
1 Programming the EEPROM

1.1 Initial Last Measured Discharge

ILMD � DesignCapacity(mAh) �
RS(m�)

256 � 3.57 �Vh (1)

Application Report
SLUA338–April 2005

Configuring the bq27000/200 for Gas Gauge Applications
Bill Jackson ......................................................................................................... Battery Management

ABSTRACT

Users of the bq27000 and bq27200 ICs can program ten EEPROM locations to
optimize setups for particular battery and host requirements. This application report
describes how to configure these ICs for those requirements.

Users of the bq27000 and bq27200 ICs can program ten EEPROM locations to optimize setups for
particular battery and host requirements. These EEPROM locations are mapped directly to RAM locations
0x76 to 0x7f. The host can only write to these locations during a special test mode. This test mode is
entered by writing 0xdd to address 0x6e. This action allows write access to these RAM locations and
allows transferring the RAM contents into EEPROM. The bq27000/200 processing is inhibited while
address 0x6e contains 0xdd and when EEPROM programming is complete, address 0x6e must be written
back to 0x00. The bq27000/200 processor is reset by this action, and the new EEPROM values take effect
at that time.

The actual EEPROM programming is accomplished by reading each address (after previously writing it
with the desired data) and then applying a programming pulse of 21 volts amplitude for a 10-ms to 100-ms
duration. After all programming changes have been accomplished, the test system must write 0x00 to
address 0x6e. This action disables write access to the EEPROM values, resets the bq27000/200, and
allows normal execution to resume.

The initial last measured discharge (ILMD) value is the design capacity of the battery. The high byte of last
measured discharge (LMD) is set equal to ILMD on a full reset. LMD is then used for the 100%
full-capacity reference. The bq27000/200 subsequently updates this value with the learned capacity of the
battery. It is recommended to program the ILMD with a value slightly smaller than the expected initial
capacity of the battery. This reduces the perturbation that may occur later in the equipment lifetime due to
some unexpected reset, where corruption of RAM values is evident. A reset without RAM corruption (the
register backup input maintains the RAM content) leaves the LMD value at its learned value and does not
cause it to be reinitialized to ILMD. Units for ILMD are 256 ×3.57 µVh per least significant bit (LSB).

The EEPROM value for ILMD is programmed in address 0x76. The formula for determining the EEPROM
value for ILMD is:

Example: If the battery design capacity is 1000 mAh and the sense resistor is 20 mΩ, the value to be
programmed in ILMD would be: 1000 mAh × 20 mΩ/(256 × 3.57 µVh) = 21.9. The next smaller value is 21
decimal, or 15 hexadecimal. Setting ILMD to 0x15 initializes LMD to 0x1500 (5376 decimal), or 960 mAh
with a 20-mΩ sense resistor.
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1.2 Scaled End-of-Discharge Voltage Final

SEDVF �

DesignEDVF(mV)
8

� 256
(2)

1.3 Scaled End-of-Discharge Voltage First

SEDV1 �

DesignEDV1(mV)
8

� 256
(3)

1.4 Initial Standby Load Current

ISLC �

DesignStdbyCurrent(mA) � RS(m�)

7.14 �V (4)

Programming the EEPROM

Set the scaled end-of-discharge voltage final (SEDVF) voltage to the threshold where the battery is
expected to have zero capacity. This threshold is typically about 3000 mV. Nominal available capacity
(NAC) is adjusted to zero during a discharge if this voltage threshold is reached . Units for SEDVF are 8
mV, with a 2048-mV offset.

Program the EEPROM value for SEDVF in address 0x77. The formula for determining the EEPROM value
for SEDVF is:

Example: To set the EDVF threshold to 3000 mV, the value to be programmed in SEDVF is: 3000 mV/8 –
256 = 119 decimal or 77 hexadecimal.

