LP2981, LP2981A

Instruments

LP2981x 采用 SOT-23 封装的 100mA 低压降稳压器

1 特性

• 输入电压 (V_{IN}) 范围:

- 旧芯片: 2.2V 至 16V - 新芯片: 2.5V 至 16V

• 输出电压 (V_{OUT}) 范围: 1.2V 至 5.0V

输出电压 (Vour) 精度:

- A级旧芯片为 ±0.75%

- 标准级旧芯片为 ±1.25%

- 新芯片 ±0.5% (A级和标准级)

• 负载和温度范围内的输出电压 (V_{OUT}) 精度: ±1% (新芯片)

输出电流: 高达 100mA

• 低 I_Q(新芯片): I_{LOAD} = 0mA 时为 69 μ A

• 低 I_Q (新芯片): I_{LOAD} = 100mA 时为 620 μA

• 关断电流与温度间的关系:

- <1µA(旧芯片)

- ≤ 1.75 µ A (新芯片)

• 输出电流限制和热保护

与 2.2µF 陶瓷电容器搭配使用时可保持稳定 (新芯

• 高 PSRR (新芯片):

- 1kHz 频率下为 75dB, 1MHz 频率下为 45dB

工作结温:-40°C 至 +125°C

• 封装:5 引脚 SOT-23 (DBV)

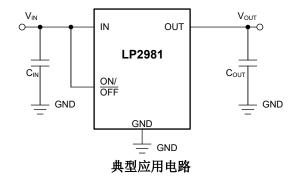
2 应用

- 申表
- 微型逆变器
- 服务器 PSU (12V 输出)
- 家用断路器
- 单轴和多轴伺服驱动器

3 说明

LP2981 和 LP2981A (LP2981x) 是一款固定输出、低 压降 (LDO) 稳压器,支持 2.5V 至 16V 的输入电压范 围(仅限新芯片)和高达 100mA 的负载电流。 LP2981x 支持 1.2V 至 5.0V 的输出范围(新芯片)。

此外, LP2981x(新芯片)在整个负载和温度范围内具 有 ±1% 的输出精度,可满足低压微控制器 (MCU) 和 处理器的需求。


在该新芯片中,高带宽 PSRR 性能在 1kHz 时为 75dB,在 1MHz 时为 45dB,因此有助于衰减上游直 流/直流转换器的开关频率,并尽可能地减少后置稳压 器滤波。

在新芯片中,内部软启动电路机制可减小启动期间的浪 涌电流,从而最大限度降低输入电容。还包括标准保护 特性,例如过流和过热保护。

封装信息

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾
LP2981x	DBV (SOT-23 , 5)	2.9mm × 2.8mm

- 如需更多信息,请参阅*机械、封装和可订购信息*。
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

压降电压与温度间的关系(新芯片)

Table of Contents

1 特性	1	7 Application and Implementation	17
2 应用		7.1 Application Information	17
3 说明		7.2 Typical Application	<mark>21</mark>
4 Pin Configuration and Functions		7.3 Power Supply Recommendations	23
5 Specifications		7.4 Layout	24
5.1 Absolute Maximum Ratings		8 Device and Documentation Support	25
5.2 ESD Ratings		8.1 Device Nomenclature	25
5.3 Recommended Operating Conditions		8.2 Documentation Support	25
5.4 Thermal Information		8.3 Receiving Notification of Documentation Updates	32 <mark>5</mark>
5.5 Electrical Characteristics		8.4 支持资源	25
5.6 Typical Characteristics		8.5 Trademarks	25
6 Detailed Description		8.6 静电放电警告	25
6.1 Overview		8.7 术语表	
6.2 Functional Block Diagrams		9 Revision History	
6.3 Feature Description		10 Mechanical, Packaging, and Orderable	
6.4 Device Functional Modes		Information	26

English Data Sheet: SLVS521

4 Pin Configuration and Functions

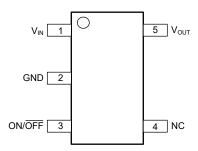


图 4-1. DBV Package, 5-Pin SOT-23 (Top View)

表 4-1. Pin Functions

	PIN		DESCRIPTION			
NO.	NAME	TYPE	DESCRIPTION			
1	IN	I	Input supply pin. Use a capacitor with a value of 1µF or larger from this pin to ground. See the <i>Input Capacitor</i> section for more information.			
2	GND	_	Common ground (device substrate).			
3	ON/OFF	I	Enable pin for the LDO. Driving the ON/ $\overline{\text{OFF}}$ pin high enables the device. Driving this pin low disables the device. High and low thresholds are listed in the <i>Electrical Characteristics</i> table. Tie this pin to V_{IN} if unused.			
4	NC	_	Do not connect.			
5	OUT	0	Output of the regulator. Use a capacitor with a value of 2.2µF or larger from this pin to ground ⁽¹⁾ . See the <i>Output Capacitor</i> section for more information.			

⁽¹⁾ The nominal output capacitance must be greater than 1 μ F. Throughout this document, the nominal derating on these capacitors is 50%. Make sure that the effective capacitance at the pin is greater than 1 μ F.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V	Continuous input voltage range (for legacy chip)	- 0.3	16	
V _{IN}	Continuous input voltage range (for new chip)	- 0.3	18	
	Output voltage range (for legacy chip)	- 0.3	9	
V _{OUT}	Output voltage range (for new chip)	- 0.3	V _{IN} + 0.3 or 9 (whichever is smaller)	V
V	ON/OFF pin voltage range (for legacy chip)	- 0.3	16	
V _{ON/OFF}	ON/OFF pin voltage range (for new chip)	- 0.3	18	
N/ N/	Input-output voltage (for legacy chip)	- 0.3	16	
V _{IN} - V _{OUT}	Input-output voltage (for new chip)	- 0.3	18	
Current	Maximum output current	Internally	Internally limited	
Temperature	Operating junction, T _J	- 55	150	°C
remperature	Storage, T _{stg}	- 65	150	C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

Product Folder Links: LP2981 LP2981A

⁽²⁾ All voltages with respect to GND.

5.2 ESD Ratings

			VALUE (Legacy Chip)	VALUE (New Chip)	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	±3000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	±1000	V
		Machine model (MM)	±100	N/A	

- (1) JEDEC document JEP155 states that 2-kV HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V	Supply input voltage (for legacy chip)	2.2		16	
V _{IN}	Supply input voltage (for new chip)	2.5		16	
V V	Input-output differential (for legacy chip)	0.7		11	
V _{IN} - V _{OUT}	Input-output differential (for new chip)	0		16	V
V _{OUT}	Output voltage (for new chip)	1.2		5	
V	Enable voltage (for legacy chip)	0		V _{IN}	
V _{ON/OFF}	Enable voltage (for new chip)	0		16	
I _{OUT}	Output current	0		100	mA
C _{IN} (1)	Input capacitor		1		
C	Output capacitor (for legacy chip) (4)	3.3			μF
C _{OUT}	Output capacitance (for new chip) (1)	1	2.2	200	
C _{OUT} ESR (2)	Output capacitor ESR (for new chip) (3)	0		1	Ω
T _J	Operating junction temperature	- 40		125	°C

- (1) All capacitor values are assumed to derate to 50% of the nominal capacitor value. Maintain an effective output capacitance of 1 μF minimum for stability.
- (2) Details related to supported ESR range for the legacy chip are available in sections Recommended Capacitors for the Legacy Chip and Output Capacitor.
- (3) Maximum supported ESR range for new chip is 1 Ω. For output capacitor with higher ESR values, place a low ESR MLCC capacitor.
- (4) Details related to minimum required output capacitor for legacy chip are available in section Output Capacitor .

