
Application Report
SWRA470–December 2014

CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting

AlonSrednizki

ABSTRACT
This application report serves as a guide to port CC3000-compatible code to the CC3100.

Contents
1 Introduction ... 1
2 Getting Started - First Steps ... 2
3 Application Programming Interfaces (APIs) .. 3
4 References .. 10

List of Tables

1 Easy Adaptation APIs .. 3
2 Medium Adaptation APIs ... 4

1 Introduction
The new CC3100 host driver adds greater support for different system environments. However, the driver
APIs remains similar (not identical) to the ones used by the CC3000 driver.

NOTE: It is assumed that the CC3100 host driver porting (if not using one of the reference solutions
provided in the CC3100 Software Development Kit (SDK) was already completed as
described in the CC3100 Programmers Guide wiki.

This application report outlines the changes needed to adapt application code to fit the CC3100, CC3200
Wi-Fi subsystem driver. it also reviews all APIs that require adaptation and divides them into sections by
the level of effort required. Each API section contains a list of CC3000 APIs and their corresponding
CC31xx APIs and examples on how the adaptation might be implemented.

SimpleLink is a trademark of Texas Instruments.
Wi-Fi is a registered trademark of Wi-Fi Alliance.
All other trademarks are the property of their respective owners.

1SWRA470–December 2014 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/tool/cc3100sdk
http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

Getting Started - First Steps www.ti.com

2 Getting Started - First Steps
Before adapting the new APIs to the CC3100 application code, four steps are necessary to make sure the
project is ready. It is recommended to use one of the existing CC31xx demo applications to help frame the
steps below.

2.1 Reassign Include's
From the CC3000 to the CC31xx host driver, the header file definitions and configurations have changed
with the intent of making things simpler. The application code needs to be pointed to the new header files
to support the CC31xx.

The only header file needed by the CC31xx host driver is:
• “simplelink.h” – This header file includes everything necessary to support the CC31xx APIs. This

header file replaces the CC3000’s “wlan.h”, “nvmem.h”, “socket.h”, and “netapp.h”.

The resulting set of included header files for the CC3100 application code should be shorter and simpler
than the set used with the CC3000.

2.2 Include “user.h”
The “user.h” file needs to be included within an application project. This file is the only file managing all
platform and OS dependent items, therefore, it is the key file for doing driver porting to different MCU and
OSs.

For more information, see the CC3100 Programmers Guide wiki.

2.3 Verify Physical Layer
The CC31xx Host Driver utilizes the host platform’s physical interface (serial peripheral interface (SPI) or
universal asynchronous receiver/transmitter (UART)) through user-configured functions assigned in the
“user.h” file. These functions serve as the physical interface driver and are specific to the host platform.
The function implementations are necessary for the following commands:
• Open
• Close
• Read
• Write

Unlike in CC3000, the CC3100 is using standard SPI protocol. Thus, platforms using the CC3000 need to
modify their SPI driver to act as a standard SPI driver instead of a proprietary one. For further details, see
the CC3100 Host Interface User's Guide wiki.

2.4 Provide Callback Handler Routines for Asynchronous Events
Similar to the CC3000, the CC3100 generates asynchronous events in different situations. These
asynchronous events must be caught through the use of the four event groups that can utilize or mask
through user.h. The four event groups are:
• WLAN events
• Network Application events
• Socket events
• General device events

2 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting SWRA470–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/CC32xx_Programmers_Guide
http://processors.wiki.ti.com/index.php/CC31xx_Host_Interface
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

www.ti.com Application Programming Interfaces (APIs)

For further information on the CC3100 asynchronous events, see the SimpleLink Wi-Fi Programmers
User's Guide wiki.

In CC3000 applications, asynchronous events were handled via the CC3000_UsynchCallback() function.
The callback functions that ties to the four handlers above need to replace CC3000_UsynchCallback()
within the application code.

3 Application Programming Interfaces (APIs)

3.1 'Easy' Adaptation APIs
APIs that fall into the ‘easy’ adaptation category require little effort to port. The differences between these
APIs are limited to function names, function return typecasts, and function parameter typecasts; the
functionality of these APIs remains the same. There are 30 APIs that fall into the ‘easy’ adaptation
category.

