

DAC8551-Q1

ZHCSEV4A - FEBRUARY 2016 - REVISED MARCH 2016

DAC8551-Q1 汽车类 16 位、超低毛刺脉冲、电压输出 DAC

1 特性

- 适用于汽车电子 应用
- 具有符合 AEC-Q100 的下列结果:
 - 器件温度 1 级: -40°C 至 125°C 的环境运行温度范围
 - 器件人体放电模式 (HBM) 静电放电 (ESD) 分类 等级 2
 - 器件组件充电模式 (CDM) ESD 分类等级 C4B
- 相对精度: 16 最低有效位 (LSB) 积分非线性 (INL)
- 超低毛刺脉冲: 0.1nV-s
- 稳定时间: 8µs 达到 ±0.003% 满量程范围 (FSR)
- 电源: 3.2V 至 5.5V
- 上电复位为零量程
- 微功耗运行: 5V 时为 160µA
- 具有施密特触发输入的低功耗串口
- 支持轨至轨运行的片上输出缓冲放大器
- 掉电能力
- 二进制输入
- SYNC 中断功能
- 采用微型超薄小外形尺寸封装 (VSSOP)-8 封装

2 应用

- 汽车雷达
- 车用传感器

3 说明

DAC8551-Q1 是一款小型、低功耗、电压输出、16 位数模转换器 (DAC),符合汽车类应用的需求。

DAC8551-Q1 具有出色的线性度,并且最大限度减少了意外的码间瞬态电压。DAC8551-Q1 器件采用时钟速率达 30MHz 的通用三线制串口,并且兼容标准的SPI、QSPI、Microwire 和数字信号处理器 (DSP) 接口。

DAC8551-Q1 需要使用一个外部基准电压来设置其输出范围。DAC8551-Q1 包含一个上电复位电路,可确保 DAC 输出在 0V 时上电,并在器件被执行有效写操作之前一直保持此状态。DAC8551-Q1 包含一个由串口访问的掉电特性,可将器件在 5V 电压下的电流消耗降低至 800μA。

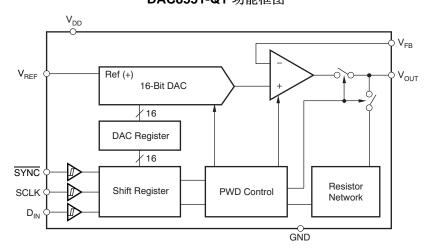
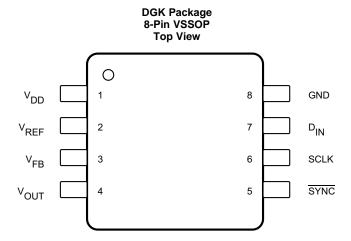

DAC8551-Q1 在 5V 电压下的功耗仅为 800μW, 在掉电模式下的功耗降至 4μW 以下。DAC8551-Q1 采用 VSSOP-8 封装。

表 1. 器件信息(1)

器件型号	封装	封装尺寸 (标称值)
DAC8551-Q1	超薄小外形尺寸封装 (VSSOP) (8)	3.00mm × 3.00mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

DAC8551-Q1 功能框图


		目录			
1	特性1			7.4 Device Functional Modes	14
2	应用1			7.5 Programming	15
3	说明1		8	Application and Implementation	16
4	修订历史记录 2			8.1 Application Information	16
5	Pin Configuration and Functions			8.2 Typical Applications	16
6	Specifications			8.3 System Examples	19
	6.1 Absolute Maximum Ratings		9	Power Supply Recommendations	20
	6.2 ESD Ratings		10	Layout	20
	6.3 Recommended Operating Conditions			10.1 Layout Guidelines	20
	6.4 Thermal Information			10.2 Layout Example	<u>20</u>
	6.5 Electrical Characteristics	ļ	11	器件和文档支持	21
	6.6 Timing Requirements	;		11.1 文档支持	21
	6.7 Switching Characteristics			11.2 社区资源	21
	6.8 Typical Characteristics			11.3 商标	21
7	Detailed Description 12			11.4 静电放电警告	21
	7.1 Overview			11.5 Glossary	21
	7.2 Functional Block Diagram	!	12	机械、封装和可订购信息	21
	7.3 Feature Description				

4 修订历史记录

Changes from Original (February 2016) to Revision A	Page
• 已将数据表从"产品预览"更改为"量产数据"	1

5 Pin Configuration and Functions

Table 2. Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
D _{IN}	7	I	Serial data input. Data is clocked into the 24-bit input shift register on each falling edge of the serial clock input. Schmitt-trigger logic input.
GND	8	GND	Ground reference point for all circuitry on the device
SCLK	6	I	Serial clock input. Data can be transferred at rates up to 3 0MHz. Schmitt-trigger logic input.
SYNC	5	I	Level-triggered control input (active-low). This is the frame synchronization signal for the input data. SYNC going low enables the input shift register, and data is transferred in on the falling edges of the following clocks. The DAC is updated following the 24th clock (unless SYNC is taken high before this edge, in which case the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by the DAC8551-Q1). Schmitt-trigger logic input.
V_{DD}	1	PWR	Power supply input, 3.2 V to 5.5 V.
V_{FB}	3	I	Feedback connection for the output amplifier. For voltage output operation, tie to V _{OUT} externally.
V _{OUT}	4	0	Analog output voltage from DAC. The output amplifier has rail-to-rail operation.
V _{REF}	2	I	Reference voltage input.