5.4 Thermal Information

			New Chip (2)	
	THERMAL METRIC (1)	DBV (SOT23-5)	DBV (SOT23-5)	UNIT
		5 PINS	5 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	205.2	178.6	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	11.83	77.9	°C/W
R ₀ JB	Junction-to-board thermal resistance	37.7	47.2	°C/W
ψ ЈТ	Junction-to-top characterization parameter	12.2	15.9	°C/W
ψ ЈВ	Junction-to-board characterization parameter	33.8	46.9	°C/W

- (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.
- (2) Thermal performance results are based on the JEDEC standard of 2s2p PCB configuration. These thermal metric parameters can be further improved by 35-55% based on thermally optimized PCB layout designs. See the analysis of the *Impact of board layout on LDO thermal performance* application report.

提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

5.5 Electrical Characteristics

specified at T_J = 25 °C, V_{IN} = $V_{OUT(nom)}$ + 1.0 V or VIN = 2.5 V (whichever is greater), I_{OUT} = 1 mA, $V_{ON/OFF}$ = 2 V, C_{IN} = 1.0 μ F, and C_{OUT} = 2.2 μ F (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		Legacy chip (Standard grade)	- 1.25		1.25		
		I _L = 1 mA	Legacy chip (A grade)	0.75		0.75	
			New chip	- 0.5		0.5	
			Legacy chip (Standard grade)	- 2.0		2.0	
ΔV _{OUT}	Output voltage tolerance	1 mA < I _L < 100 mA	Legacy chip (A grade)	- 1.0		1.0	%
			New chip	- 0.5		0.5	
			Legacy chip (Standard grade)	- 3.5		3.5	
		1 mA < I_L < 100 mA, -40° C $\leq T_J \leq 125^{\circ}$ C	Legacy chip (A grade)	- 2.5		2.5	
			New chip	- 1		1	
$^{\Delta V_{OUT(\Delta)}}$ Line regulation		V +1V < V < 16V	Legacy chip		0.007	0.014	_
	Line regulation	$V_{O(NOM)}$ + 1 V \leq V _{IN} \leq 16 V	New chip		0.002	0.014	
	Line regulation	$V_{O(NOM)}$ + 1 V \leq V _{IN} \leq 16 V, -40° C \leq T _J \leq 125 $^{\circ}$ C	Legacy chip		0.007	0.032	70/ V
		V _O (NOM) + 1 V ≈ V _{IN} ≈ 10 V, 40 C ≈ 1j ≈ 123 C	New chip		0.002	0.032	
$\Delta V_{OUT(\Delta)}$	Load regulation	1 mA < I_L < 100 mA, $$ - 40°C $ \leqslant $ $T_J \leqslant $ 125°C, V_{IN} = $V_{O(NOM)}$ +0.5 V	New chip		0.1	0.5	%/A
		I _{OUT} = 0 mA	Legacy chip		1	3	
			New chip		1	2.75	
		L _{0.17} = 0 mΔ = 40°C ≤ T ₁ ≤ 125°C	Legacy chip			5	
		$I_{OUT} = 0 \text{ mA}, -40^{\circ}\text{C} \leqslant T_{J} \leqslant 125^{\circ}\text{C}$	New chip			3	
		I _{OUT} = 1 mA	Legacy chip		7	10	
		1001	New chip		11.5	14	
		I_{OUT} = 1 mA, -40° C $\leq T_{J} \leq 125^{\circ}$ C	Legacy chip			15	
V _{IN} - V _{OUT}	Dropout voltage ⁽¹⁾	1001 - 1 111A, 40 0 < 1j < 120 0	New chip			17	mV
AIN - AOUT	Diopout voltage	I _{OUT} = 25 mA	Legacy chip		70	100	1110
		1001 - 20 1114	New chip		110	132	1
		I_{OUT} = 25 mA, -40° C $\leq T_{J} \leq 125^{\circ}$ C	Legacy chip			150	
		1001 20 mm, 40 0 < 1J < 120 0	New chip			167	
		I _{OUT} = 100 mA	Legacy chip		200	250	
		1001	New chip		160	175	
		I_{OUT} = 100 mA, -40° C $\leq T_{J} \leq 125^{\circ}$ C	Legacy chip			375	
	10UT - 100 111A, -40 C < 1J < 125 C				218		

提交文档反馈

5

5.5 Electrical Characteristics (continued)

specified at T_J = 25 °C, V_{IN} = $V_{OUT(nom)}$ + 1.0 V or VIN = 2.5 V (whichever is greater), I_{OUT} = 1 mA, $V_{ON/OFF}$ = 2 V, C_{IN} = 1.0 μ F, and C_{OUT} = 2.2 μ F (unless otherwise noted)

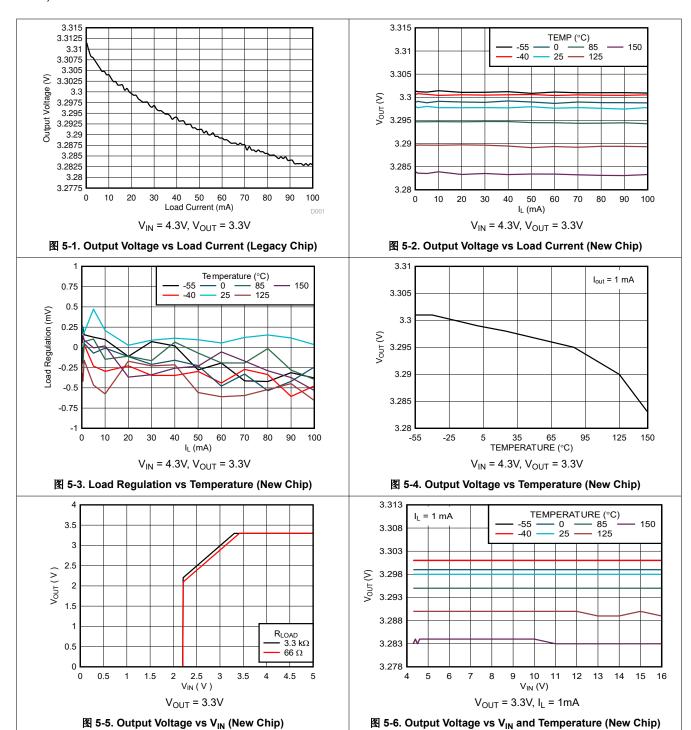
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
		- 0 mA	Legacy chip		65	95		
		I _{OUT} = 0 mA	New chip		69	95		
		1 -0 mA 40°C < T < 405°C	Legacy chip			125	-	
		I_{OUT} = 0 mA, -40° C $\leq T_{J} \leq 125^{\circ}$ C	New chip			123		
		1 4 4	Legacy chip		80	110		
		I _{OUT} = 1 mA	New chip		78	110	-	
		1 4 mA 4000 < T < 40500	Legacy chip			170		
		$I_{OUT} = 1 \text{ mA}, -40^{\circ}\text{C} \leqslant T_{J} \leqslant 125^{\circ}\text{C}$	New chip			140		
		- 25 mA	Legacy chip		200	300		
		I _{OUT} = 25 mA	New chip		225	295		
I_{GND}	GND pin current	05 A 4000 < T < 4050	Legacy chip			550	μΑ	
		$I_{OUT} = 25 \text{ mA}, -40^{\circ}\text{C} \leqslant T_{J} \leqslant 125^{\circ}\text{C}$	New chip			345		
			Legacy chip		600	1000		
		I _{OUT} = 100 mA	New chip		620	790		
			Legacy chip			1700		
		I_{OUT} = 100 mA, -40° C $\leq T_{J} \leq 125^{\circ}$ C	New chip			950		
		V _{ON/OFF} < 0.3 V, V _{IN} = 16 V	Legacy chip		0.01	0.8		
			New chip		1.25	1.75		
		$V_{ON/OFF}$ < 0.15 V, V_{IN} = 16 V, -40° C \leq T _J \leq 105 $^{\circ}$ C	Legacy chip		0.05	2	1	
		$V_{ON/OFF}$ < 0.15 V, V_{IN} = 16 V, -40° C $\leq T_{J} \leq 125^{\circ}$ C			5			
			New chip		1.12	2.75		
V _{UVLO+}	Rising bias supply UVLO	V_{IN} rising, $-40^{\circ}\text{C} \leqslant T_{\text{J}} \leqslant 125^{\circ}\text{C}$			2.2	2.4	V	
V _{UVLO-}	Falling bias supply UVLO	V_{IN} falling, -40° C \leqslant T_{J} \leqslant 125 $^{\circ}$ C	New chip	1.9			V	
V _{UVLO(HYST)}	UVLO hysteresis	- 40°C ≤ T _J ≤ 125°C	-	(0.130		V	
		$R_L = 0 \Omega \text{ (steady state)}$	Legacy chip		150			
I _{O(SC)}	Short output current		New chip		150		mA	
		0.4.4055	Legacy chip		0.5			
		Low = Output OFF	New chip		0.72			
		Low = Output OFF, V_{OUT} + 1 \leq V_{IN} \leq 16 V, -40°C \leq	Legacy chip			0.15		
. ,	ONIOTE: 1	T _J ≤ 125°C	New chip			0.15	.,	
V _{ON/OFF}	ON/OFF input voltage	High Outsid ON	Legacy chip		1.4		V	
		High = Output ON	New chip		0.85			
		High = Output ON, $V_{OUT} + 1 \le V_{IN} \le 16 \text{ V}, -40^{\circ}\text{C} \le$	Legacy chip	1.6				
		T _J ≤ 125°C	New chip	1.6				
			Legacy chip		0.01			
		$V_{ON/OFF} = 0 V$	New chip		0.42			
		$V_{ON/OFF}$ = 0 V, V_{OUT} + 1 \leq V_{IN} \leq 16 V, $-$ 40°C \leq T _J	Legacy chip			- 1		
	ON/OFF:	≤ 125°C	New chip			- 0.9		
ON/OFF	ON/OFF input current		Legacy chip		5		μA	
		V _{ON/OFF} = 5 V	New chip		0.011			
		$V_{ON/OFF}$ = 5 V, V_{OUT} + 1 \leq V_{IN} \leq 16 V, -40° C \leq T _J	Legacy chip			15		
		$V_{ON/OFF}$ = 5 V, V_{OUT} + 1 \leq V_{IN} \leq 16 V, $-$ 40°C \leq T _J \leq 125°C	New chip			2.20		

