

ZHCAB85 – March 2022

基于 AWR2944 的汽车雷达 DDMA 波形的原理和实现

Adam Yao

China Central FAE

摘要

近年来,毫米波雷达在高级驾驶员辅助系统(ADAS)中的使用呈现了爆发式的增长。TI 的 AWR1642 和 AWR1843 在业内第一次使用 RF-CMOS 工艺,将中射频电路,VCO,ADC 和 MCU,DSP 集成在单颗 芯片内。它们的出现极大降低了汽车雷达的成本和开发难度,在车厂得到了广泛的应用。随着毫米波雷 达在 ADAS 领域上的应用场景不断扩展,车厂对于雷达的最远探测距离,FOV,距离/速度/角度的分辨率 和精度都提出了更高的要求。AWR2944 是 TI 推出的第二代高性能毫米波雷达单芯片,和第一代芯片相 比在射频性能上有 50%以上的提升,同时对集成的 MCU,DSP,HWA(硬件加速器),RAM(内存)进行了全面的升级,并首次集成了 HSM(硬件安全模块)和百兆以太网,它能够大幅度提升下一代汽车雷达的性能。AWR2944 增强的射频性能和信号处理能力使它可以支持更复杂的 DDMA(多普勒分集发射)波形,通过 DDMA 的多天线同时发射,结合 AWR2944 上新的相关检测信号链,能够比常用的 TDMA(时间分集发射) 波形获得更高的 SNR(信噪比)和更远的探测距离,从而全面提升雷达的性能。本文首先介绍了 DDMA 波形的原理,优势和基于 Empty-band 的波形设计,接着介绍了使用 AWR2944 的 Tx phase shifter(发射移相器)生成 DDMA 波形的方法,最后详细介绍了在 AWR2944 上 DDMA 的信号处理链路,特别是如何通过 HWA 和 DSP 协同实现 DDMA 信号处理链路的方法。用户通过本文可以全面了解 DDMA 和它在 AWR2944 上的实现方法。

修改记录

Version	Date	Author	Notes	
1.0	Mar 24th 2022	Adam Yao	First release	
1.1	Mar 31th 2022	Adam Yao	Revised per review comments	

目录

1.	背景	4
2.	AWR2943/2944 介绍	5
3.	MIMO 雷达和 DDMA	6
	3.1. MIMO 雷达	6
	3.2. DDMA 原理	7
	3.3. 基于 Empty-band 的 DDMA	9
4.	AWR2944 的 DDMA 发射	10
	4.1. Tx phase shifter 的配置相位偏差	12
	4.2. Tx phase shifter 的校准	12
5.	AWR2944 的 DDMA 接收	14
	5.1. Chirp 级处理	15
	5.2. 数据压缩	16
	5.3. 数据解压缩	17
	5.4. 2D-FFT 和 DDMA 解调	20
	5.5. 相关检测	24
	5.6. 内插和垂直角度估计	26
6.	总结	27
参考	文献	28

图

图 1. FMCW 波形	4
图 2. AWR2943/4 和 AWR1843 对比	5
图 3. DDMA 波形原理	7
图 4. 四根发射天线上的 DDMA	8
图 5. 四根发射天线上的 Empty-band DDMA	9
图 6. AWR2944 EVM 的天线设计	10
图 7. AWR1843 Tx1 进行 90°调相后 Heatmap(校准前)	13
图 8. AWR1843 Tx1 进行 90°调相后 Heatmap(校准后)	13
图 9. R79 demo 接收信号链	14
图 10. R79 demo Chirp 级处理信号链	15
图 11. R79 demo 的数据压缩格式	17
图 12. R79 demo 的 Radar cube	17
图 13. R79 demo 的数据解压缩信号链	18
图 14. R79 demo 的 Decomp Scratch buffer	19
图 15. R79 demo 的 range gate 级处理时序	20
图 16. R79 demo 的 2D-FFT 和 DDMA 解调信号链	21
图 17. R79 demo HWA 计算 DDMA Metric 的方式	23
图 18. R79 demo 的相关检测信号链	24
图 19. R79 demo CFAR 和 Local Maxima 原理	26

++
寿
x
• •

表 1. MIMO 雷达波形总结	6
表 2. R79 demo 波形参数	10
表 3. R79 demo Tx phase shifter 理论设置值	11
表 4. R79 demo Tx phase shifter 实际设置值	12
表 5. Chirp 级处理 HWA Param 配置(Ping)	15
表 6. Chirp 级处理 EDMA 通道配置	16
表 7. 数据解压缩 HWA Param 配置	
表 8. 数据解压缩 EDMA 通道配置	
表 9. Doppler stage 处理 HWA Param 配置(Ping)	
表 10. Doppler stage 处理 EDMA 通道配置(Ping)	
表 11. 基于 Empty-band 的 DDMA 解调算法	23
表 12. Azim stage 处理 HWA Param 配置(Ping)	
表 13. Azim stage 处理 EDMA 通道配置(Ping)	
表 14. R79 demo 的水平角度内插算法	
表 15. R79 demo 的角度估计算法	

1. 背景

同摄像头和激光雷达相比,毫米波雷达可以在较低的成本下获得极高的分辨率,同时不受雨,雾,雪和光线等周围 环境的影响。因此近年来,毫米波雷达在高级驾驶员辅助系统(ADAS)中的使用呈现了爆发式的增长,成为当前最 流行的汽车传感器技术之一。

从汽车雷达的发展方向上看,传统的 24GHz 频段的雷达正逐步被 77GHz 频段的雷达所取代。当前各大厂家的 77GHz 毫米波雷达大都使用 FMCW 波形(线性调频连续波,如图 1)。FMCW 波形的瞬时发射频率 f 在一个发射周 期*T_c*(这个周期也称为 chirp,一般为几十 us)内随着时间线性增长。为了检测目标的速度,FMCW 波形在一个 frame 周期内会连续发射 N 个 chirp.

图 1. FMCW 波形

雷达的最远探测距离 R_{max} 与目标的RCS(反射截面积),发射功率 P_t ,发射天线增益 G_t ,接收天线增益 G_r ,波长的平方 λ^2 ,chirp周期 T_c ,一个frame包含的chirp数N成正比,与雷达的接收链路噪声系数NF,系统损耗 L_{misc} (包括雷达天线罩,汽车保险杠的衰减,电路损耗,接收机算法处理损耗等)和接收机检测信噪比门限 SNR_{det} 成反比,如公式(1)。

$$R_{max} = \sqrt[4]{\frac{RCS P_t G_t G_r \lambda^2 T_c N}{(4\pi)^3 k T_e (NF) L_{misc} SNR_{det}}}$$
(1)

公式(1)中k 表示玻尔兹曼常数1.38×10⁻²³ J/K, T_e 表示等效环境温度。而雷达的距离分辨率 ΔR , 速度分辨率 ΔV 和 最高探测速度 V_{max} 和图 1 中 FMCW 波形参数存在下面的关系[1]:

$$\Delta R = \frac{c}{2B} \tag{2}$$

$$\Delta V = \frac{\lambda}{2NT_c} \tag{3}$$

$$V_{max} = \frac{\lambda}{4T_c} \tag{4}$$

雷达的探测速度范围是[$-V_{max}$, V_{max}],即公式(4)中得到的 V_{max} 是正/负方向的最高探测速度。雷达的测距精度 σ_R ,测速精度 σ_V 主要取决于距离/速度分辨率和接收信号的 SNR,关系如下:

 σ

$$\sigma_R = \frac{c}{3.6B\sqrt{2SNR}} \tag{5}$$

$$V = \frac{\lambda}{3.6NT_c\sqrt{SNR}}$$
(6)

