

TMUX7219M

ZHCSP65 - MAY 2022

TMUX7219M 具有 1.8V 逻辑电平和闩锁效应抑制特性的 44V 扩展工作温度范围 2:1 (SPDT) 精密开关

1 特性

双电源电压范围: ±4.5V 至 ±22V 单电源电压范围: 4.5V 至 44V

• -55°C 至 +125°C 工作温度 低导通电阻: 2.1Ω

低电荷注入:-10pC

高电流支持:330mA(最大值)

闩锁效应抑制

兼容 1.8V 逻辑电平

逻辑引脚具有集成的上拉和下拉电阻器

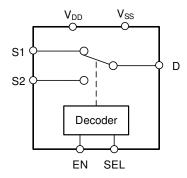
失效防护逻辑

轨到轨运行

双向信号路径

先断后合开关

2 应用


航空电子设备飞行控制单元

飞行器驾驶舱显示屏

独立航空电子设备精密飞行控制

• 互连和配电盒

• 航天和国防

功能方框图

3 说明

TMUX7219M 是一款具有闩锁效应抑制特性的互补金 属氧化物半导体 (CMOS) 开关,采用单通道 2:1 (SPDT) 配置。此器件在单电源 (4.5 V 至 44 V)、双 电源(±4.5 V 至 ±22 V)或非对称电源(例如 V_{DD} = 12 V , $V_{SS} = -5 V$) 供电时均能正常运行。 TMUX7219M 可在源极 (Sx) 和漏极 (D) 引脚上支持从 V_{SS} 到 V_{DD} 范围的双向模拟和数字信号。

可以通过控制 EN 引脚来启用或禁用 TMUX7219M。 当禁用时,两个信号路径开关都被关闭。当启用时, SEL 引脚可用于打开信号路径 1 (S1 至 D)或信号路 径 2(S2 至 D)。所有逻辑控制输入均支持 1.8V 到 V_{DD} 的逻辑电平,因此,当器件在有效电源电压范围内 运行时,可确保 TTL 和 CMOS 逻辑兼容性。失效防护 逻辑电路允许先在控制引脚上施加电压,然后在电源引 脚上施加电压,从而保护器件免受潜在的损害。

TMUX72xx 系列具有闩锁效应抑制特性,可防止器件 内寄生结构之间通常由过压事件引起的大电流不良事 件。闩锁状态通常会一直持续到电源轨关闭为止,并可 能导致器件故障。抗闩锁特性使得 TMUX72xx 系列开 关和多路复用器能够在恶劣的环境中使用。此外, TMUX7219M 的额定工作温度可低至 - 55°C, 非常适 合用于环境恶劣的工业和航空应用。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
TMUX7219M	VSSOP (8)	3.00mm × 3.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

Table of Contents

1 特性 1	7.9 Charge Injection	23
2 应用	7.10 Off Isolation	
_ <u></u>	7.11 Crosstalk2	24
4 Revision History2	7.12 Bandwidth	24
5 Pin Configuration and Functions3	7.13 THD + Noise2	2
6 Specifications4	7.14 Power Supply Rejection Ratio (PSRR)	2
6.1 Absolute Maximum Ratings4	8 Detailed Description	26
6.2 ESD Ratings4	8.1 Overview2	
6.3 Thermal Information4	8.2 Functional Block Diagram2	26
6.4 Recommended Operating Conditions5	8.3 Feature Description2	26
6.5 Source or Drain Continuous Current5	8.4 Device Functional Modes	28
6.6 ±15 V Dual Supply: Electrical Characteristics6	8.5 Truth Tables2	
6.7 ±15 V Dual Supply: Switching Characteristics7	9 Application and Implementation	29
6.8 ±20 V Dual Supply: Electrical Characteristics8	9.1 Application Information2	29
6.9 ±20 V Dual Supply: Switching Characteristics9	9.2 Typical Applications2	
6.10 44 V Single Supply: Electrical Characteristics 10	10 Power Supply Recommendations	3(
6.11 44 V Single Supply: Switching Characteristics 11	11 Layout	
6.12 12 V Single Supply: Electrical Characteristics 12	11.1 Layout Guidelines	3
6.13 12 V Single Supply: Switching Characteristics 13	11.2 Layout Example	
6.14 Typical Characteristics14	12 Device and Documentation Support	32
7 Parameter Measurement Information19	12.1 Documentation Support	
7.1 On-Resistance19	12.2 Receiving Notification of Documentation Updates	
7.2 Off-Leakage Current19	12.3 支持资源	32
7.3 On-Leakage Current20	12.4 Trademarks	32
7.4 Transition Time20	12.5 静电放电警告3	32
7.5 t _{ON(EN)} and t _{OFF(EN)}	12.6 术语表3	32
7.6 Break-Before-Make21	13 Mechanical, Packaging, and Orderable	
7.7 t _{ON (VDD)} Time22	Information	32
7.8 Propagation Delay22		

4 Revision History

DATE	REVISION	NOTES		
May 2022	*	Initial Release		

5 Pin Configuration and Functions

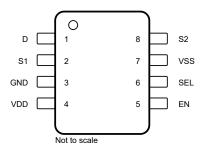


图 5-1. DGK Package 8-Pin VSSOP (Top View)

表 5-1. Pin Functions

F	PIN	TYPE(1)	DESCRIPTION ⁽²⁾		
NAME	NO.	I I PE(*)	DESCRIPTION ^{C)}		
D	1	I/O	Drain pin. Can be an input or output.		
S1	2	I/O	Source pin 1. Can be an input or output.		
GND	3	Р	Ground (0 V) reference		
V _{DD}	4	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between V _{DD} and GND.		
EN	5	I	Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off. When this pin is high, the SEL logic input determine which switch is turned on.		
SEL	6	1	Logic control input, has internal pull-down resistor. Controls the switch connection as shown in † 8.5.		
V _{SS}	7	Р	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between V _{SS} and GND.		
S2 8 I/O Source pi		I/O	Source pin 2. Can be an input or output.		

- (1) I = input, O = output, I/O = input and output, P = power.
- (2) Refer to \ddagger 8.4 for what to do with unused pins.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{DD} - V _{SS}			48	V
V_{DD}	Supply voltage	- 0.5	48	V
V _{SS}		- 48	0.5	V
V _{SEL} or V _{EN}	Logic control input pin voltage (SEL, EN) ⁽³⁾	- 0.5	48	V
I _{SEL} or I _{EN}	Logic control input pin current (SEL, EN) ⁽³⁾	- 30	30	mA
V _S or V _D	Source or drain voltage (Sx, D) ⁽³⁾	V _{SS} - 0.5	V _{DD} +0.5	V
I _{IK}	Diode clamp current ⁽³⁾	- 30	30	mA
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)		I _{DC} + 10 % ⁽⁴⁾	mA
T _A	Ambient temperature	- 55	150	°C
T _{stg}	Storage temperature	- 65	150	°C
T _J	Junction temperature		150	°C
P _{tot}	Total power dissipation ⁽⁵⁾		460	mW

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (4) Refer to Source or Drain Continuous Current table for I_{DC} specifications.
- (5) For DGK package: P_{tot} derates linearily above $T_A = 70^{\circ}$ C by 6.7mW/°C.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	V
		Charged device model (CDM), per JEDEC JS-002, all pins ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information

		TMUX7219M	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		al resistance 48.4	
R ₀ JA	Junction-to-ambient thermal resistance	152.1	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	48.4	°C/W
R ₀ JB	Junction-to-board thermal resistance	73.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	4.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	71.8	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TMUX7219M

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{DD} - V _{SS} (1)	Power supply voltage differential	4.5	44	V
V_{DD}	Positive power supply voltage	4.5	44	V
V _S or V _D	Signal path input/output voltage (source or drain pin) (Sx, D)	V _{SS}	V_{DD}	V
V _{SEL} or V _{EN}	Address or enable pin voltage	0	44	V
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)		I _{DC} ⁽²⁾	mA
T _A	Ambient temperature	- 55	125	°C

⁽¹⁾ V_{DD} and V_{SS} can be any value as long as 4.5 V \leq (V_{DD} - V_{SS}) \leq 44 V, and the minimum V_{DD} is met. (2) Refer to Source or Drain Continuous Current table for I_{DC} specifications.

