

Now

ZHCSA86E - AUGUST 2012 - REVISED AUGUST 2018

DLP9500 DLP[®] 0.95 1080p 2x LVDS A 型 DMD

特性 1

Texas

0.95 英寸对角线微镜阵列

INSTRUMENTS

- 1920 × 1080 铝阵列, 微米级微镜(1080p 分 辨率)
- 10.8µm 微镜间距
- ±12°微镜倾斜角(相对于平板状态)
- 设计用于边缘照明
- 专用于可见光
 - (400nm 至 700nm):
 - 窗透射率 96% (单通,通过两个窗面)
 - 微镜反射率 89%
 - 阵列衍射效率 87%
 - 阵列填充因子 94%
- 四条 16 位低压差分信令 (LVDS)、双倍数据速率 • (DDR) 输入数据总线
- 高达 400MHz 的输入数据时钟速率
- 42.2mm x 42.2mm x 7mm 封装尺寸
- 气密封装 .

应用 2

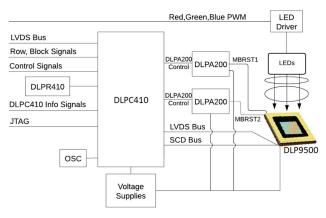
- 工业:
 - 数字成像平版印刷
 - 激光打标
 - LCD 和 OLED 修复
 - 计算机直接制版打印机
 - SLA 3D 打印机
 - 针对机器视觉和工厂自动化的 3D 扫描仪
- 平板印刷
- 医疗领域:
 - 光照治疗器件
 - 眼科学
 - 直接制造
 - 高光谱成像
 - 3D 生物识别
 - 共轭焦显微镜
- 显示:
 - 3D 成像显微镜
 - 自适应照明
 - 增强现实和信息覆盖

3 说明

DLP9500 1080p 芯片组是 DLP[®] Discovery™4100 平 台的一部分,用于实现高分辨率、高性能的空间照明调 制。DLP9500 是 0.95 1080p 芯片组的基本款数字微 镜器件 (DMD)。DLP Discovery 4100 平台还提供具有 随机行寻址选项的最高级独立微镜控制。除了采用密封 封装外,DLP9500 具有独特的功能和价值,非常适合 支持各种工业、医疗和高级显示 应用的需求。

除了 DLP9500 DMD 以外, 0.95 1080p 芯片组还包括 专用的 DLPC410 控制器(用于支持 23,148Hz(1 位 二进制)和 2,893Hz(8 位灰度)的)、一个 DLPR410 单元 (DLP Discovery 4100 配置 PROM) 和两个 DLPA200 单元(DMD 微镜驱动器)。

DLP9500 需要与芯片组的其他元件结合使用才能实现 可靠功能和操作。一套专用的芯片组能够使开发人员更 加轻松地访问 DMD 并使用高速而独立的微镜控制。


DLP9500 是一款数控微光机电系统 (MEMS) 空间照明 调制器 (SLM)。当与适当的光系统成对使用 时,DLP9500可用于调制入射光的振幅、方向和/或相 位。

哭件信 自 (1)

	11日心	
器件型号	封装	封装尺寸 (标称值)
DLP9500	LCCC (355)	42.16mm × 42.16mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

1	特性	
2	应用	
3	说明	
4	修订	历史记录
5		明(续))
6		Configuration and Functions 4
7		cifications
	7.1	Absolute Maximum Ratings 13
	7.2	Storage Conditions
	7.3	ESD Ratings 13
	7.4	Recommended Operating Conditions 14
	7.5	Thermal Information 15
	7.6	Electrical Characteristics 15
	7.7	LVDS Timing Requirements 17
	7.8	LVDS Waveform Requirements 18
	7.9	Serial Control Bus Timing Requirements 19
	7.10	Systems Mounting Interface Loads 20
	7.11	Micromirror Array Physical Characteristics 21
	7.12	Micromirror Array Optical Characteristics 22
	7.13	Window Characteristics 23
	7.14	Chipset Component Usage Specification 23
8	Deta	iled Description
	8.1	Overview
	8.2	Functional Block Diagram 24

