
Application Note AN101

SWRA371A-Sep 2011 Page 1 of 28

Bootloader for CC2510, CC2511, CC1110 and CC1111
SoC (System-on-Chip) Transceivers

By Shashank Mane

Keywords

• Bootloader
• Firmware Update
• Flash read/write
• SPI interface

• DMA controller
• Boot loader testing

1 Introduction

This document describes the details of a
boot loader which can be used for the
CC2510, CC2511, CC1110 or CC1111
SoC transceivers. It covers the overall
flow of the boot loader, a line by line
description of the code, the test
environment to test/drive the boot loader
and sample LED blinking code to verify
the functionality of the boot loader.
Whenever the chip gets reset, control
jumps to the starting point of the boot
loader where, based on the validity of the
firmware (i.e., application code), the boot
loader will either accept commands from
the user and program the new firmware
into the flash or will directly jump to the
starting point of the already existing valid

firmware in the flash. So the task of the
boot loader is to validate the firmware
present in the flash and then decide to
either program the user specified firmware
or jump to the existing firmware. This boot
loader code is derived from the boot
loader for the CC2530 [1]. Based on the
transceiver used, define CC2510,
CC2511, CC1110 or CC1111 in the
options C/C++ Compiler
Preprocessor Defined symbols in IAR
embedded work bench. Project collateral
discussed in this application note can be
downloaded from the following URL:
http://www.ti.com/lit/SWRA371.

http://www.ti.com/lit/SWRA371

Application Note AN101

SWRA371A-Sep 2011 Page 2 of 28

Table of Contents

1 Introduction .. 1
2 Introduction to the boot loader .. 3

2.1 Overall flow of the boot loader .. 4
3 Code description ... 7

3.1 sblInit() .. 8
3.2 sbImgValid() ... 8
3.3 sblWait() ... 9
3.4 HalUARTUnInitISR() ... 10
3.5 sblExec() ... 10
3.6 sbExec() .. 10
3.7 sbCmnd() .. 11
3.8 ISR in the boot loader .. 14
3.9 DMA controller for flash write ... 15

4 Frame Format.. 16
4.1 Command from external host .. 17
4.2 Response to the command ... 19

5 Test Environment.. 22
6 Sample LED blinking code ... 23
7 FAQ ... 26
8 References .. 28

8.1 Cited references ... 28
8.2 General references ... 28

9 Document History ... 28

Application Note AN101

SWRA371A-Sep 2011 Page 3 of 28

2 Introduction to the boot loader
This section gives an introduction to the boot loader for the CC2510/1 & CC1110/1 SoC
transceivers (in this document, we will refer to CC2510/1 and CC1110/1 transceivers as
SoCs). A boot loader is mainly used to load the program (user code) into the code memory
area of the microcontroller. It is the first thing that is performed after the microcontroller is
powered up. In the case of the SoCs, the user code needs to be written into the internal flash
memory of the SoCs. In order to load the user code into the internal flash, there should be a
small program present inside the internal flash that performs the task of interacting with the
external world and writing the user code into the specified location of internal flash. This set
of code is called the boot loader. After reset, the program counter of the microcontroller is
always set to the starting point of the boot loader. The boot loader will first look for valid user
code (by looking at the CRC words stored in a specific location of internal flash) in the
internal flash. If it finds valid user code, then control jumps to the starting point of the user
code. Before entering the user code, there is a fixed wait time of a small duration, during
which the microcontroller can be forced to enter the boot loader execution sequence. In the
boot loader execution sequence, the user may write new user code into the internal flash.
[1][2][5]

Figure 1 shows the block diagram of the SoC showing its flash memory, boot loader code
location, user code location and external host that interacts with the boot loader to write the
user code.

Application Note AN101

SWRA371A-Sep 2011 Page 4 of 28

External Host

User code

SPI bus

SPI
driver

Boot Loader

Internal Flash

User code
Command
processing

SPI
driver

Other
peripherals

8051

A) 0x7FFF

User code
section

0x2000
0x1FFF

0x0000

Internal Flash Memory Mapping

Boot Loader section containing
SPI driver, command
processing and ISR

B) CC2510/1 or CC1110/1 SoC

Figure 1 (A) Mapping of internal flash memory (B) Block diagram of CC2510/1 & CC1110/1
SoCs along with boot loader, user code and external host.

2.1 Overall flow of the boot loader

Figure 2 shows the flow chart of the boot loader code [6]. After reset, the SoC is initialized;
i.e., its USART port is configured as SPI, the clock is set and the directions and values of I/O
ports and DMA are configured for writing data into flash. After configuration is done, valid
user code is looked for in the user code location. This is done by looking at CRC words,
which were computed and written by the external host along with user code. If a valid CRC
word is found, then there is a wait cycle of around 1 minute (this wait time is programmable
and can be made much shorter if desired, please refer to Figure 6) during which a
SB_FORCE_BOOT or SB_FORCE_RUN command could be given to the boot loader from
the external host.

Application Note AN101

SWRA371A-Sep 2011 Page 5 of 28

Initialize SoC (CLK, USART, I/O
PORT & DMA) - sblInit()

Is user code valid (i.e.
above function returns

TRUE)
?

Yes

No

Is there a request for boot
loader execution (i.e. above

function returns FALSE)
?

No

Yes

Execute boot loader routine (ie.
write user code passed by external host
into flash) - sblExec()

Un-initialize the USART to mimic reset
condition - HalUARTUnInitISR()

Wait for small programmable duration (refer
figure 6) (default set to ~ 1 minute) - sblWait()

Look for validity of user code -
sbImgValid()

END

Disable interrupts and wait for
reset - HAL_SYSTEM_RESET()

Jump to the start of user code location
i.e. 0x2000

Figure 2 Flow chart of the boot loader [6].