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
V _{DD} to GND	-0.3	6	V
Digital input voltage to GND D _{IN} , SCLK and SYNC	-0.3	$V_{DD} + 0.3$	V
V _{OUT} to GND	-0.3	$V_{DD} + 0.3$	>
V _{REF} to GND	-0.3	$V_{DD} + 0.3$	>
V _{FB} to GND	-0.3	$V_{DD} + 0.3$	V
Junction temperature range, T _J max	-65	150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

					VALUE	UNIT
Human-body model (HBM), per AEC Q100-0		-002 ⁽¹⁾	±2000			
\	V _(ESD) Electrosta	Electrostatic discharge	Charged-device model (CDM), per AEC	All pins	±500	V
		2.00.00.a.a.a alboriargo		Corner pins (1, 4, 5, and 8)	±750	v

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
POWER SUPPLY					
Supply voltage	V _{DD} to GND	3.2		5.5	V
DIGITAL INPUTS		·			
Digital input voltage	D _{IN} , SCLK and SYNC	0		V_{DD}	V
REFERENCE INPUT					
V _{REF} Reference input voltage		0		V_{DD}	V
AMPLIFIER FEEDBACK INPUT		•		·	
V _{FB} Output amplifier feedback	input		V _{OUT}		V
TEMPERATURE RANGE		<u>, </u>			
T _A Operating ambient temper	rature	-40		125	°C

6.4 Thermal Information

		DAC8551-Q1	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	173.7	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	94.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	65.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	10.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	92.7	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

 V_{DD} = 3.2 V to 5.5 V, V_{REF} = V_{DD} and T_A = -40°C to 125°C, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC	PERFORMANCE ⁽¹⁾					
	Resolution		16			Bits
	Relative accuracy			±4	±16	LSB
	Differential nonlinearity			±0.35	±2	LSB
	Offset error			±1	±15	mV
	Full-scale error			±0.05	±0.5	% of FSR
	Gain error			±0.02	±0.2	% of FSR
	Offset error drift			±5		μV/°C
	Gain temperature coefficient			±1		ppm of FSR/°C
PSRR	Power-supply rejection ratio	$R_L = 2 k\Omega$, $C_L = 200 pF$		0.75		mV/V

(1) Linearity calculated using a reduced code range of 485 to 64,741; output unloaded.

Electrical Characteristics (continued)

 V_{DD} = 3.2 V to 5.5 V, V_{REF} = V_{DD} and T_A = -40°C to 125°C, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OUTPU	T CHARACTERISTICS ⁽²⁾						
	Output voltage range		0		V_{REF}	V	
	Output voltage settling time	To ±0.003% FSR, 0200h to FD00h R_L = 2 k Ω , 0 pF < C_L < 200 pF		8		μs	
	Slew rate			1.4		V/µs	
	One state of the destriction	R _L = ∞		470		pF	
	Capacitive load stability	$R_L = 2 \text{ k}\Omega$		1000		pF	
	Code change glitch impulse	1 LSB change around major carry		0.1		nV-s	
	Digital feedthrough	50 kΩ series resistance on digital lines		0.1		nV-s	
	DC output impedance	At mid-code input		1		Ω	
	Short-circuit current	V _{DD} = 3.2 V to 5.5 V		35		mA	
AC PER	RFORMANCE				<u> </u>		
SNR	Signal-to-noise ratio			84		dB	
THD	Total harmonic distortion	BW = 20 kHz, V _{DD} = 5 V, V _{REF} = 4.5 V, f _{OUT} = 1 kHz		-80		dB	
SFDR	Spurious-free dynamic range	First 19 harmonics removed for SNR calculation		84		dB	
SINAD	Signal to noise and distortion			76		dB	
REFERI	ENCE INPUT		_				
		$V_{REF} = V_{DD} = 5.5 \text{ V}$		50			
	Reference current	$V_{REF} = V_{DD} = 3.6 \text{ V}$		25		μA	
	Reference input range	TREE TOD STOLEN	0		V _{DD}	V	
	Reference input impedance			125	- 00	kΩ	
LOGIC	INPUTS ⁽²⁾			120		1122	
Input cu				±1		μA	
input ou		V _{DD} = 5 V			0.3×V _{DD}	μ, τ	
$V_{IN}L$	Input low voltage	V _{DD} = 3.3 V			0.1×V _{DD}	V	
		V _{DD} = 5.0 V	0.7×V _{DD}		0.12400	 	
$V_{IN}H$	Input high voltage	V _{DD} = 3.3 V	0.9×V _{DD}			V	
	Pin capacitance	VDD = 3.3 V	0.3 × 000	3		pF	
DOWER	R REQUIREMENTS			<u> </u>		Рі	
V _{DD}	Supply voltage		3.2		5.5	V	
V DD	Зирріу Voltage	Normal mode, input code = 32,768, no load, does not include reference current. $V_{IH} = V_{DD}$ and $V_{IL} = GND$, $V_{DD} = 3.6 \text{ V}$ to 5.5 V	3.2	160	250	v	
I _{DD}	Supply current	Normal mode, input code = 32,768, no load, does not include reference current. $V_{IH} = V_{DD}$ and $V_{IL} = GND$, $V_{DD} = 3.2 \text{ V}$ to 3.6 V		110	240	μΑ	
		All power-down modes, $V_{IH} = V_{DD}$ and $V_{IL} = GND$, $V_{DD} = 3.6 \ V$ to 5.5 V		8.0	3		
		All power-down modes, $V_{IH} = V_{DD}$ and $V_{IL} = GND$, $V_{DD} = 3.2 \ V$ to $3.6 \ V$		0.5	3		
POWER	REFFICIENCY						
	I _{OUT} / I _{DD}	I _{LOAD} = 2 mA, V _{DD} = 5 V		89%			
TEMPE	RATURE RANGE						
	Ambient temperature		-40		125	°C	

⁽²⁾ Specified by design and characterization; not production tested.