除了测距和测速功能外,车载雷达还必须具备角度测量能力。毫米波雷达的角度测量是通过在多个接收通道上进行 联合的相位检测来实现的[2]。雷达的角度测量范围(也就是 FOV)主要是由天线设计决定的。根据雷达的不同应用 场景,用户需要设计不同水平和垂直方向 FOV 的发射/接收天线,使天线的主要空间能量辐射范围(一般使用 3dB 带宽定义)对应雷达需要检测的空间范围。雷达的角度分辨率和天线阵列孔径有关,对于常见的 N 阵元等间距天线 阵列(相邻天线间隔λ/2)来说,角度分辨率Δθ(单位为弧度)和阵元数 N 之间的关系如下:

基于 AWR2944 的汽车 雷达 DDMA 波形的原理和实现 4

$$\Delta \theta = \frac{2}{N}$$

在现代雷达中,一般通过 MIMO(多输入多输出)技术来增加天线阵列的等效孔径,从而提高雷达的角度分辨率。

2. AWR2943/2944 介绍

TI 基于 RF-CMOS 工艺将毫米波雷达的中射频电路, VCO, ADC 和 MCU, DSP 集成在单颗芯片内, 极大降低了 汽车雷达的成本和开发难度, 在车厂得到了广泛的应用。AWR2943 和 AWR2944 是 TI 在 2021 年推出的第二代 高性能毫米波雷达单芯片, 和第一代的 AWR1843 相比, 它的性能增强如图 2 所示:

图 2. AWR2943/4 和 AWR1843 对比

总结起来, AWR2943/2944 的主要优势有:

- 4T4R(AWR2944),比 AWR1843 多一个发射通道,可以提高角度估计的性能。
- 接收通路采用实数信号链,降低功耗。通过新的设计,主要射频指标比 AWR1843 有大约 50%的增强。
- 支持最大 15MHz 的 IF Bandwidth, 采样率最高 37.5Msps.
- 对比 AWR1843, MCU 从 R4F 升级到双核锁步的 R5F, 主频从 200MHz 提高到 300MHz, DSP 从 C67x 升级到 C66x, 主频 360MHz.
- HWA (雷达算法加速器)版本从 1.0 升级到 2.0, 主频从 200MHz 提高到 300MHz, 在 HWA2.0 中支持 支持基 2 和基 3 点的 FFT(可支持点数包括 2,4,8...,2048 点和 3,6,12...,1536 点), CFAR-OS, 数据压 缩。同时在 HWA2.0 中增加了对于 DDMA 波形的特性支持,能够在不需要 DSP 干预的情况下,完成 DDMA 接收链路的大部分计算工作。
- 片内 RAM 从 AWR1843 的 2MB 增加到 3.5MB/4MB(AWR2943/2944),结合 HWA2.0 的数据压缩功 能,可以保存更多的雷达处理中间数据,帮助用户使用更多点数和 chirp 数的波形。
- 新增了 HSM(硬件安全模块),内含一个独立的 M4 内核,满足下一代雷达对功能安全的要求。
- 新增了百兆以太网,满足下一代雷达对于点云输出的大带宽接口要求。
- 最高工作结温从 125 度提高到 140 度,简化客户的板级热设计。

从上面的介绍可以看出,AWR2943/2944 相对于 AWR1642/AWR1843 的提升非常大,能够大幅度提升下一代 汽车雷达的性能。本文后面的介绍将主要针对 AWR2944,但是绝大部分内容也同样适用于 AWR2943。

(7)

3. MIMO 雷达和 DDMA

3.1. MIMO 雷达

如公式(7)所示, 雷达的角度分辨率和阵元数直接相关, 阵元数越多, 雷达可实现的角度分辨率就越高。受制于系统成本, 毫米波雷达芯片所支持的通道数是有限的。在现代雷达中, 一般通过 MIMO(多输入多输出)技术来增加雷达的虚拟通道数, 从而提高雷达的角度分辨率。

[2]中介绍了 MIMO 雷达的基本概念,对于一个包含N_{Tx}根发射天线,N_{Rx}根接收天线的雷达系统,可以通过合适的 天线布局和波形设计来形成一个N_{Tx} × N_{Rx}的虚拟天线阵列,增加系统的(虚拟)天线数,从而提高角度分辨率。[3] 中系统介绍了 MIMO 雷达的波形设计技术。简单地说,为了形成虚拟天线阵列,发射端必须能在某个维度将N_{Tx}根 发射天线的波形复用起来,接收端在接收到这个波形后必须能在相同的维度将N_{Tx}根发射天线的波形分离出来。根 据波形设计中这个复用/分离维度的选择,MIMO 雷达的波形可以分成四大类:(1)TDMA(时分多址), (2)FDMA(频分多址),(3)DDMA(Doppler 维多址),(4)CDMA(码分多址)。每一大类波形还包含一些小的波形子 类,这些波形的特点总结如下表(参考[3] table 1)

波形	优点	缺点	TI 芯片 是否可实现
TDMA- Alternative transmitting	正交性好,距离/速度旁 瓣低	多天线发射功率无法叠 加,不模糊速度区间受限	可以实现
TDMA- Staggered LFMCW	正交性好,距离/速度旁 瓣低	不模糊速度区间受限	不可实现
Fast-time FDMA	正交性好	距离旁瓣高	不可实现
Slow-time FDMA	正交性好	距离/速度旁瓣高	不可实现
DDMA	正交性好,距离/速度旁 瓣低	不模糊速度区间受限	可以实现
Slow-time Hadamard Coding	正交性好,距离/速度旁 瓣低	不模糊速度区间受限,对 于高速目标性能敏感	可以实现
Fast-time CDMA	正交性接近,速度旁瓣 低	距离旁瓣高,计算量大	不可实现
Slow-time CDMA	正交性接近,距离旁瓣 低	速度旁瓣高,计算量大	可以实现
Circulating LFM	正交性好,距离/速度旁 瓣非常低	距离分辨率差	不可实现

表 1. MIMO 雷达波形总结

从实现的复杂度来看,分时发射的 TDMA 最为简单,这也是大部分客户在 AWR1642/AWR1843 上使用的波形。

基于 AWR2944 的汽车 雷达 DDMA 波形的原理和实现 6

ZHCAB85

但是 TDMA 在一个 chirp 周期内,只有一个发射通道打开,其它通道都处于关闭状态,这损失了其它通道的发射功率,不利于提高雷达的探测距离。

3.2. DDMA 原理

DDMA 波形下所有发射天线同时发射,但是每个发射天线的信号都偏移一个特定的频率,通过这个人为偏移的频率 使不同发射天线的信号在 Doppler 域上能分离开来。在 DDMA 波形下,一个目标在不同发射天线的信号照射下所 形成的回波中检测到的速度值是不同的,利用这种速度的不同,对一个目标我们可以把不同发射天线的信号在接收 端分离出来。需要注意的是,不同发射天线上的频率偏移是通过在 chirp 之间(也就是'slow time'上)施加不同的相 位旋转而实现的,而在 chirp 内(也就是'fast time'上)信号的相位是不变的。

如图 3 所示,假设总共有 N_t 根发射天线,那么对于发射天线k,在相邻 chirp 上施加的相移 ω_k 由公式(8)决定

$$\omega_k = \frac{2\pi(k-1)}{N}, \quad k = 1, \dots N_t$$
 (8)

一般来说,公式(8)中的N由下式决定:

$$N = N_t \tag{9}$$

图 3. DDMA 波形原理

一个四发的 DDMA 雷达系统的发射相位设置如图 4 所示,和 TDMA 相比,DDMA 下*N*_t根发射天线同时发射,相比 TDMA 能获得的分集发射增益*G*_{tx array}为:

$$G_{tx_array} = 10\log(N_t) \tag{10}$$

根据公式(10),四根发射天线下 DDMA 相比 TDMA 能够获取大约 6dB 的分集发射增益,这对于提高雷达的探测距离是非常有益的。DDMA 波形的缺点是由于人为地在每个发射通道上附加了频偏,导致雷达的最大不模糊速度区间(也就是最大不模糊 Doppler 域)变小了。公式(4)指出了雷达的最大不模糊速度*V_{max}*是由 chirp 周期*T_c*决定的,而 Doppler 公式指出了目标的 Doppler 频率和速度间存在下面关系:

$$f_d = \frac{2v}{\lambda} \tag{11}$$

结合公式(4), (11)我们可以得到雷达的最大不模糊速度区间[$-V_{max}, V_{max}$] 所对应的 Doppler 频率区间[$f_{d_{L}}, f_{d_{H}}$] 为[$-\frac{1}{2\pi}, \frac{1}{2\pi}$], 整个不模糊 Doppler 域的长度为:

$$f_{d_{-H}} - f_{d_{-L}} = \frac{1}{T_c}$$
(12)