4 修订历史记录

2

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision D (March 2017) to Revision E

•	已更改 窗透射率	. 1
•	已更改 窗透射率 已更改 微镜反射率	. 1
•	己更改 阵列衍射效率	
•	已更改 阵列填充因子	. 1
•	己更改 高速图形速率	. 1
•	Changed Recommended Operating Conditions table; split Environmental into 3 wavelength regions; simplified and	
	reorganized the table footnotes	
•	Changed Thermal Metric text	15
•	Changed Micromirror array optical efficiency	22
•	Changed Micromirror array fill factor	22
•	Changed Micromirror array diffraction efficiency	22
•	Changed Micromirror surface reflectivity	22
•	Changed Window transmission	22
•	Changed Window transmittance, Minimum	23
•	Changed Window transmittance, Average	23
•	Changed Micromirror Array Temperature Calculation to indicate that it is based on lumens	36
•	Added Micromirror Array Temperature Calculation based on power	37
•	已添加 接收文档更新通知 部分	48

www.ti.com.cn

Page

	8.3 Feature Description 26
	8.4 Device Functional Modes
	8.5 Window Characteristics and Optics 34
	8.6 Micromirror Array Temperature Calculation
	8.7 Micromirror Landed-On and Landed-Off Duty
	Cycle
9	Application and Implementation 40
	9.1 Application Information 40
	9.2 Typical Application 41
10	Power Supply Recommendations 43
	10.1 Power-Up Sequence (Handled by the DLPC410) 43
	10.2 DMD Power-Up and Power-Down Procedures 43
11	Layout 44
	11.1 Layout Guidelines 44
	11.2 Layout Example 46
12	器件和文档支持
	12.1 器件支持 47
	12.2 文档支持
	12.3 相关链接
	12.4 接收文档更新通知 48
	12.5 社区资源
	12.6 商标
	10 11

12.7 静电放电警告...... 48 13 机械、封装和可订购信息...... 48

EXAS

STRUMENTS

Cł	nanges from Revision C (September 2015) to Revision D	Page
•	Removed '692' from Pin Configurations image	4
•	Added RH name for relative humidity in Absolute Maximum Ratings	13
•	Clarified T _{GRADIENT} footnote in Absolute Maximum Ratings	13
•	Changed T _{stg} to T _{DMD} in Storage Conditions to conform to current nomenclature	13
•	Changed typical micromirror crossover time to the time required to transition from mirror position to the other in <i>Micromirror Array Optical Characteristics</i>	22
•	Added typical micromirror switching time - 13 µs in Micromirror Array Optical Characteristics	22
•	Changed "Micromirror switching time" to "Array switching time" for clarity in Micromirror Array Optical Characteristics	22
•	Added clarification to Micromirror switching time at 400 MHz with global reset in <i>Micromirror Array Optical</i> Characteristics	22
•	更新了图 20 和图 21	
•	己添加 相关链接 表	48

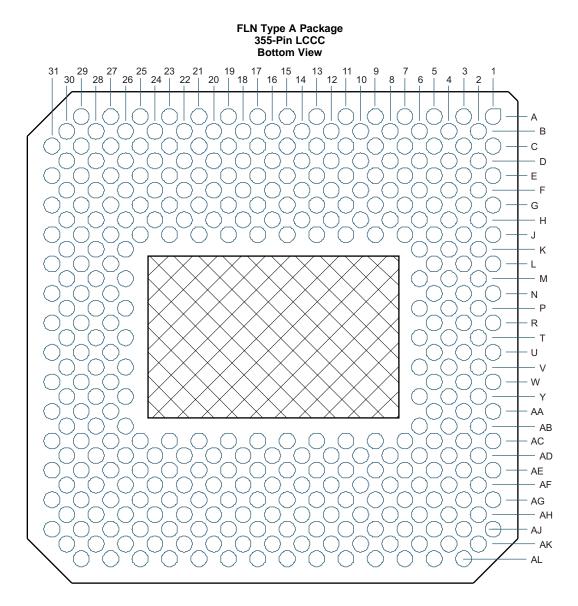
Changes from Revision B (July 2013) to Revision C