Table 1. Easy Adaptation APIs

Number CC3000 API CC31xx API
1 int socket (long domain, long type, long protocol) _i16 sl_Socket(_i16 Domain, _i16 Type, _i16 Protocol)
2 long closesocket (long sd) _i16 sl_Close(_i16 sd)
3 long accept (long sd, sockaddr *addr, socklen_t *addrlen) _i16 sl_Accept(_i16 sd, SlSockAddr_t *addr, SlSocklen_

t *addrlen)
4 long bind (long sd, const sockaddr *addr, long addrlen) _i16 sl_Bind(_i16 sd, const SlSockAddr_t *addr, _i16 addrlen)
5 long listen (long sd, long backlog) _i16 sl_Listen(_i16 sd, _i16 backlog)
6 long connect (long sd, const sockaddr *addr, long addrlen) _i16 sl_Connect(_i16 sd, const SlSockAddr_t *addr, _i16

addrlen)
7 int select (long nfds, fd_set *readsds, fd_set *writesds, fd_set _i16 sl_Select(_i16 nfds, SlFdSet_t *readsds, SlFdSet_

*exceptsds, struct timeval *timeout) t *writesds, SlFdSet_t *exceptsds, struct SlTimeval_t *timeout)
8 int setsockopt (long sd, long level, long optname, const void _i16 sl_SetSockOpt(_i16 sd, _i16 level, _i16 optname, const

*optval, socklen_t optlen) void *optval, SlSocklen_t optlen)
9 int getsockopt (long sd, long level, long optname, void _i16 sl_GetSockOpt(_i16 sd, _i16 level, _i16 optname, void

*optval, socklen_t *optlen) *optval, SlSocklen_t *optlen)
10 int recv (long sd, void *buf, long len, long flags) _i16 sl_Recv(_i16 sd, void *buf, _i16 Len, _i16 flags)
11 int recvfrom (long sd, void *buf, long len, long flags, sockaddr _i16 sl_RecvFrom(_i16 sd, void *buf, _i16 Len, _i16 flags,

*from, socklen_t *fromlen) SlSockAddr_t *from, SlSocklen_t *fromlen)
12 int send (long sd, const void *buf, long len, long flags) _i16 sl_Send(_i16 sd, const void *buf, _i16 Len, _i16 flags)
13 int sendto (long sd, const void *buf, long len, long flags, const _i16 sl_SendTo(_i16 sd, const void *buf, _i16 Len, _i16 flags,

sockaddr *to, socklen_t tolen) const SlSockAddr_t *to, SlSocklen_t tolen)
14 int gethostbyname (char *hostname, unsigned short _i16 sl_NetAppDnsGetHostByName(_i8 * hostname, _u16

usNameLen, unsigned long *out_ip_addr) usNameLen, _u32* out_ip_addr,_u8 family)
15 void wlan_stop (void) _i16 sl_Stop(_u16 timeout)
16 long wlan_disconnect (void) _i16 sl_WlanDisconnect(void)
17 long wlan_ioctl_del_profile (unsigned long ulIndex) _i16 sl_WlanProfileDel(_i16 Index)

You might adapt the ‘easy’ APIs by simply replacing the old functions and their parameter typecasts with
the new implementations. One way to do this is to use inline functions as a means to replace functions
with their updated equivalents.

Below is an example of using an inline function to replace socket() with the new sl_Socket(). This inline
function could sit in a header file, and could reference the CC31xx ‘SimpleLink’ header file in which
sl_Socket() is defined (simplelink.h). Any new parameter types could be handled with a typecast.
#include "simplelink.h"

inline long socket(long domain, long type, long protocol)
{

return (int)sl_Socket((int)domain, (int)type, (int)protocol);
}

3SWRA470–December 2014 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

Application Programming Interfaces (APIs) www.ti.com

NOTE: For all BSD socket APIs, the driver already has backward compatibility for standard BSD
socket API names (as used in CC3000), by just defining “SL_INC_STD_BSD_API_NAMING”
compilation flag.

3.2 'Medium' Adaptation APIs
APIs that fall into the ‘medium’ adaptation category require a little more effort to port. These APIs may
differ in input parameters or name, but overall functionality remains the same.