DDMA 下,在同一根发射天线的不同 chirp 之间,除了累积有目标速度带来的 Doppler 频移外,还会累积人为施 加的 DDMA 频偏。从公式(8),相邻两根发射天线的 chirp 间相移值差Δω为:

$$\Delta \omega = \frac{2\pi}{N} \tag{13}$$

TEXAS

INSTRUMENTS

那么同一个目标,在相邻两根发射天线信号所产生的回波中 Doppler 频率差 Δf_{DDMA} 为:

$$\Delta f_{DDMA} = \frac{\Delta \omega}{2\pi T_c} = \frac{1}{NT_c} \tag{14}$$

将公式(14)带入公式(4), (11), 同一个目标, 在相邻两根发射天线信号所产生的回波中检测出的速度值相差:

$$\Delta V_{DDMA} = \frac{2V_{max}}{N} \tag{15}$$

为了不混淆不同发射天线的数据,目标的最大速度不能超过ΔV_{DDMA},也就是说雷达的最大不模糊速度区间(或最大 不模糊 Doppler 域)变为了原来的 1/N。

图 4. 四根发射天线上的 DDMA

如图 4 所示,以四发(N=4)为例,在没有 DDMA 的情况下雷达的不模糊速度区间是[-V_{max},V_{max}],采用了 DDMA 后,等效于将这个区间分为了长度相等的 A,B,C,D 四个子区间。对同一个目标,四根发射天线的回波信号将分别落 入这四个子区间,且相邻两根发射天线对应的回波信号的速度值相差 V_{max}/2.在0 < v < V_{max}/2的情况下,Tx1/2/3/4 的回波信号将分别落入子区间 C/D/A/B,此时不会产生速度模糊,我们可以按照 C/D/A/B 顺序依次 分离出 Tx1/2/3/4 的数据,这就是所谓的 DDMA 解调。但如果v 超出了这个范围(如图 4 中的 case2,3,4 情况),Tx1/2/3/4 和子区间 C/D/A/B 的对应关系就会发生改变,此时用户就无法再仅仅根据子区间的位置去分离不同的 发射天线数据,这就是所谓的 DDMA 速度模糊。

在介绍完 DDMA 的原理后,我们再把 DDMA 和表 1 中其它的 MIMO 雷达波形做一个比较。FDMA 需要在 chirp 周期内产生多个不同频率的 FMCW 波形, Fast-time CDMA 需要在 chirp 周期内改变发射相位,而 TDMA-Staggered LFMCW 和 Circulating LFM 波形都需要将一个 FMCW 波形在不同天线上延时发射,这在当前的毫米 波雷达芯片上是无法实现的。在剩下可实现的波形中,TDMA 因为浪费了多通道的发射能力,不利于提高雷达探测 距离。Slow-time CDMA 的速度旁瓣会受 CDMA 码的正交性影响。Slow-time Hadamard coding(BPM 波形就 是它的一种实现)和 DDMA 具有类似的距离/速度旁瓣,但是它的速度解模糊需要在 chirp 之间完成(而 chirp 之间 的 Doppler 频偏是无法被完全纠正的),导致发射天线之间会引入残留的 Doppler 频偏,这对于高速目标进行稳定 的解速度模糊提出了很大的挑战,从这一点看 DDMA 对于高速目标的测速稳定性要高于 Slow-time Hadamard coding。因此,综合来看 DDMA 波形在测距测速能力,可实现性上都比较适合下一代高性能雷达的要求,是未来 主流的雷达波形之一。当然 DDMA 波形存在最大不模糊速度区间下降的问题,必须找到合适的解速度模糊算法,

才能进行实际的应用。

3.3. 基于 Empty-band 的 DDMA

学术界对于 DDMA 解调和解速度模糊方法的研究有很多[4],本文将介绍一种基于 Empty-band DDMA 波形的解 调和解速度模糊的方法。

所谓 Empty-band DDMA,就是在选择公式(8)里 DDMA 波形的不模糊速度子区间数 N 的时候,在发射天线数 N_t 的基础上,增加一个或两个 Empty 子区间(Empty-band).对于引入的 Empty-band 的数量选择,要根据 N_t 和当前 chirp 配置下 Doppler bin 的总数综合考虑,需要保证每个子区间分配到的 Doppler bin 数量是整数。通常对于三发和四发的 DDMA,对公式 (9) 做如下修改,分别增加一个和两个 Empty-band.

$$N = \begin{cases} N_t + 1, & \text{if } (N_t = 3) \\ N_t + 2, & \text{if } (N_t = 4) \end{cases}$$
(16)

Empty-band 的引入,使得 N_t 个发射天线的信号在向N个子区间(sub-band) 映射的时候,会出现某些 sub-band 上没有对应目标的信号映射到的情况。如图 5 所示,以四发(引入两个 Empty-band)为例,采用了 Empty-band DDMA 后,雷达的不模糊速度区间[$-V_{max}, V_{max}$]被分成了长度相等的A,B,C,D,E,F 六个 sub-band(每个 sub-band 对应的最大不模糊速度范围变为 V_{max} /3).对于一个目标,TX1/2/3/4 的回波信号将顺序落入其中四个循环连续的 sub-band 里,其余两个 sub-band 上没有发射天线的信号落入。

图 5. 四根发射天线上的 Empty-band DDMA

从图 5 中我们可以看出目标的实际速度在整个不模糊速度区间[-V_{max}, V_{max}]上的位置分布共有六种可能(即 TX1 落入 A/B/C/D/E/F 中的哪个 sub-band),而我们只要能确定在这六个 sub-band 上哪两个 sub-band 上没有信号 落入(即图中灰色框所在的 sub-band 编号),就能推断出上面六个 case 中哪个 case 成立,也就能对应知道:

- 1) TX1/2/3/4 对应的 sub-band 编号
- 2) 目标的实际速度位于整个不模糊速度区间的哪个子区间

ZHCAB85

也就同时完成了 DDMA 解调和 DDMA 速度解模糊。容易想到的是,因为灰色框所对应的两个 sub-band 没有目标 信号落入,它在 Range-Doppler 热图上的能量必定低于其余四个有目标信号落入的 sub-band 的能量。因此只要 求出 Range-Doppler 热图上六种可能的相邻两个 sub-band 的能量和,即B+C,C+D,D+E,E+F,F+A,A+B, 然后选出其中的最小值,也就能判断出其中哪两个 sub-band 没有信号落入。这就是基于 Empty-band DDMA 的 解调原理。

4. AWR2944 的 DDMA 发射

TIDEP-01027 是 TI 在 AWR2944 上开发的一个高性能角雷达参考设计,它按照 NCAP R79 的要求设计 (以下简称它为 R79 demo),在 TI AWR2944 EVM(其天线设计如图 6 所示)上采用 DDMA 波形实现了最远探测距离 200 米,最高测速范围±140km/h,水平角度 FOV ±80°,水平角度分辨率 9.5°的性能 [5].下面将以 R79 demo 为例,介绍 DDMA 波形在 AWR2944 上的实现方法。注意本文的介绍基于的是 TI mmwave automotive toolbox 3.5.0 中的 R79 demo 版本,其代码可从 TI Resource Explorer 中下载。

图 6. AWR2944 EVM 的天线设计

R79 demo 采用的波形配置如表 2 所示,总 chirp 数为 768,根据公式(16)分配了 6 个 sub-band(4 根发射天线 加上 2 个 empty band),每个 sub-band 内 Doppler bin 的数目为 128。