•	添加了 ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实施 部分、电源建议 部分、布局 部分、器件和文档	
	支持部分以及机械、封装和可订购信息部分	1
•	在 特性 和 说明 部分进行了少量措辞更改	1
•	Changed the name of Micromirror clocking pulse reset in Pin Functions	11
•	Changed ESD Ratings table to match new standard	. 13
•	Added Max Recommended DMD Temperature – Derating Curve	15
	Moved Max Recommended DMD Temperature – Derating Curve to	
•	Replaced Figure 4.	. 19
	Changed units from lbs to N	
•	Added explanation for the15 MBRST lines to the DLP9500 from each DLPA200	26
•	Changed Thermal Test Point Location graphic	. 35
•	Added program interface to system interface list in Design Requirements	42
•	Corrected number of banks of DMD mirrors to 15 in Device Description	42
•	删除了 DLP Discovery 4100 芯片组数据表的链接	. 48
•	添加了 <u>社区资源</u> 部分	. 48

Changes from Revision A (September 2012) to Revision B	Page
 已添加 DLPR4101 增强型 PROM 至芯片组列表中的 DLPR410 	1
• 已添加 DLPR4101 增强型 PROM 至相关文档中的 DLPR410	48
Changes from Original (August 2012) to Revision A	Page

• 将器件状态从"产品预觉"更改成了"生产"

Page


DLP9500 ZHCSA86E – AUGUST 2012 – REVISED AUGUST 2018 TEXAS INSTRUMENTS

www.ti.com.cn

5 (说明(续))

电子方面, DLP9500 由 1 位 CMOS 存储器单元的两维阵列组成,其组织结构为 1920 存储器单元列乘以 1080 存储器单元行的栅格。CMOS 存储器阵列通过四条 16 位低压差分信令 (LVDS) 双倍数据速率 (DDR) 总线逐行进行寻址。寻址通过串行控制总线处理。特定的 CMOS 存储器访问协议由 DLPC410 数字控制器处理。

6 Pin Configuration and Functions

www.ti.com.cn	

EXAS

STRUMENTS

				Pin Fur	nctions			
PI	N ⁽¹⁾	TYPE	SIGNAL	DATA	INTERNAL	CLOCK	DESCRIPTION	TRACE
	NO.	(I/O/P)	0.01712	RATE ⁽²⁾	TERM ⁽³⁾	02001		(MILS)
DATA BUS A	F2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		512.01
D_AN(1)	H8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	158.79
D_AN(2)	E5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	471.24
D_AN(3)	G9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	159.33
D_AN(4)	D2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	585.41
D_AN(5)	G3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	551.17
D_AN(6)	E11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		229.41
D_AN(7)	F8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		300.54
D_AN(8)	C9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		346.35
D_AN(9)	H2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		782.27
D_AN(10)	B10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		451.52
D_AN(11)	G15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		74.39
D_AN(12)	D14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		194.26
D_AN(13)	F14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	Input data bus A (2x LVDS)	148.29
D_AN(14)	C17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		244.9
D_AN(15)	H16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		73.39
D_AP(0)	F4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		509.63
D_AP(1)	H10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		152.59
D_AP(2)	E3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	_	464.09
D_AP(3)	G11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		152.39
D_AP(4)	D4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	_	591.39
D_AP(5)	G5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		532.16
D_AP(6)	E9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		230.78
D_AP(7)	F10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		300.61
D_AP(8)	C11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		338.16
D_AP(9)	H4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		773.17
D_AP(10)	B8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		449.57

The following power supplies are required to operate the DMD: VCC, VCC1, VCC2. VSS must also be connected.
 DDR = Double Data Rate. SDR = Single Data Rate. Refer to the *LVDS Timing Requirements* for specifications and relationships.
 Refer to *Electrical Characteristics* for differential termination specification.