6.5 Source or Drain Continuous Current

at supply voltage of V_{DD} ± 10%, V_{SS} ± 10 % (unless otherwise noted)

CONTINUOUS CURRENT PER CHANNEL (I _{DC})		T _Δ = 25°C	T _Δ = 85°C	T _Δ = 125°C	UNIT
PACKAGE	TEST CONDITIONS	1 A - 25 C	1A - 65 C	1A - 125 C	ONII
	+44 V Single Supply ⁽¹⁾	330	210	120	mA
	±15 V Dual Supply	330	210	120	mA
DGK (VSSOP)	+12 V Single Supply	240	160	100	mA
	±5 V Dual Supply	240	160	100	mA
	+5 V Single Supply	180	120	80	mA

⁽¹⁾ Specified for nominal supply voltage only.

6.6 ±15 V Dual Supply: Electrical Characteristics

 $V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, \ V_{SS} = -15 \text{ V}, \ T_A = 25 ^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH	"					
		V _S = -10 V to +10 V	25°C		2.1	2.9	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	- 40°C to +85°C			3.8	Ω
		Refer to On-Resistance	- 55°C to +125°C			4.5	Ω
		V _S = -10 V to +10 V	25°C		0.05	0.25	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	- 40°C to +85°C			1 2.9 3.8 4.5 5 0.25 0.3 0.35 5 0.6 0.7 0.85 1 5 1.6 15 1.6 15 1.8 44 1 1.8 44 0.8 5 2 5 3 0 40 48 62	Ω
	Giameis	Refer to On-Resistance	- 55°C to +125°C			0.35	Ω
		V _S = -10 V to +10 V	25°C		0.5	0.6	Ω
R _{ON FLAT}	On-resistance flatness	$I_{S} = -10 \text{ mA}$	- 40°C to +85°C			2.9 3.8 4.5 0.25 0.3 0.35 0.6 0.7 0.85 1.6 15 1 3 26 1 1.8 18 44 0.8 2 40 48 62 10 15	Ω
		Refer to On-Resistance	- 55°C to +125°C			0.85	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	- 55°C to +125°C		0.01		Ω/°C
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	- 0.15	0.05	0.15	nA
le(OEE)	Source off leakage current ⁽¹⁾		- 40°C to +85°C	- 1.6		2.9 3.8 4.5 0.25 0.3 0.35 0.6 0.7 0.85 0.15 1.6 15 1 3 26 1 1.8 18 44 0.8 2 40 48 62 10 15	nA
·3(OFF)		V _D = -10 V / +10 V Refer to Off-Leakage Current	- 55°C to +125°C	- 15			nA
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	- 1	0.05		nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾		- 40°C to +85°C	- 3		3	nA
·D(OFF)	Jian on loakage can on	V _D = -10 V / + 10 V Refer to Off-Leakage Current	- 55°C to +125°C	- 26		3.8 4.5 0.05 0.25 0.3 0.35 0.5 0.6 0.7 0.85 0.01 0.05 0.15 1.6 15 0.05 1 1.8 18 18 0.005 2 0.005 3 3 30 40 48 62 3 10 15	nA
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	- 1	0.04	3.8 4.5 0.05 0.25 0.3 0.35 0.5 0.6 0.7 0.85 0.01 0.05 0.15 1.6 15 0.05 1 1.8 18 18 44 0.8 0.005 2 0.005 3 3 30 40 48 62 3 10 15	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾		- 40°C to +85°C	- 1.8			nA
'D(ON)		Refer to On-Leakage Current	- 55°C to +125°C	- 18		18	nA
$I_{S(OFF)} \text{Source off leakage current}^{(1)} \begin{array}{l} \text{Switch state is off} \\ V_S = +10 \ \text{V} \ - \ 10 \ \text{V} \\ V_D = -10 \ \text{V} \ / \ 10 \ \text{V} \\ \text{Refer to Off-Leakage} \\ \hline \\ I_{D(OFF)} \text{Drain off leakage current}^{(1)} \begin{array}{l} V_{DD} = 16.5 \ \text{V}, V_{SS} = \\ \text{Switch state is off} \\ V_S = +10 \ \text{V} \ - \ 10 \ \text{V} \\ V_D = -10 \ \text{V} \ / \ 10 \ \text{V} \\ \text{Refer to Off-Leakage} \\ \hline \\ I_{S(ON)} \text{Channel on leakage current}^{(2)} \begin{array}{l} V_{DD} = 16.5 \ \text{V}, V_{SS} = \\ \text{Switch state is on} \\ V_{S} = V_{D} = \pm 10 \ \text{V} \end{array}$		-	<u> </u>				
V _{IH}	Logic voltage high		- 55°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		- 55°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		- 55°C to +125°C		0.005	2	μA
I _{IL}	Input leakage current		- 55°C to +125°C	- 1	- 0.005		μA
C _{IN}	Logic input capacitance		- 55°C to +125°C		3		pF
POWER S	UPPLY		,				
			25°C		30	40	μA
I _{DD}	V _{DD} supply current	V_{DD} = 16.5 V, V_{SS} = -16.5 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			48	μA
			- 55°C to +125°C			62	μA
			25°C		3	10	μA
I _{SS}	V _{SS} supply current	$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			15	μA
		3	- 55°C to +125°C			25	μA

When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

6.7 ±15 V Dual Supply: Switching Characteristics

 $V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, \ V_{SS} = -15 \text{ V}, \ T_A = 25\%$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP MAX	UNIT
		V _S = 10 V	25°C		120 175	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		190	ns
		Refer to Transition Time	- 55°C to +125°C		210	ns
		V _S = 10 V	25°C		100 170	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		185	ns
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C		200	ns
		V _S = 10 V	25°C		100 180	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		195	ns
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C		210	ns
		V _S = 10 V,	25°C		50	ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1	195 210 50	ns
		Refer to Break-Before-Make	- 55°C to +125°C	1		ns
		V _{DD} rise time = 100ns	25°C		0.19	ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		0.2	ms
	(VDB to output)	Refer to Turn-on (VDD) Time	- 55°C to +125°C		0.22	ms
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C		700	ps
Q _{INJ}	Charge injection	V _D = 0 V, C _L = 1 nF Refer to Charge Injection	25°C		- 10	pC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		- 75	dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		- 55	dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Crosstalk	25°C	-	117	dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Crosstalk	25°C	_	106	dB
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C		40	MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C	-	0.18	dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR	25°C		- 64	dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 15 \text{ V}, V_{BIAS} = 0 \text{ V}$ $R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, $f = 20 \text{ Hz}$ to 20 kHz Refer to THD + Noise	25°C	0.0	0005	%
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		33	pF
C _{D(OFF)}	Drain off capacitance	V _S = 0 V, f = 1 MHz	25°C		48	pF
C _{S(ON)} , C _{D(ON)}	On capacitance	V _S = 0 V, f = 1 MHz	25°C		148	pF