Set the scaled end-of-discharge voltage first (SEDV1) voltage to the threshold where the battery is
expected to have 6.25% capacity remaining under typical load conditions. NAC is adjusted down to
LMD/16 during a discharge (unless NAC is already a smaller value) when this voltage threshold is
reached. If NAC reaches LMD/16 before the EDV1 threshold is reached and the discharge is a valid
learning cycle discharge (VDQ = 1), NAC is held at the LMD/16 value until the EDV1 threshold is reached.
Thus, NAC is synchronized to the 6.25% capacity level at the EDV1 threshold. This threshold also
terminates a learning cycle. The learned capacity has LMD × 6.25% added to the measured discharge
from full to EDV1; so, setting the EDV1 threshold to a value appropriate to 6.25% of LMD is critical. Units
for SEDV1 are 8 mV, with a 2048-mV offset.

Program the EEPROM value for SEDV1 in address 0x78. The formula for determining the EEPROM value
for SEDV1 is:

Example: To set the EDV1 threshold to 3350 mV, the value to be programmed in SEDV1 is: 3350 mV/8 –
256 = 162.75 decimal. The closest value is 163 decimal or a3 hexadecimal. Setting SEDV1 to 0xa3 sets
the EDV1 threshold at 3352 mV.

The initial standby load current (ISLC) value programmed in EEPROM should be the estimated standby
load current. The bq27000/200 takes any nonzero current value that is less than or equal to two times the
programmed standby load current value and computes a weighted average with the previous standby load
current. This allows the reported standby current to reflect the actual measured standby current, and the
value is used to compute standby time-to-empty. The bq27000/200 also disables learning a new LMD if a
learning discharge cycle terminates at EDV1 when the average discharge current is less than or equal to
two times the programmed standby load current value. This prevents learning an inflated capacity value
under a standby load condition. Units for ISLC are 7.14 µV per LSB.

Program the EEPROM value for ISLC in address 0x79. The formula for determining the EEPROM value
for ISLC is:

Example: To set the ISLC value to 20 mA with a 20-mΩ sense resistor, the value to be programmed in
ISLC is: 20 mA × 20 mΩ/7.14 µV = 56 decimal or 3a hexadecimal. The bq27000/200 disqualifies a
learning cycle if the measured discharge current is less than or equal to 40 mA when EDV1 is detected.
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1.5 Digital Magnitude Filter and Self-Discharge Rate

DMF[3 : 0] �
DesignThreshold

4.9 �V (5)

SD[3 : 0] � 1.61
DesignSD (6)

1.6 Taper Current

TAPER �

DesignTaperCurrent(mA) � RS(m�)

228 �V (7)

Programming the EEPROM

The digital magnitude filter (DMF) threshold sets the minimum signal level across the sense resistor that is
to be measured. If the signal level measured by the bq27000/200 is less than this threshold, the signal is
ignored and assumed to be zero. If the signal level is higher than this threshold, the signal is accepted as
a valid measurement. The DMF prevents a small measurement offset due to IC characteristics as well as
any additional offset due to PCB layout from accumulating a large error over a long time. During times
with no charge or discharge, any small signal due to offset that is less than the DMF threshold is ignored.
If the DMF value is set to zero, then all signal levels will be treated as valid. A typical value for the DMF
threshold is 15–20 µV. The formula for determining the EEPROM value for DMF is:

The self-discharge (SD) rate estimate sets the rate at 25°C that is used to estimate the self-discharge
capacity loss in 1 day when the battery is not being charged. This rate is automatically compensated for
temperature by doubling the programmed rate for every 10°C increase or halving the programmed rate for
every 10°C decrease. A typical value for Lithium ion batteries is 0.2% per day at 25°C. The formula for
determining the EEPROM value for SD is:

The EEPROM values for the digital magnitude filter and self-discharge (DMFSD) rate are combined into a
single byte and programmed in address 0x7a.

Example: To set the DMF threshold to 15 µV and the self-discharge rate to 0.2% per day, the value to be
programmed in the upper nibble of DMFSD is: 15 µV/4.9 µV = 3.06 and the value to be programmed in
the lower nibble of DMFSD is: 1.61/0.2 = 8.05. The closest values are 3 and 8; so, the hexadecimal value
for DMFSD would be 0x38. Setting DMFSD = 0x38 sets the DMF threshold to 14.7 µV and the
self-discharge rate to 0.2% per day at 25°C.

