

电量计 Golden Learning 方法及易错分析

朱明武 (Mingmo Zhu)

TI Shenzhen

ABSTRACT

TI 阻抗跟踪(Impedance Track[™]) 电量算法能够在实际充放电过程中动态学习电池阻抗和容量, 从而保持计量准确性。在做量产开发时,需要用黄金样板电池做 Golden Learning 来获得量产文 件,从而烧录到其它量产电池上。本文介绍阻抗跟踪电量计 Golden Learning 的目的、指标、流 程方法、以及可能出错的原因分析。

	Contents				
1.	电量计 Golden Learning 目的	2			
2.	电量计 Golden Learning 指标	2			
3.	电量计 Golden Learning 流程	4			
4.	电量计 Golden Learning 易错分析	6			
参考	∽↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓	6			

Figures

Figure 1.	电量计典型开发流程	.2
Figure 2.	Golden Learning 步骤	.5

1. 电量计 Golden Learning 目的

TI 阻抗跟踪(Impedance Track[™]) 电量计(比如 <u>BQ40Z50-R2</u>, <u>BQ28Z610</u>, <u>BQ27Z561</u>, <u>BQ27750</u>, <u>BQ27546</u>, <u>BQ27542-G1</u>等) 基于该电池化学 ID 进行容量计算。化学 ID (CHEM ID) 包含了开路电压 曲线(OCV table)、最大化学容量 Qmax、阻抗曲线(Ra table)等信息。化学 ID 是基于全新单电芯的, 当电芯组装成电池包后考虑到电芯并联数目、保护板、电芯个体差异等因素,电池组的容量和阻抗与 ID 记录的数据有所不同。这个时候就需要做 Golden Learning,学习、更新 Qmax 和 Ra table 等信息, 以便电量计模型更符合实际电池、容量计算更准确。

电量计 Golden Learning 就是通过特定的充放电循环(learning cycle)来学习、更新电池模型参数。如图 1 阻抗跟踪 [™]电量计典型开发流程所示, Golden Learning 的前提是<u>获取正确的 CHEM ID</u>、校准电压、 电流和温度等; Golden Learning 成功后即可制作量产文件(Golden image)以供批量生产。生产后成品 电池则不需要重新跑 Golden Learning 了。

Figure 1. 电量计典型开发流程

2. 电量计 Golden Learning 指标

电量计 Golden Learning 成功判断标准是 Qmax、Ra table 是否更新成功。相应地它会通过 Update Status, Ra flag 等指标来显示。

2.1 Update Status

完整的 Update Status 包含以下 Bit 3~Bit 0 四位,比如 <u>BQ40Z50-R2</u>, <u>BQ28Z610</u>, <u>BQ27Z561</u>等电量 计都是这样。有些电量计比如 <u>BQ27546</u>, <u>BQ27542-G1</u>等只有 Bit 2~Bit 0 三位。

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RSVD	RSVD	RSVD	RSVD	Qmax_Field_Updated	Enable	Update1	Updat0

Update1, Update0 (Bits 1-0): Update Status。当做 learning cycle 时这两位会自动更新。

0,0 = QMax NOT updated, Ra NOT updated

0,1 = QMax updated, Ra NOT updated

1,0 = QMax updated, Ra updated

1,1 = Unused

Enable (Bit 2): Impedance Track gauging is enabled. 当发送 Gauge_Enable(又称 IT_Enable)命令时 这个位会自动置 1。

1 = Enabled

0 = Disabled

Qmax_Field_Updated (Bit 3): QMax has updated in the field. 当 Update1, Update0 (Bits 1–0) = 1,0 后 继续循环 Qmax 再次更新时这个位会自动置 1。

1 = Updated

0 = Not updated

RSVD (Bits 7-4): Reserved. Do not use.