6.6 Timing Requirements (1)(2)

 V_{DD} = 3.2 V to 5.5 V and T_A = -40°C to 125°C, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
	Carial alask fraguency	V _{DD} = 3.2 V to 3.6 V			25	NAL I-
f _{SCLK}	Serial clock frequency	V _{DD} = 3.6 V to 5.5 V			30	MHz
	00116	V _{DD} = 3.2 V to 3.6 V	40			
t ₁	SCLK cycle time	V _{DD} = 3.6 V to 5.5 V	34			ns
	CCI K high time	V _{DD} = 3.2 V to 3.6 V	13			20
t ₂	SCLK high time	V _{DD} = 3.6 V to 5.5 V	13		ns	ns
	SCI K low time	V _{DD} = 3.2 V to 3.6 V	22.5			20
t ₃	SCLK low time	V _{DD} = 3.6 V to 5.5 V	13			ns
	SYNC to SCLK rising edge setup time	V _{DD} = 3.2 V to 3.6 V	0			
t ₄		V _{DD} = 3.6 V to 5.5 V	0			ns
	Data anti-rational	V _{DD} = 3.2 V to 3.6 V	5			
t ₅	Data setup time	V _{DD} = 3.6 V to 5.5 V	5			ns
	Data hald time	V _{DD} = 3.2 V to 3.6 V	5			
t ₆	Data hold time	V _{DD} = 3.6 V to 5.5 V	5			ns
	OARD COLIN falling advanta CVAIC vision advan	V _{DD} = 3.2 V to 3.6 V	0			
t ₇	24th SCLK falling edge to SYNC rising edge	V _{DD} = 3.6 V to 5.5 V	0			ns
	Minimum CVNC high time	V _{DD} = 3.2 V to 3.6 V	50			20
t ₈	Minimum SYNC high time	V _{DD} = 3.6 V to 5.5 V	34			ns
t ₉	24th SCLK falling edge to SYNC falling edge	V _{DD} = 3.2 V to 5.5 V	50			ns

All input signals are specified with t_R = t_F = 5 ns (10% to 90% of V_{DD}) and timed from a voltage level of (V_{IL} + V_{IH}) / 2. See the Serial-Write-Operation Timing Diagram.

6.7 Switching Characteristics

over operating ambient temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power-up time	Coming out of power-down mode, $V_{DD} = 5 \text{ V}$		2.5		
	Coming out of power-down mode, $V_{DD} = 3.3 \text{ V}$		5		μs

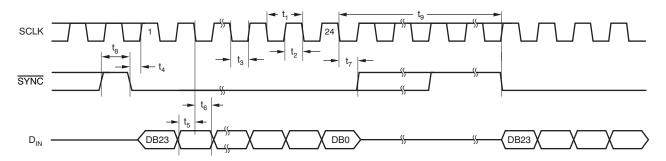
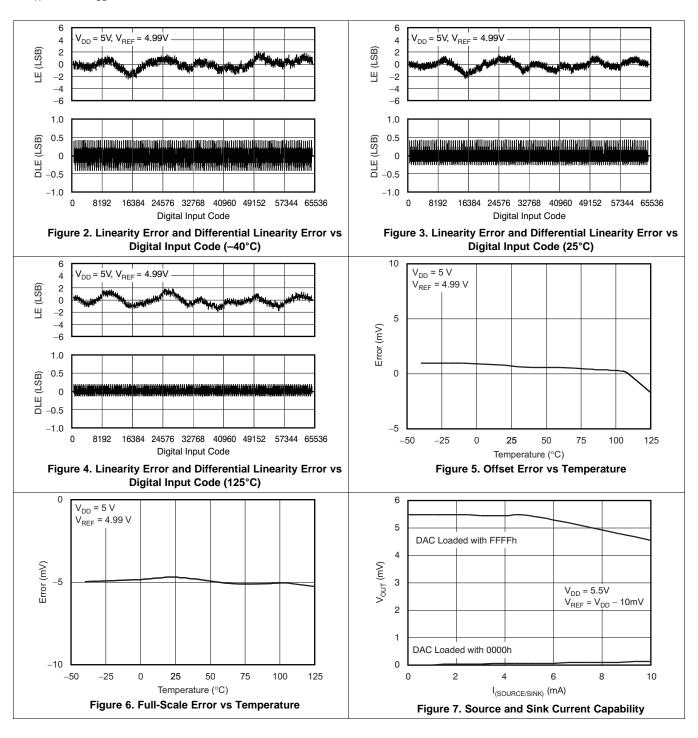
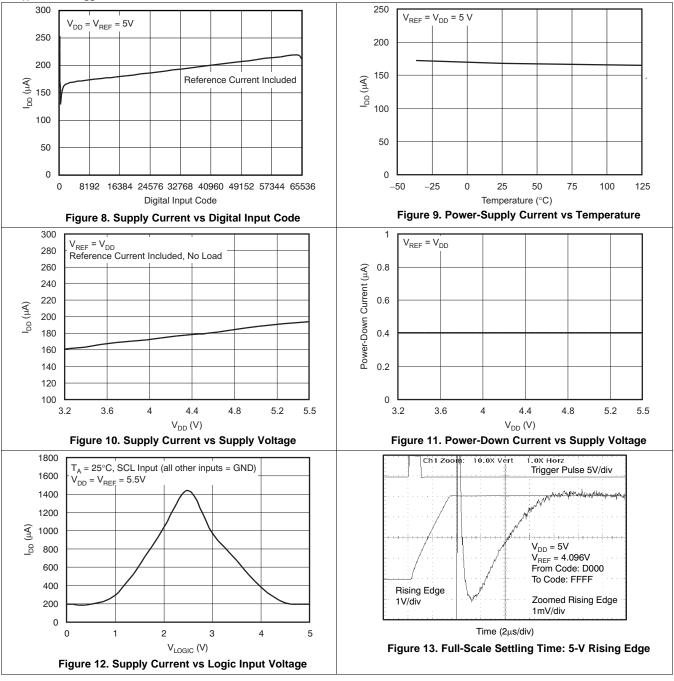
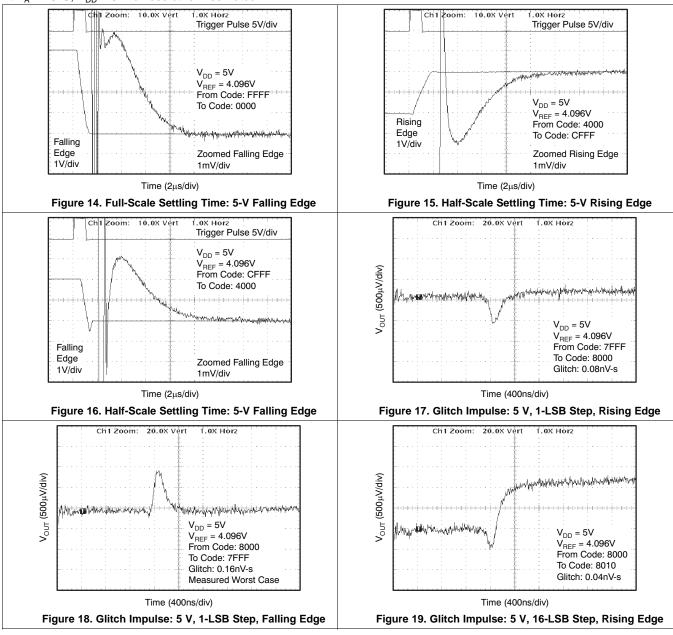