The taper current (TAPER) threshold sets the threshold that charging current must fall below for the
bq27000/200 to detect that the battery has received a full charge. Voltage must also meet the qualifying
threshold that is set in pack configuration (PKCFG) to qualify as a valid taper current charge termination.
Typical values for the taper threshold are in the range of LMD/20 to LMD/10. The value programmed in
the bq27000/200 should be a little higher in value than the expected charge termination current of the
charger. If the charger terminates before the bq27000/200 can detect the charge termination, the
bq27000/200 does not adjust the displayed capacity to the full (NAC=LMD) condition. Units for TAPER are
228 µV per LSB.

The EEPROM value for TAPER is programmed in bits 6-0 in address 0x7b. Bit 7 of address 0x7b is
reserved for enabling the capacity fade estimate. The formula for determining the EEPROM value for
TAPER is:

Example: To set the taper charge termination threshold to 100 mA: TAPER = 100 mA × 20 mΩ/228 µV =
8.8. The EEPROM value for TAPER should be programmed to 0x09 or 0x89, depending on the option
chosen for bit 7. This programs the taper current value to 102.6 mA.

Bit 7 of TAPER is used to enable or disable application of a capacity fade estimate. This is useful if the
battery may spend considerable time without a capacity learning cycle. If bit 7 = 0, capacity aging is
disabled. If bit 7 = 1, two separate aging estimates are made. The primary adjustment is made if
substantial charge and discharge activity occurs without a learning cycle. Every time CYCL (cycle count
since last learning cycle) increments by 2, LMD is reduced by ILMD*256/1024 (0.1% of design capacity).
A secondary adjustment is made if considerable time passes with no significant charge or discharge
activity. LMD is reduced by ILMD ×256/1024(0.1% of design capacity) every time that NAC is reduced by

Configuring the bq27000/200 for Gas Gauge ApplicationsSLUA338–April 2005 3



www.ti.com

1.7 Pack Configuration

Programming the EEPROM

1.56% due to self-discharge. For example, if the self-discharge estimate is programmed for 0.2%/day,
LMD is reduced by 0.1% of design capacity every 8 days of idle operation at 25°C. The rate doubles or
halves every 10°C temperature change, just like the self-discharge estimate. Whenever a learning cycle
occurs, LMD is replaced with the new learned value, CYCL is cleared, and the aging computations start
over using the new learned LMD value as a starting point.

The pack configuration (PKCFG) value is used to set five different user options.

PKCFG[7] — Bit 7 sets the initial state of the GPIO pin when power is applied to the bq27000. The host
can write to the MODE register to change the GPIO configuration at any time if the GPIO
configuration needs to be dynamically changed. If bit 7 = 0, then the GPIO is initialized as an
open-drain output. If bit 7 = 1, then the GPIO is initialized as an input. If the GPIO pin is unused,
the preferred setup is to program bit 7 = 0 to set the GPIO pin as an output. The GPSTAT bit in
MODE register is set to a 1 on power on reset (POR) and turns the open-drain FET output off.

PKCFG[6:5] — Bit 6 (QV1) and bit 5 (QV0) are used to set the qualification voltage threshold for a
current taper charge termination. VOLT must be greater than or equal to the threshold determined
by the QV1 and QV0 setup. The qualification voltage can be programmed to 3968 mV, 4016 mV,
4064 mV, or 4112 mV (see Table 3 in the bq27000/200 data sheet). The qualification voltage
chosen should be as high as possible to minimize the chance for any premature termination
resulting from a reduction in charge current due to some system or charger issue that may occur
before the battery is full. For example, if the system has an operating mode that robs the charger of
most of its available power and the remaining charge current for the battery is less than the taper
current termination threshold, the taper qualification voltage threshold can prevent a possible false
charge termination detection. The qualification voltage threshold should not be set so high that the
tolerance of the charger voltage and measurement accuracy of the bq27000 could prevent the
reported voltage from exceeding the taper qualification voltage threshold.
Example: If the charger were set for 4200 mV nominal, with a ±2% tolerance, the minimum charger
voltage would be 4116 mV. The voltage measurement accuracy of the bq27000 is ±20 mV; so, an
applied 4116-mV source could be measured as low as 4096 mV. The taper qualification threshold
should be set to 4064 mV, as the highest 4112-mV setting is too high with worst-case tolerances.
This selection requires setting QV1 (bit 6) = 1 and QV0 (bit 5) = 0.

