
1SPRACN6–July 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Integer Division – A Differentiated Offering From C2000™ Product
Family

Application Report
SPRACN6–July 2019

Fast Integer Division – A Differentiated Offering From
C2000™ Product Family

Prasanth Viswanathan Pillai, Himanshu Chaudhary, Aravindhan Karuppiah, Alex Tessarolo

ABSTRACT
This application report provides an overview of the different division and modulo (remainder) functions and
its associated properties. Later, the document describes how the different division functions can be
implemented using the C28x ISA and intrinsics supported by the compiler.

Contents
1 Introduction ... 2
2 Different Division Functions .. 2
3 Intrinsic Support Through TI C2000 Compiler ... 4
4 Cycle Count... 6
5 Summary.. 6
6 References ... 6

List of Figures

1 Truncated Division Function.. 2
2 Floored Division Function... 3
3 Euclidean Division Function .. 3

List of Tables

1 Example Outputs .. 4
2 Modulo Properties .. 4
3 Intrinsics Supported and Cycles Using Fast Integer Division Unit on C28x ... 5
4 Performance Improvement Comparison .. 6

Trademarks
C2000 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN6

Positive
Denominator

Negative
Denominator

Traditional Division

RemainderQuotient

Numerator Numerator

Introduction www.ti.com

2 SPRACN6–July 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Integer Division – A Differentiated Offering From C2000™ Product
Family

1 Introduction
Present day processing unit (CPU) used in real time MCUs implement a host of different functions in
hardware to reduce the latency and improve the performance. Among these, division and modulo
(remainder) are two complex functions to implement. To make matters hard, there are multiple definitions
for division and modulo function according to the programming language and computer science literature.
These different definitions provide different mathematical properties that can be beneficially employed in
the application context. C28x CPU has added new instructions to enable applications to implement
different division and modulo functions efficiently. By doing so, C28x CPU became the first CPU used in
the MCU application space to implement these operations in hardware.

Low latency, ability to interrupt and higher efficiency are some of the important considerations when
designing the instruction set architecture for the CPU of a real time MCU. The inputs from the real world
which are used for processing can be of different types (unsigned, signed) and different sizes (16, 32, 64,
128, and so forth). The instruction set architecture should enable seamless processing of different
combination of these values also. The new instructions used to enable integer division are interruptible,
have very low latency and support different types of operations (ui32/ui32, i32/ui32, i64/i32, ui64/ui32,
ui64/ui64, i64/i64, and so forth).

2 Different Division Functions
Programming language and computer science literature mainly defines three different division and modulo
functions. This section describes the different division and modulo function languages, and their salient
properties.

2.1 Truncated Division or Traditional Division
Truncated division is natively used in many programming languages including C and it is the most
commonly used division function. The truncated division function is defined as follows:

Quotient = trunc(Numerator/Denominator)

Remainder = Numerator – Quotient*Denominator

The transfer function of the truncated division is shown in Figure 1. In this definition, the remainder will
always have the sign of the numerator. Here, the function is non periodic since there is a “platform”
around zero point. Due to the non-linearity around zero point, the function is not preferred in control
algorithms.

Figure 1. Truncated Division Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN6

Euclidean Division

RemainderQuotient

Positive
Denominator

Negative
Denominator

Numerator Numerator

Modulo Division

RemainderQuotient

Positive
Denominator

Negative
Denominator

Numerator

Numerator

www.ti.com Different Division Functions

3SPRACN6–July 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Integer Division – A Differentiated Offering From C2000™ Product
Family

2.2 Floored Division or Modulo Division
Floored division is defined as follows

Quotient = floor(Numerator/Denominator)
Remainder = Numerator – Quotient*Denominator

The function is defined such that the remainder will always have the sign of denominator. The function is
linear around the zero point. The transfer function of the floored division is provided in Figure 2. This
division function is more regular compared to the traditional division function.

Figure 2. Floored Division Function

2.3 Euclidean Division
This form of division is derived from Euclid’s theorem. The quotient and remainder results are defined as
follows:

if (Denominator > 0)
Quotient = floor(Numerator/Denominator)

else if(Denominator < 0)
Quotient = ceil(Numerator/Denominator)

The transfer function of Euclidean division is shown in Figure 3. The remainder is always positive in
Euclidean division. The division function is linear around the zero point and the modulo function is
periodic. Due to its unique properties, it is preferred for implementing several algorithms.