Table 2. Medium Adaptation APIs

Number CC3000 API CC31xx API
1 long netapp_config_mac_adrress (unsigned char *mac) sl_NetCfgSet(SL_MAC_ADDRESS_SET,1,SL_MAC_ADDR_LEN,

(_u8 *)newMacAddress)
2 unsigned char nvmem_get_mac_address (unsigned char sl_NetCfgGet(SL_MAC_ADDRESS_GET,NULL,

*mac) &macAddressLen,(_u8 *)macAddressVal)
3 long netapp_dhcp (unsigned long *aucIP, unsigned long For Static IP settings:

*aucSubnetMask, unsigned long *aucDefaultGateway, SlNetCfgIpV4Args_t ipV4;unsigned long *aucDNSServer) ipV4.ipV4 = (_u32)SL_IPV4_VAL(10,1,1,201);
ipV4.ipV4Mask = (_u32)SL_IPV4_VAL(255,255,255,0);
ipV4.ipV4Gateway = (_u32)SL_IPV4_VAL(10,1,1,1);
ipV4.ipV4DnsServer = (_u32)SL_IPV4_VAL(8,16,32,64);
sl_NetCfgSet(SL_IPV4_STA_P2P_CL_STATIC_ENABLE,IPCON
FIG_MODE_ENABLE_IPV4,sizeof(SlNetCfgIpV4Args_t),
(_u8 *)&ipV4)
For DHCP settings:
_u8 val = 1;
sl_NetCfgSet(SL_IPV4_STA_P2P_CL_DHCP_ENABLE,
IPCONFIG_MODE_ENABLE_IPV4,1,&val)

4 void netapp_ipconfig (tNetappIpconfigRetArgs *ipconfig) For Setting IP address:
SlNetCfgIpV4Args_t ipV4;
ipV4.ipV4 = (_u32)SL_IPV4_VAL(10,1,1,201);
ipV4.ipV4Mask = (_u32)SL_IPV4_VAL(255,255,255,0);
ipV4.ipV4Gateway = (_u32)SL_IPV4_VAL(10,1,1,1);
ipV4.ipV4DnsServer = (_u32)SL_IPV4_VAL(8,16,32,64);
sl_NetCfgSet(SL_IPV4_STA_P2P_CL_STATIC_ENABLE,
IPCONFIG_MODE_ENABLE_IPV4,sizeof(SlNetCfgIpV4Args_t),
(_u8 *)&ipV4)
For getting IP address:
_u8 len = sizeof(SlNetCfgIpV4Args_t);
_u8 dhcpIsOn = 0;
SlNetCfgIpV4Args_t ipV4 = {0};
sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&dhcpIsOn,
&len,(_u8 *)&ipV4)

5 long wlan_connect (unsigned long ulSecType, char *ssid, _i16 sl_WlanConnect(_i8* pName, _i16 NameLen, _u8
long ssid_len, unsigned char *bssid, unsigned char *key, *pMacAddr, SlSecParams_t* pSecParams , SlSecParamsExt_t*
long key_len) pSecExtParams)

6 long wlan_add_profile (unsigned long ulSecType, unsigned _i16 sl_WlanProfileAdd(_i8* pName, _i16 NameLen, _u8
char *ucSsid, unsigned long ulSsidLen, unsigned char *pMacAddr, SlSecParams_t* pSecParams , SlSecParamsExt_t*
*ucBssid, unsigned long ulPriority, unsigned long pSecExtParams, _u32 Priority, _u32 Options)
ulPairwiseCipher_Or_Key, unsigned long
ulGroupCipher_TxKeyLen, unsigned long ulKeyMgmt,
unsigned char *ucPf_OrKey, unsigned long
ulPassPhraseLen)

7 long wlan_ioctl_set_connection_policy (unsigned long sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_
should_connect_to_open_ap, unsigned long CONNECTION_POLICY((a,b,c,d,e),NULL,0)
should_use_fast_connect, unsigned long ulUseProfiles)

4 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting SWRA470–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

www.ti.com Application Programming Interfaces (APIs)

The ‘medium’ APIs can be adapted by simply replacing the old functions and their parameter typecasts
with the new implementations. Similar to the ‘easy’ adaptation APIs, one method of implementation is to
use inline functions as a means to replace functions with their updated equivalents. Below is an example
of using an inline function to replace wlan_add_profile() with the new sl_ProfileAdd(). This inline function
could sit in a new header file, and could reference the CC31xx ‘Simplelink’ header file in which
sl_ProfileAdd() is defined (simplelink.h). The new parameter types could be handled with a typecast.

3.3 APIs That are Implemented Differently
APIs that fall into the ‘implemented differently’ adaptation category require the most effort to port. These
APIs may differ in functionality from their previous implementations.