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018

www.ti.com.cn

INSTRUMENTS

Texas

Pin Functions (continued)

			Pin Fi	unctions	s (continued)			
PI	N ⁽¹⁾	TYPE (I/O/P)	SIGNAL	DATA RATE ⁽²⁾	INTERNAL TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE (MILS)
D_AP(11)	H14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		71.7
D_AP(12)	D16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	198.69
D_AP(13)	F16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	Input data bus A (2x LVDS)	143.72
D_AP(14)	C15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		240.14
D_AP(15)	G17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	74.05
DATA BUS B								I
D_BN(0)	AH2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		525.25
D_BN(1)	AD8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	-	190.59
D_BN(2)	AJ5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		525.25
D_BN(3)	AE3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		494.91
D_BN(4)	AG9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		222.67
D_BN(5)	AE11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		205.45
D_BN(6)	AH10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		309.05
D_BN(7)	AF10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		285.62
D_BN(8)	AK8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		483.58
D_BN(9)	AG5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		711.58
D_BN(10)	AL11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		462.21
D_BN(11)	AE15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		74.39
D_BN(12)	AH14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	Input data bus B (2x LVDS)	194.26
D_BN(13)	AF14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		156
D_BN(14)	AJ17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		247.9
D_BN(15)	AD16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		111.52
D_BP(0)	AH4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		525.02
D_BP(1)	AD10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		190.61
D_BP(2)	AJ3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		524.22
D_BP(3)	AE5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		476.07
D_BP(4)	AG11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		222.8
D_BP(5)	AE9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		219.48
D_BP(6)	AH8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		306.55
D_BP(7)	AF8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		298.04
D_BP(8)	AK10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		480.31

Copyright © 2012–2018, Texas Instruments Incorporated

www.ti.com.cn

PIN	⁽¹⁾ NO.	TYPE (I/O/P)	SIGNAL	DATA RATE ⁽²⁾	INTERNAL TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE (MILS)
D_BP(9)	AG3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		727.18
D_BP(10)	AL9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		461.02
D_BP(11)	AD14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	-	71.35
D_BP(12)	AH16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	Input data bus B (2x LVDS)	197.69
D_BP(13)	AF16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		150.38
D_BP(14)	AJ15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		243.14
D_BP(15)	AE17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		113.36
DATA BUS C								
D_CN(0)	B14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		459.04
D_CN(1)	E15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		342.79
D_CN(2)	A17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		456.22
D_CN(3)	G21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		68.24
D_CN(4)	B20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		362.61
D_CN(5)	F20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		163.07
D_CN(6)	D22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		204.16
D_CN(7)	G23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		105.59
D_CN(8)	B26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		450.51
D_CN(9)	F28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		302.04
D_CN(10)	C29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	Input data bus C	429.8
D_CN(11)	G27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	(2x LVDS)	317.1
D_CN(12)	D26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		276.76
D_CN(13)	H28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		186.78
D_CN(14)	E29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		311.3
D_CN(15)	J29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		262.62
D_CP(0)	B16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		463.64
D_CP(1)	E17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	-	347.65
D_CP(2)	A15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		456.45
D_CP(3)	H20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		67.72
D_CP(4)	B22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		362.76
D_CP(5)	F22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		161.69