If a SB_FORCE_RUN command is given, then control jumps to the predefined start of user
code, and if a SB_FORCE_BOOT command is given, then the boot loader routine is
executed. A SB_FORCE_RUN command can be generated by the external host by passing
0x07 to the boot loader through the SPI bus, and a SB_FORCE_BOOT command is given by
passing 0xF8. If neither of the two commands is given during this wait cycle, control will jump

START

Application Note AN101

SWRA371A-Sep 2011 Page 6 of 28

to the start of user code by default at the end of this wait cycle. Before jumping to the user
code, USART interrupts are reset to avoid false trigger in the user code.

During the CRC word validation check, if an invalid CRC word was detected (i.e. no valid
user code is present), then control jumps to the execution of boot loader routine. This boot
loader routine is used to write valid user code into the user code area of the internal flash of
the SoCs. There is a state machine that runs in this routine that looks for a valid frame
format (discussed later) generated by the external host and then performs the tasks
accordingly. After the complete user code is written into the flash, an enable command is
generated by the external host, which will bring the control out of the boot loader routine, and
then control can jump to the newly written user code.

Figure 2 also shows the function names which are called at various stages of the flow.

sblInit() Initializes clock, USART, I/O ports and DMA of the SoC.

sbImgValid() Looks for validity of the user code by looking at the CRC word. It returns
TRUE when valid user code is found and FALSE when there is no valid user code in the
flash and the boot loader routine needs to be run.

sblWait() Waits ~1 min during which a SB_FORCE_RUN or SB_FORCE_BOOT
command can be issued by external host. This function returns TRUE when user code needs
to be run and FALSE when the boot loader routine needs to be executed.

sblExec() Executes the boot loader routine that interacts with an external host to write
valid user code into the internal flash of the SoC.

HalUARTUnInitISR() Resets all the interrupts and configuration registers related to
USART to their reset values.

HAL_SYSTEM_RESET() Disables interrupts and waits for reset.

Application Note AN101

SWRA371A-Sep 2011 Page 7 of 28

sblInit()

Clock setting

main()

END

sbCmnd()

sblExec()

sbExec()

Jump to 0x2000

sblWait()

HalUARTInitISR()

sbImgValid()

vddWait()

3 Code description
This section gives a detailed description of the boot loader code. Figure 3 shows the function
call graph of the boot loader code [6]. Functionality of most of these functions has been
described in the previous section. We will go through each function line by line.

Figure 3 Call graph of the boot loader.
Figure 4 shows the snap shot of the main function. First, the sblInit() function is called, which
will configure the SoC parameters. Then the sbImgValid() function is called, which will check
for valid user code. If it finds valid user code, it will return TRUE and control will enter the
first “if” loop.

Figure 4 Snap shot of the main function [1].

Initialize boot loader

Check for validity of user code

Check for voltage level of Vdd

Jump to location 0x2000 where user code is written

Execute boot loader code

Application Note AN101

SWRA371A-Sep 2011 Page 8 of 28

If FALSE is returned, then the “if” condition is not satisfied, so control will skip the loop and
will call the sblExec() function, which is the boot loader routine to interact with the external
host and write valid user code into the internal flash of SoC. If the sblWait() function is
called, then there is a wait time period of around 1 minute during which the boot loader will
wait for SB_FORCE_RUN or SB_FORCE_BOOT commands from the external host. If none
of these commands is received, then the function returns TRUE at the end of the wait time,
and control jumps to the user code after resetting USART interrupt and configuration
registers.

Now we will describe each function in detail.

3.1 sblInit():

1. Setup Clock – These parameters can be changed if required by referring to the
datasheet of the SoCs [3][7]

• SLEEP &= ~0x04; //Turning on both the HS oscillator (HS
XOSC and HS RCOSC).

• while(!(SLEEP & 0x40)); //Wait for HS XOSC to stabilize.
• CLKCON &= 0xBF; //Selecting HS XOSC.
• while(CLKCON & 0x40); //Check if HS XOSC was selected as system clock.
• SLEEP |= 0x04; //Turn off the HS oscillator which was not selected

as system clock (i.e. HS RCOSC is turned off).
2. Turn on cache pre-fetch mode

• FCTL = 0x08
3. Set port P1 (to which LEDs are connected) as output ports. By default they are set as

input ports.
4. Call vddWait(VDD_MIN_RUN)

• It has a loop which checks for 16 cycles of ADC read value >
VDD_MIN_RUN

5. Assign magicByte = SB_MAGIC_VALUE (i.e., 0xF5)
• Indicates whether bootloader or user code is active. It is used to decide the

location of the interrupt vector table.
6. Configure DMA0 registers DMA0CFGH & DMA0CFGL

• Used for writing the data (user code) into the flash
7. Call HalUARTInitISR()

• USART is configured in SPI mode. Here it can be changed to UART mode.
• Other settings associated with it, such as baud rate, flow control, etc is done.

3.2 sbImgValid():

This function checks for validity of the user code. It does so by checking the CRC word that
was stored in the flash while writing the user code. The boot loader computes the CRC of the
user code and stores it in location 0x2090 and 0x2092 of flash. It keeps two copies of the
computed CRC, which are used while validating the user code.

1. First it reads 2 words of CRC from the flash memory (i.e., locations 0x2090 &

0x2092) and stores it in the local array crc[0] and crc[1].

2. Then it checks if crc[0] = 0xFFFF (memory was flushed/erased) or 0x0000 (memory
was invalidated). If so, then return FALSE which means user image is not valid.