表 2. R79 demo 波形参数

基于 AWR2944 的汽车雷达 DDMA 波形的原理和实现 10

波形参数	设置值	说明
Channel Cfg (Tx/Rx)	4/4	天线布局如图 6 所示, 其中 TX1/3/4 在同一水平面上, Tx2 在距离0.8λ 的高度,对应的虚拟天线阵中包含 12 根水平虚拟天线,4 根垂直虚拟 天线
Idle time (us)	5	
ADC start time (us)	5	
Ramp end time (us)	18.81	
Slope (MHz/us)	8.883	
Bandwidth (MHz)	113.7	距离分辨率为 1.3m
Num of ADC samples	384	因为采用实数信号链,1D-FFT 后只保留一半,也就是192个 range bin
ADC sampling rate (ksps)	30000	AWR2944 支持最大 37.5Msps 采样率
Num of chirps	768	分为 6 个 sub-band, 每个 sub-band 包含 128 个 Doppler bin,
	700	根据公式(3), 速度分辨率为 0.106m/s (0.38Km/h)
Chirp period (us)	23.81	根据公式(4), 支持的最大速度分别为 40.8m/s (147km/h)

AWR2944 的每个发射通道都支持单独的 Tx phase shifter,可以在每个通道的发射信号上叠加一个用户指定的 移相值,并且这个移相值可以在 chirp 之间根据用户的指定进行调整。通过 <u>mmwave mcuplus sdk</u>中提供的函数 *rlRfSetPhaseShiftConfig* 可以配置 Tx phase shifter,实现 DDMA 波形中每个发射通道上的移相。需要注意 的是,因为 Tx phase shifter 的移相功能是通过增加信号延时实现的,所以用户配置的正的移相值 φ ,在信号 $x_T(t)$ 上实际产生的是一个负的相位旋转,如下:

$$x'_{T}(t) = x_{T}(t)e^{-j\varphi}$$
(17)

因此我们在使用函数 *rlRfSetPhaseShiftConfig* 配置 AWR2944 的 Tx phase shifter 的时候,配置的移相值对比 公式(8)的 DDMA 理论移相值要取负,如下:

$$\varphi_k = -\omega_k = -\frac{2\pi(k-1)}{N}, \quad k = 1, \dots N_t$$
 (18)

R79 demo 为了方便 DDMA 解调后进行的水平角估计,将所有水平方向虚拟天线的数据连续排放,因此在 sub-band 分配的时候,先将 Tx1/3/4 对应的 sub-band 连续排放,然后再排放 Tx2. 这样 R79 demo 里 4 根发射天 线的相位调制序列和图 5 稍有不同,如表 3.

Phase shifter	Chirp 0	Chirp 1	Chirp 2	Chirp 3	Chirp 4	Chirp 5
Tx1 (degree)	0	0	0	0	0	0
Tx2* (degree)	0	180	0	180	0	180
Tx3 (degree)	0	300	240	180	120	60
Tx4 (degree)	0	240	120	0	240	120

表 3. R79 demo Tx phase shifter 理论设置值

*Tx2 是垂直方向的发射天线

4.1. Tx phase shifter 的配置相位偏差

AWR2944 上 Tx phase shifter 的配置位宽是 6 比特(配置 Index 范围为 0 到 63),每个 LSB 代表的 phase shifter 的相位步长为 5.625°,也就是说每根发射天线上可配的相位只能是 5.625°的整数倍。观察表 3 可发现,表中的某些角度不能被 5.625 整除,只能通过四舍五入选择距离最近的可配置相位值。R79 demo 中实际配置的相位值如表 4。

Phase shifter	Chirp 0	Chirp 1	Chirp 2	Chirp 3	Chirp 4	Chirp 5
Tx1 (degree)	0(0)*	0(0)	0(0)	0(0)	0(0)	0(0)
Tx2 (degree)	0(0)	180(32)	0(0)	180(32)	0(0)	180(32)
Tx3 (degree)	0(0)	298.125(53)	236.25(42)	180(32)	118.125(21)	56.25(10)
Tx4 (degree)	0(0)	236.25(42)	118.125(21)	0(0)	236.25(42)	118.125(21)

表 4. R79 demo Tx phase shifter 实际设置值

*括号中的值是 Tx phase shifter 的配置 Index

对比表 3,4 我们发现,在 Tx3/4 上通过 Tx phase shifter 实际配置的相位值和理论值存在最大 3.75°偏差,这 种偏差将对 DDMA 解调的性能造成一定的影响。

4.2. Tx phase shifter 的校准

DDMA 对 Tx phase shifter 的精度要求很高。由于芯片的制造差异,PCB 走线不对称,温度变化等原因,Tx phase shifter 的实际发射相位值和理论值存在误差,而 4.1 中讨论的配置相位偏差进一步加大了上述误差对系统 的影响。Tx phase shifter 的误差会导致 DDMA 波形出现虚假的 ghost 目标,增加雷达的虚警率。

AWR2944 支持对 Tx phase shifter 进行校准,通过校准能够减少由芯片制程,PCB 走线和温度变化导致的 Tx phase shifter 误差。根据[6] 中的 figure3-1,如果不加校准,AWR2243 的 Tx phase shifter 的最大误差可能 超过±10°,而根据 [6] 中的 figure3-5,经过校准,AWR2243 的 Tx phase shifter 可以将误差控制±2°以内。 图 7 和 8 分别是在暗室中测量的 AWR1843 上使用 Tx1 进行 90°调相后,校准前后得到的 range-doppler 热图,测试中在雷达正前方大约 4.5m 的距离静止放置了角反。比较图 7 和 8 可以看出,由于 Tx phase shifter 的误差, 无论是否加校准,在和目标距离相同,速度不同(调相后静态目标的速度在-1/2Vmax,在速度镜像 1/2Vmax 处出现 ghost)的热图位置都出现了 ghost 目标,但是和校准前相比,校准后 ghost 目标的能量下降了 20dB 以上。

图 7. AWR1843 Tx1 进行 90°调相后 Heatmap(校准前)

图 8. AWR1843 Tx1 进行 90°调相后 Heatmap(校准后)

Tx phase shifter 的校准方法在 [6] 中有详细介绍,本文不进行讨论。

5. AWR2944 的 DDMA 接收

图 9. R79 demo 接收信号链

从接收 ADC 数据到生成点云是 DDMA 接收链路的核心部分,由 DSP 和 HWA 协作完成,包括下面步骤:

- 1. Chirp 级处理: DDMA 的 chirp 级处理链路和 TDMA 是一样的,由 DFE 触发 EDMA 搬运数据,使用 HWA 自动完成运算,不需要 DSP 参与,对每个 chirp 执行一次,执行去直流,干扰抑制,1D-FFT 和数据压缩,通过 EDMA 将压缩后的 1D-FFT 结果保存在 L3。在 R79 demo 中 chirp 级处理是通过 RangeProc DPU 完成的。
- 2. Range gate 级处理: 对每个 range gate 执行一次,主要的处理在 HWA 中完成,但是需要 DSP 介入两次。 在 R79 demo 中 Range gate 级处理是通过 Dopplerporc-DDMA DPU 完成的,它的处理工作分为:
 - 2.1. 数据解压缩:将 L3 上的压缩数据通过 EDMA 搬移进 HWA,执行数据解压缩,解压缩后的数据保存在 L3 上的 scratch buffer.
 - 2.2. 2D-FFT 和 DDMA 解调: 待一个 range bin 对应的所有 Doppler bin 的 1D-FFT 结果都解压缩完成后, 通过 EDMA 将 L3 上 scratch buffer 的数据搬移进 HWA,执行 2D-FFT 和 DDMA 解调。DDMA 解调完 成后,需要 DSP 第一次介入,根据获得的 Tx ant 和 sub-band 的对应关系,对 2D-FFT 的结果按照虚拟 天线的位置进行重排。
 - 2.3. 相关检测:由 HWA 对上一步按照虚拟天线位置重排过的 2D-FFT 数据,执行天线相位/增益补偿和水平角度 FFT,接着由 HWA 在 Doppler 维度进行 CFAR-OS 和 Local Maxima 的计算,在 HWA 计算完成后 需要 DSP 第二次介入,根据 HWA 的输出结果提取出可能的(Doppler, azimuth)目标列表,并把这个目标在所有虚拟天线上的 2D-FFT 结果保存下来供后面的垂直角度估计使用。
- 3. 内插和垂直角度估计: 待对所有 range bin 的 range gate 级处理都完成后,由 DSP 对所有检出的(Doppler, azimuth)目标列表进行内插和垂直角度估计,形成最后的点云列表保存在 L3,并通过 mailbox 将点云列表的 信息通知 ARM.

