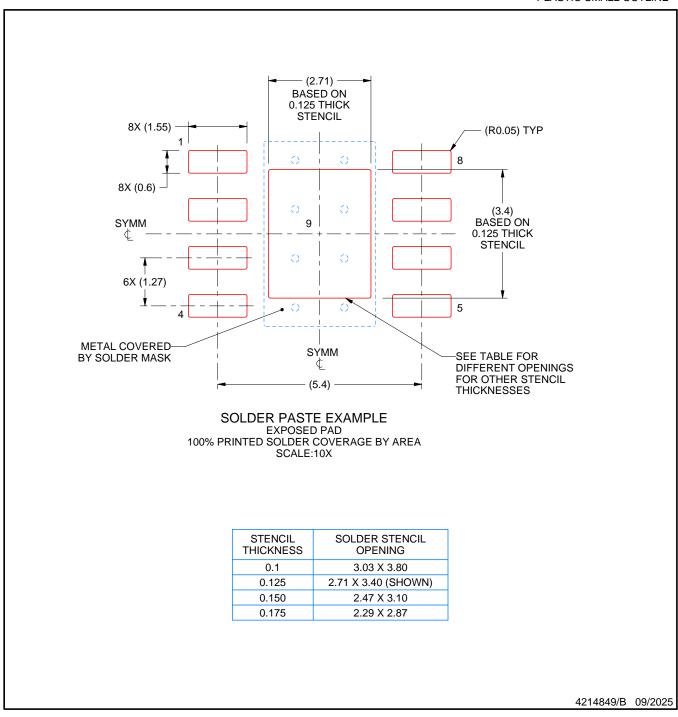
NOTES:


PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MS-012.

PLASTIC SMALL OUTLINE



NOTES: (continued)

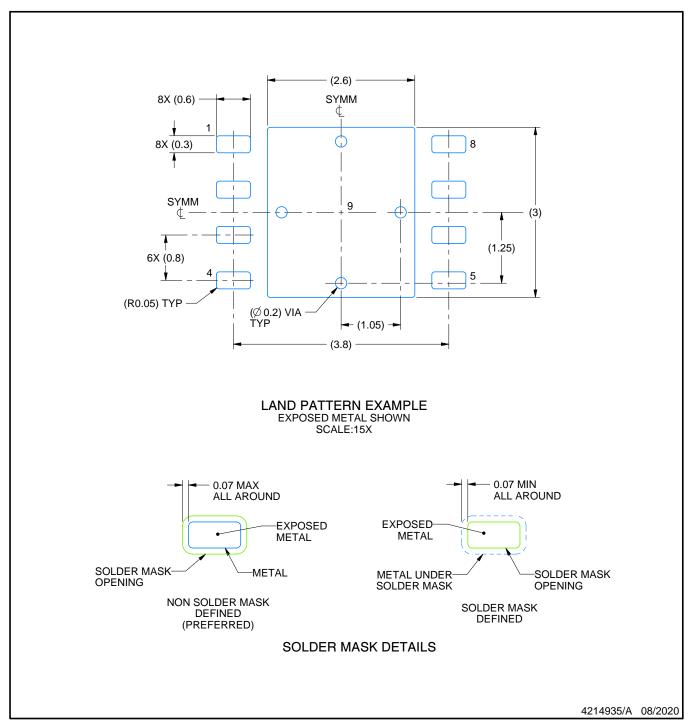
- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

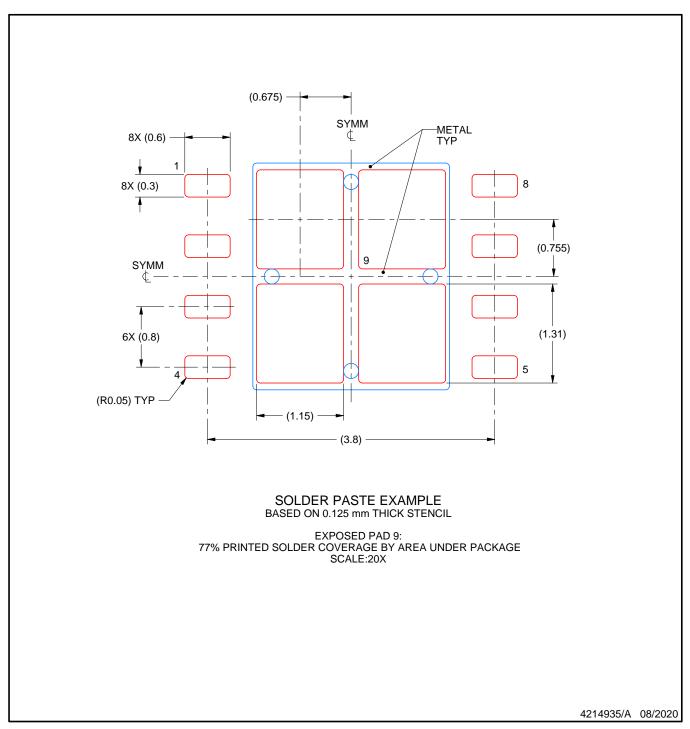
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月