Figure 3. Euclidean Division Function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN6

Intrinsic Support Through TI C2000 Compiler www.ti.com

4 SPRACN6–July 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Integer Division – A Differentiated Offering From C2000™ Product
Family

The quotient and remainder results obtained for different types of division for a set of sample input values
are given in Table 1.

Table 1. Example Outputs

Numerator Denominator
Traditional Division Floored Division Euclidean Division

Quotient modulo Quotient modulo Quotient modulo
7 4 1 3 1 3 1 3
-7 4 -1 -3 -2 1 -2 1
7 -4 -1 3 -2 -1 -1 3
-7 -4 1 -3 1 -3 2 1

The properties of the remainder (modulo) operation for different division types are provided in Table 2 [1].

Table 2. Modulo Properties

Sl No Property Traditional Division Floored Division Euclidean Division
1 Periodicity X X
2 Regularity Low Medium High
3 Preservation of Numerator Sign X
4 Preservation of Denominator Sign X
5 Non-negative unique representation X

3 Intrinsic Support Through TI C2000 Compiler
The division functions are standardized operations and hence to provide optimal cycles and ease of
developing applications using these operations, TI C2000 compiler provides support through intrinsics.
The TMS320C28x Optimizing C/C++ Compiler v18.12.0.LTS User's Guide [2] and later versions support
the generation of division functions in one of three ways:
• Intrinsics, declared in stdlib.h, which take numerator and denominator and return a structure containing

both the remainder and quotient. The intrinsics supported are mentioned in the TMS320C28x
Optimizing C/C++ Compiler v18.12.0.LTS User's Guide.

• Operators for division (/) and modulo (%), which will automatically be optimized.
• Standard library functions ldiv and lldiv, found in stdlib.h.

Euclidean/Modulo division are supported only using intrinsics. Operators and the standard library functions
will perform traditional division according to the C standard.

Compiler option, --idiv_support, controls support for these division types. A value of 'idiv0' implies
hardware acceleration for different division functions and value of none implies no hardware acceleration
for the different division functions. The option is only valid when FPU32 or FPU64 is available (--
float_support=fpu32 or fpu64) and when using the C2000 EABI (--abi=eabi).

For more details on intrinsics definitions, macros, and additional background information, see the
TMS320C28x Optimizing C/C++ Compiler v18.12.0.LTS User's Guide and the TMS320C28x Assembly
Language Tools v18.12.0.LTS User's Guide User's Guide [3].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN6
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU513
http://www.ti.com/lit/pdf/SPRU513

www.ti.com Intrinsic Support Through TI C2000 Compiler

5SPRACN6–July 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Integer Division – A Differentiated Offering From C2000™ Product
Family

3.1 Software Examples
To ease development of applications using the Fast Integer Division (FID) unit, TI also provides demo
examples inside the library section of C2000WARE (libraries\math\FASTINTDIV) [4] to showcase the
usage of various integer division intrinsics. This example provides users with the usage of each of the 21
intrinsics. The cycles can be measured to see the significant gain provided by using the TI’s FID unit. The
entire process of using the acceleration provided by the FID unit has been made very simple through the
intrinsics and example provided. Table 3 provides the list of intrinsics and cycles.

Table 3. Intrinsics Supported and Cycles Using Fast Integer Division Unit on C28x

Division Type Intrinsic Cycles
16-bit by 16-bit traditional __traditional_div_i16byi16() or int/int 16
16-bit by 16-bit Euclidean __euclidean_div_i16byi16() 14
16-bit by 16-bit Modulo __modulo_div_i16byi16() 14
16-bit by 16-bit traditional unsigned __traditional_div_u16byu16() or uint16_t/uint16_t 14
32-bit by 32-bit traditional __traditional_div_i32byi32() or long/long 13
32-bit by 32-bit Euclidean __euclidean_div_i32byi32() 14
32-bit by 32-bit Modulo __modulo_div_i32byi32() 14
32-bit by 32-bit traditional - long/unsigned
long __traditional_div_i32byu32() or long/unsigned long 14

32-bit by 32-bit Modulo __modul0_div_i32byu32() 14
32-bit by 32-bit traditional - unsigned
long/unsigned long __traditional_div_u32byu32() or unsigned long/unsigned long 12

32-bit by 16-bit traditional __traditional_div_i32by16() or long/int 18
32-bit by 16-bit Euclidean __euclidean_div_i32bi16() 16
32-bit by 16-bit Modulo __modulo_div_i32byi16() 16
32-bit by 16-bit traditional unsigned
long/unsigned int __traditional_div_u32byu16() or unsigned long/uint16_t 13