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018

www.ti.com.cn

					s (continuea)				
P	'IN ⁽¹⁾	TYPE	SIGNAL	DATA	INTERNAL	CLOCK	DESCRIPTION	TRACE	
NAME	NO.	(I/O/P)	0.01.712	RATE ⁽²⁾	TERM ⁽³⁾	02000		(MILS)	
D_CP(6)	D20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		195.09	
D_CP(7)	H22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		104.86	
D_CP(8)	B28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		451.41	
D_CP(9)	F26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		294.22	
D_CP(10)	C27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	Input data bus C	429.68	
D_CP(11)	G29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	(2x LVDS)	314.98	
D_CP(12)	D28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		276.04	
D_CP(13)	H26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		186.25	
D_CP(14)	E27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		312.07	
D_CP(15)	J27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		262.94	
DATA BUS D					·				
D_DN(0)	AK14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		492.53	
D_DN(1)	AG15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		342.78	
D_DN(2)	AL17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		491.83	
D_DN(3)	AE21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		74.24	
D_DN(4)	AK20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		356.23	
D_DN(5)	AF20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	Input data bus D	163.07	
D_DN(6)	AH22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	(2x LVDS)	204.16	
D_DN(7)	AE23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		105.59	
D_DN(8)	AK26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		450.51	
D_DN(9)	AF28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		302.04	
D_DN(10)	AJ29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		429.8	
D_DN(11)	AE27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		298.87	

Texas

F	PIN ⁽¹⁾	TYPE		DATA	INTERNAL	01.001/	DECODIDING	TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
D_DN(12)	AH26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		276.76
D_DN(13)	AD28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		186.78
D_DN(14)	AG29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		311.3
D_DN(15)	AC29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		262.62
D_DP(0)	AK16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		495.13
D_DP(1)	AG17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		342.47
D_DP(2)	AL15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		492.06
D_DP(3)	AD20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	Input data bus D	67.72
D_DP(4)	AK22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		356.37
D_DP(5)	AF22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		161.98
D_DP(6)	AH20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	(2x LVDS)	195.09
D_DP(7)	AD22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		102.86
D_DP(8)	AK28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		451.41
D_DP(9)	AF26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		296.7
D_DP(10)	AJ27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		429.68
D_DP(11)	AE29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	_	302.74
D_DP(12)	AH28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		276.04
D_DP(13)	AD26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		186.25
D_DP(14)	AG27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		312.07
D_DP(15)	AC27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		262.94
			*			•	*	*

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018

www.ti.com.cn

PII	N ⁽¹⁾	TYPE		DATA	INTERNAL			TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE (2)	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
DATA CLOCKS					1		J	
DCLK_AN	D10	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus A	325.8
DCLK_AP	D8	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Clock (2x LVDS)	319.9
DCLK_BN	AJ11	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus B	318.92
DCLK_BP	AJ9	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Clock (2x LVDS)	318.74
DCLK_CN	C23	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus C	252.01
DCLK_CP	C21	Input	LVCMOS	-	Differentially terminated – 100 Ω	—	Clock (2x LVDS)	241.18
DCLK_DN	AJ23	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus D	252.01
DCLK_DP	AJ21	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Clock (2x LVDS)	241.18
DATA CONTROL I	NPUTS							
SCTRL_AN	J3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	Serial control for	608.14
SCTRL_AP	J5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	data bus A (2x LVDS)	607.45
SCTRL_BN	AF4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	Serial control for data bus B (2x	698.12
SCTRL_BP	AF2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	LVDS)	703.8
SCTRL_CN	E23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	Serial control for data bus C (2x	232.46
SCTRL_CP	E21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	LVDS)	235.21
SCTRL_DN	AG23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	Serial control for data bus D (2x	235.53
SCTRL_DP	AG21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	LVDS)	235.66
SERIAL COMMUNI	CATION AND CONF	IGURATION						
SCPCLK	AE1	Input	LVCMOS	_	pull-down	_	Serial port clock	324.26
SCPDO	AC3	Output	LVCMOS		_	SCP_CLK	Serial port output	281.38
SCPDI	AD2	Input	LVCMOS		pull-down	SCP_CLK	Serial port input	261.55
SCPEN	AD4	Input	LVCMOS	—	pull-down	SCP_CLK	Serial port enable	184.86
PWRDN	B4	Input	LVCMOS	_	pull-down	_	Device reset	458.78
MODE_A	J1	Input	LVCMOS	_	pull-down	—	Data bandwidth	471.57
MODE_B	G1	Input	LVCMOS	_	pull-down	_	mode select	521.99