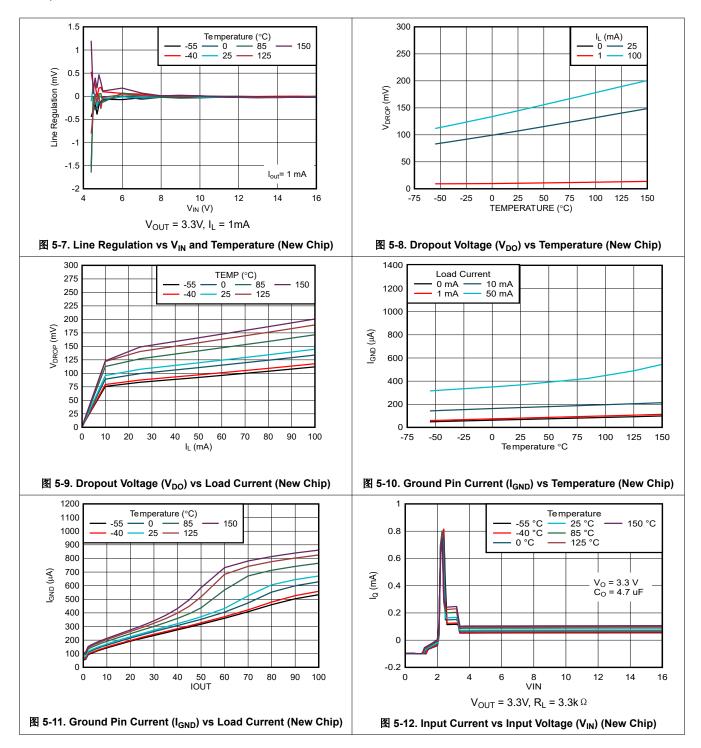
5.5 Electrical Characteristics (continued)

specified at T_J = 25 °C, V_{IN} = $V_{OUT(nom)}$ + 1.0 V or VIN = 2.5 V (whichever is greater), I_{OUT} = 1 mA, $V_{ON/OFF}$ = 2 V, C_{IN} = 1.0 μ F, and C_{OUT} = 2.2 μ F (unless otherwise noted)

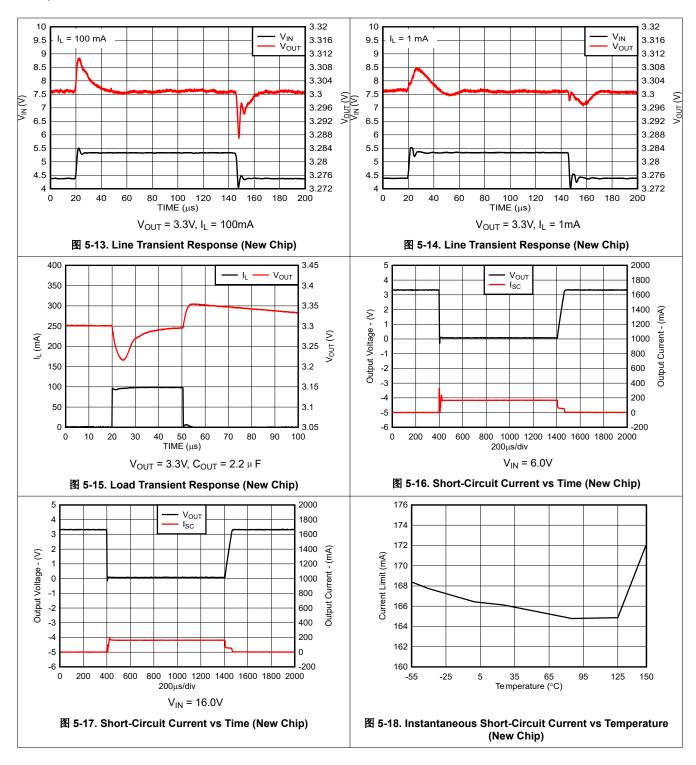
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	Dook output ourrent	V > V = 50/ (-tt)tt-)	Legacy chip		400		A
I _{O(PK)}	Peak output current	V _{OUT} ≥ V _{O(NOM)} − 5% (steady state)	New chip		350		mA
A M. / A M.	N Birelandaria		Legacy chip		63		dB
$\Delta V_{O} / \Delta V_{IN}$	Ripple rejection	f = 1 kHz, C _{OUT} = 10 μF	New chip		75		uБ
V		Bandwidth = 300 Hz to 50 kHz, C_{OUT} = 2.2 μ F, V_{OUT} = 3.3 V, I_{LOAD} = 150 mA	Legacy chip		160		μ_{VRM}
V _n Output noise voltage		Bandwidth = 300 Hz to 50 kHz, C_{OUT} = 2.2 μ F, V_{OUT} = 3.3 V, I_{LOAD} = 150 mA	New chip		140		S
T _{sd+}	Thermal shutdown	Shutdown, temperature increasing	New chip		170		°C
T _{sd-}	threshold	Reset, temperature decreasing	TINEW CHIP		150		

⁽¹⁾ Dropout voltage (V_{DO}) is defined as the input-to-output differential at which the output voltage drops 100 mV below the value measured with a 1-V differential. V_{DO} is measured with $V_{IN} = V_{OUT(nom)}$ – 100 mV for fixed output devices.