所以电量计初始状态下 Update Status = 0x00,代表阻抗跟踪算法没有开启,Qmax, Ra table 都没有学习更新。

当发送 Gauge_Enable(又称 IT_Enable)命令开启阻抗跟踪算法时, Update Status = 0x04, 这时 Qmax, Ra table 才会允许执行学习更新。注意 GAUGE_EN 命令具有翻转特性,点击一次置 1,再点 击一次清 0,所以要看 IT Status [QEN]或 Manufacturing Status [GAUGE_EN]是否为 1,红色代表 1, 绿色代表 0。

当第一次充满并静置时 Qmax 更新了,则 Update Status = 0x05。

接着放空并静置 Qmax, Ra table 学习更新了,则 Update Status = 0x06。

如果继续跑多一个循环更新 Qmax,则 Update Status = 0x0E。

对于 BQ40Zxx/BQ30Zxxx/BQ28Zxxx/BQ27Zxxx, Update Status 最大为 0x0E。

对于 BQ2754x/BQ2774x, Update Status 最大为 0x06。

对于 BQ27510/520/530/531, Update Status 最大为为 0x02。

对于 BQ274xx/ BQ276xx,不用看 Update Status,当 ControlStatus [QMAX_UP]和 ControlStatus [RES_UP]都置位时,即学习成功。

学习成功后要制作量产文件时设置 Update Status = 0x02,表示这个文件是已经做过 Golden Learning 的,Qmax,Ra table 都已经学习更新过的,但阻抗跟踪算法还没开启,电池厂商在电池包出厂前最后 一工步发送 Gauge_Enable(又称 IT_Enable)命令开启阻抗跟踪算法。

注意不要为了省略 Golden Learning 而手动改 Update Status 为 06 或 0E。

2.2 Ra Flag

每一节电芯都会有一张 Ra table 阻抗表,分成 15 个格点(Grid point) Cell R_a0, R_a1, ..., R_a14。为 了延长 data flash 读写寿命,电量计还会备份一张阻抗表,标记为 xCell R_a0, R_a1, ..., R_a14,它的 数值跟 Cell R_a0, R_a1, ..., R_a14 相同,在不同的放电循环里轮流使用 Cell 和 xCell 两张表。

高字节		低字节				
0x00	Qmax 和 Ra table 已更新	0x00	当前放电循环不使用该阻抗表			
0x05	静置状态,正在更新 QMax	0x05	RSVD			
0x55	放电状态,正在更新 Ra	0x55	当前放电循环使用该阻抗表			
0xFF	该阻抗表从未更新	OxFF	该阻抗表从未使用过			

Ra flag 指示了该阻抗表的状态。Ra flag 包含 2 字节的信息,含义如下:

所以当刚刚导入化学 ID 后做 Golden Learning 之前 Ra flag = 0xFFFF。此时意味着阻抗表更新幅度不 受限制。当 Golden Learning 成功后 Ra flag = 0x0000 or 0x0055。从此以后,在实际使用放电过程阻 抗表也会更新,但更新幅度则会受到 Ra filter 限制了。所以在做 Golden Learning 之前要注意检查 Ra flag 是否是 0xFFFF。

3. 电量计 Golden Learning 流程

3.1 Golden Learning 的准备工作

(1)准备新电池,电量计烧录原始 SREC 固件,配置参数(Design Capacity, Design Voltage, Charge Term Taper Current, Discharge (Dsg) Current Threshold, Charge (Chg) Current Threshold, Quit Current and Term Voltage 等,请参考《<u>从零开始快速让电量计工作起来</u>》文档),导入正确的化学 ID。此时 Update Status = 0x00 (IT disabled), Cellx R_a Flags = 0xFF55 and xCellx R_a Flags = 0xFFFF, Gas Gauging->State->Qmax Cycle Count = 0。

(2)校准电压、电流、温度。

(3)导出这个时候的固件 SREC/SENC 文件备用。

(4)发送复位命令,此时电池作为 Golden Pack。

(5)把电池放空(放到 3V 以下),然后静置 5 个小时以上。如图 2 的 S0 和 S1 步骤。

3.2 Golden Learning 学习更新过程

(1)对放空静置稳定的电池(图 2 的 S1)发送 Gauge_Enable(又称 IT_Enable)命令(0x0021)开启阻抗跟踪 算法(BQ274xx 等跳过该步骤)。这时 Qmax, Ra table 学习更新才正式开始。

此时 Update Status = 0x04 (IT enabled), IT Status [QEN] = 1, Manufacturing Status [GAUGE_EN] = 1, GaugingStatus [R_DIS] = 0 or ControlStatus [RUP_DIS] = 0, [VOK] = 1.