3. If crc[0] is neither 0xFFFF nor 0x0000, then check if crc[0] = crc[1]. If not, then
compute crc on the user code and compare it with the stored crc value in the flash. If
they match, then the user code is valid and so return TRUE else return FALSE.

Application Note AN101

SWRA371A-Sep 2011 Page 9 of 28

Figure 5 shows snap a shot of the function sbImgValid() with the description of each line.

Figure 5 Snap shot of function sbImgValid() [1].

3.3 sblWait():

This function returns TRUE if user code should be run, false otherwise (i.e., the boot loader
routine should be run). The control reaches this function only if the user code is valid, i.e., it
has passed CRC check.

There are two cases when this function returns TRUE:

1. dlyCnt counter time out.
2. data read from the USART buffer is SB_FORCE_RUN (i.e. 0x07)

There is one case when this function returns FALSE:
1. data read from the USART buffer is SB_FORCE_BOOT (i.e. 0xF8)

Logic could be added in this function such that instead of a command, a button press could
be used (i.e., asserting one of the I/O pins and using it as an indication for the
SB_FORCE_BOOT or SB_FORCE_RUN command) for deciding what to run, user code or
the boot loader routine.

Read CRC from Flash

Check for validity of
CRC

Compute CRC

Write computed value
of CRC into Flash

 Read CRC from Flash

Application Note AN101

SWRA371A-Sep 2011 Page 10 of 28

This counter controls
the wait time before
jumping to user code.
Change this value to
increase or decrease
the wait time.

Read data from USART
buffer and return TRUE or
FALSE based on command
received

If counter “dlyCnt” has
reached zero, then return
TRUE

Blink LEDs to indicate wait
cycle in process

//return FALSE

//return TRUE

Figure 6 Snap shot of the function sblWait() [1].

3.4 HalUARTUnInitISR():

Before jumping to the user code at location 0x2000, we need to reset the USART. So we
disable UTX0IE interrupt, UxCSR, URX0IE, URX0IF & UTX0IF. This is done to return the
USART to the state it would normally be in after a Hard Reset event.

3.5 sblExec():

1. It checks for the VDD voltage level.

2. It enables interrupts.

3. Finally, it waits in the infinite loop till the sbExec() function returns TRUE. sbExec()
returns TRUE when an ENABLE command is given by the external host to the boot
loader, which means that complete valid user code is written into the flash memory
and the CRC is updated.

3.6 sbExec():

This function contains the state machine that controls the reading/writing of the code into and
out of the flash memory.

//return TRUE

Application Note AN101

SWRA371A-Sep 2011 Page 11 of 28

It also reads data from the USART buffer. Based on the value received, the next state of the
state machine is decided.

Case SB_SOF_STATE:

If data is SB_SOF (i.e., 0xFE) next state = SB_LEN_STATE
Case SB_LEN_STATE:

If data is > SB_BUF_SIZE (i.e., 128) next state = SB_SOF_STATE

Else next state = SB_CMD1_STATE

Case SB_CMD1_STATE:
next state = SB_CMD2_STATE

Case SB_CMD2_STATE:

If length != 0 next state = SB_DATA_STATE
Else next state = SB_FCS_STATE

Case SB_DATA_STATE:

If all the data have been received next state = SB_FCS_STATE
Case SB_FCS_STATE:

If CMD1 = SB_RPC_SYS_BOOT (i.e., 0x4D) next state = SB_SOF_STATE

Call sbCmnd()

Initial state

Figure 7 State machine of function sbExec().

3.7 sbCmnd():

This function performs the task as commanded in the CMD2, such as flash read and write. It
returns TRUE or FALSE. TRUE is returned when ENABLE_CMD is sent from host and a
viable user code image exists.

Run
User
Code

CMD1 = = SB_RPC_SYS_BOOT

& FCS is correct

data ! = SOF

data == SOF

len > SB_BUF_SIZE

internal_cntr == len len < = SB_BUF_SIZE

SB_DATA_STATE

len = = 0

internal_cntr !=
len

len != 0

SB_CMD2_STATE

SB_CMD1_STATE

SB_LEN_STATE SB_FCS_STATE

SB_SOF_STATE

Application Note AN101

SWRA371A-Sep 2011 Page 12 of 28

Case SB_HANDSHAKE_CMD:

Case SB_WRITE_CMD:

Erase flash
Write data into flash

Case SB_READ_CMD:

Read data from flash

Case SB_ENABLE_CMD:

Read CRC from flash
Check CRC bytes to find the validity of the user code

Return FALSE

Return FALSE

Return FALSE

If CRC is correct Return TRUE

Else Return FALSE

Command
2 (CMD2) Task Description

0x01

Flash Write

Writes 64 bytes of data into internal flash of SoC. Starting address is
specified in the first two bytes of the 66 bytes of the data field of the write

frame.

0x02 Flash Read Reads 64 bytes of data from internal flash of SoC. Starting address is
specified in the 2 bytes of data field of the read frame.

0x03 Enable Command After complete user code is written into the flash, a frame is sent with the
enable command, which will bring control out of the boot loader routine.

0x04 Hand Shake This command should be given before writing user code into flash, just to
confirm that execution of boot loader routine has begun.

Table 1 Different types of commands which can be given to the boot loader [1].