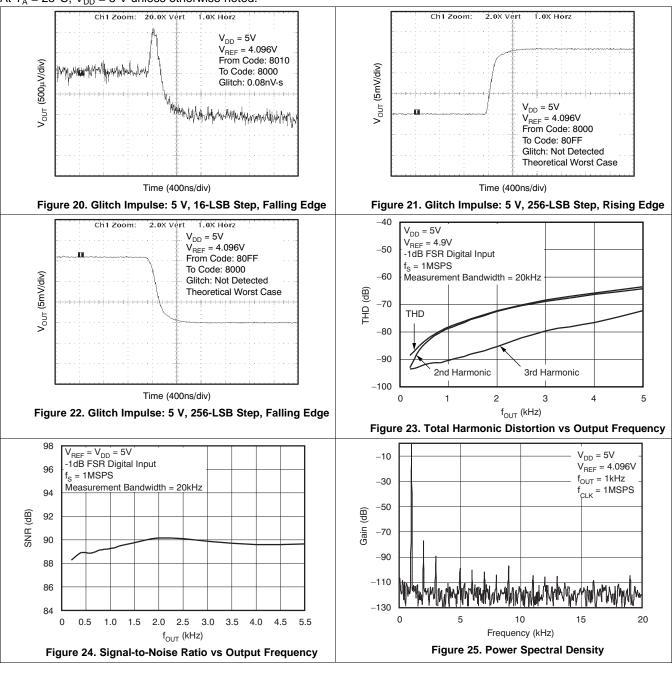
Figure 1. Serial-Write-Operation Timing Diagram



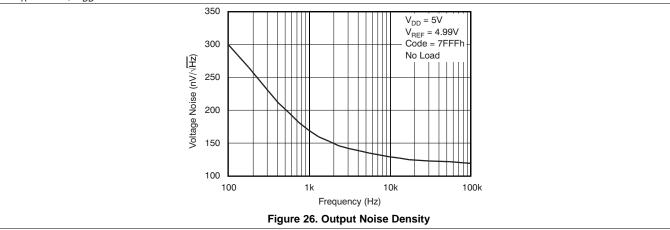
6.8 Typical Characteristics


TEXAS INSTRUMENTS

Typical Characteristics (continued)



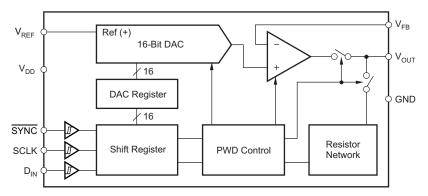
Typical Characteristics (continued)


TEXAS INSTRUMENTS

Typical Characteristics (continued)

Typical Characteristics (continued)

7 Detailed Description


7.1 Overview

The DAC8551-Q1 is a small, low-power, voltage-output, 16-bit digital-to-analog converters (DACs) qualified for automotive applications. The DAC8551-Q1 provides good linearity, and minimizes undesired code-to-code transient voltages. The DAC8551-Q1 devices use a versatile 3-wire serial interface that operates at clock rates to 30 MHz and is compatible with standard SPI, QSPI, Microwire, and digital signal processor (DSP) interfaces.

The DAC8551-Q1 requires an external reference voltage to set its output range. The DAC8551-Q1 incorporates a power-on-reset circuit that ensures the DAC output powers up at 0 V and remains there until a valid write to the device takes place. The DAC8551-Q1 contain a power-down feature, accessed over the serial interface, that reduces the current consumption of the device to 800 nA at 5 V.

The DAC8551-Q1 power consumption is only 800 μ W at 5 V, reducing to less than 4 μ W in power-down mode. The DAC8551-Q1 is available in a VSSOP-8 package.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 DAC Section

The DAC8551-Q1 architecture consists of a string DAC followed by an output buffer amplifier. Figure 27 shows a block diagram of the DAC architecture.

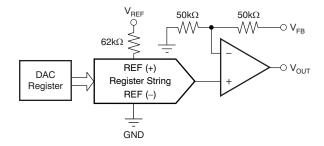


Figure 27. DAC8551-Q1 Architecture

The input coding to the DAC8551-Q1 device is straight binary, so the ideal output voltage is given by:

$$V_{\text{OUT}} = \frac{D_{\text{IN}}}{65536} \times V_{\text{REF}} \tag{1}$$

where D_{IN} = decimal equivalent of the binary code that is loaded to the DAC register; it can range from 0 to 65 535.