6.8 ±20 V Dual Supply: Electrical Characteristics

 $V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25 ^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH		<u> </u>				
		V _S = -15 V to +15 V	25°C		1.9	2.7	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	- 40°C to +85°C				Ω
		Refer to On-Resistance	- 55°C to +125°C		,	4.2	Ω
		V _S = - 15 V to +15 V	25°C		0.04	0.22	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	- 40°C to +85°C			2.7 3.5 4.2 0.22 0.28 0.3 0.75 0.9 1.2 1.5 4 24 2 8 44 2 5 29 44 0.8 2 44 50 65 9 12	Ω
		Refer to On-Resistance	- 55°C to +125°C			0.3	Ω
		V _S = -15 V to +15 V	25°C		0.3	0.75	Ω
R _{ON FLAT}	On-resistance flatness	$I_{S} = -10 \text{ mA}$	- 40°C to +85°C			2.7 3.5 4.2 0.22 0.28 0.3 0.75 0.9 1.2 1.5 4 24 2 8 44 2 2 9 44 0.8 2 4 5 9 12	Ω
		Refer to On-Resistance	- 55°C to +125°C			1.2	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	- 55°C to +125°C		0.009		Ω/°C
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	- 1.5	0.05	1.5	nA
le(OEE)	Source off leakage current ⁽¹⁾	Switch state is off $V_S = +15 \text{ V} / -15 \text{ V}$	- 40°C to +85°C	- 4		4	nA
·3(OFF)		$V_D = -15 \text{ V} / + 15 \text{ V}$ Refer to Off-Leakage Current	- 55°C to +125°C	- 24		24	nA
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	- 2	0.1	2	nA
Invoces)	Drain off leakage current ⁽¹⁾	Switch state is off V _S = +15 V / - 15 V	- 40°C to +85°C	- 8		1.9 2.7 3.5 4.2 0.04 0.22 0.28 0.3 0.3 0.75 0.9 1.2 0.009 0.05 1.5 4 24 0.1 2 8 44 0.1 2 5 29 44 0.8 0.005 3 34 44 50 65 4 9 12	nA
·D(OFF)	Brain on loanage carrons	V _D = -15 V / + 15 V Refer to Off-Leakage Current	- 55°C to +125°C	- 44			nA
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	- 2	0.1	2	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 15 \text{ V}$	- 40°C to +85°C	- 5		2.7 3.5 4.2 0.22 0.28 0.3 0.75 0.9 1.2 1.5 4 24 2 8 44 2 5 29 44 0.8 2 44 50 65 9 12	nA
ARON CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELATED CORNELATE		Refer to On-Leakage Current	- 55°C to +125°C	- 29		29	nA
LOGIC INF	PUTS (SEL / EN pins)				1.9 2.7 3.5 4.2 0.04 0.22 0.28 0.3 0.3 0.75 0.9 1.2 0.009 1.5 0.05 1.5 - 4 4 24 24 - 2 0.1 2 - 8 8 44 44 - 2 0.1 2 - 5 5 29 29 1.3 44 0 0.8 0.005 2 - 1 - 0.005 3 34 44 50 65 4 9 12		
V _{IH}	Logic voltage high		- 55°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		- 55°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		- 55°C to +125°C		0.005	2	μA
I _{IL}	Input leakage current		- 55°C to +125°C	- 1	- 0.005		μA
C _{IN}	Logic input capacitance		- 55°C to +125°C		3		pF
POWER S	UPPLY		1			I	
			25°C		34	44	μA
I _{DD}	V _{DD} supply current	V_{DD} = 22 V, V_{SS} = -22 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C		4 2 0.1 8 4 4 2 2 0.1 5 5 9 2 2 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50	μA
			- 55°C to +125°C			0.3 0.75 0.9 1.2 0.009 0.05 1.5 4 24 0.1 2 8 44 0.1 2 5 29 44 0.8 0.005 2 0.005 3 34 44 50 65 4 9 12	μA
			25°C		4	9	μΑ
I _{SS}	V _{SS} supply current	V_{DD} = 22 V, V_{SS} = -22 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			4.2 0.22 0.28 0.3 0.75 0.9 1.2 1.5 4 24 2 8 44 2 5 29 44 0.8 2 44 50 65 9 12	μΑ
		3 2 ., 2 ., 400	- 55°C to +125°C			25	μA

When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

6.9 ±20 V Dual Supply: Switching Characteristics

 $V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25\%$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT	
		V _S = 10 V	25°C		110	175	ns	
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			190	ns	
		Refer to Transition Time	- 55°C to +125°C			205	ns	
		V _S = 10 V	25°C		110	170	ns	
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			185	ns	
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C			200	ns	
t _{OFF (EN)}		V _S = 10 V	25°C		90	180	ns	
	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			190	ns	
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C			200	ns	
		V _S = 10 V,	25°C		55		ns	
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1			ns	
		Refer to Break-Before-Make				ns		
		V _{DD} rise time = 100ns	25°C		0.18		ms	
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		0.2		ms	
	(VDD to output)	Refer to Turn-on (VDD) Time	- 55°C to +125°C	55°C to +125°C 0.22			ms	
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C	715			ps	
Q _{INJ}	Charge injection	V _D = 0 V, C _L = 1 nF Refer to Charge Injection	25°C	- 15			pC	
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 0 V, f = 100 kHz Refer to Off Isolation	25°C	- 75			dB	
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C	- 55			dB	
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Crosstalk	25°C	- 117			dB	
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Crosstalk	25°C	- 106			dB	
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, Refer to Bandwidth	25°C		38		MHz	
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C	25°C - 0.16			dB	
ACPSRR	AC Power Supply Rejection Ratio	$\begin{aligned} &V_{PP} = 0.62 \text{ V on } V_{DD} \text{ and } V_{SS} \\ &R_L = 50 \Omega \text{ , } C_L = 5 \text{ pF,} \\ &f = 1 \text{ MHz} \\ &Refer \text{ to } ACPSRR \end{aligned}$	25°C	- 63			dB	
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 20 \text{ V, } V_{BIAS} = 0 \text{ V}$ $R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF,}$ $f = 20 \text{ Hz to } 20 \text{ kHz}$ Refer to THD + Noise	25°C	0.0005			%	
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		32		pF	
C _{D(OFF)}	Drain off capacitance	V _S = 0 V, f = 1 MHz	25°C		45		pF	
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 0 V, f = 1 MHz	25°C		146		pF	

6.10 44 V Single Supply: Electrical Characteristics

$$\begin{split} &V_{DD} = +44 \text{ V, } V_{SS} = 0 \text{ V, GND} = 0 \text{ V (unless otherwise noted)} \\ &\text{Typical at } V_{DD} = +44 \text{ V, } V_{SS} = 0 \text{ V, } T_A = 25 ^{\circ}\text{C} \text{ (unless otherwise noted)} \end{split}$$