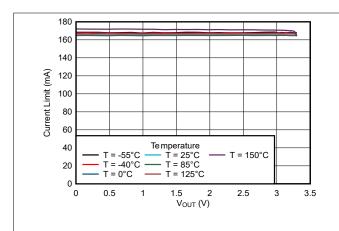

提交文档反馈


1

Product Folder Links: *LP2981 LP2981A*English Data Sheet: SLVS521



5.6 Typical Characteristics



at T_A = 25°C, V_{IN} = $V_{O(NOM)}$ + 1V, C_{OUT} = 10 μ F, C_{IN} = 1 μ F all voltage options, ON/ \overline{OFF} pin tied to V_{IN} (unless otherwise noted)

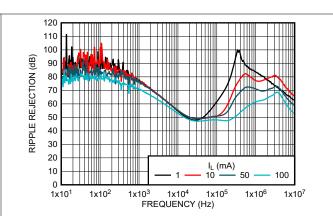
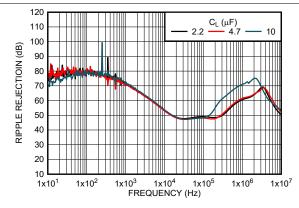



图 5-19. Short-Circuit Current vs Output Voltage (V_{OUT}) (New Chip)

图 5-20. Ripple Rejection vs Load Current (I_L) and Frequency (New Chip)

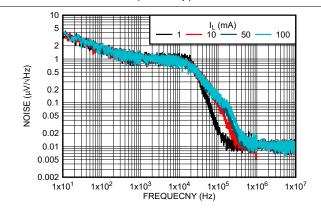
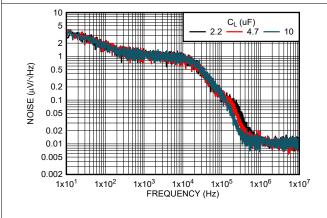



图 5-21. Ripple Rejection vs Output Capacitor (C_L) and Frequency (New Chip)

图 5-22. Output Noise Density vs Load Current (I_L) Frequency (New Chip)

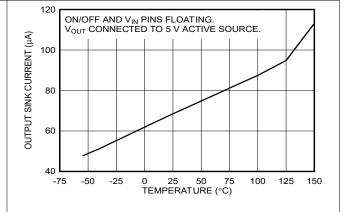
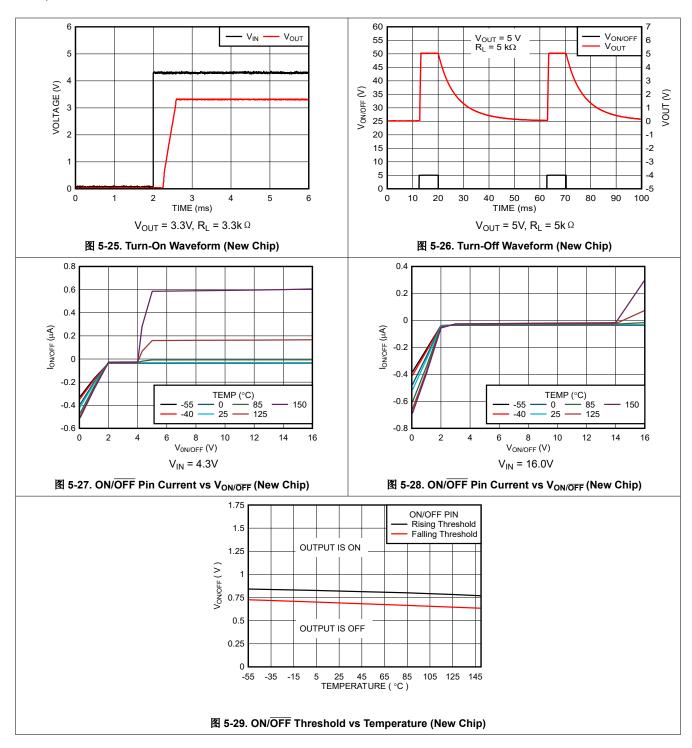



图 5-23. Output Noise Density vs Output Capacitor (C_L)
Frequency (New Chip)

图 5-24. Output Reverse Leakage vs Temperature (New Chip)

6 Detailed Description

6.1 Overview

The LP2981 and LP2981A (LP2981x) are fixed-output, high PSRR, low-dropout regulators that offer exceptional, cost-effective performance for both portable and non-portable applications. The new chip has an output tolerance of ±1% across load and temperature variation. The new chip is capable of delivering 100mA of continuous load current.

This device features integrated overcurrent protection, thermal shutdown and output enable. The new chip has a built-in soft-start mechanism for controlled inrush current and provide internal output pulldown mechanism. This device delivers excellent line and load transient performance. The operating ambient temperature range of the devices is -40°C to +125°C.

6.2 Functional Block Diagrams

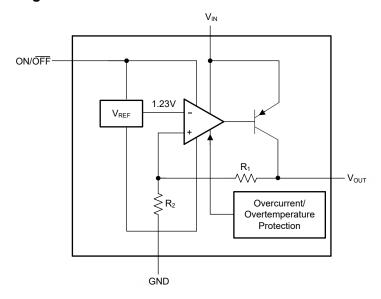


图 6-1. Functional Block Diagram (Legacy Chip)

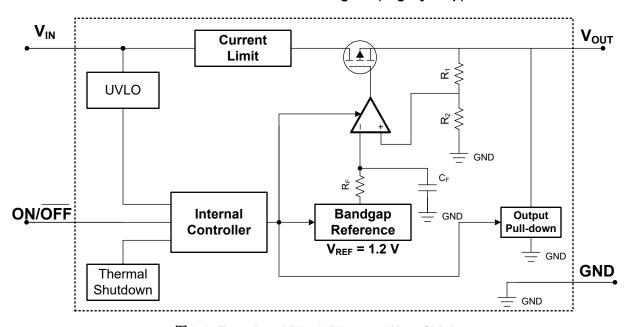


图 6-2. Functional Block Diagram (New Chip)

提交文档反馈

13

6.3 Feature Description

6.3.1 Output Enable

The ON/OFF pin for the device is an active-high pin. The output voltage is enabled when the voltage of the ON/OFF pin is greater than the high-level input voltage of the ON/OFF pin and disabled when the ON/OFF pin voltage is less than the low-level input voltage of the ON/OFF pin. If independent control of the output voltage is not needed, connect the ON/OFF pin to the input of the device.

For the legacy chip, apply a signal with a slew rate of \ge 40mV/ μ s. A slow slew rate can cause the shutdown function to operate incorrectly.

For the new chip, there are no slew rate restrictions. Also, the new chip devices have an internal pulldown circuit that activates when the device is disabled by pulling the ON/OFF pin voltage lower than the low-level input voltage of the ON/OFF pin to actively discharge the output voltage.

6.3.2 Dropout Voltage

Dropout voltage (V_{DO}) is defined as the input voltage minus the output voltage (V_{IN} – V_{OUT}) at the rated output current (I_{RATED}), where the pass transistor is fully on. I_{RATED} is the maximum I_{OUT} listed in the *Recommended Operating Conditions* table. The pass transistor is in the ohmic or triode region of operation, and acts as a switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than the nominal output regulation, then the output voltage falls as well.

For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance ($R_{DS(ON)}$) of the pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for that current scales accordingly. The following equation calculates the $R_{DS(ON)}$ of the device.

$$R_{\rm DS(ON)} = \frac{V_{\rm DO}}{I_{\rm RATED}} \tag{1}$$

6.3.3 Current Limit

6.3.3.1 Current Limit (Legacy Chip)

The internal current-limit circuit is used to protect the LP2981x against high-load current faults or shorting events. This device is not designed to operate in a steady-state current limit. During a current-limit event, the device sources constant current. Therefore, the output voltage falls when load impedance decreases. If a current limit occurs and the resulting output voltage is low, excessive power can be dissipated across the LDOs resulting in a thermal shutdown of the output. A foldback feature limits the short-circuit current to protect the regulator from damage under all load conditions. If V_{OUT} is forced below 0V before ON/\overline{OFF} goes high and the load current required exceeds the foldback current limit, the device can not start up correctly.