Feature Description (continued)

7.3.1.1 Resistor String

The resistor string section is shown in Figure 28. It is simply a string of resistors, each of value R. The code loaded into the DAC register determines at which node on the string the voltage is tapped off to be fed into the output amplifier by closing one of the switches connecting the string to the amplifier. Monotonicity is ensured because of the string resistor architecture.

7.3.1.2 Output Amplifier

The output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving an output range of 0 V to V_{DD} . It is capable of driving a load of 2 $k\Omega$ in parallel with 1000 pF to GND. The source and sink capabilities of the output amplifier can be seen in the Typical Characteristics. The slew rate is 1.4 V/ μ s with a full-scale setting time of 8 μ s with the output unloaded.

The inverting input of the output amplifier is brought out to the V_{FB} pin. This configuration allows for better accuracy in critical applications by tying the V_{FB} point and the amplifier output together directly at the load. Other signal conditioning circuitry may also be connected between these points for specific applications.

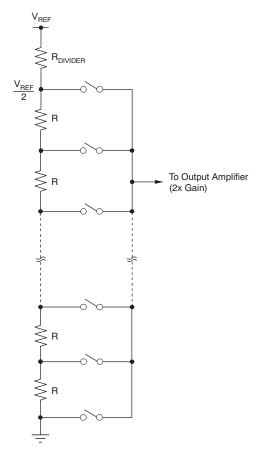


Figure 28. Resistor String

7.3.2 Power-On Reset

The DAC8551-Q1 contains a power-on-reset circuit that controls the output voltage during power up. On power up, the DAC registers are filled with zeros and the output voltages are 0 V; they remain that way until a valid write sequence is made to the DAC. The power-on reset is useful in applications where it is important to know the state of the output of the DAC while it is in the process of powering up.

7.4 Device Functional Modes

7.4.1 Power-Down Modes

The DAC8551-Q1 supports four separate modes of operation. These modes are programmable by setting two bits (PD1 and PD0) in the control register. Table 3 shows how the state of the bits corresponds to the mode of operation of the device.

Table 3. Operating Modes

PD1 (DB17)	PD0 (DB16)	OPERATING MODE
0	0	Normal operation
_	_	Power-down modes
0	1	Output typically 1 $k\Omega$ to GND
1	0	Output typically 100 kΩ to GND
1	1	High-Z

When both bits are set to 0, the device works normally with its typical current consumption of 160 μ A at 5 V. However, for the three power-down modes, the supply current falls to 800 nA at 5 V. Not only does the supply current fall, but the output stage is also internally switched from the output of the amplifier to a resistor network of known values. This configuration has the advantage that the output impedance of the device is known while it is in power-down mode. There are three different options. The output is connected internally to GND through a 1 $k\Omega$ resistor, a 100 $k\Omega$ resistor, or it is left open-circuited (High-Z). The output stage is illustrated in Figure 29.

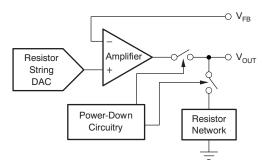


Figure 29. Output Stage During Power Down

All analog circuitry is shut down when the power-down mode is activated. However, the contents of the DAC register are unaffected when in power down. The time to exit power-down is typically 2.5 μ s for $V_{DD} = 5$ V, and 5 μ s for $V_{DD} = 3.3$ V. See the Typical Characteristics for more information.

7.5 Programming

The DAC8551-Q1 has a 3-wire serial interface (SYNC, SCLK, and D_{IN}), which is compatible with SPI, QSPI, and Microwire interface standards, as well as most DSPs. See the *Serial Write Operation Timing Diagram* section for an example of a typical write sequence.

The input shift register is 24 bits wide, as shown in Figure 30. The first six bits are *don't care* bits. The next two bits (PD1 andPD0) are control bits that control which mode of operation the part is in (normal mode or any one of three power-down modes). A more complete description of the various modes is located in the Power-Down Modes section. The next 16 bits are the data bits. These bits are transferred to the DAC register on the 24th falling edge of SCLK.

DE	23																						DB0
Χ	Х	Χ	Χ	Χ	Χ	PD1	PD0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Figure 30. DAC8551-Q1 Data-Input Register Format

The write sequence begins by bringing the $\overline{\text{SYNC}}$ line low. Data from the D_{IN} line are clocked into the 24-bit shift register on each falling edge of SCLK. The serial clock frequency can be as high as 30 MHz, making the DAC8551-Q1 compatible with high-speed DSPs. On the 24th falling edge of the serial clock, the last data bit is clocked in and the programmed function is executed (that is, a change in DAC register contents and/or a change in the mode of operation).

At this point, the SYNC line may be kept low or brought high. In either case, it must be brought high for a minimum of 33 ns before the next write sequence so that a falling edge of SYNC can initiate the next write sequence. As previously mentioned, it must be brought high again just before the next write sequence.

7.5.1 SYNC Interrupt

In a normal write sequence, the SYNC line is kept low for at least 24 falling edges of SCLK, and the DAC is updated on the 24th falling edge. However, if SYNC is brought high before the 24th falling edge, it acts as an interrupt to the write sequence. The shift register is reset, and the write sequence is seen as invalid. Neither an update of the DAC register contents nor a change in the operating mode occurs, as shown in Figure 31.