	PARAMETER	PARAMETER TEST CONDITIONS T _A MIN TYP		MAX	UNIT		
ANALOG	SWITCH					1	
		V _S = 0 V to 40 V	25°C		2.2	2.8	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	- 40°C to +85°C			3.6	Ω
		Refer to On-Resistance	- 55°C to +125°C			4.2	Ω
∆ R _{ON}		V _S = 0 V to 40 V	25°C		0.1	0.2	Ω
	On-resistance mismatch between channels	I _D = - 10 mA	- 40°C to +85°C			0.3	Ω
	S. Carrier and C. Car	Refer to On-Resistance	- 55°C to +125°C			0.35	Ω
		V _S = 0 V to 40 V	25°C		0.2	1	Ω
R _{ON FLAT}	On-resistance flatness	I _D = - 10 mA	- 40°C to +85°C			1.3	Ω
		Refer to On-Resistance	- 55°C to +125°C			1.5	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 22 V, I _S = -10 mA Refer to On-Resistance	- 55°C to +125°C		0.008		Ω/°C
		V _{DD} = 44 V, V _{SS} = 0 V	25°C	- 5	0.05	5	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off V _S = 40 V / 1 V	- 40°C to +85°C	- 10		10	nA
,		V _D = 1 V / 40 V Refer to Off-Leakage Current	- 55°C to +125°C	- 35		35	nA
	Drain off leakage current ⁽¹⁾	V _{DD} = 44 V, V _{SS} = 0 V	25°C	- 8	0.05	8	nA
I _{D(OFF)}		Switch state is off $V_S = 40 \text{ V} / 1 \text{ V}$	- 40°C to +85°C	- 12		12	nA
_(=,		V _D = 1 V / 40 V Refer to Off-Leakage Current	- 55°C to +125°C	- 70		70	nA
		V _{DD} = 44 V, V _{SS} = 0 V	25°C	- 8	0.05	8	nA
$I_{S(ON)}$ $I_{D(ON)}$	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = 40 \text{ V or } 1 \text{ V}$	- 40°C to +85°C	- 10		10	nA
D(ON)		Refer to On-Leakage Current	- 55°C to +125°C	- 45		45	nA
LOGIC INF	PUTS (SEL / EN pins)		•				
V _{IH}	Logic voltage high		- 55°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		- 55°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		- 55°C to +125°C		0.005	2	μA
I _{IL}	Input leakage current		- 55°C to +125°C	- 1	- 0.005		μA
C _{IN}	Logic input capacitance		- 55°C to +125°C		3		pF
POWER S	UPPLY						
			25°C		17	50	μΑ
I _{DD}	V _{DD} supply current	V_{DD} = 44 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			60	μΑ
			- 55°C to +125°C			75	μA

⁽¹⁾

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

When V_S is 40 V, V_D is 1 V, or when V_S is 1 V, V_D is 40 V. When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

6.11 44 V Single Supply: Switching Characteristics

 V_{DD} = +44 V, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +44 V, V_{SS} = 0 V, T_A = 25 °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 18 V	25°C		120	175	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			190	ns
		Refer to Transition Time	- 55°C to +125°C		-	205	ns
		V _S = 18 V	25°C		120	168	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	$R_L = 300 \Omega$, $C_L = 35 pF$ $-40^{\circ}C \text{ to } +85^{\circ}C$			185	ns
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C			195	ns
t _{OFF} (EN)		V _S = 18 V	25°C		120	180	ns
	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C			200	ns
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C			205	ns
		V _S = 18 V,	25°C		45		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1			ns
		Refer to Break-Before-Make	- 55°C to +125°C	1	0.15 0.17		ns
		V _{DD} rise time = 1μs	25°C		120 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		ms
T _{ON (VDD)}	Device turn on time (V_{DD} to output) $R_L = 300 \ \Omega$, $C_L = 35 \ pF$ $Refer to Turn-on (VDD) Time R_L = 300 \ \Omega, R_L$			0.17		ms	
	(Top to suspan)	Refer to Turn-on (VDD) Time	- 55°C to +125°C				ms
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C	930			ps
Q _{INJ}	Charge injection	V _D = 22 V, C _L = 1 nF Refer to Charge Injection	25°C	- 16			рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Off Isolation	25°C	- 75			dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C	- 55			dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Crosstalk	25°C	- 117			dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1MHz$ Refer to Crosstalk	25°C	- 106			dB
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C	37			MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$	25°C	- 0.18			dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR	25°C	- 60			dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 22 V, V_{BIAS} = 22 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to THD + Noise	25°C	0.0004			%
C _{S(OFF)}	Source off capacitance	V _S = 6 V, f = 1 MHz	25°C		34		pF
C _{D(OFF)}	Drain off capacitance	V _S = 6 V, f = 1 MHz	25°C		48		pF
C _{S(ON)} , C _{D(ON)}	On capacitance	V _S = 6 V, f = 1 MHz	25°C		146		pF

6.12 12 V Single Supply: Electrical Characteristics

 $V_{DD} = +12 \text{ V} \pm 10\%, \ V_{SS} = 0 \text{ V}, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +12 \text{ V}, \ V_{SS} = 0 \text{ V}, \ T_A = 25\%$ (unless otherwise noted)

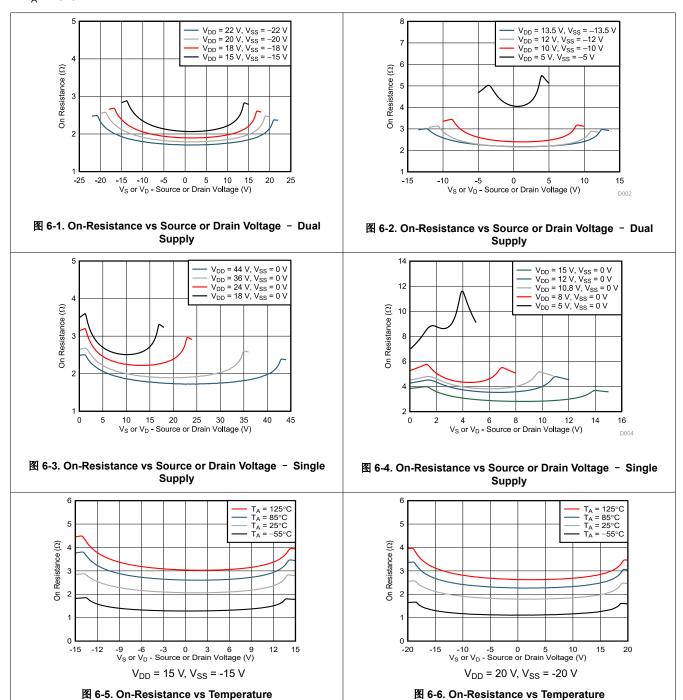
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH		,				
		V _S = 0 V to 10 V	25°C		4.6	6	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	- 40°C to +85°C			7.5	Ω
		Refer to On-Resistance	- 55°C to +125°C			8.4	Ω
		V _S = 0 V to 10 V	25°C		0.08	0.2	Ω
∆ R _{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	- 40°C to +85°C			0.32	Ω
		Refer to On-Resistance	- 55°C to +125°C			0.35	Ω
		V _S = 0 V to 10 V	25°C		1.2	2	Ω
R _{ON FLAT}	On-resistance flatness	$I_{S} = -10 \text{ mA}$	- 40°C to +85°C			2.2	Ω
R _{ON DRIFT}		Refer to On-Resistance	- 55°C to +125°C			2.4	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 6 V, I _S = -10 mA Refer to On-Resistance	- 55°C to +125°C		0.017		Ω/°C
I _{S(OFF)}		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	- 0.5	0.05	0.5	nA
	Source off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	- 40°C to +85°C	- 2		2	nA
		V _D = 1 V / 10 V Refer to Off-Leakage Current	- 55°C to +125°C	- 12		12	nA
	Drain off leakage current ⁽¹⁾	V _{DD} = 13.2 V, V _{SS} = 0 V Switch state is off V _S = 10 V / 1 V	25°C	- 0.5	0.05	0.5	nA
I _{D(OFF)}			- 40°C to +85°C	- 3		3	nA
(- ,		V _D = 1 V / 10 V Refer to Off-Leakage Current	- 55°C to +125°C	- 23		23	nA
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	- 1.5	0.05	1.5	nA
I _{S(ON)} I _{D(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = 10 \text{ V or } 1 \text{ V}$	- 40°C to +85°C	- 3		3	nA
D(ON)		Refer to On-Leakage Current	- 55°C to +125°C	- 15		15	nA
LOGIC INF	PUTS (SEL / EN pins)						
V_{IH}	Logic voltage high		- 55°C to +125°C	1.3		44	V
V_{IL}	Logic voltage low		- 55°C to +125°C	0		8.0	V
I _{IH}	Input leakage current		- 55°C to +125°C		0.005	2	μΑ
I _{IL}	Input leakage current		- 55°C to +125°C	- 1	- 0.005		μΑ
C _{IN}	Logic input capacitance		- 55°C to +125°C		3		pF
POWER S	UPPLY	·					
		40.0444	25°C		10	35	μΑ
I_{DD}	V _{DD} supply current	V_{DD} = 13.2 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	- 40°C to +85°C			45	μΑ
			- 55°C to +125°C			55	μΑ