3.3.1 Initializing WLAN Driver
In CC3000, it is custom to call the wlan_init() function for initializing the host driver callbacks and other
driver parameters.

In CC3100, WLAN driver initialization is no longer explicitly required from a host application; much of the
functionality is handled through the definitions given within user.h when doing the driver porting as
explained in Section 2.4.

3.3.2 Enabling the Wi-Fi Subsystem
In CC3000(), wlan_start() was used to enable the CC3000 device and handle its initialization process.
With the CC3100, wlan_start() are no longer used; instead, sl_Start() is used as an equivalent
replacement for both calls. The sl_Start() function has three parameters that can be passed through to
customize the start sequence:
• pIfHdl - In case the interface must be opened outside the SimpleLink Driver, the user might give the

opened handler to be used in any access the communication interface with the device (UART/SPI).
The SimpleLink driver will open an interface port only if this parameter is null. For porting CC3000
code, this parameter should be “0”.

• pDevName - The name of the device to open. Could be used when the pIfHdl is null to transfer
information to the open interface function. For porting CC3000 code, this parameter should be “0”.

• pInitCallBack - Is a pointer to function that can be called on completion of the initialization process. If
this parameter is NULL the function is blocked until the device initialization is completed, otherwise the
function returns immediately and the callback function pointed by pInitCallback will be called upon
completion of the initialization process.

3.3.3 Working With the NVMEM
In CC3000, there were three main functions to work with the non-volatile memory:

signed nvmem_create_ (unsigned long file_id, unsigned long length)
long entry
long nvmem_read (unsigned long file_id, unsigned long length, unsigned long offset,

unsigned char *buff)
long nvmem_write (unsigned long file_id, unsigned long length, unsigned long offset,

unsigned char *buff)

The general concept of these API consists of files stored in electrically erasable programmable read-only
memory (EEPROM), approaching data stored in these files is thru using file IDs and byte offsets from
beginning of the file.

In CC3100, the main functions handling the non-volatile memory are:
_i32 sl_FsOpen (_u8 *pFileName,_u32 AccessModeAndMaxSize,_u32 *pToken,_i32

*pFileHandle)
_i16 sl_FsClose (_i32 FileHdl,_u8* pCeritificateFileName,_u8* pSignature,_u32

SignatureLen)
_i32 sl_FsRead (_i32 FileHdl,_u32 Offset ,_u8* pData,_u32 Len)

5SWRA470–December 2014 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

Application Programming Interfaces (APIs) www.ti.com

_i32 sl_FsWrite (_i32 FileHdl,_u32 Offset,_u8* pData,_u32 Len)
_i16 sl_FsDel (_u8 *pFileName,_u32 Token)
_i16 sl_FsGetInfo (_u8 *pFileName,_u32 Token,SlFsFileInfo_t* pFsFileInfo)

The general concept of these API consists of files stored in SFlash, approaching data stored in these files
is thru using file names and byte offset from beginning of the file.

In addition, there is an optional layer of security, which is reflected by the use of security tokens and
certificates.

3.3.4 Scanning
When referring to WLAN scanning process, there are three main functionalities that should be addressed.
• Scan parameters configuration

– CC3000
long wlan_ioctl_set_ (unsigned long uiEnable, unsigned long uiMinDwellTime, unsigned

scan_params long uiMaxDwellTime, unsigned long uiNumOfProbeRequests,
unsigned long uiChannelMask, long iRSSIThreshold, unsigned long
uiSNRThreshold, unsigned long uiDefaultTxPower, unsigned long
*aiIntervalList)

– CC3100
int sl_WlanPolicySet (SL_POLICY_SCAN,SL_SCAN_ENABLE, (unsigned char

*)&intervalInSeconds,sizeof(intervalInSeconds))

• Starting a scan operation
– CC3000
Scans are being enabled automatically by the device whenever required. In addition on every call to
wlan_ioctl_set_scan_params(), scan operation is kicked started.

– CC3100
Scans are being enabled automatically by the device whenever required. In addition on every call
sl_WlanPolicySet(SL_POLICY_SCAN,SL_SCAN_ENABLE, (_u8
*)&intervalInSeconds,sizeof(intervalInSeconds)), scan operation is kicked started.

• Retrieving scan results
– CC3000
long wlan_ioctl_get_ (unsigned long ulScanTimeout, unsigned char *ucResults)

scan_results
The scan results are returned one by one, so continue reads to this function are required till no results
are retrieved (ucResults is NULL).