ARM 在得到 L3 上的点云列表后,进行后续的 RANSAC 和 Group tracker,得到 tracker 的目标列表,并通过 UART 输出。RANSAC 和 Group tracker 的处理请参考 [7],本文将不做具体的介绍。

下面我们将分别介绍 DDMA 接收链路核心部分的各个模块。

5.1. Chirp 级处理

在 R79 demo 中 chirp 级处理是通过 RangeProc DPU 完成的。这个 DPU 的处理流程如下图所示。

 Since only 4 HWA mem banks are in use, their size can be extended to 32 kB 2. The EDMA Out Signature channel writes a two-hot signature to the HWA 3. The first trigger to the Dummy paramset is done through SW.

图 10. R79 demo Chirp 级处理信号链

ADC buffer 中一个 chirp 的 ADC 数据收齐后,将通过 ADC_CAPTURE_COMPLETE 事件自动触发 EDMA 的通 道 31(EDMA_DSS_TPCC_A_EVT_RSS_ADC_CAPTURE_COMPLETE),将 ADC 数据从 ADC buffer 搬移到 HWA 的 M0/M1,并启动 HWA 进行后面的运算。整个 chirp 级处理信号链包含 ping 和 pong 两个通道,每个 ADC_CAPTURE_COMPLETE 事件触发 ping 或 pong 通道执行一次,完成一个 chirp 的处理。信号链总共使用了 10 个 HWA Param(ping/pong 各 5 个), 5 个 EDMA channel,下面的表格将分别列出这些 HWA Param 和 EDMA channel 的功能。

表	5.	Chirp	级处理	HWA	Param	配置(Pi	ng)
---	----	-------	-----	-----	-------	-------	-----

Param 编号	功能	触发机制	运算 Engine	输入->输出 Mem	说明
1	Dummy	DMA	None	-	由 EDMA out signature 通道触发,保证当前 chirp 处理开始前,上一个 chirp 已经处理完并 输出
2	DC 估计	DMA	FFT	M0->M2	由 EDMA In signature 通道触发,估计信号的 直流分量,保存在寄存器中
3	DC 去除 +干扰统计	Immediate	FFT	M0->M2	从信号中减去 2 中得到的 DC 估计值后保存到 M2,同时进行干扰统计
4	干扰消除 +FFT	Immediate	FFT	M2->M0	利用 3 中得到的干扰统计先进行干扰消除, 然 后再进行加窗和 FFT

5	数据压缩	Immediate	Compress	M0->M2	完成一个 chirp 的 4 根天线数据的压缩
---	------	-----------	----------	--------	-------------------------

表 6. Chirp 级处理 EDMA 通道配置

Channel 编号	功能	触发机制	触发通道	输入->输出 Mem	说明
1	EDMA In	DFE	-	ADC buf->M0/M1	每个 chirp 由硬件事件 ADC_CAPTURE_COMPLETE 触发 一次,根据当前 chirp 编号将数据搬 移到 M0 或 M1
2	EDMA In Sig	Chain	EDMA In	SIG_DMACHx_DONE-> DMA2HWA_TRIGGER	根据当前 chirp 编号,选择触发对应 的 ping/pong 通道的 HWA DC 估计 Param
3	EDMA Out Ping	HWA	-	M2->L3 radar cube	由 HWA ping 通道数据压缩 Param 触发,每个 chirp 的压缩完成触发一 次,根据当前 chirp 编号将数据搬移 到 L3 radar cube 的对应位置
4	EDMA Out Pong	HWA	-	M3->L3 radar cube	由 HWA pong 通道数据压缩 Param 触发,每个 chirp 的压缩完成触发一 次,根据当前 chirp 编号将数据搬移 到 L3 radar cube 的对应位置
5	EDMA Out Sig	Chain	EDMA Out Ping/Pong	SIG_DMACHx_DONE-> DMA2HWA_TRIGGER	根据当前 chirp 编号,选择触发对应 的 ping/pong 通道的 HWA Dummy Param

需要注意的是 AWR2944 在 ADC buffer 上的数据格式是交织模式,这点和 AWR1642/AWR1843 不同。关于 Chirp 级处理输出的 1D-FFT 数据的压缩将在下一节介绍。

5.2. 数据压缩

AWR2944 HWA 中的数据压缩模块能够对 1D-FFT 的结果进行压缩,再保存到 L3 上。在 2D-FFT 前可以使用 HWA 的解压缩模块先把 L3 上的数据解压缩,再送给 HWA 的 FFT 模块。通过这个功能可以使有限的 L3 空间保存 更大的 radar cube,有利于提高 DDMA 波形的 chirp 总数。

HWA 数据压缩模块的介绍请参考[8]。R79 demo 使用了 HWA 压缩模块的 EGE (Exponential Golomb Encoder) 算法,对每个 chirp 的 1D-FFT 结果进行了 50%压缩比的数据压缩。压缩以 block 为单位进行,每个 block 包含 4 根天线,连续 8 个 range bin 的 1D-FFT 结果,每个 block 压缩前的数据长度为 128 字节 (1D-FFT 结果的每 个样点宽度是 4 字节,总共 32 个样点),压缩后的数据长度为 64 字节。如表 2 所示,R79 demo 共有 192 个 range bin,所以每个 chirp 的数据压缩将分为 24 个 block 进行。对每个 chirp,数据压缩前后 HWA Mem 上的 数据格式如图 11 所示。HWA 完成一个 chirp 的数据压缩后,将通过 EDMA Out Ping/Pong 通道将压缩后的数据 搬移到 L3 上的 radar cube (格式参考图 12)。为了方便 2D-FFT 前的数据解压缩,Radar cube 上不同 chirp 的 同一个编号的压缩 block 是紧排在一起的,所以我们看到图 12 中 768 个 chirp 的 block1 顺序排列在 radar cube 最前面,然后是 768 个 chirp 的 block2, block3,..., block24。

按照 R79 demo 的波形配置, radar cube 在压缩前的空间大小为 2304KB (4byte*4ant*192range*768chirp), 压缩后的空间大小为 1152KB (64byte*24block*768chirp)。可以看出 AWR2944 增加的数据压缩功能对 RAM 空间的节省是巨大的。

Range bins per block = x Rx Antenna per block = 4 nBlock = nRangeBin/x

图 12. R79 demo 的 Radar cube

5.3. 数据解压缩

如图 9 所示,在 range gate 级处理的开始,必须先通过 EDMA 把 Radar cube 上数据搬移到 HWA 后进行数据 解压缩。2D-FFT 需要对所有 chirp(R79 demo 中 N=768)的同一个 range gate 进行 FFT 计算,这就需要对图 12 中每行的所有 768 个压缩 block(chirp)进行解压缩。考虑到 1 个 HWA Mem 的大小只有 16KB, HWA 只能 分次完成这 768 个 block 的解压缩。R79 demo 的解压缩数据处理信号链如图 13 所示,这个信号链包括 ping 和 pong 两个通道(采用 ping-pong 是为了使 EDMA 数据搬移和 HWA 解压缩运算流水运行,提高效率),每个通道 1 次可以解压缩 64 个 block(chirp)的压缩数据,ping 通道 HWA 计算完成将触发 pong 通道 HWA 继续执行, ping 和 pong 通道的 1 次执行将完成 128 个 chirp 的数据解压缩,这也叫解压缩的 1 个 loop。1 个 loop 执行完