⁽¹⁾

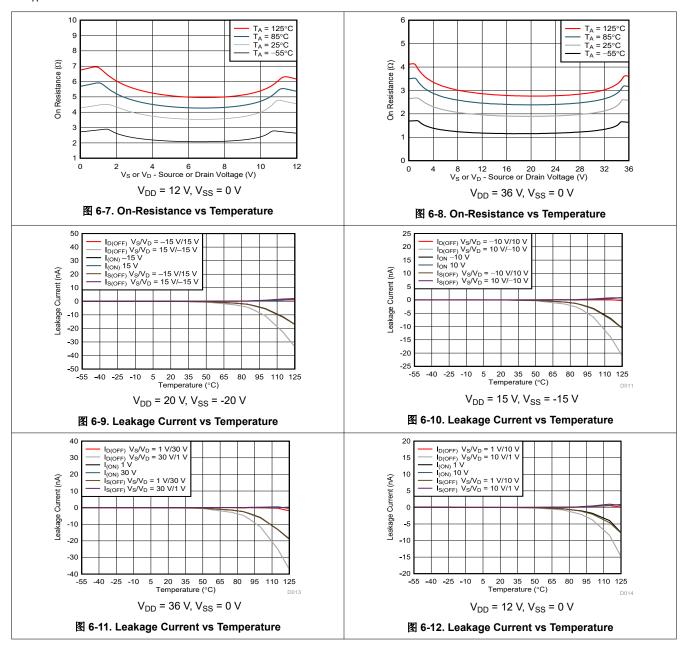
Submit Document Feedback

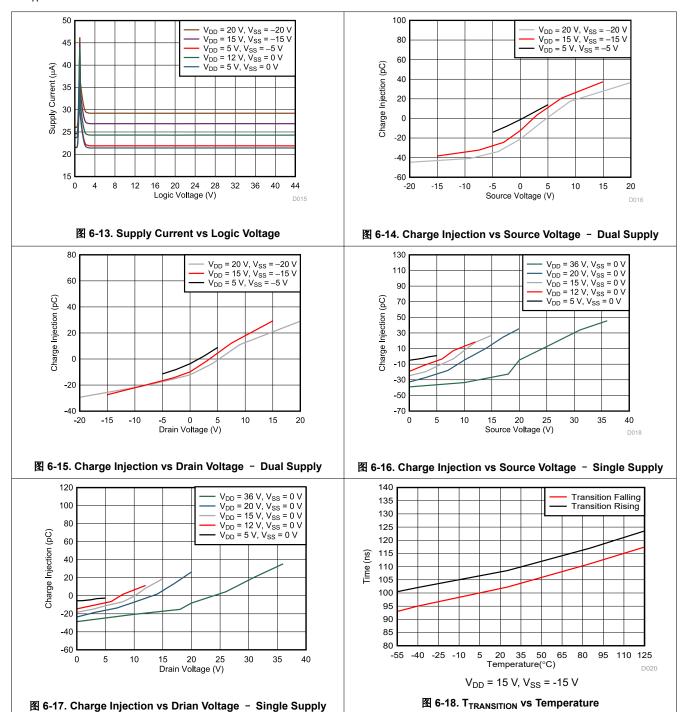
Copyright © 2023 Texas Instruments Incorporated

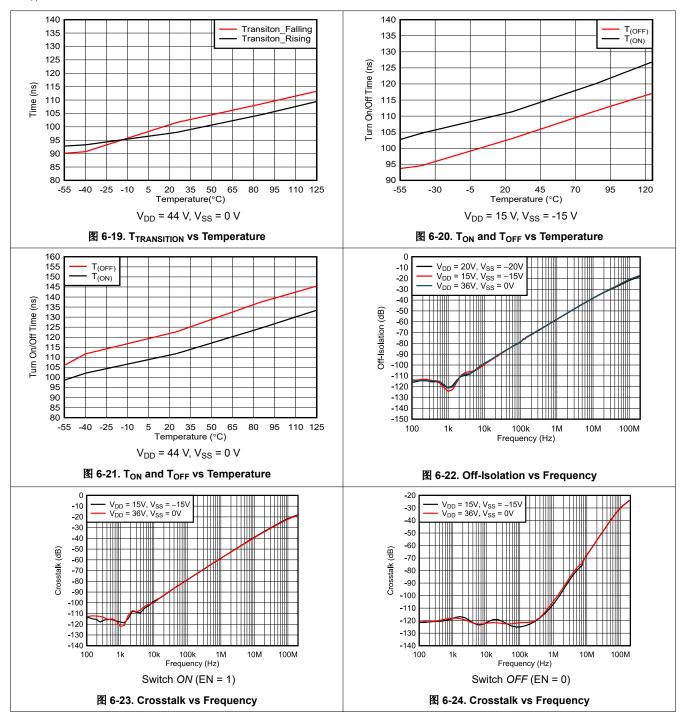
When V_S is 10 V, V_D is 1 V, or when V_S is 1 V, V_D is 10 V. When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