6.3.3.2 Current Limit (New Chip)

This device has an internal current limit circuit that protects the regulator during transient high-load current faults or shorting events. The current limit is a brick-wall scheme. In a high-load current fault, the brick-wall scheme limits the output current to the current limit (I_{CL}). I_{CL} is listed in the *Electrical Characteristics* table.

The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the device begins to heat up because of the increase in power dissipation. When the device is in brick-wall current limit, the pass transistor dissipates power $[(V_{IN} - V_{OUT}) \times I_{CL}]$. If thermal shutdown is triggered, the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output current fault condition continues, the device cycles between current limit and thermal shutdown. For more information on current limits, see the *Know Your Limits* application note.

图 6-3 shows a diagram of the current limit.

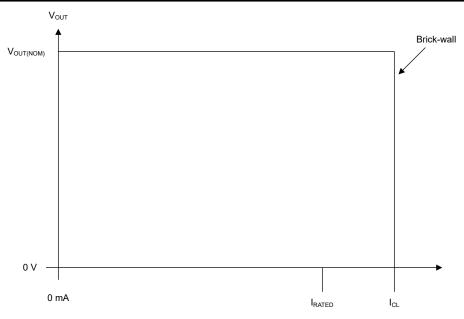


图 6-3. Current Limit

6.3.4 Undervoltage Lockout (UVLO)

For the new chip, the device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input drops during turn on, the UVLO has hysteresis as specified in the *Electrical Characteristics* table.

6.3.5 Thermal Shutdown

The device contains a thermal shutdown protection circuit to disable the device when the junction temperature (T_J) of the pass transistor rises to $T_{SD(shutdown)}$ (typical). Thermal shutdown hysteresis makes sure that the device resets (turns on) when the temperature falls to $T_{SD(reset)}$ (typical). Thermal shutdown circuit specifications are defined in the *Electrical Characteristics*.

The thermal time-constant of the semiconductor die is fairly short, thus the device can cycle on and off when thermal shutdown is reached until power dissipation is reduced. Power dissipation during start up can be high from large V_{IN} – V_{OUT} voltage drops across the device or from high inrush currents charging large output capacitors. Under some conditions, the thermal shutdown protection disables the device before start-up completes.

For reliable operation, limit the junction temperature to the maximum listed in the *Recommended Operating Conditions* table. Operation above this maximum temperature causes the device to exceed operational specifications. Although the internal protection circuitry of the device is designed to protect against thermal overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.

6.3.6 Output Pulldown

The new chip has an output pulldown circuit. The output pulldown activates in the following conditions:

- When the device is disabled (V_{ON/OFF} < V_{ON/OFF(LOW)})
- If 1.0V < V_{IN} < V_{UVLO}

Do not rely on the output pulldown circuit for discharging a large amount of output capacitance after the input supply has collapsed because reverse current can flow from the output to the input. This reverse current flow can cause damage to the device. See the *Reverse Current* section for more details.

6.4 Device Functional Modes

表 6-1 shows the conditions that lead to the different modes of operation. See the *Electrical Characteristics* table for parameter values.

表 6-1. Device Functional Mode Comparison

OPERATING MODE	PARAMETER					
OPERATING WIDDE	V _{IN}	V _{ON/OFF}	I _{OUT}	TJ		
Normal operation	$V_{IN} > V_{OUT(nom)} + V_{DO}$ and $V_{IN} > V_{IN(min)}$	V _{ON/OFF} > V _{ON/OFF(HI)}	I _{OUT} < I _{OUT(max)}	$T_J < T_{SD(shutdown)}$		
Dropout operation	$V_{IN(min)} < V_{IN} < V_{OUT(nom)} + V_{DO}$	$V_{ON/\overline{OFF}} > V_{ON/\overline{OFF}(HI)}$	$I_{OUT} < I_{OUT(max)}$	$T_J < T_{SD(shutdown)}$		
Disabled (any true condition disables the device)	V _{IN} < V _{UVLO}	V _{ON/OFF} < V _{ON/} OFF(LOW)	Not applicable	$T_J > T_{SD(shutdown)}$		

6.4.1 Normal Operation

The device regulates to the nominal output voltage when the following conditions are met:

- The input voltage is greater than the nominal output voltage plus the dropout voltage (V_{OUT(nom)} + V_{DO})
- The output current is less than the current limit (I_{OUT} < I_{CL})
- The device junction temperature is less than the thermal shutdown temperature $(T_J < T_{SD})$
- The ON/OFF voltage has previously exceeded the ON/OFF rising threshold voltage and has not yet decreased to less than the enable falling threshold

6.4.2 Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage tracks the input voltage. During this mode, the transient performance of the device becomes significantly degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load transients in dropout can result in large output-voltage deviations.

When the device is in a steady dropout state (defined as when the device is in dropout, $V_{IN} < V_{OUT(NOM)} + V_{DO}$, directly after being in a normal regulation state, but *not* during start up), the pass transistor is driven into the ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output voltage plus the dropout voltage ($V_{OUT(NOM)} + V_{DO}$), the output voltage can overshoot for a short period of time while the device pulls the pass transistor back into the linear region.

6.4.3 Disabled

The output of the device can be shutdown by forcing the voltage of the ON/OFF pin to less than the maximum ON/OFF pin low-level input voltage (see the *Electrical Characteristics* table). When disabled, the pass transistor is turned off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal discharge circuit from the output to ground.

Copyright © 2025 Texas Instruments Incorporated

7 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

7.1 Application Information

The LP2981x is a linear voltage regulator operating from 2.5V to 16V (new chip) on the input and regulates voltages between 1.2V to 5V with ±1% accuracy (across line, load and temperature) and 100mA maximum output current.

Successfully implementing an LDO in an application depends on the application requirements. If the requirements are simply input voltage and output voltage, compliance specifications (such as internal power dissipation or stability) must be verified to provide a solid design. If timing, start-up, noise, power supply rejection ratio (PSRR), or any other transient specification is required, then the design becomes more challenging.

7.1.1 Recommended Capacitor Types

7.1.1.1 Recommended Capacitors (Legacy Chip)

7.1.1.1.1 Tantalum Capacitors

For the legacy chip, tantalum capacitors are the best choice for use at the output of the LDO. Most good quality tantalums can be used with the device (legacy chip), but check the manufacturer data sheet to verify that the ESR is in range. At lower temperatures, as ESR increases, a capacitor with ESR, near the upper limit for stability at room temperature can cause instability. For very low temperature applications, output tantalum capacitors can be used in parallel configuration to prevent the ESR from going up too high.

7.1.1.1.2 Ceramic Capacitors

For the legacy chip, ceramic capacitors are not recommended for use at the output of the LDO. This recommendation is because the ESR of a ceramic can be low enough to go below the minimum stable value for the LP2981x (legacy chip). A measured 2.2 µ F ceramic capacitor is verified to have an ESR of approximately 15m Ω , which is low enough to cause oscillations. If a ceramic capacitor is used on the output, a 1 Ω resistor is required to be placed in series with the capacitor.

7.1.1.1.3 Aluminum Capacitors

For the legacy chip, aluminum electrolytics are not typically suggested for use with the LDO, because of the large physical size. These aluminum capacitors must meet the same ESR requirements over the operating temperature range, more difficult because of the steep increase at cold temperature. An aluminum electrolytic can exhibit an ESR increase of as much as 50x when going from +20°C to −40°C. Also, some aluminum electrolytics are not operational below -25°C because the electrolyte can freeze.