Note: Each location in the flash should be erased before writing into it. If the location is not
erased before writing, the flash will not be written to the correct value. This is because during
a write operation, a flash bit can be changed from a high to a low value, but the bit cannot be
changed from low to high [3][7]. This can only be done by an erase command. Erasing a
flash will set all the bits of a flash. Now, when a write request comes for writing logic 0, the bit
will be changed from 1 to 0 and for writing 1, the bit will be kept unchanged. The smallest
unit which can be erased in a flash is called a “Page,” which is 1024 bytes in the case of the
CC2510/1 and CC1110/1 SoCs [3][7]. We cannot erase one location at a time; we have to
erase one complete page at a time. In this boot loader, we give write requests of 64 bytes at
a time. The function sbCmnd() erases the page whenever there is a write request at the
starting location of that page. For example whenever there is a request for a write command
at location 0x0000 (word address), that means there is a write request at location 0x2000 to
0x2040 (as there is an internal offset of 0x2000 added to the address field, refer to Figure 12
Command frame format.). So page 8 is erased. There will not be a page erase request for
other locations within that page, such as 0x2040, 0x2080, etc. Page erase requests come for
the following byte addresses: 0x2400, 0x2800, 0x2C00 and so on (LSB 10 bits are zero). In
short, the external host cannot start writing from the middle of the page. It will have to start
writing from the first location of the page.

Application Note AN101

SWRA371A-Sep 2011 Page 13 of 28

Figure 8 Snap shot of the function sbCmnd() [1].

Erase Flash

Offset of 0x2000
added to the address
specified by the
external host

Flash Write
Data

Flash Read
Data

Flash Read
CRC

CRC Check for user
code validation

Application Note AN101

SWRA371A-Sep 2011 Page 14 of 28

User code
section

Boot
Loader
code

section

3.8 ISR in the boot loader

0x7FFF 0x7FFF

0x2000 0x2000

0x0000 0x0000

Interrupt Vector Table
without Boot Loader code

Flash Memory

Interrupt Vector Table
with Boot Loader code

Interrupt Vector table Interrupt Vector table for USART

Figure 9 Flash Memory mapping of Interrupt Vector Table.

There is a variable called magicByte that stores the value SB_STACK_VALUE (i.e. 0xCD) or
SB_MAGIC_VALUE (i.e. 0xF5) [1]. Whenever a USART interrupt occurs, the value in the
variable magicByte is checked; if it is 0xCD, then control jumps to the ISR in the user code,
else if the value is 0xF5, it is handled locally in the boot loader. In the boot loader mode, this
variable will have value 0xF5 (it is assigned in the sblInit function). All other vectors jump
directly to the user vector.

Figure 10 Snap shot of UART ISR functions [1].

User code
section

Boot
Loader
code

section

Application Note AN101

SWRA371A-Sep 2011 Page 15 of 28

The boot loader code should be linked using the sb_boot.xcl linker command file [5]. This
file contains the appropriate placement for the boot loader in the first segment of flash. The
user code should be linked with an appropriately modified linker command file which places
the magicNumber variable at location 0x0001, and the ISR vector table for the user code
placed at address 0x2000. Also, the CRC word (16-bits) should be placed at addresses
0x2090-0x2091 and 0x2092-2093 (or word address 0x1048 and 0x1049). Both the locations
should have the same CRC word value.

NOTE:
Upon entering the user code (suggested first thing in main) and before any interrupts are
enabled, the user must write the SB _STACK_VALUE to the location referenced by the
magicNumber variable. Failure to do so will cause UART interrupts to be ignored or possibly
run the boot loader ISR rather than the user ISR. Only after this value is written is it safe for
the user code to enable interrupts.

3.9 DMA controller for flash write

The DMA controller is used to write data (user code), which is received from the external
host, into the internal flash of the SoC, in chunks of 64 bytes (32 words). (Please refer to the
Flash Controller chapter of CC2510/1 or CC1110/1 datasheet for details on DMA flash write
[3][7].) In this boot loader, channel 0 of the DMA is used. All DMA parameters such as source
address, destination address, transfer count, byte/word transfer, etc., are written into a local
structure called “dmaCh0,” and the address of this structure is written into the DMA
configuration register DMA0CFGH (0xD5) and DMA0CFGL (0xD4). By setting the values of
this structure (dmaCh0), all the parameters of DMA (channel 0) will be set, and, when a
trigger event occurs, the DMA will transfer 4 bytes, 1 byte at a time, to the FWDATA register.
The DMA trigger is set on Flash data write complete; i.e., whenever a flash data write event
occurs, the DMA will start its iteration of writing the data into the FWDATA register
incrementing the source address looking at the number of remaining data to transfer
(please refer to DMA controller section 12.5 of CC2510/1 or CC1110/1 datasheet). [3][7]

All the parameters of DMA are given below:

1. Source address (SRCADDR) (16-bits) – address where the received user code is
temporarily stored in SRAM

2. Destination address (DESTADDR) (16-bits) – address of the FWDATA register, i.e.,
0x6273

3. Transfer count (16-bits) – 64, i.e., 64-bytes are transferred for each write command.

4. Byte or word transfer (1-bit) – ‘0’, i.e., 1-byte at a time

5. Transfer mode (TMODE) (2-bits) – ‘00’, i.e., single transfer mode

6. Trigger event (TRIG) (5-bits) – ‘10010’, i.e., trigger DMA on flash data write complete

7. Source increment (SRCINC) (2-bits) – ‘01’, i.e., increment source address by 1

8. Destination increment (DESTINC) (2-bits) – ‘00’, i.e., does not increment the
destination address as the destination address is FWDATA.

9. Interrupt mask (IRQMASK) (1-bit) – ‘0’, i.e., disable interrupt generation

10. Mode 8 setting (M8) (1-bit) – ‘0’, i.e., use all 8-bits for transfer count

11. DMA priority (PRIORITY) (2-bits) – ‘10’, i.e., DMA access will always prevail over
CPU access

After all these parameters are set, the flash address where data needs to be stored is written
in its configuration registers FADDH:FADDL, and then FCTL.WRITE is set. This will trigger
the DMA write and will wait till FCTL.BUSY becomes zero, i.e., the flash write is complete.