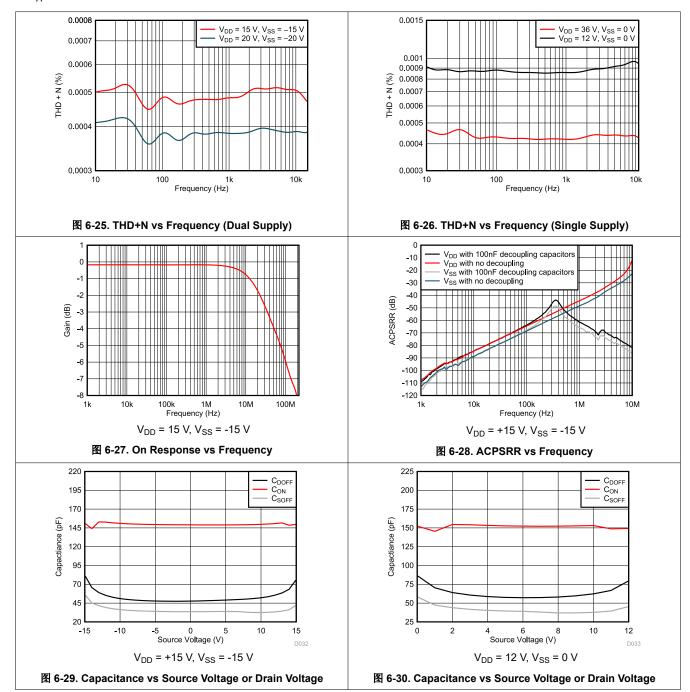

6.13 12 V Single Supply: Switching Characteristics

 $V_{DD} = +12 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V} \text{ (unless otherwise noted)}$ Typical at $V_{DD} = +12 \text{ V}, V_{SS} = 0 \text{ V}, T_A = 25^{\circ}\mathbb{C}$ (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
		V _S = 8 V	25°C	180	185	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		215	ns
		Refer to Transition Time	- 55°C to +125°C		235	ns
		V _S = 8 V	25°C	120	180	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		210	ns
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C		230	ns
t _{OFF (EN)}		V _S = 8 V	25°C	130	215 235 120 180 210 230 130 210 235 250 40 0.19 0.2 0.22 740 -6 -75 -55 -117 -106 42 -0.3 -65 0.0009 38 56	ns
	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C		235	ns
		Refer to Turn-on and Turn-off Time	- 55°C to +125°C		250	ns
		V _S = 8 V,	25°C	40		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	1		ns
		Refer to Break-Before-Make	- 55°C to +125°C	1		ns
		V _{DD} rise time = 100ns	25°C	0.19		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35 pF$	- 40°C to +85°C	0.2		ms
	(VDD to output)	Refer to Turn-on (VDD) Time	- 55°C to +125°C	0.22		ms
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C	740		ps
Q _{INJ}	Charge injection	V _D = 6 V, C _L = 1 nF Refer to Charge Injection	25°C	- 6		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Off Isolation	25°C	- 75		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C	- 55		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Crosstalk	25°C	- 117		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Crosstalk	25°C	- 106		dB
BW	- 3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C	42		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$	25°C	- 0.3		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR	25°C	- 65		dB
THD+N	Total Harmonic Distortion + Noise	$\begin{aligned} &V_{PP} = 6 \; V, \; V_{BIAS} = 6 \; V \\ &R_{L} \; = \; 10 \; k \; \Omega \; , \; C_{L} = 5 \; pF, \\ &f = \; 20 \; Hz \; to \; \; 20 \; kHz \\ &Refer \; to \; THD \; + \; Noise \end{aligned}$	25°C 0.0009			%
C _{S(OFF)}	Source off capacitance	V _S = 6 V, f = 1 MHz	25°C	38		pF
C _{D(OFF)}	Drain off capacitance	V _S = 6 V, f = 1 MHz	25°C	56		pF
C _{S(ON)} , C _{D(ON)}	On capacitance	V _S = 6 V, f = 1 MHz	25°C	150		pF


6.14 Typical Characteristics





7 Parameter Measurement Information

7.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. 87-1 shows the measurement setup used to measure R_{ON} . Voltage (V) and current (I_{SD}) are measured using the following setup, where R_{ON} is computed as $R_{ON} = V / I_{SD}$:

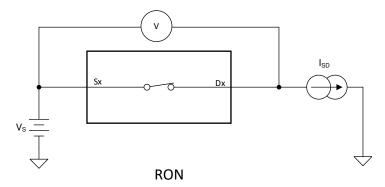


图 7-1. On-Resistance

7.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- 1. Source off-leakage current.
- 2. Drain off-leakage current.

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

图 7-2 shows the setup used to measure both off-leakage currents.

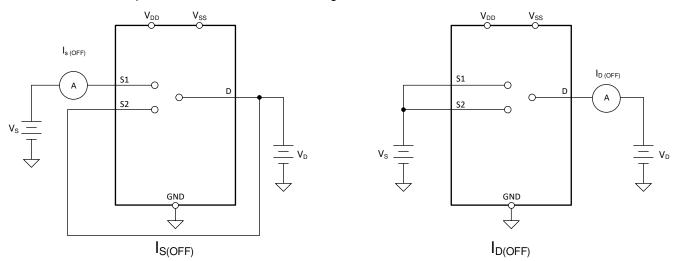


图 7-2. Off-Leakage Measurement Setup

7.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. $\boxed{8}$ 7-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

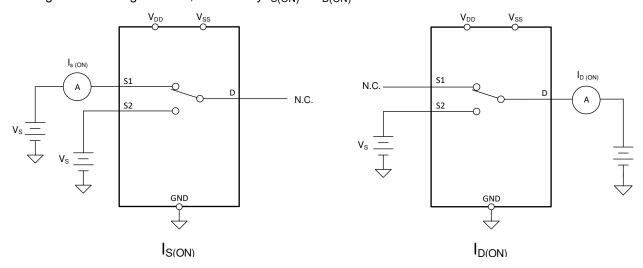


图 7-3. On-Leakage Measurement Setup

7.4 Transition Time

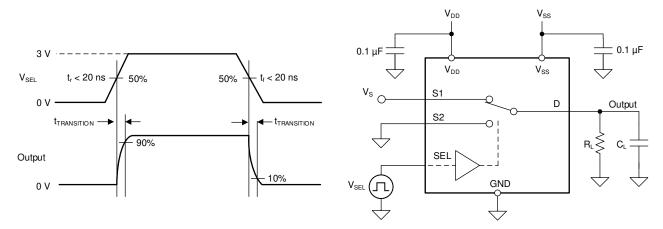


图 7-4. Transition-Time Measurement Setup

Product Folder Links: TMUX7219M

7.5 t_{ON(EN)} and t_{OFF(EN)}

Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. 4 7-5 shows the setup used to measure turn-on time, denoted by the symbol $t_{ON(EN)}$.

Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. $\boxed{8}$ 7-5 shows the setup used to measure turn-off time, denoted by the symbol $t_{OFF(EN)}$.

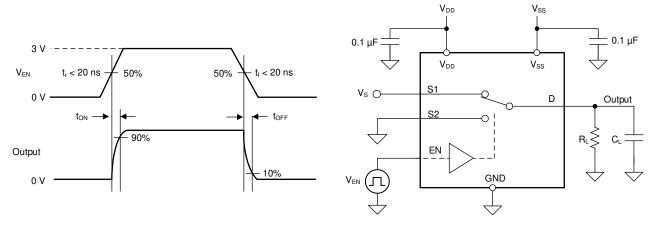


图 7-5. Turn-On and Turn-Off Time Measurement Setup

7.6 Break-Before-Make

Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay. 876 Shows the setup used to measure break-before-make delay, denoted by the symbol 100 to 100 to 100 shows the setup used to measure break-before-make delay.

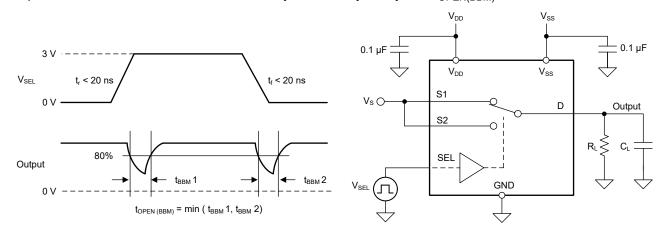


图 7-6. Break-Before-Make Delay Measurement Setup

7.7 t_{ON (VDD)} Time

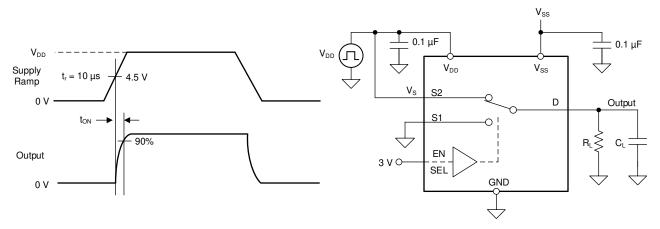


图 7-7. t_{ON (VDD)} Time Measurement Setup

7.8 Propagation Delay

Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. $\boxed{8}$ 7-8 shows the setup used to measure propagation delay, denoted by the symbol t_{PD} .

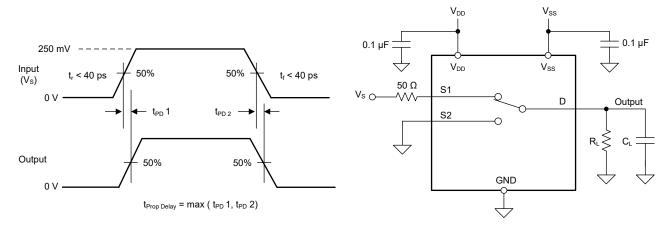


图 7-8. Propagation Delay Measurement Setup

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

7.9 Charge Injection

The TMUX7219M has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_C . 87-9 shows the setup used to measure charge injection from source (Sx) to drain (D).

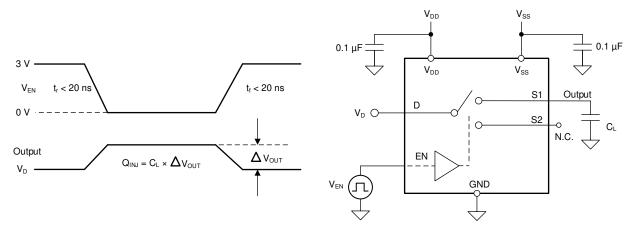


图 7-9. Charge-Injection Measurement Setup

7.10 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. 87-10 shows the setup used to measure, and the equation used to calculate off isolation.