7.1.1.2 Recommended Capacitors (New Chip)

The new chip is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas using Y5V-rated capacitors is discouraged because of large variations in capacitance.

Maximum supported ESR range across complete temperature (-40°C to 125°C) and load current range (0mA-50mA) is less than 1 Ω . If adding to an existing implementation, where different types of capacitors with higher ESR are used, place a low ESR MLCC capacitor with a 100nF value as close as possible to the device output pin (V_{OUT}).

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

17

English Data Sheet: SLVS521

Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and temperature. Generally, expect the effective capacitance to decrease by as much as 50%. The input and output capacitors listed in the *Recommended Operating Conditions* table account for an effective capacitance of approximately 50% of the nominal value.

7.1.2 Input and Output Capacitor Requirements

7.1.2.1 Input Capacitor

For the legacy chip, an input capacitor $(C_{IN}) \ge 1 \,\mu\,F$ is required (the amount of capacitance can be increased without limit). Any good-quality tantalum or ceramic capacitor can be used. The capacitor must be located no more than half an inch from the input pin and returned to a clean analog ground.

For the new chip, although an input capacitor is not required for stability, good analog design practice is to connect a capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. Use an input capacitor if the source impedance is more than $0.5\,\Omega$. A higher value capacitor can be necessary if large, fast rise-time load or line transients are anticipated or if the device is located several inches from the input power source.

7.1.2.2 Output Capacitor

7.1.2.2.1 Output Capacitor (Legacy Chip)

The output capacitor must meet both the requirement for minimum amount of capacitance and equivalent series resistance (ESR) value. Curves are provided that show the allowable ESR range as a function of load current for various output voltages and capacitor values (see 图 7-3, 图 7-4, 图 7-5, and 图 7-6).

- Minimum C_{OUT}: 3.3 µ F (can be increased without limit to improve transient response stability margin)
- ESR range: See 图 7-3, 图 7-4, 图 7-5, and 图 7-6.

Both the minimum capacitance and ESR requirement must be met over the entire operating temperature range. Depending on the type of capacitor used, both of these parameters can vary significantly with temperature (see the *Recommended Capacitors (Legacy Chip)* section).

7.1.2.2.2 Output Capacitor (New Chip)

Dynamic device performance is improved by using an output capacitor. Use an output capacitor, preferably ceramic capacitors, within the range (both capacitance and max ESR) specified in the *Recommended Operating Conditions* table for stability.

7.1.3 Estimating Junction Temperature

The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi metrics are determined to be significantly independent of the copper area available for heat-spreading. The *Thermal Information* table lists the primary thermal metrics, which are the junction-to-top characterization parameter (Ψ_{JT}) and junction-to-board characterization parameter (Ψ_{JB}). These parameters provide two methods for calculating the junction temperature (Ψ_{JT}) with the temperature at the top-center of the device package (Ψ_{TD}) to calculate the junction temperature. Use the junction-to-board characterization parameter (Ψ_{JB}) with the PCB surface temperature 1mm from the device package (Ψ_{DB}) to calculate the junction temperature.

$$T_{J} = T_{T} + \psi_{JT} \times P_{D} \tag{2}$$

where:

- P_D is the dissipated power
- T_T is the temperature at the center-top of the device package

$$T_{J} = T_{B} + \psi_{JB} \times P_{D} \tag{3}$$

where

 T_B is the PCB surface temperature measured 1mm from the device package and centered on the package edge

For detailed information on the thermal metrics and how to use these metrics, see the *Semiconductor and IC Package Thermal Metrics* application note.

7.1.4 Power Dissipation (PD)

Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few or no other heat-generating devices that cause added thermal stress.

To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. The following equation calculates power dissipation (P_D).

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
 (4)

备注

Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage required for correct output regulation.

For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an array of plated vias that conduct heat to additional copper planes for increased heat dissipation.

The maximum power dissipation determines the maximum allowable ambient temperature (T_A) for the device. According to the following equation, power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance ($R_{\theta JA}$) of the combined PCB and device package and the temperature of the ambient air (T_A).

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D}) \tag{5}$$

Thermal resistance ($R_{\theta JA}$) is highly dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The junction-to-ambient thermal resistance listed in the *Thermal Information* table is determined by the JEDEC standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance. As mentioned in the *An empirical analysis of the impact of board layout on LDO thermal performance* application note, $R_{\theta JA}$ can be improved by 35% to 55% compared to the *Thermal Information* table value with the PCB board layout optimization.

7.1.5 Reverse Current

Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the long-term reliability of the device.

Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute maximum rating of $V_{OUT} \leq V_{IN} + 0.3 \text{ V}$.

Product Folder Links: LP2981 LP2981A

- If the device has a large C_{OUT} and the input supply collapses with little or no load current
- The output is biased when the input supply is not established
- The output is biased above the input supply

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

19

If reverse current flow is expected in the application, use external protection to protect the device. Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation is anticipated.

8 7-1 shows one approach for protecting the device.

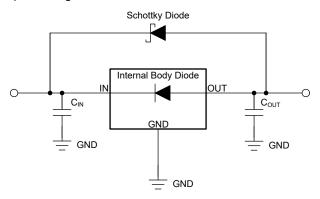
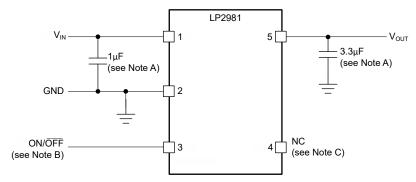



图 7-1. Example Circuit for Reverse Current Protection Using a Schottky Diode

7.2 Typical Application

- A. Minimum C_{OUT} value for stability (can be increased without limit for improved stability and transient response).
- B. ON/\overline{OFF} must be actively terminated. Connect to V_{IN} if shutdown feature is not used.
- C. For the new chip, pin 4 (NC) is not internally connected.

图 7-2. LP2981x Typical Application

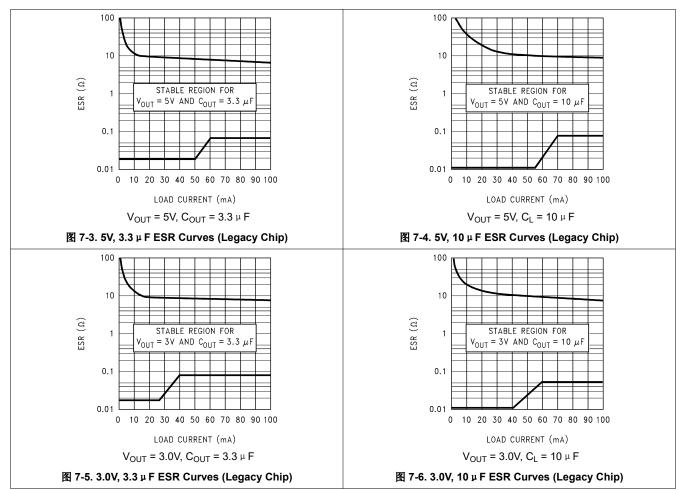
7.2.1 Design Requirements

表 7-1 lists the parameters for this application.