PIN	(1)	TYPE	0.0	DATA	INTERNAL		DE005-05-0	TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
MICROMIRROR CLO	CKING PULSE (BIA	S RESET)						
MBRST(0)	L5	Input	Analog	_	_	_		898.97
MBRST(1)	M28	Input	Analog	_	_	_	-	621.98
MBRST(2)	P4	Input	Analog	_	_	_	-	846.88
MBRST(3)	P30	Input	Analog	_	_	_	-	784.18
MBRST(4)	L3	Input	Analog	_		_	-	763.34
MBRST(5)	P28	Input	Analog	_		_	-	749.61
MBRST(6)	P2	Input	Analog	_		_	-	878.25
MBRST(7)	T28	Input	Analog	_		_	-	783.83
MBRST(8)	M4	Input	Analog	_		_	-	969.36
MBRST(9)	L29	Input	Analog	_	_	_	-	621.24
MBRST(10)	T4	Input	Analog	_		_	-	918.43
MBRST(11)	N29	Input	Analog	_		_	-	685.14
MBRST(12)	N3	Input	Analog			_	-	812.31
MBRST(13)	L27	Input	Analog	_		_	Micromirror clocking pulse reset MBRST	591.89
MBRST(13)	R3	-	Analog				signals clock	878.5
MBRST(14) MBRST(15)	K3 V28	Input	-			+ -	micromirrors into state of LVCMOS	660.15
MBRST(15) MBRST(16)	V28 V4	Input	Analog		—		memory cell	848.64
		Input	Analog		—	_	associated with each mirror.	
MBRST(17)	R29	Input	Analog	_			-	796.31
MBRST(18)	Y4	Input	Analog	_		_		715
MBRST(19)	AA27	Input	Analog	_		-	-	604.35
MBRST(20)	W3	Input	Analog	-	_	-		832.39
MBRST(21)	W27	Input	Analog	_	—	_	-	675.21
MBRST(22)	AA3	Input	Analog	_	_	-	-	861.18
MBRST(23)	W29	Input	Analog		—			662.66
MBRST(24)	U5	Input	Analog		—	_		850.06
MBRST(25)	U29	Input	Analog		—			726.56
MBRST(26)	Y2	Input	Analog	-		-		861.48
MBRST(27)	AA29	Input	Analog	-		-	-	683.83
MBRST(28)	U3	Input	Analog	-		-	-	878.5
MBRST(29)	Y30	Input	Analog	—	_	—		789.2
POWER	T			_			TT	
	A3, A5, A7, A9, A11, A13, A21, A23, A25, A27, A29, B2, C1, C31, E31, G31, J31, K2, L31, N31, R31, U31, W31,							
VCC	AA31, AC1, AC31, AE31, AG1, AG31, AJ31, AK2,	Power	Analog	_	—	_	Power for LVCMOS logic	_
	AK30, AL3, AL5, AL7, AL19, AL21, AL23, AL25, AL27							
VCCI	H6, H12, H18, H24, M6, M26, P6, P26, T6, T26, V6, V26,	Power Apalog Power supply for		Power supply for LVDS Interface	_			
	Y6, Y26, AD6, AD12, AD18, AD24							