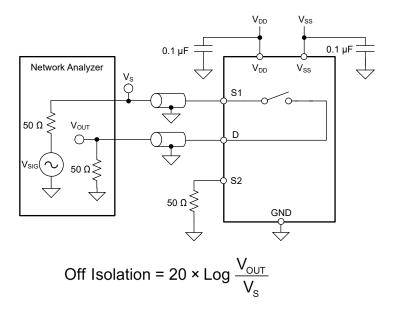


图 7-10. Off Isolation Measurement Setup

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

7.11 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. 27-11 shows the setup used to measure, and the equation used to calculate crosstalk.

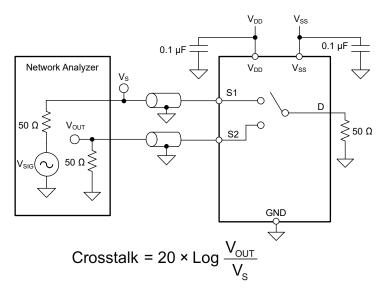


图 7-11. Crosstalk Measurement Setup

7.12 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device.

7-12 shows the setup used to measure bandwidth.

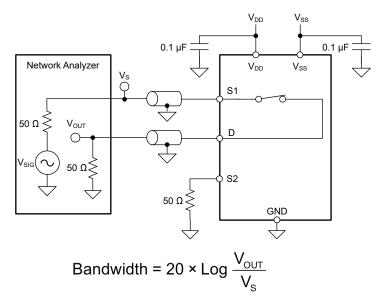


图 7-12. Bandwidth Measurement Setup

7.13 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output.

The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD + N.

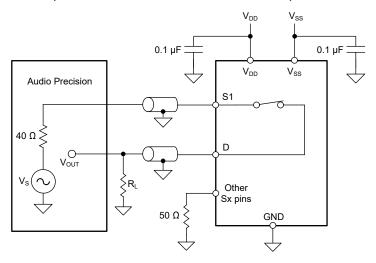
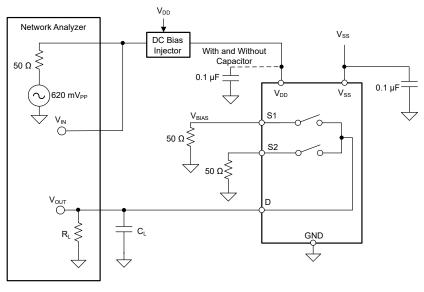



图 7-13. THD + N Measurement Setup

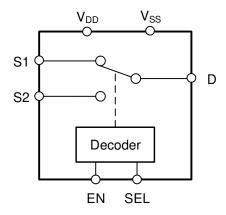
7.14 Power Supply Rejection Ratio (PSRR)

PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 620 mV $_{\rm PP}$. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.

This helps stabilize the supply and immediately filter as much of the supply noise as possible.

 $PSRR = 20 \times Log \frac{V_{OUT}}{V_{IN}}$

图 7-14. ACPSRR Measurement Setup


8 Detailed Description

8.1 Overview

The TMUX7219M is a 2:1, 1-channel switch. Each input is turned on or turned off based on the state of the select line and enable pin.

8.2 Functional Block Diagram

The following figure shows the functional block diagram of the TMUX7219M.

8.3 Feature Description

8.3.1 Bidirectional Operation

The TMUX7219M conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

8.3.2 Rail-to-Rail Operation

The valid signal path input and output voltage for TMUX7219M ranges from V_{SS} to V_{DD} .

8.3.3 1.8 V Logic Compatible Inputs

The TMUX7219M has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the device to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches.

8.3.4 Integrated Pull-Up and Pull-Down Resistor on Logic Pins

The TMUX7219M has internal weak pull-up and pull-down resistors to GND to ensure the logic pins are not left floating. The value of this pull-down resistor is approximately 4 M Ω , but is clamped to about 1 μ A at higher voltages. The EN pin integrates a pull-up resistor to V_{DD} and the SEL pin integrates a pull-down resistor. This feature integrates up to two external components and reduces system size and cost.

8.3.5 Fail-Safe Logic

The TMUX7219M supports Fail-Safe Logic on the control input pins (EN and SEL) allowing for operation up to 44 V above ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the logic input pins of the TMUX7219M to be ramped to +44 V while V_{DD} and V_{SS} = 0 V. The logic control inputs are protected against positive faults of up to +44 V in powered-off condition, but do not offer protection against negative overvoltage conditions.

Product Folder Links: TMUX7219M

8.3.6 Latch-Up Immune

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX72xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX72xx family of switches and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to *Using Latch Up Immune Multiplexers to Help Improve System Reliability*.

8.3.7 Ultra-Low Charge Injection

8-1 shows how the TMUX7219M has a transmission gate topology. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.

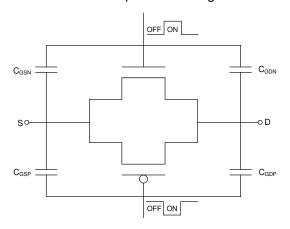


图 8-1. Transmission Gate Topology

The TMUX7219M contains specialized architecture to reduce charge injection on the source (Sx). To further reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D). This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on the drain (D) instead of the source (Sx). As a general rule, Cp should be 20× larger than the equivalent load capacitance on the source (Sx). 8-2 shows charge injection variation with source voltage with different compensation capacitors on the drain side.

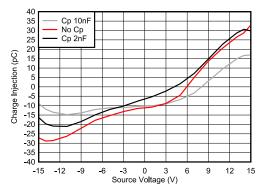


图 8-2. Charge Injection Compensation

8.4 Device Functional Modes

When the EN pin of the TMUX7219M is pulled high, one of the switches is closed based on the state of the SEL pin. When the EN pin is pulled low, both of the switches are in an open state regardless of the state of the SEL pin. The control pins can be as high as 44 V.

The TMUX7219M can operate without any external components except for the supply decoupling capacitors. The EN pin has an internal pull-up resistor of 4 M Ω , and SEL pin has internal pull-down resistor of 4 M Ω . If unused, EN pin must be tied to V_{DD} and SEL pin must be tied to GND to ensure the device does not consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (S1, S2, or D) should be connected to GND.

8.5 Truth Tables

表 8-1 show the truth tables for the TMUX7219M.

表 8-1. TMUX7219M Truth Table

EN	SEL	Selected Source Connected To Drain (D) Pin
0	X ⁽¹⁾	All sources are off (HI-Z)
1	0	S1
1	1	S2

Product Folder Links: TMUX7219M

X denotes do not care.

Submit Document Feedback

9 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

TMUX7219M is part of the precision switches and multiplexers family of devices. TMUX7219M offers low RON, low on and off leakage currents, and ultra-low charge injection performance. These properties make TMUX7219M ideal for implementing high precision industrial systems requiring selection of one of two inputs or outputs.

9.2 Typical Applications

9.2.1 Data Acquisition Calibration

One application of the TMUX7219M is in Data Acquisition systems (DAQ). To account for system loss and ensure the lowest possible noise floor, a calibration path is needed. To minimize board space and automate this procedure, many applications utilize a 2:1 (SPDT) switch. \ 9-1 shows the TMUX7219M configured for switching a calibration path on a precision measurement module.

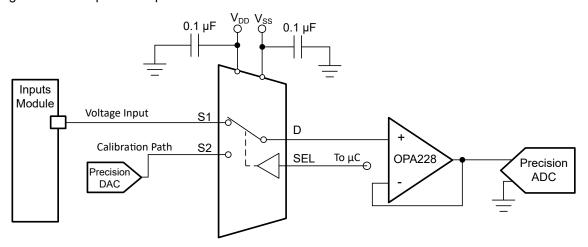


图 9-1. Calibration Path Switching for Data Acquisition

9.2.1.1 Design Requirements

For the design example, use the parameters listed in 表 9-1.