ZHCAB85

后,将自动触发下 1 个 loop 的执行,这样通过 6 个 loop 完成了 768 个 block(chirp)的数据解压缩。信号链总共 使用了 2 个 HWA Param(ping/pong 各 1 个), 6 个 EDMA channel,表格 7 和 8 将分别列出这些 HWA Param 和 EDMA channel 的功能。

图 13. R79 demo 的数据解压缩信号链

Param 编号	功能	触发机 制	运算 Engine	输入->输出 Mem	说明
1	解压缩 Ping	DMA	Compress	M0->M2	由 EDMA In Ping signature 通道触发,在 ping 通道 EDMA 将 64 个 block 压缩数据搬移到 M0 后执行
2	解压缩 Pong	DMA	Compress	M4->M6	由 EDMA In Pong signature 通道触发,在 pong 通道 EDMA 将 64 个 block 压缩数据搬移到 M4 后执行

表 8. 数据解压缩 EDMA 通道配置

Channel 编号	功能	触发机制	触发通道	输入->输出 Mem	说明
1	EDMA Ping In	SW/chain	-/EDMA Ping Out	L3 Radar cube->M0	第1个 loop 由 SW 启动,后面 5个 loop 由 EDMA Ping Out 通道 chain,6个 loop 完成 768个 chirp 的解压缩
2	EDMA Ping In Sig	Chain	EDMA Ping In	SIG_DMACHx_DONE-> DMA2HWA_TRIGGER	触发 HWA 解压缩 Ping Param

基于 AWR2944 的汽车雷达 DDMA 波形的原理和实现 18

3	EDMA Pong In	SW/chain	-/EDMA Pong Out	L3 Radar cube->M4	第1个 loop 由 SW 启动,后面 5个 loop 由 EDMA Pong Out 通道 chain,6个 loop 完成 768个 chirp 的解压缩
4	EDMA Pong In Sig	Chain	EDMA Pong In	SIG_DMACHx_DONE-> DMA2HWA_TRIGGER	触发 HWA 解压缩 Pong Param
5	EDMA Ping Out	HWA	-	M2 -> L3 Decomp Scratch buf	由 HWA 解压缩 Ping Param 触发, 每个 block 的解压缩完成触发一次, 将当前 block 解压缩数据搬移到 L3Decomp scratch buf 的对应位置
6	EDMA Pong Out	HWA	-	M6 -> L3 Decomp Scratch buf	由 HWA 解压缩 Pong Param 触 发,每个 block 的解压缩完成触发一 次,将当前 block 解压缩数据搬移到 L3Decomp scratch buf 的对应位置

需要注意的是 HWA 通过 6 个 loop 将解压缩出对应 8 个 range bin 的所有 768 个 chirp 的 1D-FFT 数据,这些数据通过 EDMA Ping/Pong Out 通道搬移到 L3 上的 Decomp Scratch buf。这个 Decomp Scratch buf 的大小是 98,304byte(4byte*4ant*8range*768chirps),格式如图 14 所示。这里的数据将供后面的 DDMA 解调和相关检测使用。每 8 个 range bin 的所有 range gate 级处理完成后,再通过软件启动下 8 个 range bin 的数据解压缩操作,并更新 Decomp Scratch buf 中的内容为下 8 个 range bin 的解压缩数据,这样的循环要执行 24 次,完成总共 192 个 range bin 的处理。

图 14. R79 demo 的 Decomp Scratch buffer

5.4.2D-FFT 和 DDMA 解调

当 5.3 中 1 次数据解压缩的循环完成,输出连续 8 个 range bin 的 768 个 chirp 的 1D-FFT 解压缩数据到 L3 上 的 Decomp Scratch buf 后, R79 demo 将循环 8 次,分别对每个 range bin 进行 2D-FFT, DDMA 解调,相 关检测,得到这个 range bin 上所有的(Doppler, azimuth)目标列表。这是 range gate 级处理的核心部分。如 图 9 所示, range gate 级核心处理中 HWA 和 DSP 需要协同工作。对于 1 个 range bin,需要顺序完成下面 4 个运算步骤:

- 1) HWA 完成 2D-FFT 和 DDMA Metric 生成,这是 HWA 处理的第一阶段 (Stage),我们称之为 Doppler Stage
- 2) DSP 根据 HWA 输出的 DDMA Metric, 获得 Tx ant 和 sub-band 的对应关系,对 2D-FFT 的结果按照虚 拟天线的位置进行重排,我们称之为 DDMA 解调 (DDMA Demodulation)
- 3) HWA 进行水平角度 FFT (Azimuth FFT), CFAR-OS 和 2D Maxima, 我们称之为 Azim Stage
- 4) DSP 根据 HWA 输出的 CFAR-OS 和 2D Maxima 结果提取出这个 range bin 上所有的 (Doppler, azimuth) 目标列表,我们称之为 Extract Obj

为了提高执行效率,使 HWA 处理的步骤 1), 3)和 DSP 处理的步骤 2), 4)流水并行执行,避免 HWA 和 DSP 互相 等待, R79 demo 以 2 个 range bin 为一个基本的处理循环,在这个循环中实现了 ping-pong 2 个数据处理通 道,分别处理 range bin x 和 x+1. 整个 range gate 级处理的时序如图 15 所示。

我们以 DSP 第一次介入的 DDMA 解调(DDMA Demodulation) 为边界,将 HWA 的处理工作分为两个阶段 (Stage): Doppler Stage 和 Azim Stage。在本节我们将介绍 Doppler Stage 的实现,下一节我们将介绍 Azim Stage。

Timing Diagram of Doppler Stage

图 15. R79 demo 的 range gate 级处理时序

Doppler stage 的信号链如图 16 所示,包含 ping-pong 2 个数据处理通道。R79 demo 在需要进行 range gate 级处理的时候,根据当前 range bin 的编号通过软件触发对应 ping 或 pong 通道的 EDMA,将对应这个 range bin 的所有 4 根天线 768chirp 的 1D-FFT 数据搬移到 HWA 的 M0 或 M2(搬移前后数据都是按照天线交织格式排列的),并启动 HWA 的 ping 或 pong 通道进行后面的运算。

ZHCAB85

图 16. R79 demo 的 2D-FFT 和 DDMA 解调信号链

信号链总共使用了 **12** 个 HWA Param(ping/pong 各 6 个), **10** 个 EDMA channel(ping/pong 各 5 个), 下面的 表格将分别列出这些 HWA Param 和 EDMA channel 的功能。

Param 编号	功能	触发机制	运算 Engine	输入->输 出 Mem	说明
1	Dummy	DMA	None	-	由 Doppler FFT Data In Sig 通道触发,保证当前 range bin 处理开始前,输入数据已经搬移到 M0
2	Doppler FFT	Immediate	FFT	M0->M4	计算 4 次 768 点 FFT, 输入输出的数据都按天线交织 排列,输入每个样点 4 byte, 输出每个样点 8 byte
3	Log2Abs	Immediate	FFT	M4->M0	对 2 中计算的每个样点求对数绝对值,输入输出的数 据格式不变,输入每个样点 8 byte,输出每个样点 2 byte
4	天线累加	Immediate	FFT	M0->M1	对 3 中得到的 4 天线 768 点的对数绝对值,进行 4 天 线累加,利用 FFT 的 bin0 实现,输出 768 点的累加 值,每个累加值 2 byte
5	DDMA metric	Immediate	FFT	M1->M0	DDMA Metric 计算,利用了 FFT 的 bin0 实现了 4 点累 加,同时利用 HWA 的 SHUFFLE 功能实现了输入点位 置的控制 (根据 DDMA metric 计算需要)

表 9. D	oppler stage	处理	HWA	Param	配置(I	Ping)
--------	--------------	----	-----	-------	------	-------