– CC3100
_i16 sl_WlanGet (_u8 Index, _u8 Count, Sl_WlanNetworkEntry_t *pEntries)

NetworkList
The scan results are returned in a list of up to 20 results, it is possible to retrieve more than 20 results
by calling this API again.

6 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting SWRA470–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

www.ti.com Application Programming Interfaces (APIs)

3.3.5 Smart Config
The basic principles of smart configuration process remained similar in CC3100, however, the APIs are
different due to improved functionality and new features introduced with CC3100.

NOTE: CC3100 Smart configuration algorithm has many improvements, both from features stand
point (enhanced security, multi group support, multi field configurations) and from
performance. However, CC3100 algorithm has full backward support for CC3000 smart
configuration algorithm, but not the other way around.

The main functionalities used for smart configuration are:
• Start smart config

– CC3000
long wlan_smart_ (unsigned long algoEncryptedFlag)

config_start

– CC3100
_i16 sl_WlanSmartConfigStart (const _u32 groupIdBitmask,

const _u8 cipher,
const _u8 publicKeyLen,
const _u8 group1KeyLen,
const _u8* group2KeyLen,
const _u8* publicKey,
const _u8* group1Key,

group1Key,

The CC3000 is able to run smartconfig in secure mode or open mode, which is supported in CC3100
by using the cipher parameter. However, CC3100 adds much more capabilities of configuring several
group of devices in parallel each with its’ own encryption. For more information, see the CC31xx
Programmer's Guide wiki. Upon completion of the smart config process, both devices will return
asynchronous events signaling on the process completion.

• Stop smart config
– CC3000
long wlan_smart_ (void)

config_stop

– CC3100
_i16 sl_WlanSmart (void)

ConfigStop

• Handle smart config encryption
– CC3000
long wlan_smart_ (void)

config_process

– CC3100
Not required. Unlike CC3000 in which the encryption is done on the host processor side. CC3100 has
a HW encryption engine which is handling the smart config process in the chip itself.

• Set prefix
– CC3000
long wlan_smart_ wlan_smart_config_set_prefix

config_set_prefix

– CC3100
Not required. This is an optional feature for CC3000, which is obsolete and not required for CC3100.

7SWRA470–December 2014 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

Application Programming Interfaces (APIs) www.ti.com

3.3.6 Mask Asynchronous Events
Masking asynchronous events on the CC31xx has been simplified dramatically versus the CC3000.
• CC3000

int wlan_set_event_
mask()

• CC3100
_i16 sl_EventMaskSet (_u8 EventClass , _u32 Mask)

Asynchronous events are masked using defines within the user.h file. To handle this API removal in your
application code, simply remove all calls of wlan_set_event_mask() and set your desired asynchronous
event handlers in user.h. The different event groups that the user can register to are listed below; more
information can be found in the user.h file.
• void sl_GeneralEvtHdlr(SlDeviceEvent_t *pSlDeviceEvent)
• void sl_WlanEvtHdlr(SlWlanEvent_t *pSlWlanEvent
• void sl_NetAppEvtHdlr(SlNetAppEvent_t *pSlNetApp)
• void sl_SockEvtHdlr(SlSockEvent_t *pSlSockEvent)
• void sl_HttpServerCallback(SlHttpServerEvent_t *pSlHttpServerEvent, SlHttpServerResponse_t

*pSlHttpServerResponse)

3.3.7 Inactivity Timeout
All of the socket related operations can be configured using sl_SetSockOpt() API. One example is setting
the socket inactivity timeout which, in CC3000, was configured using proprietary API.
• CC3000

INT32 netapp_timeout_values(UINT32 *aucDHCP, UINT32 *aucARP, UINT32 *aucKeepalive,
UINT32 *aucInactivity)

• CC3100
sl_SetSockOpt(SockID,SL_SOL_SOCKET,SL_SO_RCVTIMEO, (_u8 *)&timeVal, sizeof(timeVal));

3.3.8 Ping
• Starting a ping

– CC3000
long netapp_ping_send (unsigned long *ip, unsigned long ulPingAttempts, unsigned long ulPingSize,
unsigned long ulPingTimeout)

– CC3100
_i16 sl_NetAppPingStart(SlPingStartCommand_t* pPingParams,_u8 family,SlPingReport_t
*pReport,const P_SL_DEV_PING_CALLBACK pPingCallback)

NOTE: CC3100 ping API can be also called in “blocking mode” if the callback is set to NULL.