(2)把电池充饱,确保有效的满充截止条件(FLAGS[FC]要置位),如图 2 的 S2。

TEXAS INSTRUMENTS

(3)静置 2 小时,如图 2 的 S3。

此时电压充分稳定后电量计采样到有效 OCV 的话 GaugingStatus[REST] = 1, [VOK] = 0。结合 S1 的 OCV,有两个有效的 OCV 和 S2 累积电荷量则可以更新 Qmax,那么可以看到 Qmax0 发生变化,Update Status = 0x05。

(4)把电池以 0.2C 电流放空到截止电压, 如图 2 的 S4。

在开始放电时[VOK] = 1。放电过程中阻抗表开始更新。

(5)静置 5 小时,如图 2 的 S5。

此时电压充分稳定后电量计采样到有效 OCV 的话 GaugingStatus[REST] = 1, [VOK] = 0。Qmax 又会 更新。Update Status = 0x06。

(6) 至此, Golden Learning 已经完成了 1 个学习周期, Qmax 和 Cell Ra 表已经更新。重复 S2~S5 步骤, 完成第 2 个学习周期, xCell Ra 表也更新, Update Status = 0x0E。

Figure 2. Golden Learning 步骤

3.3 制作量产文件

(1)导出学习成功的 GG 文件。用记事本打开 GG 文件修改 Cycle Count = 0, Qmax Cycle Count = 0, Update Status = 02 等。

(2)导入前面准备工作里备份的 SREC/SENC 文件。然后导入刚刚修改的 GG 文件。复位 Lifetime 等记录。

(3)导出量产文件 SREC/SENC/BQFS/OTFS 文件。

另外,如果出现低温时 RSOC 有跳变的情况,则可利用 <u>GPCRB</u>工具修正低温模型,最后再导出量产 文件。

4. 电量计 Golden Learning 易错分析

为了方便分析 Golden Learning 过程,请设置自动 log 数据和自动导出 GG 文件。在 bqStudio>> Registers>> Start Log 可自动 log 数据,在 bqStudio>> Data Memory>> Auto Export 可自动导 GG 文 件。在 bqStudio>>Window>>Preferences>>Registers>>Scan/Log Interval 可设置 log 间隔,4~10 秒 即可。在 bqStudio>>Window>>Preferences>>Data Memory>>Auto Export Interval 可设置 GG 导出间 隔,10~30 分钟间隔即可。

4.1 Qmax 不更新的可能原因分析

- (1). 阻抗跟踪算法未开启,请检查 IT Status [QEN] = 1, Manufacturing Status [GAUGE_EN] = 1。
- (2).没有满充,请检查充电停止前 FLAGS[FC]=1。[FC]置位一般要求电池电压要满足 taper voltage、 电流要小于 taper current、持续 80s 以上。特别注意,有些系统实际使用时没有满充,比如 E-bike 电池、BBU 电池等,4.2V 的电池实际使用时只充到 4.1V,但是在做 Golden Learning 时请务必充 到 4.2V。
- (3). 充电不连续、放电不连续。
- (4). 过放导致电量计掉电或复位。
- (5). 静置时间不够,请检查静置结束前[VOK]=0。
- (6).静置时电流不为0导致电压不稳定。
- (7). 温度超出常温(10°C~40°C)范围。
- (8). 如果是磷酸铁锂 LiFePO4 电池则充电静置时间要延长 5 小时以上。

4.2 Ra table 不更新的可能原因分析

- (1). Qmax 未更新,请按 4.1 检查 Qmax 未更新的可能原因。
- (2). 化学 ID 不匹配, [RDIS]=1, 请先<u>获取正确的 CHEM ID</u>。
- (3). 放电电流太小(比如<0.1C),请用 0.2C。

参考文献

1. Achieving the Successful Learning Cycle: http://www.ti.com/lit/an/slua903/slua903.pdf

- 2. TI 阻抗跟踪电量计化学 ID 获取方法, http://www.ti.com.cn/cn/lit/an/zhca838/zhca838.pdf
- 3. Theory and Implementation of Impedance Track Battery Fuel Gauge: <u>https://e2echina.ti.com/cfs-file/_key/telligent-evolution-components-attachments/00-24-00-00-00-00-02-91/Theory-and-Implementation-of-Impedance-Track-Battery-Fuel_2D00_Gauging-Algorithm.pdf</u>
- 4. BQ40Z50-R2 Technical Reference Manual, http://www.ti.com/lit/pdf/sluubk0
- 5. BQ27542-G1 Technical Reference Manual, http://www.ti.com/lit/pdf/sluub65

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司