6	Sub-band 累加	SW	FFT	M1->M0 +768*2	等待 DDMA Metric 计算和搬移完毕后手工触发,根据 4 的输出,将 6 个 sub-band 上 128 个 Doppler bin 的 对数绝对值累加起来,利用了 FFT 的 bin0 实现了 6 点 累加,同时利用 HWA 的 SHUFFLE 功能实现了输入点 位置的控制
---	----------------	----	-----	------------------	---

表 10. Doppler stage 处理 EDMA 通道配置(Ping)

Channel 编号	功能	触发机 制	触发通道	输入->输出 Mem	说明
1	Doppler FFT Data In	SW	-	L3 Decomp Scratch buf ->M0	每个 range bin 开始处理前,由软 件手工触发将数据搬移到 M0
2	Doppler FFT Data In Sig	Chain	Doppler FFT Data In	SIG_DMACHx_DONE-> DMA2HWA_TRIGGER	触发 HWA ping 通道的 Dummy Param
3	Doppler FFT Data Out	HWA	-	M4->L3 Doppler FFT Scratch Buf	由 HWA ping 通道 Log2Abs Param 触发,在对数绝对值计算完毕后,将 Doppler FFT 数据搬移到 L3 Doppler FFT Scratch buf 的对应位置
4	DDMA Metric Data Out	HWA	-	M0->L3 DDMA Metric Scratch Buf	由 HWA ping 通道 DDMA metric Param 触发,将计算完的 DDMA metric 搬移到 L3 DDMA Metric Scratch buf 的对应位置
5	SumTx Data Out	HWA	-	M0+768*2->L3 Det Matrix Buf	由 HWA ping 通道 Sub-band 累加 Param 触发,将计算完的 Sub-band 累加结果搬移到 L3 Det Matrix 的对 应位置

DDMA 解调的核心是 DDMA Metric 的计算 (HWA 完成) 和 2D-FFT 结果的重排 (DSP 完成)。R79 demo 里 HWA 在完成 Doppler FFT, Log2Abs 和天线累加后,将生成对应 768 个 Doppler bin 的能量热图,这 769 个 Doppler bin 分为 6 个 sub-band,每个 sub-band 有 128 个 Doppler bin。R79 demo 采用表 11 所示的算法 进行 DDMA 解调。

基于 Empty-band 的 DDMA 解调算法(4 Tx ants, 2 Empty-bands, total sub-bands = 6): 假设 S1, S2,...S6 是一个 Doppler bin 在对应的 6 个 sub-band 上的热图能量 1:对于数组[S1, S2,...S6]执行长度为 4 的循环移位累加得到: Z1 = S1 + S2 + S3 + S4 Z2 = S2 + S3 + S4 + S5 Z3 = S3 + S4 + S5 + S6 Z4 = S4 + S5 + S6 + S1 Z5 = S5 + S6 + S1 + S2 Z6 = S6 + S1 + S2 + S3 2:找到[Z1, Z2, Z3, Z4, Z5, Z6]的最大值 Zi(i∈[1,2,..6]) 3:根据最大值 Zi 的位置确定 4 个 Tx ants 对应的 sub-band index 为[i, i+1, i+2, i+3] mod 6

DDMA Metric 是一个 128×6 的数组,保存对于 128 个 Doppler bin 的[Z1, Z2,...Z6]的能量,它的计算是通过 HWA DDMA Metric Param 的 FFT 运算功能实现的,采用 4 点 FFT 的 bin0 获得 4 个 bin 的累加值,而计算时 访问 Doppler bin 能量热图的格式是通过 HWA 的 SHUFFLE 功能实现的,计算的结果输出到 L3 上的 DDMA Metric Scratch buf。图 17 给出了 HWA DDMA Metric Param 计算 DDMA Metric 的实现方法。在 HWA 计算 完 DDMA Metric 后,需要 DSP 介入,在每个 Doppler bin 对应的 6 个 Metric [Z1, Z2,...Z6]上找到最大值 Zi, 根据表 11 的方法,推断出 4 个发射天线 Tx1/2/3/4 在 6 个 sub-band 2D-FFT 数据(保存在 L3 上的 Doppler FFT Scratch Buf)中的位置,然后把 Tx1/2/3/4 的数据顺序提取出来,拷贝到 L3 上的 dopFFTSubMat buf,这就是 DSP 的 DDMA 解调。DDMA 解调前 2D-FFT 数据的格式是[128 Doppler][6 sub-band][4 Rx ant][8 byte], DDMA 解调后 2D-FFT 数据的格式变为[128 Doppler][4 Tx ant][4 Rx ant][8 byte].解调后的数据格式中每 个 range bin 的 16 根虚天线的数据按 Tx1Rx1->Tx1Rx2->Tx1Rx3->Tx1Rx4->Tx3Rx1-> Tx3Rx2-> Tx3Rx3->Tx3Rx4->Tx4Rx1->Tx4Rx2->Tx4Rx4->Tx2Rx1->Tx2Rx3->Tx2Rx3-> Tx2Rx4 的 顺序排列,方便后面的水平角度 FFT 的计算。

图 17. R79 demo HWA 计算 DDMA Metric 的方式

基于 AWR2944 的汽车雷达 DDMA 波形的原理和实现 23

5.5. 相关检测

通过 DDMA 解调我们获得了每个 range bin 按照虚天线顺序排列好的 2D-FFT 数据, R79 demo 的相关检测就是 在虚天线维度对 2D-FFT 的结果进行水平角度 FFT,并对 FFT 的结果在 Doppler 维度进行 CFAR 检测(为了输出尽可能多的点云, R79 demo 没有进行 range 维度的 CFAR)。因为我们在 Doppler 维度进行检测的时候,利用了 虚天线阵列的 2D-FFT 结果,这是一个相关的检测(另一种常用的非相关检测方法是先简单地把所有虚天线的 2D-FFT 结果合并,再检测)。在 4 接收天线的场景,相关检测的性能比非相关检测要好 1.5 到 2dB,这也是 R79 demo 提高雷达性能的一个重要手段。

相关检测的信号链如图 18 所示,包含 ping-pong 2 个数据处理通道。每个通道 1 次处理一个 1 个 range bin, 首先通过 EDMA 将这个 range bin 对应的 DDMA 解调后的 128 个 Doppler bin 上的 12 根水平虚拟天线的 2D-FFT 数据搬移到 HWA 内。然后在每个 Doppler bin 的 12 根虚天线数据做 48 点的补零 FFT,得到图 19 所示的 128×48 的[Doppler, Azimuth]热图。在这个热图上,将分别使用 HWA 的 CFAR 和 Local-Maxima engine 进 行 1 次 Doppler 维度的 CFAR-OS 检测,和 2D 平面上的 Maxima 检测,只有当 1 个 bin 同时满足: 1) 在 Doppler 维 CFAR-OS 检测超过门限, 2)能量大于 2D 平面上下左右 4 个 bin 的能量 才判断这个 bin 是一个有效 的[Doppler, Azimuth]目标,放入有效目标列表。需要注意的是,HWA 的 CFAR 和 Local-Maxima engine 的 结果都通过 EDMA 先输出到 L2 上的 CFAR Scratch Buf 和 LocalMax Scratch Buf,然后由 DSP 从这两个 buffer 中提取出有效信息并进行比较,保存同时满足上面两个条件的 bin,这就是 DSP 执行的 Extract Obj 的工作。

信号链总共使用了 10 个 HWA Param(ping/pong 各 5 个), 10 个 EDMA channel(ping/pong 各 5 个), 表格 12 和 13 分别列出了这些 HWA Param 和 EDMA channel 的功能。

图 18. R79 demo 的相关检测信号链

表 12. Azim stage 处理 HWA Param 配置(Ping)