• Stopping an ongoing ping process
– CC3000
void netapp_ping_stop ()

– CC3100
Same as starting a ping, but with the destination IP address set to 0.

8 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting SWRA470–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

www.ti.com Application Programming Interfaces (APIs)

• Retrieving the ping report
– CC3000
The CC3000 API, netapp_ping_report() is called to request the ping status. With the CC3000, the
netapp_ping_report() function triggers the CC3000 to send the asynchronous event
HCI_EVNT_WLAN_ASYNC_PING_REPORT. This event carries the report within the struct
netapp_pingreport_args_t.

– CC3100
In the CC3100 equivalent, sl_PingReport, the ping report is no longer sent with an asynchronous
event. Instead, the function passes the report output structure pointer as a parameter. The new
structure is redefined in netapp.h, and the format and typecasts have changed from the CC3000.

CC3000 CC31xx
typedef struct _netapp_pingreport_args{ CC3000 CC31xx
unsigned long packets_sent; typedef struct
unsigned long packets_received; {
unsigned long min_round_time; _u32 PacketsSent;
unsigned long max_round_time; _u32 PacketsReceived;
unsigned long avg_round_time; _u16 MinRoundTime;
} netapp_pingreport_args_t; _u16 MaxRoundTime;

_u16 AvgRoundTime;
_u32 TestTime;

}SlPingReport_t

3.4 Obsolete CC3000 APIs and Features
• Open connection policy

– CC3000 supported a connection policy in which the device connected automatically to any non-
secured AP. This mode was found to be not useful without automatic validation of internet access.

– CC3100 is not supporting this mode
• Arp flush - long netapp_arp_flush ()

– CC3100 doesn’t support this API. The networking sub-system handles the internal ARP table
automatically

• WLAN status - long wlan_ioctl_statusget()
– CC3000 is able to report on the internal status of the WLAN connection:

WLAN_STATUS_DISCONNECTED, WLAN_STATUS_SCANING, STATUS_CONNECTING or
WLAN_STATUS_CONNECTED

– CC3100 doesn’t support this exact status report.
It has a different device status API - sl_DevGet(), which reports if the Wi-Fi subsystem is connected
or disconnected, in smartconfig mode and on any dropped asynchronous event.

• Timeout values
– CC3000 supports an API, netapp_timeout_values (), which enables the option to configure the

following internal timeouts in the networking sub-system:
• DHCP
• ARP
• KeepAlive (1)

– CC3100 does not support this API, since it has strong effects on the system stability and power
consumption. The CC3100 network sub-system handles these timeouts automatically.

(1) KeepAlive timeout is a roadmap item that will be available in CC3100.

9SWRA470–December 2014 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

References www.ti.com

4 References
• CC3100 Programmers Guide: http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
• CC3100 Host Interface User's Guide: http://processors.wiki.ti.com/index.php/CC31xx_Host_Interface
• SimpleLink Wi-Fi Programmers User's Guide:

http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
• CC31xx Programmer's Guide: http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide

10 CC3000 - CC3100 SimpleLink™ Wi-Fi® API Porting SWRA470–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
http://processors.wiki.ti.com/index.php/CC31xx_Host_Interface
http://processors.wiki.ti.com/index.php/CC32xx_Programmers_Guide
http://processors.wiki.ti.com/index.php/CC31xx_Programmers_Guide
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA470

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	CC3000 - CC3100 SimpleLink Wi-Fi API Porting
	1 Introduction
	2 Getting Started - First Steps
	2.1 Reassign Include's
	2.2 Include “user.h”
	2.3 Verify Physical Layer
	2.4 Provide Callback Handler Routines for Asynchronous Events

	3 Application Programming Interfaces (APIs)
	3.1 'Easy' Adaptation APIs
	3.2 'Medium' Adaptation APIs
	3.3 APIs That are Implemented Differently
	3.3.1 Initializing WLAN Driver
	3.3.2 Enabling the Wi-Fi Subsystem
	3.3.3 Working With the NVMEM
	3.3.4 Scanning
	3.3.5 Smart Config
	3.3.6 Mask Asynchronous Events
	3.3.7 Inactivity Timeout
	3.3.8 Ping

	3.4 Obsolete CC3000 APIs and Features

	4 References

	Important Notice