Application Note AN101

SWRA371A-Sep 2011 Page 16 of 28

Call sbCmnd()

0xFE 0x4D
0x42 0x01

0x00
0x00

0xXX
0xXX

0xXX 0xXX 0xFE
0xXX Write data into

Flash
0x42

Return to
sbExec()

Length = 0x42

SOF CMD1 RESP
Call sbResp() LEN CMD2 FCS

CMD2 = CMD2 | 0x80
0xFE 0x4D

0x01 0x81
0x00

A A D D D D D

4 Frame Format
In this section, we will discuss the frame format in which an external host can interact and
command the boot loader to perform various tasks like writing into the internal flash, reading
from the internal flash and exiting the boot loader routine. Before looking into the details of
the frame format, let us look at an example flow of a write command and its response (Figure
11).

SOF CMD1 Addr DATA DATA DATA SOF

LEN CMD2 Addr DATA DATA FCS LEN

Figure 11 Example of flow of data write command and its response.

First, the external host will generate a frame, as shown in Figure 11, and will start driving this
frame into the boot loader through the SPI bus. This write command frame will have a total
length of 71 bytes with 66 bytes of payload (2 bytes of address field followed by 64 bytes of
data field) [1] shown in light blue in Figure 11. Once the boot loader receives this frame, it
will call function sbCmnd(), where this frame is detected as a write frame (by looking at
CMD2). The boot loader will then write the data into the internal flash of SoC, starting at the
location specified in the address field of the frame. The boot loader uses DMA to write the
data into flash (discussed in section 3.9). Once all the data has been written into the flash,
the sbResp() function is called in which a response frame is generated by the boot loader and
written into the USART buffer. The external host can then read the response by issuing a
read request on the SPI bus. Keep a wait cycle (say 50 msec) before reading the response,
because the boot loader may take some time to generate and write the response into the
USART buffer. The response frame will be 6 bytes long with one byte of data, i.e., the
response field. Response = 0x00 means that the command has been performed successfully.
There can be N such write commands to write the complete user code into the internal flash.
Address field will start with 0x0000, as there is an internal offset of 0x2000 added to this
address field. On every write command 64 bytes of data is written into the flash. So the
address needs to be incremented by 0x0020 (i.e. 32) each time a write command is given
because the addressing mode is word address (each word is 16-bits long) and not byte
address. For example, if there are 5 write commands, then the address field of first write
command will be 0x0000, the address field of second write command will be 0x0020, the
address field of third write command will be 0x0040, then 0x0060 and so on.

Application Note AN101

SWRA371A-Sep 2011 Page 17 of 28

4.1 Command from external host

Data to be written or read from the flash memory through the boot loader needs to be
requested in a fixed frame format. The frame consists of six fields: SOF, LEN, CMD1,
CMD2, DATA and FCS [1]. All the fields are of 1 byte except for the DATA field. During a
write command, the DATA field will be of 66 bytes: 2 bytes of flash address at which the data
needs to be written and 64 bytes of data to be written in flash. The frame format is shown in
Figure 12.

SOF LEN CMD1 CMD2 DATA FCS

1 1 1 1 0 to (64 + 2) 1 Bytes

Byte 0: SOF: Start of Frame = 0xFE
Byte 1: LEN: Length of data = 0x00, 0x02 or 0x42

Byte 2: CMD1: Command 1 = 0x4D

Byte 3: CMD2: Command 2 = 0x01, 0x02, 0x03 or 0x04
Byte 4-69: DATA: First two bytes are Flash address and next 64 bytes are data.

Byte 4: Lower byte of word address* (if LEN is non-zero)

Byte 5: Higher byte of word address* (if LEN is non-zero)

Byte 6-69: 64 bytes of data (if LEN > 2)

Byte 70: FCS: Frame Check Sequence = XOR of whole frame from LEN to last byte of
DATA.

CMD2: 0x01: Flash Write
 0x02: Flash Read
 0x03: Enable command
 0x04: Hand Shake

* 1 word = 16-bits. As 64 bytes i.e. 32 words are written on each write command, the address field should be incremented by
0x0020 for each consecutive write command. Also, there is internal offset of 0x2000 added to this address field before using it to
address the flash. So, 0x0000 means location 0x2000 of flash.

Figure 12 Command frame format.

CMD2 can be one of the following four commands: flash write, flash read, enable and
handshake. If user code needs to be written in the flash, then the flash write command can
be used. The flash address needs to be provided while writing into the flash. It is written in
the first two bytes of the data field followed by 64 bytes of data. In case of a flash read, there
will be only two bytes of data field which will contain 2 bytes of address from where the data
is to be read. In response to a flash read command, the boot loader will read 64 bytes of
data, starting from the address specified in the flash read command frame and will write it
into USART buffer. When the external host is reading the response, it will have to read out
72 bytes (4 bytes of header, 1 byte of response, 2 bytes of address, 64 bytes of data and 1
bytes of FCS). When complete user code is written in the flash memory, then a frame with
the ENABLE command needs to be sent so that the boot loader code knows that the valid
user code is written into the flash, and so control should come out of boot loader.

Application Note AN101

SWRA371A-Sep 2011 Page 18 of 28

Handshake command Write command Write command Write command Enable command

Figure 13 Typical sequence of command to write user code.

Figure 13 shows a typical sequence of frames to write user code into the flash memory. It
starts with handshake frame, which just acknowledges the external host (who is issuing the
command) that the boot loader routine is running. Then the external host can start sending
frames with a write command to write the user code into specified flash addresses (starting
with 0x0000 and then incrementing by 0x0020 for each write command). Once the whole
user code is written into the flash, a frame with an enable command is issued that will inform
the boot loader that valid user code has been written into the flash and so boot loader
execution should end and control should jump to the user code. Before giving the enable
command, a read command can be used to read the flash and verify that the user code is
written correctly into the flash (optional).