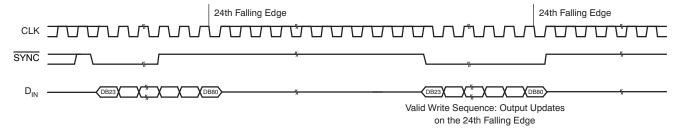


Figure 31. SYNC Interrupt Facility

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.2 Typical Applications

8.2.1 Loop-Powered 2-Wire 4-mA to 20-mA Transmitter With XTR116

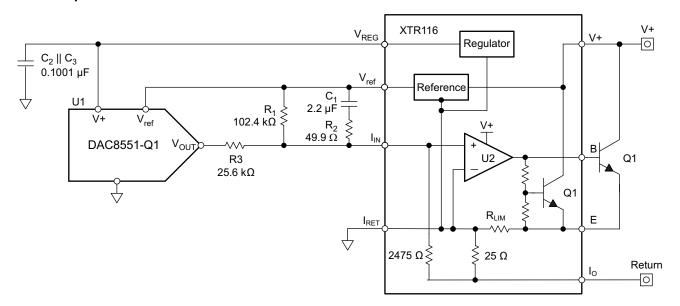


Figure 32. Loop-Powered Transmitter

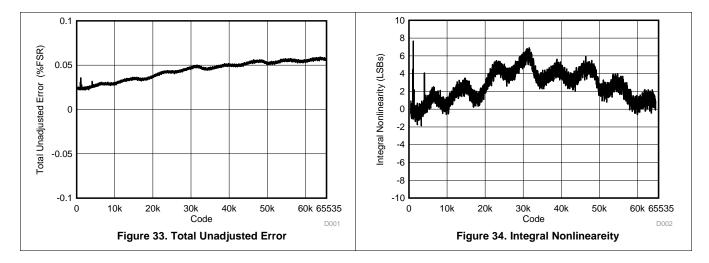
8.2.1.1 Design Requirements

This design is commonly referred to as a loop-powered, or 2-wire, 4 mA to 20 mA transmitter. The transmitter has only two external input terminals: a supply connection and an output, or return, connection. The transmitter communicates back to its host, typically a PLC analog input module, by precisely controlling the magnitude of its return current. In order to conform to the 4 mA to 20 mA communication standard, the complete transmitter must consume less than 4 mA of current. The DAC8551-Q1 enables the accurate control of the loop current from 4 mA to 20 mA in 16-bit steps.

8.2.1.2 Detailed Design Procedure

Although it is possible to recreate the loop-powered circuit using discrete components, the XTR116 provides simplicity and improved performance due to the matched internal resistors. The output current can be modified if necessary by looking using Equation 2.

$$I_{OUT}(Code) = \left(\frac{V_{ref} \times Code}{2^{N} \times R_{3}} + \frac{V_{REG}}{R_{1}}\right) \times \left(1 + \frac{2475 \Omega}{25 \Omega}\right)$$
(2)


For more details of this application, see 2-wire, 4-20mA Transmitter, EMC/EMI Tested Reference Design (TIDUAO7). It covers in detail the design of this circuit as well as how to protect it from EMC/EMI tests.

Typical Applications (continued)

8.2.1.3 Application Curves

Total unadjusted error (TUE) is a good estimate for the performance of the output as shown in Figure 33. The linearity of the output or INL is in Figure 34.

8.2.2 Bipolar Operation Using the DAC8551-Q1

The DAC8551-Q1 has been designed for single-supply operation, but a bipolar output range is also possible using the circuit in Figure 35. The circuit shown gives an output voltage range of $\pm V_{REF}$. Rail-to-rail operation at the amplifier output is achievable using an OPA703 as the output amplifier.

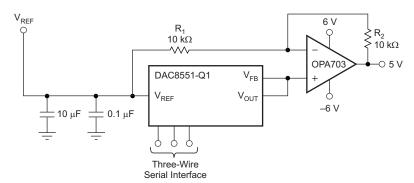


Figure 35. Bipolar Output Range

The output voltage for any input code can be calculated as follows:

$$V_{O} = \left[V_{REF} \times \left(\frac{D}{65536} \right) \times \left(\frac{R_{1} + R_{2}}{R_{1}} \right) - V_{REF} \times \left(\frac{R_{2}}{R_{1}} \right) \right]$$
(3)

where D represents the input code in decimal (0-65 535)

with $V_{REF} = 5V$, $R_1 = R_2 = 10 \ k\Omega$.

$$V_{O} = \left(\frac{10 \times D}{65536}\right) - 5V \tag{4}$$

Using this example, an output voltage range of ± 5 V with 0000h corresponding to a -5 V output and FFFFh corresponding to a 5 V output can be achieved. Similarly, using $V_{REF} = 2.5$ V, a ± 2.5 V output voltage range can be achieved.

8.2.3 Using the REF02 As a Power Supply for the DAC8551-Q1

Due to the extremely low supply current required by the DAC8551-Q1, an alternative option is to use a precision reference such as the REF02 device to supply the required voltage to the device, as illustrated in Figure 36.

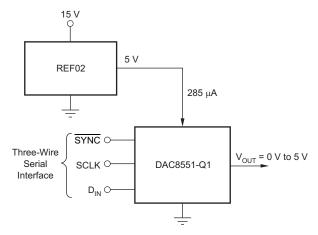
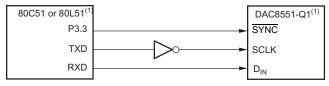


Figure 36. REF02 As a Power Supply to the DAC8551-Q1

This configuration is especially useful if the power supply is quite noisy or if the system supply voltages are at some value other than 5 V. The REF02 device outputs a steady supply voltage for the DAC8551-Q1. If the REF02 device is used, the current it must supply to the DAC8551-Q1 is 200 μ A. This configuration is with no load on the output of the DAC. When a DAC output is loaded, the REF02 also must supply the current to the load.