表 7-1. Design Parameters

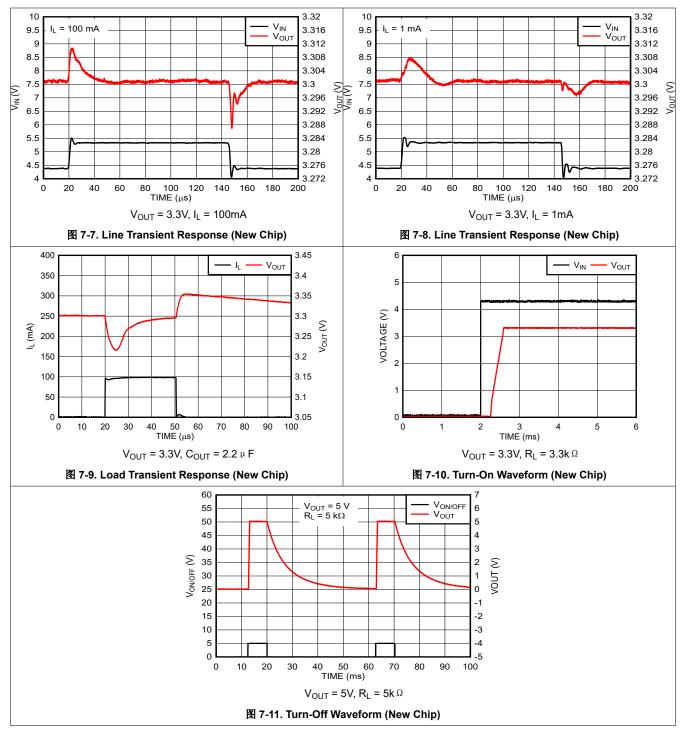
PARAMETER	DESIGN REQUIREMENT	
Input voltage	12 V ±10%, provided by an external regulator	
Output voltage	3.3 V ±1%	
Output current	100 mA (maximum), 1 mA (minimum)	
RMS noise, 300 Hz to 50 kHz	< 1 mV _{RMS}	
PSRR at 1 kHz	> 40 dB	

7.2.2 Detailed Design Procedure


7.2.2.1 ON and OFF Input Operation

The LP2981x is shut off by pulling the ON/ \overline{OFF} input low, and turned on by driving the input high. If this feature is not to be used, the ON/ \overline{OFF} input must be tied to V_{IN} to keep the regulator on at all times (the ON/ \overline{OFF} input must **not** be left floating).

For proper operation, the signal source used to drive the ON/OFF input must be able to swing above and below the specified turn-on or turn-off voltage thresholds which specify an ON or OFF state (see the *Electrical Characteristics*).


The ON/OFF signal can come from either a totem-pole output, or an open-collector output with pullup resistor to the LP2981 and LP2891A input voltage or another logic supply. The high-level voltage can exceed the LP2981 and LP2891A input voltage, but must remain within the ratings list in the *Absolute Maximum Ratings* for the ON/OFF pin.

7.2.3 Application Curves

7.2.3 Application Curves (continued)

7.3 Power Supply Recommendations

The LP2981x is designed to operate from an input voltage supply range between 2.5V and 16V (for the new chip). The input voltage range provides adequate headroom for the device to have a regulated output. This input supply must be well regulated. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.

23

English Data Sheet: SLVS521

7.4 Layout

7.4.1 Layout Guidelines

For best overall performance, place all circuit components on the same side of the printed-circuit board and as near as practical to the respective LDO pin connections. Place ground return connections to the input and output capacitors, and to the LDO ground pin as close to each other as possible, connected by a wide, component-side, copper surface. The use of vias and long traces to create LDO circuit connections is strongly discouraged and negatively affects system performance. This grounding and layout scheme minimizes inductive parasitics, and thereby reduces load-current transients, minimizes noise, and increases circuit stability. A ground reference plane is also recommended and is either embedded in the PCB or located on the bottom side of the PCB opposite the components. This reference plane serves to assure accuracy of the output voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device. In most applications, this ground plane is necessary to meet thermal requirements.

7.4.2 Layout Example

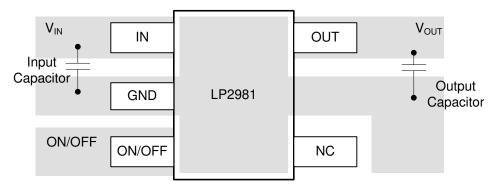


图 7-12. Recommended Layout

8 Device and Documentation Support

8.1 Device Nomenclature

表 8-1. Available Options

PRODUCT ⁽¹⁾	V _{OUT}
LP2981 c-xxyyyz	c is the accuracy specification for the legacy chip (<i>A</i> or blank). See the <i>Electrical Characteristics</i> for more information. This character is insignificant for the new chip. yyy is the package designator (DBV = SOT-23). z is the reel designator size. See the Package Addendum for more information on package quantity. xx is the nominal output voltage (for example, 33 = 3.3V; 50 = 5.0V). This device ships with either the legacy chip (CSO: DLN or GF8) or the new chip (CSO: RFB), which uses the latest manufacturing flow. The reel packaging label provides CSO information to distinguish which chip is used. Device performance for new and legacy chips is denoted throughout the document.

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

8.2 Documentation Support

8.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, LDO Noise Demystified application note
- Texas Instruments, LDO PSRR Measurement Simplified application note
- Texas Instruments, A Topical Index of TI LDO Application Notes application note
- Texas Instruments, Know Your Limits application note

8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索 现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI的使用条款。

Product Folder Links: LP2981 LP2981A

8.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

8.6 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。

8.7 术语表

本术语表列出并解释了术语、首字母缩略词和定义。 TI 术语表

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

25

9 Revision History

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision H (May 2024) to Revision I (February 2025)	Page
• 通篇添加了 LP2981A 信息	1
• 向说明部分的最后一句添加了澄清文字,说明了软启动机制涉及的是新芯片	
Changed description of NC (pin 4)	
• Changed Short-Circuit Current vs Time (New Chip), Instantaneous Short-Circuit Current vs Te	
(New Chip), Short-Circuit Current vs Output Voltage (V _{OUT}) (New Chip) curves	8
Changed Overview section	
Changed Functional Block Diagrams section	
Changed Output Enable section	14
Added Current Limit (Legacy Chip) and Current Limit (New Chip) sections	14
• Added maximum supported ESR range discussion to Recommended Capacitors (New Chip)	section 17
Changed Output Capacitor section	18
Changed Device Nomenclature section	
Changes from Revision G (July 2016) to Revision H (December 2023)	Page
• 更新了整个文档中的表格、图和交叉参考的编号格式	1
• 更改了整个文档以与当前系列格式保持一致	
• 向文档添加了 M3 器件	1
Added Device Nomenclature section	
Added three references to Related Documentation	25

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LP2981-28DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LP5G
LP2981-28DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LP5G
LP2981-28DBVT	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LP5G
LP2981-28DBVT.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LP5G
LP2981-28DBVTG4	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP5G
LP2981-28DBVTG4.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP5G
LP2981-29DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP3G
LP2981-29DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP3G
LP2981-30DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LP7G, LP7L)
LP2981-30DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(LP7G, LP7L)
LP2981-30DBVT	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LP7G, LP7L)
LP2981-30DBVT.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LP7G, LP7L)
LP2981-33DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPBG, LPBL)
LP2981-33DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(LPBG, LPBL)
LP2981-33DBVT	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	-40 to 125	(LPBG, LPBL)
LP2981-50DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPDG, LPDL)
LP2981-50DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(LPDG, LPDL)
LP2981-50DBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPDG, LPDL)
LP2981-50DBVRG4.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPDG, LPDL)
LP2981-50DBVT	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	-40 to 125	(LPDG, LPDL)
LP2981A-28DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LP6G, LP6L)
LP2981A-28DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LP6G, LP6L)
LP2981A-28DBVT	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LP6G, LP6L)
LP2981A-28DBVT.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LP6G, LP6L)
LP2981A-29DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LRBG
LP2981A-29DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LRBG
LP2981A-30DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LP8G, LP8L)
LP2981A-30DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(LP8G, LP8L)
LP2981A-30DBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP8G