PKCFG[4-2] — These bits are used to store an average board offset value. The value of the board offset
is largely determined by the PCB layout. This offset value is added to the internal compensated
offset to achieve a more accurate measurement of the voltage across the sense resistor. The board
offset value is a signed number with a resolution of 2.45 µV per bit. The maximum positive offset
value that can be stored is 7.35 µV with PKCFG[4-2] = 011. The maximum negative offset value
that can be stored is –9.8 µV with PKCFG[4-2] = 100. The offset can be computed by measuring
the total offset of the board plus gauge with no charge or discharge current flowing and subtracting
the offset of just the gauge alone. Built-in offset commands in the bq27000/200 allow measurement
of these values. The total board plus gauge offset may be measured by performing a compute
external offset (CEO) command. The user must first ensure that no charge or discharge current is
flowing. Then, set MODE[5] = 1, and write the command key of 0x56 to address 0x00 to perform
the CEO command. The result may be read after about 5.5 seconds in 0x5f-5e. The value is a
signed number with LSB resolution of 1.225 µV. The gauge offset value may be similarly obtained
by performing a compute internal offset (CIO) command. This command is performed by setting
MODE[4] = 1 and then writing the command key of 0x56 to address 0x00. After about 5.5 seconds,
the result may be read from 0x5f-5e and subtracted from the CEO reading to obtain the board
offset value. If the board offset exceeds the compensation range, use the maximum positive or
negative compensation value as appropriate for maximum accuracy. An excessive board offset
indicates that a better board design could be achieved with some improvement in measurement
accuracy, especially of small charge and discharge currents. The board offset value should be
measured several times on each of several different boards to determine a good average value to
use for the production lot. Measurement of board offset for each unit should not be required.
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1.8 Initial Maximum Load Current

IMLC �

DesignMaxCurrent(mA) � RS(m�)

457 �V (7)

1.9 Discharge Rate Compensation

Programming the EEPROM

PKCFG[1] — This bit (DCFIX) can be used to select a fixed discharge rate compensation value and
allow the DCOMP location in EEPROM to be used for a customer identification or serial number. If
DCFIX = 0, DCOMP specifies the discharge compensation value to be used in computing CACD,
MLTTE, and ARTTE. If DCFIX = 1, then a fixed default compensation value for DCOMP is used,
and the DCOMP location in EEPROM is free for the user to program to any desired value. The
fixed default compensation value is equal to 6.25% of the discharge current that exceeds C/4.
Many applications find the fixed discharge compensation value to be satisfactory and set DCFIX =
1.

PKCFG[0] — This bit (TCFIX) can be used to select a fixed temperature compensation value and allow
the TCOMP location in EEPROM to be used for a customer identification or serial number. If TCFIX
= 0, TCOMP specifies the temperature compensation value to be used in computing CACT,
MLTTE, and ARTTE. If TCFIX = 1, then the TCOMP location in EEPROM is free for the user to
program to any desired value. The fixed default temperature compensation value is 0.68% of the
initial LMD value (design capacity) per degree C below 12°C. This setting also disables learning of
new capacity values if the temperature is less than or equal to 12°C. Many applications find the
fixed temperature compensation value to be satisfactory and set TCFIX = 1.
The EEPROM bit values for the desired PKCFG options should be combined into a single
hexadecimal value and then programmed in address 0x7c.
Example: To program PKCFG for unused GPIO pin, with a 4064-mV taper qualification voltage,
board offset of –4.9 µV, and use TCOMP and DCOMP for customer identification information, the
programming should be set to 01011011, or 0x5b.