Note: The data (which is the user code) passed through the frame is in binary format. Data is
directly written into the flash without any processing or modification on it.

Insert CRC word (16-bits) at two locations:
Word address - 0x0048 and 0x0049 (0x1000 will be added by boot loader)
In terms of byte address it will be 0x0090-0x0091 and 0x0092-0x0093. (0x2000 will be added
by boot loader)

Frame N Frame N-1 Frame 3 Frame 2 Frame 1

Application Note AN101

SWRA371A-Sep 2011 Page 19 of 28

4.2 Response to the command

Each frame is acknowledged with an appropriate response. The response frame format is
similar to the frame format discussed above. Figure 14 shows the response frame format:

SOF LEN CMD1 CMD2 RESP DATA FCS

1 1 1 1 1 0 to (64 + 2) 1 Bytes

* For all request except for read request, there will be no DATA field.

Figure 14 Response frame format.

Figure 15 shows four set of command frames which can be generated by the external host
and its corresponding response frame given by boot loader.

Byte 0: SOF: Start of Frame = 0xFE

Byte 1: LEN: Length of data = 0x01 or 0x43 (it includes RESP + DATA length)

Byte 2: CMD1: Command 1 = 0x4D

Byte 3: CMD2: Command 2 = 0x81, 0x82, 0x83 or 0x84 (CMD2 is ORed with 0x80)

Byte 4: RESP: Response

0 = SB_SUCCESS: If not the below two cases

1 = SB_FAILURE: If address is beyond the mapping address of

Flash memory

7 = SB_VALIDATE_FAILED: If CRC validation fails

Byte 5-70: DATA*: First two bytes are Flash address and next 64 bytes are data. (valid only for

the response of read command)

Byte 5: Lower byte of word address

Byte 6: Higher byte of word address

Byte 7-70: 64 bytes of data

Byte 71: FCS: Frame Check Sequence = XOR of whole frame from LEN to last byte of DATA.

CMD2: 0x81: Response for Flash Write

0x82: Response for Flash Read

0x83: Response for Enable command

0x84: Response for Hand Shake

Application Note AN101

SWRA371A-Sep 2011 Page 20 of 28

64 bytes

Command Response

Handshake

FE 00 4D 04 49 FE 01 4D 84 00 C8

Write

FE 42 4D 01 XX XX XX

Read

FE 02 4D 02 XX XX XX

Enable

FE 00 4D 03 4E

FE 01 4D 81 00 CD

FE 43 4D 82 00 XX XX XX

FE 01 4D 83 00 CF

SOF LEN CMD1 CMD2 Addr FCS

RESP DATA

Figure 15 Command frame and its corresponding response frame.

Figure 16 shows waveforms for the data transfer on the SPI bus. As seen in the waveforms,
read and write cycles are exactly same. The only difference is that, in a write cycle, SIMO is
driven with valid data and the SoC will drive SOMI with the value present in its TXBUF. In
case of a read cycle, SIMO can be driven with any value (say 0x00) other than the key bytes
(like 0xFE, 0x4D, etc) which represents the command to the SoC, and the SOMI value is
sampled on each rising edge of SCLK. In short, the SoC will always read the value of SIMO
and store it in its internal RXBUF and will always drive value stored in TXBUF on the SOMI
pin.

64 bytes

Application Note AN101

SWRA371A-Sep 2011 Page 21 of 28

CS_N

SCLK

SIMO

SOMI

Write Read

Note: Please refer to the CC2510/1 or CC1110/1 data sheet for the timing
parameters

Don’t care

Figure 16 Waveform for data transfer on SPI bus [4].

Application Note AN101

SWRA371A-Sep 2011 Page 22 of 28

5 Test Environment
In this section, we describe the setup used for burning the boot loader code into the location
0x0000 to 0x1FFF (byte address) of the internal flash using IAR embedded workbench for
8051 and the interface with the external host, which will be writing valid user code into
locations 0x2000 to 0x7FFF (byte addresses) of the internal flash of the SoC.

Programming through

IAR Embedded
workbench Used as indication

for debugging

Debug

DC DD RESET_N purpose. Can also
be directly

connected to

interface oscilloscope
instead of LED

SIMO

SOMI

CS_N

SCLK

SPI bus

Figure 17 Test Environment setup to burn the boot loader code into SoCs and to interact
with external host for writing valid user code into the internal flash of SoCs.

[3][4][7] The SPI interface is used to communicate between an external host and the boot
loader. This can be easily changed to a UART interface by just configuring USART registers
in the HalUARTInitISR() function. Port P1.0 is set as an output port, which can be used as
indication at various stages of the code (for debugging purposes). To program the SoC with
the boot loader code using IAR Embedded workbench, the P2.1 and P2.2 pins are used as
debug data and debug clock pins respectively. The code is built and programmed through
IAR workbench by opening the workspace: $PROJ_DIR\ boot_loader\boot.eww. In this setup,
Port 0 is configured in SPI mode. Port 1 can also be used instead of Port 0. This can be done
in sblInit() function. Make sure to define CC2510, CC2511, CC1110 or CC1111 in the options
 C/C++ Compiler Preprocessor Defined symbols in IAR embedded work bench,
based on which SoC the boot loader is being burned. This will include the appropriate I/O
header file from the following folder: <IAR installed folder>\8051\inc\ioCC2510.h (or
ioCC2511.h / ioCC1110.h / ioCC1111.h). IAR workbench version 7.6 was used for building
this project, so it’s recommended to use this or any newer version.