31-Oct-2025

www.ti.com

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	(-)	(=)			(-)	(4)	(5)		(-)
LP2981A-30DBVRG4.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP8G
LP2981A-30DBVTG4	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP8G
LP2981A-30DBVTG4.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LP8G
LP2981A-33DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPCG, LPCL)
LP2981A-33DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(LPCG, LPCL)
LP2981A-33DBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPCG
LP2981A-33DBVRG4.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPCG
LP2981A-33DBVTG4	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPCG
LP2981A-33DBVTG4.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPCG
LP2981A-50DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPEG, LPEL)
LP2981A-50DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(LPEG, LPEL)
LP2981A-50DBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPEG, LPEL)
LP2981A-50DBVRG4.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPEG, LPEL)
LP2981A-50DBVT	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPEG, LPEL)
LP2981A-50DBVT.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPEG, LPEL)

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

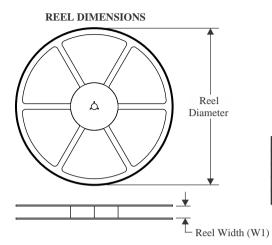
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

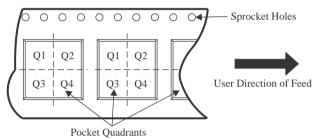
www.ti.com 31-Oct-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

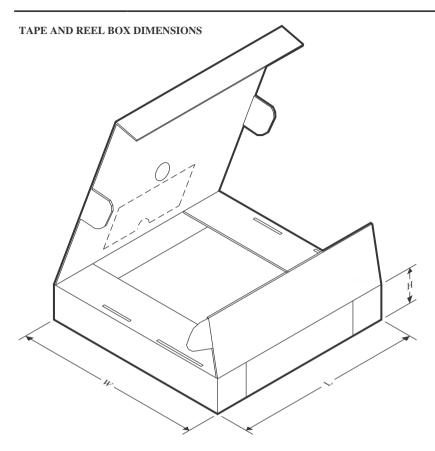
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 6-Dec-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

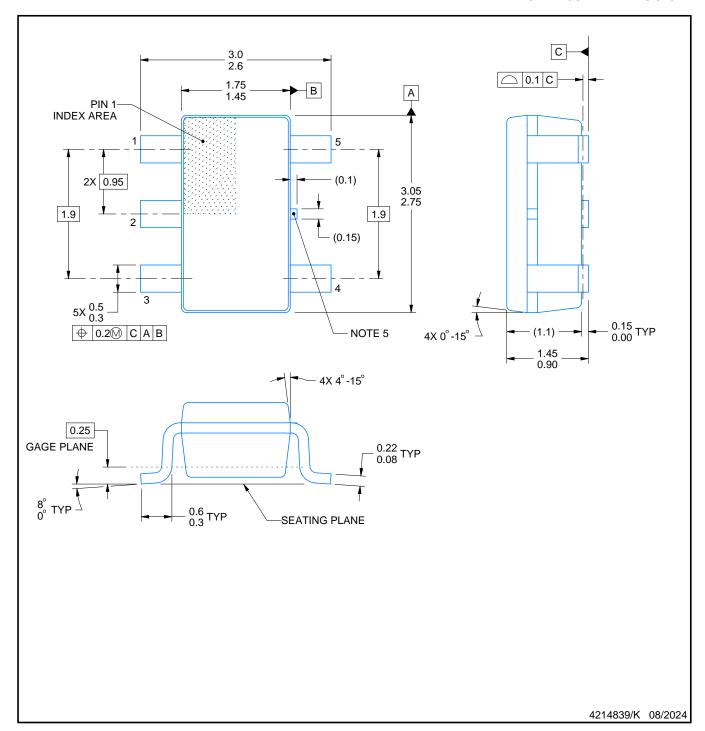
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP2981-28DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2981-28DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2981-30DBVR	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LP2981-33DBVR	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LP2981-50DBVR	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LP2981A-28DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2981A-30DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LP2981A-30DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2981A-30DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2981A-33DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LP2981A-33DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2981A-33DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2981A-50DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

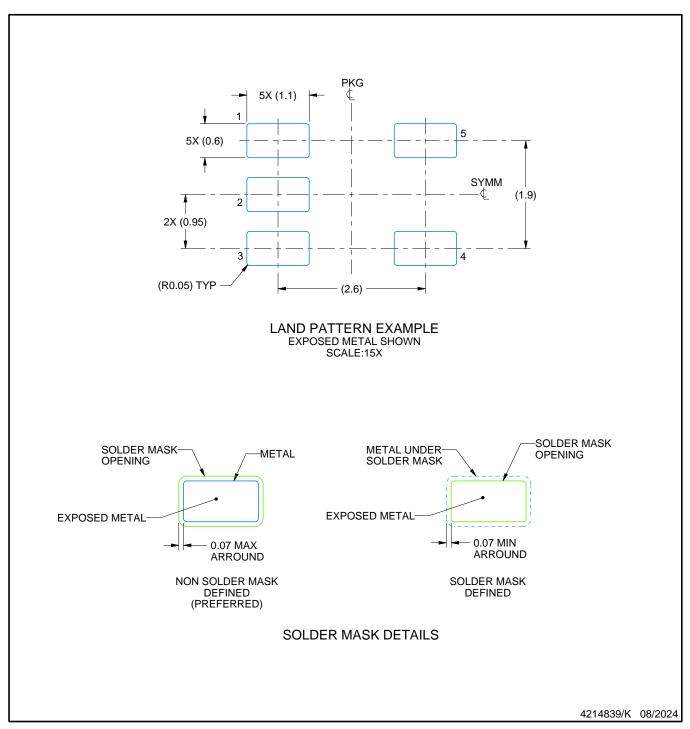
www.ti.com 6-Dec-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
Device	1 ackage Type	I ackage Drawing	1 1113	01 %	Length (IIIII)	width (illin)	rieight (illin)
LP2981-28DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2981-28DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2981-30DBVR	SOT-23	DBV	5	3000	208.0	191.0	35.0
LP2981-33DBVR	SOT-23	DBV	5	3000	208.0	191.0	35.0
LP2981-50DBVR	SOT-23	DBV	5	3000	208.0	191.0	35.0
LP2981A-28DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2981A-30DBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
LP2981A-30DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2981A-30DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2981A-33DBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
LP2981A-33DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2981A-33DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2981A-50DBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0

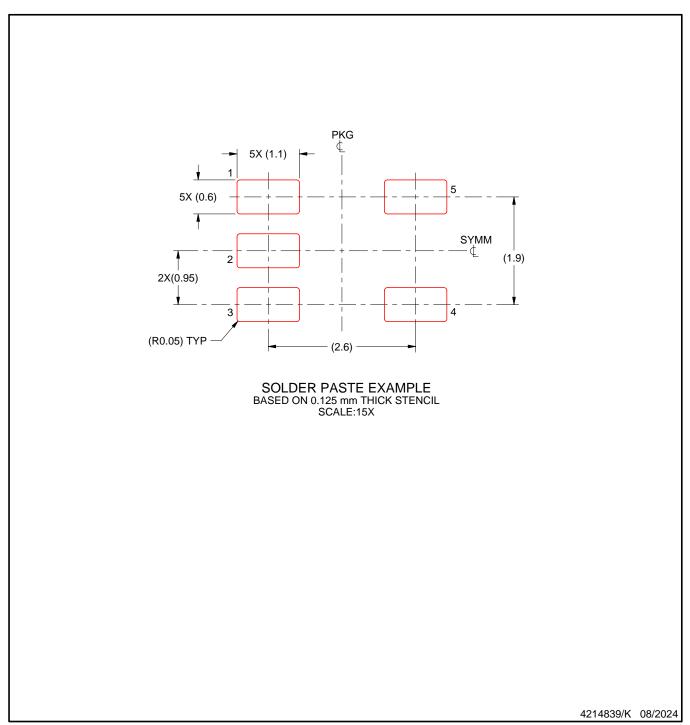
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月