PARAMETERS VALUES 15 V Supply (V_{DD})

表 9-1. Design Param	eters
---------------------	-------

Supply (VSS) -15 V MUX I/O signal range -15 V to 15 V (Rail-to-Rail) Control logic thresholds 1.8 V compatiable (up to 44V) ΕN EN pulled high to enable the switch

9.2.1.2 Detailed Design Procedure

The TMUX7219M can be operated without any external components except for the supply decoupling capacitors. All inputs passing through the switch must fall within the recommended operating conditions, including signal range and continuous current. For this design, with a dual supply of ±15 V, the signal range can range from -15 V to +15 V. Industrial applications such as factory automation and control and test and measurement benefit from using a 2:1 switch, because it allows additional flexibility in the design. A single 2:1 switch has numerous applications such as switching between an analog signal path and a calibration path, and allowing a single channel to be configured as either an analog input or analog output.

10 Power Supply Recommendations

The TMUX7219M operates across a wide supply range of ± 4.5 V to ± 22 V (4.5 V to 44 V in single-supply mode). The device also performs well with asymmetrical supplies such as $V_{DD} = 12$ V and $V_{SS} = -5$ V.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always ensure the ground (GND) connection is established before supplies are ramped.

Product Folder Links: TMUX7219M

11 Layout

11.1 Layout Guidelines

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self – inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners.

11-1 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

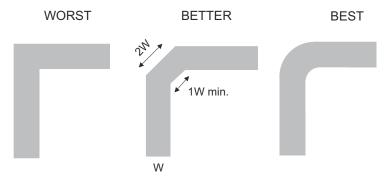


图 11-1. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

Figure 11-2 illustrates an example of a PCB layout with the TMUX7219M. Some key considerations are:

- For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between VDD/VSS and GND. TI recommends placing the lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.
- Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground planes.

11.2 Layout Example

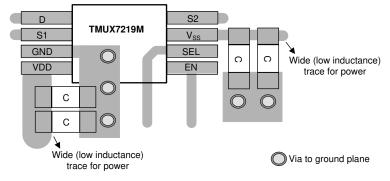


图 11-2. TMUX7219MDGK Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief
- · Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief
- Texas Instruments, Multiplexers and Signal Switches Glossary application report
- Texas Instruments, QFN/SON PCB Attachment application report
- Texas Instruments, Quad Flatpack No-Lead Logic Packages application report
- Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief
- Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TMUX7219M

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TMUX7219MDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	X219
TMUX7219MDGKR.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	X219

⁽¹⁾ Status: For more details on status, see our product life cycle.

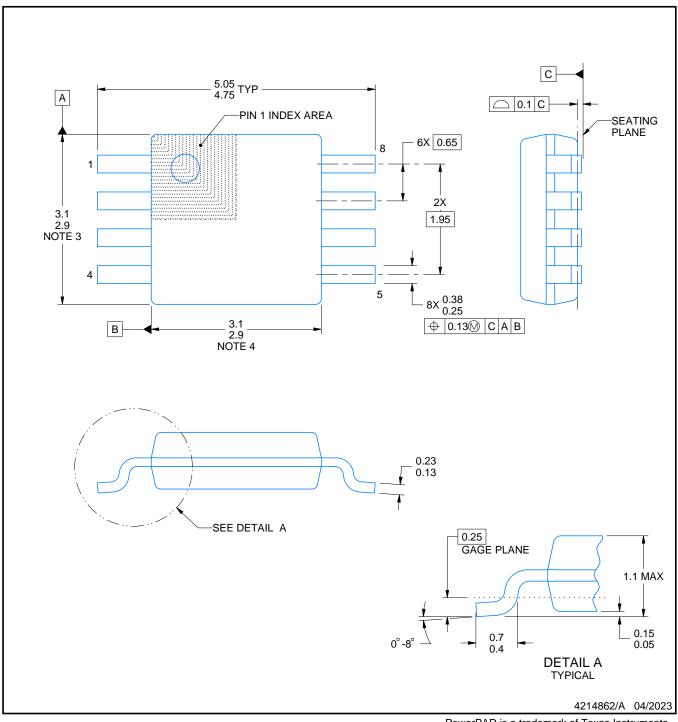
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

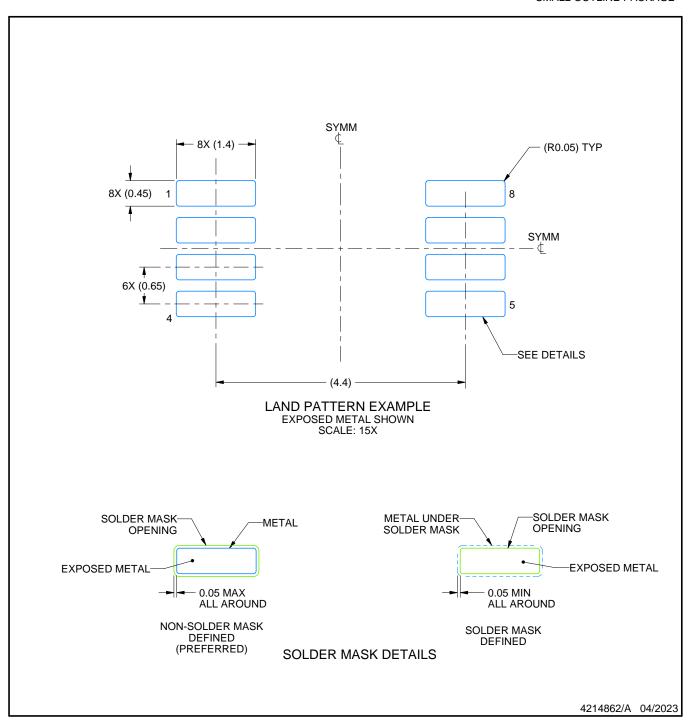
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

SMALL OUTLINE PACKAGE

NOTES:

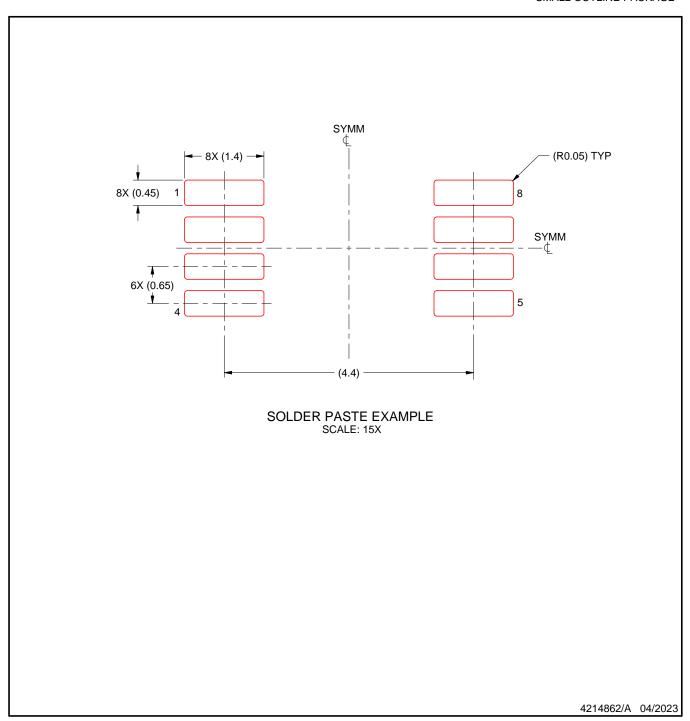
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月