64-bit by 64-bit traditional __traditional_div_i64byi64() or long long/long long 42
64-bit by 64-bit Euclidean __euclidean_div_i64byi64() 42
32-bit by 64-bit Modulo __modulo_div_i64byi64() 42
64-bit by 64-bit traditional - long
long/unsigned long long __traditional_div_i64byu64() or long long/unsigned long long 42

64-bit by 64-bit Modulo __euclidean_div_i64byu64() 42
64-bit by 64-bit Modulo __modulo_div_i64byu64() 42
64-bit by 64-bit traditional - unsigned long
long/unsigned long long __traditional_div_u64byu64() or unsigned long long/unsigned long long 42

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN6
http://www.ti.com/tool/C2000WARE

Cycle Count www.ti.com

6 SPRACN6–July 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Fast Integer Division – A Differentiated Offering From C2000™ Product
Family

4 Cycle Count
The cycles for the different types of division operations and sizes of the operands are listed below. These
can be profiled using the examples provided in the C2000WARE as well. Wide variety of division
operations, varying operands sizes are listed below along with cycles numbers. The boost in cycles using
the fast integer division is shown in Table 4 with respect to the cycles needed to do the same operation on
the C28x CPU.

Table 4. Performance Improvement Comparison

Division Operation
Using C Operator '/' Without

FASTINTDIV Hardware on C28x
Using Intrinsics With FASTINTDIV

Hardware + C28x Improvement Factor
i16/i16 traditional 52 16 3.3
i16/i16 Euclidean 56 14 4.0
i16/i16 Modulo 56 14 4.0
u16/u16 56 14 4.0
i32/i32 traditional 59 13 4.5
i32/i32 Euclidean 63 14 4.5
i32/i32 Modulo 63 14 4.5
i32/u32 traditional 37 14 2.6
i32/u32 Modulo 41 14 2.9
u32/u32 37 12 3.1
i32/i16 traditional 60 18 3.3
i32/i16 Euclidean 64 16 4.0
i32/i16 Modulo 64 16 4.0
u32/u16 38 13 2.9
i64/i64 traditional (1) 78-2631 42 1.9-62.6
i64/i64 Euclidean (1) 82-2635 42 2.0-62.7
i64/i64 Modulo (1) 82-2635 42 2.0-62.7
i64/u64 traditional (1) 54-2605 42 1.3-62.0
i64/u64 Euclidean (1) 58-2609 42 1.4-62.1
i64/u6 Modulo (1) 58-2609 42 1.4-62.1
u64/u64/ (1) 53-2548 42 1.3-60.7

(1) The FASTINTDIV hardware implements 64-bit integer division with optimal fixed number of cycles for fast deterministic
behavior. MCUs without such hardware acceleration, implement 64-bit integer division using generic CPU instructions that are
not optimized for division or use algorithm techniques that optimize execution based on the value of the numerator and
denominator. For instance, if the value of the numerator and denominator is less than 32-bits the software will execute a 32-bit
division. Hence, the number of cycles can vary significantly and for large numerator and denominator values, overall cycles are
much higher than achievable by the FASTINTDIV accelerator

5 Summary
The differentiation provided by the Texas Instruments Fast Integer Division (FID) unit reduces the latency
of different division operations. The FID unit provides several folds improvement in performance for
different types of division operations. The cycles saved for division operation along with the many of the
other differentiations provided in C2000 devices such as FPU, TMU and the inherent C28x DSP minimizes
the latency of control loop calculations and opens up usage in new applications. The intrinsics support in
compiler ensures that the use of this differentiation is just a few additional lines of code.

6 References
1. R. T. Boute, “The euclidean definition of the functions div and mod,” ACM Transactions on

Programming Languages and Systems (TOPLAS), 1992.
2. Texas Instruments: TMS320C28x Optimizing C/C++ Compiler v18.12.0.LTS User's Guide
3. Texas Instruments: TMS320C28x Assembly Language Tools v18.12.0.LTS User's Guide User's Guide
4. C2000Ware for C2000 MCUs (http://www.ti.com/tool/C2000WARE)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN6
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU513
http://www.ti.com/tool/C2000WARE

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Fast Integer Division – A Differentiated Offering From C2000 Product Family
	1 Introduction
	2 Different Division Functions
	2.1 Truncated Division or Traditional Division
	2.2 Floored Division or Modulo Division
	2.3 Euclidean Division

	3 Intrinsic Support Through TI C2000 Compiler
	3.1 Software Examples

	4 Cycle Count
	5 Summary
	6 References

	Important Notice