ZHCAB85

Param 编号	功能	触发机制	运算 Engine	输入->输 出 Mem	说明
1	Dummy	DMA	None	-	由 Azim FFT Data In Sig 通道触发,保证当前 range bin 处理前,重排后的 2D-FFT 结果已经搬移 到 M0
2	Azim FFT	Immediate	FFT	M0->M4	计算 128 次 48 点 FFT (12 根水平虚天线后补 36 个零)并求 log2Abs,输入每个样点 8 byte,输出每 个样点 2 byte
3	CFAR	Immediate	CFAR	M4->M0	对 2 中输出的[Doppler, Azim]热图在 Doppler 方向 做 CFAR-OS
4	LocalMax	Immediate	LOCAL MAX	M4->M1	对 2 中输出的[Doppler, Azim]热图计算 2D Local Maxima
5	Dummy	Immediate	None	-	通过中断通知软件 Azim Stage HWA 执行完毕

表 13. Azim stage 处理 EDMA 通道配置(Ping)

Channel 编号	功能	触发机 制	触发通道	输入->输出 Mem	说明
1	Azim FFT Data In	SW	-	L3 dopFFTSubMat buf ->M0	每个 range bin 的 DDMA 解调完成 后,由软件手工触发将重排后的 2D- FFT 结果搬移到 M0
2	Azim FFT Data In Sig	Chain	Azim FFT Data In	SIG_DMACHx_DONE-> DMA2HWA_TRIGGER	触发 HWA ping 通道的 Dummy Param
3	CFAR Out	HWA	-	M0->L2 CFAR Scratch Buf	由 HWA ping 通道 CFAR Param 触 发,对这个 range bin 的 Doppler 维 度 CFAR 完成后,将结果搬移到 L2 CFAR Scratch Buf 的对应位置
4	LOCAL MAX Out	HWA	-	M1->L2 LocalMax Scratch Buf	由 HWA ping 通道 LocalMax Param 触发,对这个 range bin 的 LocalMax 完成后,将结果搬移到 L2 LocalMax Scratch Buf 的对应位置
5	Azim FFT Data Out	HWA	-	M4->L2 AzimFFT Buf	由 HWA ping 通道最后的 Dummy 触 发,将 Azim FFT 结果搬移到 L2 AzimFFT Buf 的对应位置

图 19. R79 demo CFAR 和 Local Maxima 原理

5.6. 内插和垂直角度估计

R79 demo 通过前面介绍的 Chirp 级和 Range gate 级处理,在对一个 frame 的 128 个 range bin 完成相关检测后,将形成当前 frame 有效的 [Doppler, Azimuth] 目标列表。在这个列表的基础上,R79 demo 进行了 Azimuth 维度的角度内插,和垂直角度估计,以形成最终的点云列表,这个计算是在 DSP 上完成的。

首先对于相关检测得到的每个目标的 Azimuth bin 的索引 peakIdx 和它前后的两个相邻索引 peakIdx-1, peakIdx+1,执行内插,精度提升(将 azimuth bin 的数量 N 从 48 提高到 256)和镜像翻转,获得在[-128, 128] 范围内的索引 peakIdxRound, 算法如表 14 所示。

AWR2944 EVM 的虚拟天线阵列如图 20 所示,包含 12 根水平虚拟天线,4 根垂直虚拟天线。

基于 AWR2944 的汽车雷达 DDMA 波形的原理和实现 26

假设目标的水平角度为 θ ,垂直角度为 φ ,则根据图 20 的天线阵列,目标在水平方向相邻天线间的相位旋转值 ω_x 和目标在垂直方向相邻天线间的相位旋转值 ω_z 满足:

$$\omega_x = \pi \sin(\theta) \cos(\varphi) \tag{18}$$

$$\omega_z = 1.6\pi \sin(\varphi) \tag{19}$$

对目标来说,在12根水平虚天线上的接收信号可表示为(假设目标在第1根水平虚天线上的信号为Ae^{jψ}):

 $Ae^{j\psi}[1 \ e^{jw_x} \ e^{j2w_x} \ e^{j3w_x} \ e^{j4w_x} \ e^{j5w_x} \ e^{j6w_x} \ e^{j7w_x} \ e^{j8w_x} \ e^{j9w_x} \ e^{j10w_x} \ e^{j11w_x}]$ (20)

类似的,目标在4根垂直虚天线上的接收信号可表示为

$$Ae^{j(\psi+\omega_z)} \left[e^{j2w_x} e^{j3w_x} e^{j4w_x} e^{j5w_x} \right]$$
(21)

在 R79 demo 中我们采用表 15 中的算法来估计目标的水平角度 θ 和垂直角度 φ

表 15. R79 demo 的角度估计算法

1:根据目标在 Azimuth bin 中 peak 的素引*peakIdxRound*计算*sin*(θ) *sin*(θ) = $\frac{peakIdxRound}{0.5N}$, *N* = 256 2:计算目标水平相位旋转步长 ω_x $\omega_x = \pi * sin$ (θ) 3: 将经过相位幅度矫正后的 12 根水平天线的 2D-FFT sample 向量 $\overline{azimSamplesCalib}$ 和对应其水平天线位置的相位旋转向 量做内积得到*Ae^{ip}* $Ae^{ip} = \overline{azimSamplesCalib} \otimes [1 e^{-jw_x} e^{-j2w_x} e^{-j3w_x} e^{-j4w_x} e^{-j5w_x} e^{-j6w_x} e^{-j7w_x} e^{-j8w_x} e^{-j9w_x} e^{-j11w_x}]$ 4: 将经过相位幅度矫正后的 4 根垂直天线的 2D-FFT sample 向量 $\overline{elevSamplesCalib}$ 和对应其水平天线位置的相位旋转向量做 内积得到*Ae^{j(ψ+\omega_z)}* $Ae^{j(ψ+\omega_z)} = \overline{elevSamplesCalib} \otimes [e^{-j2w_x} e^{-j3w_x} e^{-j4w_x} e^{-j5w_x}]$ 5: 计算 ω_z $\omega_z = arg[Ae^{j(ψ+\omega_z)} * conj(Ae^{j\psi})]$ 6: 根据公式 19, 计算sin(φ) $sin(<math>\varphi$) = $\frac{\omega_z}{1.6\pi}$

根据表 15 中的第 1 和第 6 步结果,利用三角函数关系我们很容易计算出*cos(θ*)和*cos(φ*),再结合目标的距离R, 就可以得到目标在三维坐标系中的坐标(X,Y,Z)。R79 demo DDMA 信号链输出的点云信息包含目标的 (X,Y,Z) 坐标和速度 V。

6. 总结

本文首先介绍了 MIMO 雷达的基本原理并比较了几种适合于 TI AWR2944 的 MIMO 雷达波形,重点研究了 DDMA 波形的原理,优势和基于 Empty-band 的 DDMA 发射,解调和解速度模糊方法。本文接着以<u>TIDEP-01027</u> (R79 demo)为例详细介绍了在 AWR2944 上实现 DDMA 发射和接收处理的数据流,信号链和关键算法,特别是通过 DSP, HWA 和 EDMA 协同完成接收信号处理的技巧。本文可以帮助汽车雷达客户全面地了解 DDMA 波形的原理 和它在 AWR2944 上的实现方法,帮助客户更好地发挥 AWR2944 的优势,提升其下一代汽车雷达的性能。

ZHCAB85

参考文献

1. Sriram Murali and Pankaj Gupta, "FMCW Radar System Overview, Session #1: FMCW Radar Signal Processing", TI internal document, 2015

2. SWRA554A, MIMO Radar

- 3. Hongbo Sun, Frederic Brigui, "Analysis and Comparison of MIMO Radar Waveforms", 2014 International Radar Conference
- 4. Daniel J.Rabideau, "Doppler-offset Waveforms for MIMO Radar", 2011 IEEE RadarCon (RADAR)
- 5. TIDEP-01027, <u>High-end corner radar reference design</u>
- 6. SPRACV2, Cascade Coherency and Phase Shifter Calibration
- 7. TIDUF01, <u>Design Guide: TIDEP-01027</u>
- 8. SWRA663, Memory Compression and Decompression Engine for TI mmwave Radar

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司