The initial maximum load current (IMLC) register contains the end-equipment maximum expected load
current. On reset, this value is transferred to the MLI register and used to calculate maximum load
time-to-empty (MLTTE). The gauge learns a new maximum load if the current exceeds the initial maximum
load. The units for IMLC are 457 µV per LSB. The equation for determining the EEPROM value is:

Example: To set the IMLC value to 1200 mA with a 20-mΩ sense resistor, the value to be programmed in
IMLC is: 1200 mA × 20 mΩ/457 µV = 52.5. The closest value is 53 decimal or 35 hexadecimal. This sets
the initial MLI value to 1211 mA. If AI ever exceeds 1211 mA, the higher AI value replaces the 1211-mA
initial value. To avoid having some extraordinary value getting stuck in MLI, the value in MLI is reduced to
the average of the previous value and the IMLC value every time the gauge is charged to full, but only if a
previous discharge to less than 50% has occurred.

The user can optionally use this byte in EEPROM to store a customer identification or serial number. If
used this way, MLTTE should be ignored. No other functions of the gauge are affected.

The discharge rate compensation (DCOMP) value in EEPROM sets the factors used to calculate the
reduction in NAC due to load current. The resulting CACD value is the available capacity, compensated
for discharge rate. The EEPROM value can alternatively be used for a customer identification or serial
number if DCFIX (bit 1 in PKCFG) is set to 1. When this option is used, a default compensation of 6.25%
of the discharge current that exceeds C/4 is used for the discharge rate compensation factor, and the
value in the DCOMP location is ignored. The default discharge rate compensation is equivalent to
programming DCOMP with 0x42.

DCOMP is used to prevent an overstated run time when a heavy load is applied. When a learning cycle
terminates, LMD is adjusted up or down to a value that corresponds to the load current applied at the time
that EDV1 is detected. This LMD adjustment automatically compensates NAC to the discharge rate
applied at the time EDV1 is detected during a learning cycle discharge. If EDV1 is detected on a
non-learning discharge, there is no LMD adjustment, but NAC may have been adjusted at EDV1 due to a
heavy load when EDV1 was detected. To properly compute CACD, the discharge compensation
adjustment, DCMP, must comprehend the LMD and NAC adjustments that occur from time to time. The
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DCGN[5 : 0] � 2.56 � DesignDschgCompensationGain% (8)

DCMP � DCGN �
AI � DCOFF

256
, for Al (Average Discharge Current) � DCOFF

(9)
DCMP � 0, for Al � DCOFF (10)
CACD� NAC� (DCMP� DCMPADJ), if DCMP � DCMPADJ (11)
CACD � NAC, if DCMP � DCMPADJ (12)

Programming the EEPROM

DCMPADJ value in the equations is used to correct the compensation computation based on the previous
LMD and NAC adjustments. A discharge at a lighter load than during previous discharges projects less
capacity than is actually available at the lighter load, but if the load should suddenly increase to the prior
level, the bq27000 should accurately reflect the available capacity at the heavier load. This prevents a
surprise loss of capacity without warning from the bq27000/200.

The DCOMP values should be chosen to accurately represent the reduction in capacity versus load
characteristics of the battery. Two factors can be set. One is the discharge offset (DCOFF) value. If the
load current is below this value, no capacity reduction occurs. The second factor is the discharge
compensation gain factor (DCGN) that determines the slope or rate at which the capacity is reduced as
the load current exceeds the discharge offset value.

The DCOFF thresholds are set at 0, C/2, C/4, and C/8 for values of DCOFF of 0, 1, 2, and 3, respectively.
DCOFF values are stored as DCOMP[1:0]. The DCGN value is determined by DCOMP[7:2]. The value for
DCGN is determined by the desired gain/slope for the capacity reduction in % reduction per unit of current
that exceeds the DCOFF threshold. The formula for DCGN is:

Once the DCOFF and DCGN values have been determined, they can be combined into a single word and
programmed in address 0x7e.

CACD may be computed from NAC by the following equations:

After an EDV1 detection, the DCMPADJ value is equal to the saved value of DCMP at the last EDV1
detection. This computation continues until a battery-full detection occurs. This adjusts CACD for any NAC
adjustment at EDV1. After a full-battery detection, the DCMPADJ value is changed to the saved value of
DCMP at EDV1 from the last learning cycle discharge. This computation continues until EDV1 is again
detected. This adjusts CACD for any LMD adjustment during the last learning cycle.