GND

RESET_N

P1.0

P0.4
CC2510/1 or

P0.5 CC1110/1 SoC

P2.1

P2.2

P0.3

P0.2

External
Host

Application Note AN101

SWRA371A-Sep 2011 Page 23 of 28

6 Sample LED blinking code
To verify if the boot loader is writing the user code passed by the external host correctly, we
used a sample LED blinking program and generated the binary file from IAR Embedded work
bench. The procedure is described below:
A small LED blinking code is written as shown below:

Then generate output hex file in intel format.

Figure 18 Generating the Intel Hex format file

Application Note AN101

SWRA371A-Sep 2011 Page 24 of 28

Before compiling and generating the Intel Hex file, we will have to change the starting
address of the code in the linker file to 0x2000. This is done because we are not writing the
code at location 0x0000; we are relocating it to location 0x2000, and if the compiler used
absolute jump instead of relative jump commands, control would move to the wrong location
and the code might hang. Figure 19 shows the snap shot of the IAR workbench showing the
path of the linker file where the starting address needs to be changed [8].

Figure 19 Changing the program starting address

It will generate a file in standard Intel HEX file format [9] as shown below:

:020000040000FA

:1000000002001700000080FB120020B9000302006C

:100010001112002312000375D0007581BF02000881
:1000200079012253F4F6E5F4D290D29343FE09E528

:10003000FE639001E5907B0080080AEAC394FF40CC

:0C004000F90BEBC394FF50E97A0080EF4D
:0400000500000017E0

:00000001FF

[Blue: DATA, RED: location to which instruction pointer must point at the beginning]

Binary data could be extracted from this file and driven as user code from external host. In
the drop-down list of format, there is another format called “msp430-txt” which will generate
text file with binary value of the code as shown below:

02 00 17 00 00 00 80 FB 12 00 20 B9 00 03 02 00

11 12 00 23 12 00 03 75 D0 00 75 81 BF 02 00 08

79 01 22 53 F4 F6 E5 F4 D2 90 D2 93 43 FE 09 E5

Application Note AN101

SWRA371A-Sep 2011 Page 25 of 28

FE 63 90 01 E5 90 7B 00 80 08 0A EA C3 94 FF 40

F9 0B EB C3 94 FF 50 E9 7A 00 80 EF

This format will directly give the binary data that needs to be written into the internal flash of
the SoC. After writing this code into the flash and giving reset, control will jump to this user
code, and the P1.0 pin will start toggling at a rate dependent on system clock.

The frames with the command bytes and above data will look like:

Frame 1: FE 42 4D 01 00 00 02 00 17 00 00 00 80 FB 12 …… EA C3 94 FF 40 FCS
Frame 2: FE 42 4D 01 00 20 F9 0B EB C3 94 FF 50 E9 7A 00 80 EF FF FF FF FF …… FF FF FCS
Frame 3: FE 42 4D 01 00 40 FF FF FF FF …… FF FF CD 56 CD 56 FF FF ……. FF FF FF FF FCS

0x0048 0x0049
The first frame will write first 64 bytes of data in the internal flash starting at location (byte
address) 0x2000 + 0x0000 = 0x2000 and ending at location 0x203F. The second frame will
write the remaining 12 bytes of data and FF into next 64 locations of internal flash (0x2040 to
0x207F). The third frame is used to write the CRC word into the internal flash.
In the third frame, word address 0x0048 = 0x0049 = 0xCD56 (for example), which is the CRC
word location (corresponding byte address = 0x0090-0x0091& 0x0092-0x0093)

As seen in Intel HEX file, this code starts at location 0x0017 and not 0x0000, so after the
boot loader execution is over, control should jump to location 0x2017 and not 0x2000.

This location of jump to the user code will depend on the location of the starting point
of the user code.

Note: Do not forget to write the CRC word in two locations of flash 0x0048 and 0x0049 (word
address).

Application Note AN101

SWRA371A-Sep 2011 Page 26 of 28

7 FAQ
Q1. Is there any option of specifying the start address of the application code (i.e., the
address with which the program counter must be loaded initially to run the application code)?

Ans. Yes. There is a LJMP command in the main() function (sb_main.c) which specifies the
starting point of the user code. For example, suppose the user code is written from 0x2000 to
0x3000 but the starting point of the application code is 0x2017. Then, the instruction pointer
must be loaded with 0x2017, which is done by the command asm(“LJMP 0x2017\n”) in the
main() function. You can change this address to the starting address of your application
code.

Q2. What all changes are required if I need to change the bootloader reserved code space?

Ans. You will require two changes:
1. Change –D_CODE_END variable in sb-boot.xcl
2. Change the offset added to the address sent through the read/write command. This

is done by changing these two values in hal_board_cfg.h
a. #define HAL_SB_IMG_ADDR 0x2000
b. #define HAL_SB_CRC_ADDR 0x2090

HAL_SB_IMG_ADDR will change the offset added and HAL_SB_CRC_ADDR
indicates the location where computed CRC value is stored. This will also change if
boot loader code space increases or decreases.

Q3. While generating application code starting at (for example) location 0x2800, there are
some values generated at locations between 0x0000 to 0x008F. What are these and do we
need to write these values into flash?

Ans. These are interrupt vectors at locations: 0x0003, 0x000B, 0x0013, 0x001B, 0x0023,
0x002B … till 0x008B. These are total 18 interrupt vectors.

Let’s consider an example. Suppose after generating the hex file, you get

@0000
02 28 4D
@0013
02 2F 3C
@003B
02 2F AE
@004B
02 31 69
@0083

On reset, control jumps to location 0x0000. So this location contains the
starting point of the application code. It is a JUMP to 0x284D command

Interrupt vectors (containing JUMP command to respective ISR)

02 39 14
@2800
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX…..