The total current required (with a 5 k Ω load on the DAC output) is:

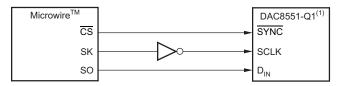
$$200\mu A + \frac{5V}{5k\Omega} = 1.2mA \tag{5}$$


The load regulation of the REF02 is typically 0.005%/mA, resulting in an error of 299 μ V for the 1.2 mA current drawn from it. This value corresponds to a 3.9 LSB error.

8.3 System Examples

8.3.1 Interface from DAC8551-Q1 to 8051

See Figure 37 for a serial interface between the DAC8551-Q1 and a typical 8051-type microcontroller. The setup for the interface is as follows: TXD of the 8051 drives SCLK of the DAC8551-Q1, while RXD drives the serial data line of the device. The SYNC signal is derived from a bit-programmable pin on the port of the 8051. In this case, port line P3.3 is used. When data are to be transmitted to the DAC8551-Q1, P3.3 is taken low. The 8051 transmits data in 8-bit bytes; thus, only eight falling clock edges occur in the transmit cycle. To load data to the DAC, P3.3 is left low after the first eight bits are transmitted, then a second write cycle is initiated to transmit the second byte of data. P3.3 is taken high following the completion of the third write cycle. The 8051 outputs the serial data in a format that has the LSB first. The DAC8551-Q1 requires data with the MSB as the first bit received. The 8051 transmit routine must therefore take this into account, and *mirror* the data as needed.

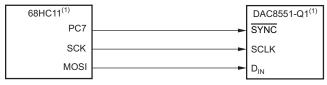


NOTE: (1) Additional pins omitted for clarity.

Figure 37. Interface from DAC8551-Q1 Devices to 80C51 or 80L51

8.3.2 Interface from DAC8551-Q1 to Microwire

Figure 38 shows an interface between the DAC8551-Q1 and any Microwire-compatible device. Serial data are shifted out on the falling edge of the serial clock and is clocked into the DAC8551-Q1 on the rising edge of the SK signal.



NOTE: (1) Additional pins omitted for clarity.

Figure 38. Interface from DAC8551-Q1 Devices to Microwire

8.3.3 Interface from DAC8551-Q1 to 68HC11

Figure 39 shows a serial interface between the DAC8551-Q1 and the 68HC11 microcontroller. SCK of the 68HC11 drives the SCLK of the DAC8551-Q1, whereas the MOSI output drives the serial data line of the DAC. The SYNC signal is derived from a port line (PC7), similar to the 8051 diagram.

NOTE: (1) Additional pins omitted for clarity.

Figure 39. Interface from DAC8551-Q1 Devices to 68HC11

The 68HC11 should be configured so that its CPOL bit is '0' and its CPHA bit is '1'. This configuration causes data appearing on the MOSI output to be valid on the falling edge of SCK. When data are being transmitted to the DAC, the SYNC line is held low (PC7). Serial data from the 68HC11 are transmitted in 8-bit bytes with only eight falling clock edges occurring in the transmit cycle. (Data are transmitted MSB first.) In order to load data to the DAC88551-Q1, PC7 is left low after the first eight bits are transferred, then a second and third serial write operation are performed to the DAC. PC7 is taken high at the end of this procedure.

9 Power Supply Recommendations

The DAC8551-Q1 can operate within the specified supply voltage range of 3.2 V to 5.5 V. The power applied to V_{DD} should be well-regulated and low-noise. Switching power supplies and dc/dc converters often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output. In order to further minimize noise from the power supply, a strong recommendation is to include a 1 μ F to 10 μ F capacitor and 0.1 μ F bypass capacitor. The current consumption on the V_{DD} pin, the short-circuit current limit, and the load current for the device is listed in the Electrical Characteristics table. The power supply must meet the aforementioned current requirements.

10 Layout

10.1 Layout Guidelines

A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power supplies.

The DAC8551-Q1 offers single-supply operation, and are often used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to keep digital noise from appearing at the output.

Due to the single ground pin of the DAC8551-Q1, all return currents, including digital and analog return currents for the DAC, must flow through a single point. Ideally, GND would be connected directly to an analog ground plane. This plane would be separate from the ground connection for the digital components until they were connected at the power-entry point of the system.

As with the GND connection, V_{DD} should be connected to a power-supply plane or trace that is separate from the connection for digital logic until they are connected at the power-entry point. In addition, a 1 μ F to 10 μ F capacitor and 0.1 μ F bypass capacitor are strongly recommended. In some situations, additional bypassing may be required, such as a 100 μ F electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all designed to essentially low-pass filter the 5 V supply, removing the high-frequency noise.

10.2 Layout Example

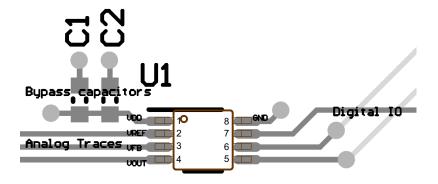


Figure 40. Layout Diagram

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

《通过 EMC/EMI 测试的双线制 4mA-20mA 发送器参考设计》(文献编号:TIDUAO7)

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。本数据随时可能发生变更并且不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。

www.ti.com 10-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DAC6551AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	D61Q	Samples
DAC8551AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	Call TI NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	D81Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

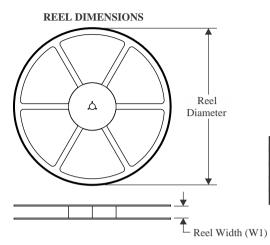
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

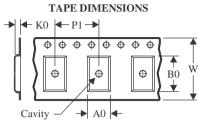
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 10-Jan-2024

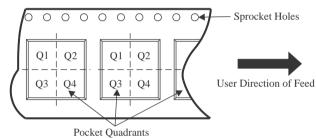
OTHER QUALIFIED VERSIONS OF DAC8551-Q1:


NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

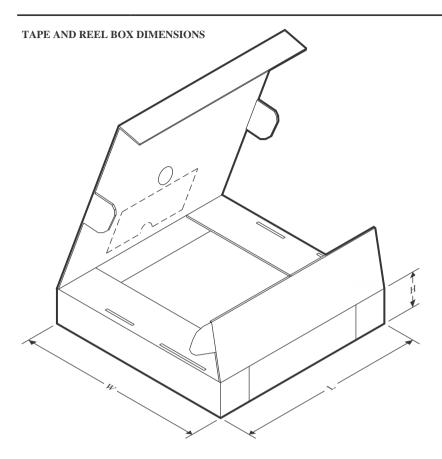
PACKAGE MATERIALS INFORMATION

www.ti.com 10-Jan-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

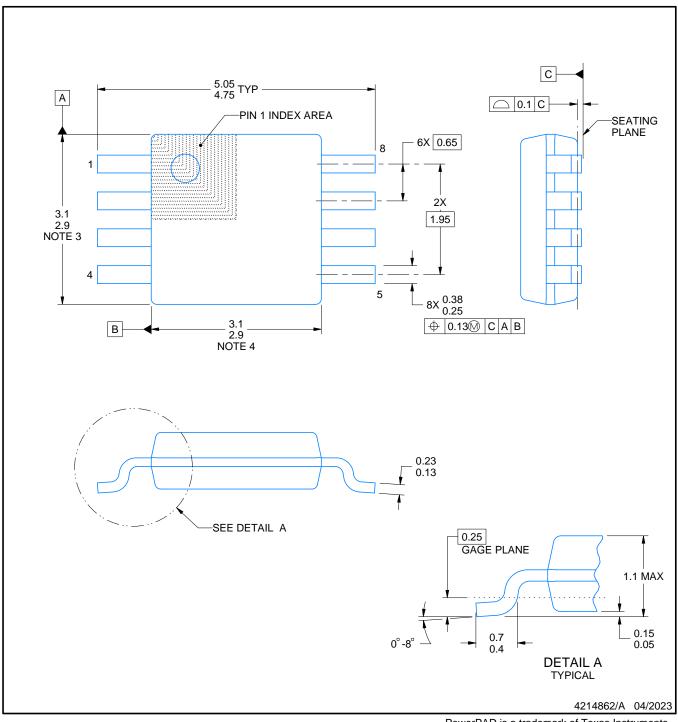


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC6551AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Jan-2024



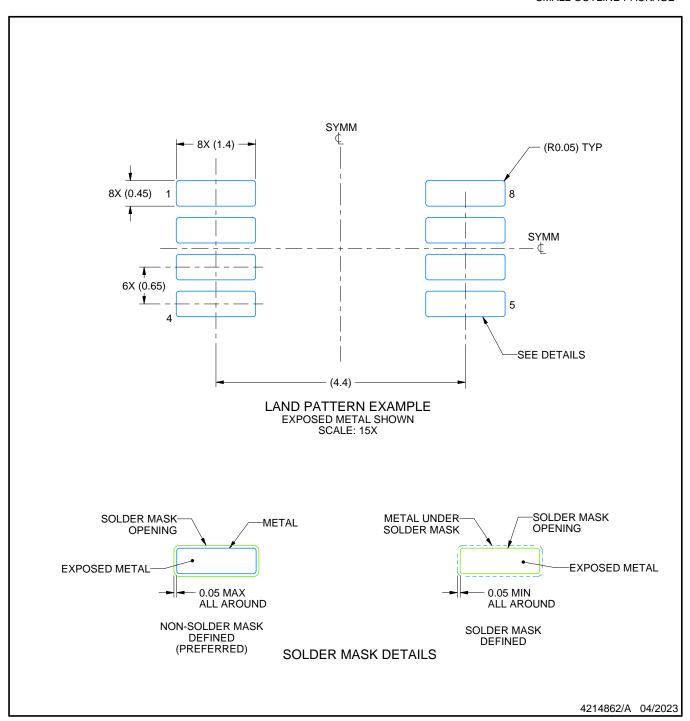
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
DAC6551AQDGKRQ1	VSSOP	DGK	8	2500	350.0	350.0	43.0	

SMALL OUTLINE PACKAGE

NOTES:

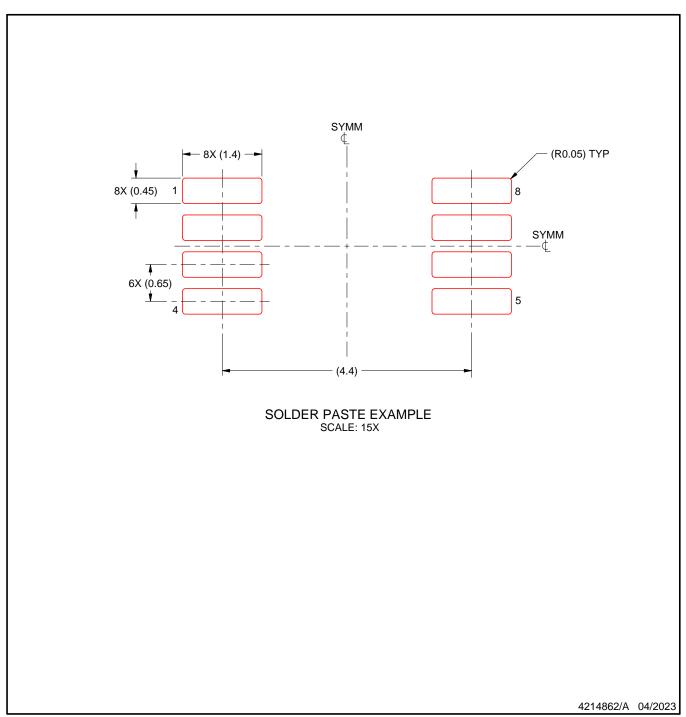
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司