The preceding equations are also used to compute the discharge compensated available capacity when
computing ARTTE or MLTTE. The DCMP equation uses At Rate (AR) or Maximum Load Current (MLI) as
appropriate, in place of AI, to determine the rate-compensated capacity available at the AR or MLI load
current value.

Programming example: A battery for use in a system with load currents up to 1C rate has a flat discharge
capacity curve for load currents up to about C/4. At a 1C rate, the available battery capacity is down about
5% from the C/4 rate. The DCOFF value of C/4 can be selected with a DCOFF value of 2. At 1C, the
current exceeds the DCOFF value by 0.75C; so, the desired capacity reduction slope is 5%/0.75C or
6.67%/1C. This yields a DCGN value of: 2.56 × 6.67 = 17.07. The closest value is 17 decimal, or 11
hexadecimal. Setting DCGN to 17 yields a capacity reduction slope of 6.64%. Combining the binary
values of 010001 for DCGN and 10 for DCOFF yields a DCOMP value of 01000110, or 0x46. This may be
easier to compute by noting that shifting the DCGN into the third bit position in DCOMP is the same as
multiplying the raw DCGN value by 4. This results in combining 4 × DCGN and DCOFF as follows: 4 × 17
+ 2 = 70 decimal or 46 hexadecimal.

CACD calculation example: ILMD is programmed for a design capacity of 978 mAh. The battery has not
been previously discharged to EDV1, so DCMPADJ = 0. The bq27000 measures a load current of 600
mA. The discharge rate compensation reduction is: DCMP = 17 × (600 – 978/4) / 256 = 17 × 355 / 256 =
23.6. CACD computes to 23.6 mAh less than NAC. CACD is not allowed to increase while discharging; so,
if the load current drops, CACD may remain at the previous CACD value. As discharging continues, NAC
continues to drop, but CACD holds steady until NAC drops enough that the new computed CACD value is
again less than the previous value. Then, CACD again starts decreasing as the discharge continues with
the lighter load.
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Programming the EEPROM

DCGN and DCOFF determination: The optimal discharge rate compensation coefficients can be
determined from the typical discharge curves on the battery. Discharge curves at various discharge rates
are generally available from the cell manufacturer. The capacity of the cells at the various discharge rates
can be determined from the discharge curves. If the discharge curves show time instead of capacity, the
capacity can be computed by multiplying the discharge rate by the discharge time to reach the chosen
EDV0 voltage threshold. The curves are generally plotted at various C-rates. The 1C rate is normally the
current in mA that equals the cell capacity in mAh at a C/5 discharge rate. These capacity values in mAh
can be plotted versus current as shown in Figure 1.

Figure 1. Capacity vs Discharge Rate

The cell capacitance at the minimum load current where learning is allowed (excluding standby load
current) should be the value used to compute ILMD. Choose the DCOFF value C/8, C/4, or C/2) and a
DCGN (slope) that best matches the capacity versus load curve from the minimum load current value to
the maximum (steady-state) load value expected. Figure 1 shows discharge compensation with DCOFF of
C/2 and a slope of 3.125% reduction that would be appropriate for operation up to a discharge rate of 1.25
C. The ILMD value is programmed to 750 mAh in this example.

The temperature compensation (TCOMP) value in EEPROM sets the factors used to calculate the
reduction in CACD due to temperature. The resulting CACT value is the available capacity, compensated
for both discharge rate and temperature. The EEPROM value can alternatively be used for a customer
identification or serial number if TCFIX (bit 0 in PKCFG) is set to 1. When this option is used, a default
compensation of 0.6836% of design capacity per degree C below 12°C is used for the temperature
compensation factor and the value in the TCOMP location is ignored. The 12°C threshold is also used to
disqualify any learning cycles where the temperature is less than or equal to 12°C. The default
temperature compensation is equivalent to programming TCOMP with 0x7c.