Application code

Please follow the below steps to handle these interrupts:

1. Open file interrupt_stubs.s51. There is an offset defined as 0x2000 at line 40. As the
boot loader code area is increased to 0x2800, make this offset as 0x2800 (or
whatever is the boot loader code area). What this will do is, for example, write “jump

Application Note AN101

SWRA371A-Sep 2011 Page 27 of 28

to 0x284B” at location 0x004B when you burn the boot loader code into the SoC (it
will do this for all the interrupt vectors). So whenever a timer 1 interrupt comes, the
8051 will move to location 0x004B where the jump to 0x284B command will be
written. This way all the interrupt vectors are forwarded to the interrupt vector starting
at location 0x2800.

2. In the file interrupt_stubs.s51, you will see that “USART0 RX complete” and
“USART0 TX complete” interrupt vectors are commented out. This is because these
two interrupts are also used by the boot loader, so we cannot directly forward these
interrupts to location 0x2813/0x283B. Whenever one of these two interrupts occurs,
the 8051 will move to location 0x0013 or 0x003B (based on the RX/TX interrupt), and
there will be jump command that will jump to the if condition within the boot loader
code area defined in file sb_main.c (line 379). In this if condition, it checks if boot
loader code is running or the application code is running. If the boot loader code is
running, this interrupt is handled internally by the boot loader (by calling function
halUartRxIsr() or halUartTxIsr()), otherwise it jumps to location 0x2013 or 0x203B.
Just change the location value at line 384 from 0x2013 to 0x2813 and at line 402:
from 0x203B to 0x283B. This will ensure that when interrupt was from the application
code, control jumps to the location 0x2813 or 0x283B

3. There are 18 interrupt vectors (0x2803, 0x280B, 0x2813, 0x281B, 0x2823,
0x282B,…) starting from 0x2803 to 0x288B. So you will have to skip these values
while writing application code. Better to start the application code at 0x2900. So
change the -D_CODE0_START value to 0x2900 instead of 0x2800 and again
generate the msp430-txt format file.

4. Now you will get new values for @0013, @003B, @004B and @0083. Write those
values at location 0x00XX (i.e. 0x0003, 0x000B, 0x0013, 0x001B…) or 0x28XX (i.e.,
0x2803, 0x280B, 0x2813, 0x281B…). Remember that the current boot loader
supports only 64 bytes of write command. So if you would like to write these interrupt
vectors at location 0x28XX, write it as shown below:

@0x2800
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF

@0X2840
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF

@0X2880
FF FF FF 02 XX XX FF FF FF FF FF 02 XX XX FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

(numbers in red are the jump command of the four interrupts generated after compilation)
(You can start writing at location 0x2800 and fill 0xFF in all the intermediate locations (i.e.
non-interrupt vector locations))

You can write FF for the interrupts which you are not using. So there will be 3 write requests
of 64 bytes each. As address given during write command is word address, you will have to
give 0x1400, 0x1420 and 0x1440 for the three write commands. In this case you will have to
write 0x2813 and 0x283B in the HAL_ISR_FUNCTION() in file sb_main.c

Application Note AN101

SWRA371A-Sep 2011 Page 28 of 28

8 References

8.1 Cited references

[1] CC253x Bootloader code in ZigBee protocol stack for CC2530 -

http://focus.ti.com/docs/toolsw/folders/print/z-stack.html
[2] CC253x SoC User’s Guide -

http://focus.ti.com/docs/prod/folders/print/cc2530.html
[3] CC2510/1 datasheet -

http://focus.ti.com/docs/prod/folders/print/cc2510f32.html
[4] TI design note DN113 on CC111xFx, CC243xFx,CC251xFx and CC253xFx

SPI interface - http://www.ti.com/lit/swra223
[5] Serial Boot Loader for CC253x SoC, Document number: SWRA327

http://focus.ti.com/docs/toolsw/folders/print/z-stack.html
[6] CC2510/1 & CC1110/1 Bootloader code - http://www.ti.com/litv/zip/swra371
[7] CC1110/1 datasheet -

http://focus.ti.com/docs/prod/folders/print/cc1110f32.html

8.2 General references

[8] IAR Embedded workbench - http://www.iar.com/website1/1.0.1.0/3/1/
[9] http://en.wikipedia.org/wiki/Intel_HEX

9 Document History

Revision Date Description/Changes
1.0 06/08/2011 Initial release.
1.1 09/07/2011 Support for CC2511, CC1110 and CC1111.

http://focus.ti.com/docs/toolsw/folders/print/z-stack.html
http://focus.ti.com/docs/prod/folders/print/cc2530.html
http://focus.ti.com/docs/prod/folders/print/cc2510f32.html
http://www.ti.com/lit/swra223
http://focus.ti.com/docs/toolsw/folders/print/z-stack.html
http://www.ti.com/litv/zip/swra371
http://focus.ti.com/docs/prod/folders/print/cc1110f32.html
http://www.iar.com/website1/1.0.1.0/3/1/
http://en.wikipedia.org/wiki/Intel_HEX

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	1 Introduction
	2 Introduction to the boot loader
	2.1 Overall flow of the boot loader
	3.1 sblInit():
	3.2 sbImgValid():
	3.3 sblWait():
	3.4 HalUARTUnInitISR():
	3.5 sblExec():
	3.6 sbExec():
	3.7 sbCmnd():
	3.8 ISR in the boot loader
	3.9 DMA controller for flash write

	4 Frame Format
	4.1 Command from external host
	4.2 Response to the command

	5 Test Environment
	6 Sample LED blinking code
	7 FAQ
	8 References
	9 Document History
	IMPORTANT NOTICE

