LB-16 LB-16 Easily Tuned Sine Wave Oscillators Literature Number: SNOA687 # LB-16 ## **Easily Tuned Sine Wave Oscillators** National Semiconductor Linear Brief 16 March 1971 One approach to generating sine waves is to filter a square wave. This leaves only the sine wave fundamental as the output. Since a square wave is easily amplitude stabilized by clipping, the sine wave output is also amplitude stabilized. A clipping oscillator eliminates the problems encountered with agc stabilized oscillators such as those using Wein bridges. Additionally, since there is no slow agc loop, the oscillator starts quickly and reaches final amplitude within a few cycles If a lower distortion oscillator is needed, the circuit in Figure $\it 2$ can be used. Instead of driving the tuned circuit with a square wave, a symmetrically clipped sine wave is used. The clipped sine wave, of course, has less distortion than a square wave and yields a low distortion output when filtered. This circuit is not as tolerant of component values as the one shown in Figure 1. To insure oscillation, it is necessary that sufficient signal is applied to the zeners for clipping to occur. Clipping about 20% of the sine wave is usually a good value. The level of clipping must be high enough to TL/H/8466-1 #### FIGURE 1. Easily Tuned Sine Wave Oscillator The circuit in *Figure 1* will provide both a sine and square wave output for frequencies from below 20 Hz to above 20 kHz. The frequency of oscillation is easily tuned by varying a single resistor. This is a considerable advantage over Wein bridge circuits where two elements must be tuned simultaneously to change frequency. Also, the output amplitude is relatively stable when the frequency is changed. An operational amplifier is used as a tuned circuit, driven by square wave from a voltage comparator. Frequency is controlled by $R_1,\ R_2,\ C_1,\ C_2,\$ and $R_3,\$ with R_3 used for tuning. Tuning the filter does not affect its gain or bandwidth so the output amplitude does not change with frequency. A comparator is fed with the sine wave output to obtain a square wave. The square wave is then fed back to the input of the tuned circuit to cause oscillation. Zener diode, $D_1,\$ stabilizes the amplitude of the square wave fed back to the filter input. Starting is insured by R_6 and C_5 which provide dc negative feedback around the comparator. This keeps the comparator in the active region. insure oscillation over the entire tuning range. If the clipping is too small, it is possible for the circuit to cease oscillation due to tuning, component aging, or temperature changes. Higher clipping levels increase distortion. As with the circuit in *Figure 1*, this circuit is self-starting. Table I shows the component values for the various frequency ranges. Distortion from the circuit in Figure 1 ranges between 0.75% and 2% depending on the setting of R_3 . Although greater tuning range can be accomplished by increasing the size of R_3 beyond 1 $k\Omega$, distortion becomes excessive. Decreasing R_3 lower than 50Ω can make the filter oscillate by itself. The circuit in Figure 2 varies between 0.2% and 0.4% distortion for 20% clipping. About 20 kHz is the highest usable frequency for these oscillators. At higher frequencies the tuned circuit is incapable of providing the high Q bandpass characteristic needed to filter the input into a clean sine wave. The low frequency end of oscillation is not limited except by capacitor size. FIGURE 2. Low Distortion Sine Wave Oscillator TABLE I | IABLET | | | | | | |---|---------|------------------|--|--|--| | C ₁ , C ₂ Min Frequency | | Max
Frequency | | | | | 0.47 μF | 18 Hz | 80 Hz | | | | | 0.1 μF | 80 Hz | 380 Hz | | | | | .022 μF | 380 Hz | 1.7 kHz | | | | | .0047 μF | 1.7 kHz | 8 kHz | | | | | .002 μF | 4.4 kHz | 20 kHz | | | | In both oscillators, feedforward compensation is used on the LM101A amplifiers to increase their bandwidth. Feedforward increases the bandwidth to over 10 MHz and the slew rate to better than 10 V/ μs . With standard compensation the maximum output frequency would be limited to about 6 kHz. Although these oscillators are not particularly tricky, good construction techniques are important. Since the amplifiers and the comparators are both wide band devices, proper power supply bypassing is in order. Both the positive and negative supplies should be bypassed with a 0.1 μF disc ceramic capacitor. The fast transition at the output of the comparator can be coupled to the sine wave output by stray capacitance, causing spikes on the output. Therefore the output of the comparator with the associated circuitry should be shielded from the inputs of the op amp. TL/H/8466-2 Component choice is also important. Good quality resistors and capacitors must be used to insure temperature stability. Capacitor should be mylar, polycarbonate, or polystyrene — electrolytics will not work. One percent resistors are usually adequate. The circuits shown provide an easy method of generating a sine wave. The frequency of oscillation can be varied over greater than a 4 to 1 range by changing a single resistor. The ease of tuning as well as the elimination of critical agc loops make these oscillators well suited for high volume production since no component selection is necessary. #### REFERENCES - 1. N.P. Doyle, "Swift, Sure Design of Active Bandpass Filters," *EDN*, Vol. 15, No. 2, January 15, 1970. - R.J. Widlar, "Precision IC Comparator Runs from 5V Logic Supply," National Semiconductor AN-41, October, 1970. - 3. Robert C. Dobkin, "Feedforward Compensation Speeds Op Amp," *National Semiconductor LB-2*, March, 1969. NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 **National Semiconductor** Europe Europe Fax: (+49) 0-180-530 85 86 Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 **National Semiconductor** Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | | Applications | | |----------|--|--|--------------|--| | | | | | | www.ti.com/audio www.ti.com/communications Audio Communications and Telecom **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page <u>e2e.ti.com</u>