The battery impedance increases rapidly at cold temperature. This causes additional capacity loss at a
given load current, because the battery drops to the minimum system operating voltage quicker than at
warmer temperatures. If the temperature warms back up, the impedance decreases again and the
available capacity increases. The temperature compensation is used to prevent overstating the available
run time at cold temperatures. The increased impedance at cold temperature causes the EDV1 condition
to be reached much sooner than at warmer temperatures and if TCOMP is properly set, CACT shows the
actual available capacity at cold temperatures. NAC may be adjusted down when EDV1 is detected and
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TCGN[3 : 0] � 10.24 �
DesignTempCompensationGain(%ofDC�oC)

oC (13)

TCMP � TCGN � ILMD �
273 � TOFF � T

4
, for T � 273 � TOFF

(14)
TCMP� 0, for T� 273� TOFF (15)
CACT � CACD � (TCMP � TCMPADJ) (16)

Programming the EEPROM

reflects the temperature compensated available capacity without any reduction due to TCOMP until the
battery is again charged to full. To correctly compute CACT, the TCMP temperature compensation
reduction value is saved if NAC is reduced when EDV1 is detected. The TCMP temperature compensation
reduction is reduced by this value until the battery full condition is again detected. If the battery warms up
after EDV1 is detected, it is possible for CACT to be larger than NAC.

Temperature compensation factors should be chosen that represent the battery capacity variation with
temperature at the nominal expected load. Two factors can be set. The temperature compensation offset
threshold TOFF sets the temperature threshold for disqualification of a learning cycle and also the
temperature threshold above which there is no temperature compensation. The applied temperature
compensation is proportional to the temperature drop below this threshold. The second factor is the
temperature compensation gain threshold (TCGN). This factor sets the percentage of design capacity
(DC), or initial LMD value that is used to reduce the available capacity for each degree that temperature is
below TOFF. (Design capacity = Initial LMD value = ILMD × 256)

The TOFF threshold is the low nibble of TCOMP and reads directly in degrees C (or degrees K – 273).
The upper nibble of TCOMP is the TCGN factor. The formula for TCGN is:

Once the TOFF and TCGN values have been determined, they can be combined into a single word and
programmed in address 0x7f.

CACT may be computed from CACD by the following equations:

After NAC is reduced following an EDV1 detection, TCMPADJ equals the TCMP value when EDV1 was
detected. This computation continues until a full-battery detection is made. This compensates for any NAC
adjustment made at EDV1 due to cold temperature. After a full-battery detection, TCMPADJ is set to zero.
This computation continues until a NAC reduction at EDV1 is again made.

The preceding equations are also used to compute the temperature compensated available capacity when
computing ARTTE or MLTTE. The CACD value in the preceding equations is computed with a DCMP
value that uses the appropriate AR or MLI value in place of AI for the computation.

Programming example: Desired temperature compensation is a 1% reduction in capacity for each degree
below 10°C, with no reduction at warmer temperatures than 10°C. Learning new LMD values are disabled
for temperatures at or below 10°C. TOFF is 10 decimal or a hexadecimal and is the lower nibble of
TCOMP. TCGN = 10.24 × 1% DC per degree C = 10.24. The closest value is 10 decimal, or a
hexadecimal. Setting TCGN = 10 yields a compensation value of 0.976% reduction in capacity per degree
C below 10°C. Combining TCGN and TOFF yields a value of 0xaa to program in TCOMP.

CACT calculation example: ILMD is programmed for a design capacity of 996 mAh. ILMD is the high byte
of the design capacity and has a value of 996 mAh/256. The temperature is 5°C, or 278°K, and the battery
has just been charged to full (TCMPADJ = 0). TCMP = 10 × (996 mAh/256) × (273 + 10 – 278) / 4 = 48.6
mAh. This is a reduction of 9.73 mAh per °C or about 0.976% of the 996 mAh design capacity for each
degree below 10°C.

TCGN and TOFF determination: The TCGN and TOFF values may be determined by first plotting the
battery capacity versus temperature at the nominal load condition. TCGN and TOFF values may be
chosen that give a best fit to this curve over the expected cold temperature operating range. This
operation is much the same as determining DCGN and DCOFF from Figure 1.
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