Texas Instruments

www.ti.com.cn

PIN	(1)	TYPE		DATA	INTERNAL			TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
VCC2	L1, N1, R1, U1, W1, AA1	Power	Analog	_	_	_	Power for high voltage CMOS logic	_
	A1, B12, B18, B24, B30, C7, C13, C19, C25, D6, D12, D18, D24, D30,							
	E1, E7, E13, E19, E25, F6, F12, F18, F24,							
	F30, G7, G13, G19, G25, K4, K6, K26, K28, K30, M2, M30,							
VSS	N5, N27, R5, T2, T30, U27, V2, V30, W5, Y28, AB2, AB4,	Power	Analog	_	_	Common return for all power inputs	_	
	AB6, AB26, AB28, AB30, AD30, AE7, AE13, AE19,							
	AE25, AF6, AF12, AF18, AF24, AF30, AG7, AG13,							
	AG19, AG25, AH6, AH12, AH18, AH24, AH30, AJ1,							
	AJ7, AJ13, AJ19, AJ25, AK6, AK12, AK18, AL29							
RESERVED SIGNAL	S (NOT FOR USE IN	SYSTEM)						
RESERVED_FC	J7	Input	LVCMOS	—	pull-down	—		_
RESERVED_FD	J9	Input	LVCMOS	—	pull-down	—		—
RESERVED_PFE	J11	Input	LVCMOS	—	pull-down	—	Pins should be connected to VSS	—
RESERVED_STM	AC7	Input	LVCMOS	—	pull-down	—		_
RESERVED_AE	C3	Input	LVCMOS	_	pull-down	_		_
	A19, B6, C5, H30, J13, J15, J17, J19, J21, J23, J25, R27,						No connection (any connection to these	
NO_CONNECT	AA5, AC11, AC13, AC15, AC17, AC19, AC21, AC23,	_		_	_	_	terminals may result in undesirable effects)	—
	AC25, AC5, AC9, AK24, AK4, AL13							

Specifications 7

7.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted). (1)

		MIN	MAX	UNIT
ELECTRICAL				
V _{CC}	Voltage applied to V_{CC} ⁽²⁾ ⁽³⁾	-0.5	4	V
V _{CCI}	Voltage applied to V _{CCI} ^{(2) (3)}	-0.5	4	V
V _{CC2}	Voltage applied to V _{VCC2} ⁽²⁾ ⁽³⁾ ⁽⁴⁾	-0.5	9	V
V _{MBRST}	Clocking pulse waveform voltage applied to MBRST[29:0] input pins (supplied by DLPA200s)	-28	28	V
V _{CC} – V _{CCI}	Supply voltage delta (absolute value) (4)		0.3	V
	Voltage applied to all other input terminals ⁽²⁾	-0.5	V _{CC} + 0.3	V
V _{ID}	Maximum differential voltage, damage can occur to internal termination resistor if exceeded, see Figure 3		700	mV
	Current required from a high-level output, V _{OH} = 2.4 V		-20	mA
	Current required from a low-level output, $V_{OL} = 0.4 V$		15	mA
ENVIRONMEN	ΓAL			
-	Array temperature – operational ⁽⁵⁾	20	70	°C
T _{ARRAY}	Array temperature – non-operational ⁽⁵⁾	-40	80	°C
T _{DELTA}	Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1 $^{\rm (6)}$		10	°C
RH	Relative humidity (non-condensing)		95	%

(1) Stresses beyond those listed under may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)All voltages referenced to V_{SS} (ground).

(3)

Voltages V_{CC} , V_{CCI} , and V_{CC2} are required for proper DMD operation. Exceeding the recommended allowable absolute voltage difference between V_{CC} and V_{CCI} may result in excess current draw. The (4) difference between V_{CC} and V_{CCI} , $|V_{CC} - V_{CCI}|$, should be less than the specified limit. The worst-case temperature of any test point shown in *Figure 17*, or the active array as calculated by the *Micromirror Array Temperature*

(5) Calculation - Lumens Based.

As either measured, predicted, or both between any two points - measured on the exterior of the package, or as predicted at any point (6) inside the micromirror array cavity. Refer to Micromirror Array Temperature Calculation - Lumens Based.

7.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system

		MIN	MAX	UNIT
T _{DMD}	Storage temperature	-40	80	°C
RH	Storage humidity (non-condensing)		95	%

7.3 ESD Ratings

				VALUE	UNIT
V _{ESD}	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All pins except MBRST[29:0]	±2000	V
	discharge		MBRST[29:0] pins	±250	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with (1)less than 500-V HBM is possible if necessary precautions are taken.

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	NOM	MAX	UNIT
(2) (3)				
Supply voltage for LVCMOS core logic	3.0	3.3	3.6	V
Supply voltage for LVDS receivers	3.0	3.3	3.6	V
Mirror electrode and HVCMOS supply voltage	8.25	8.5	8.75	V
Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s)	-27		26.5	V
Supply voltage delta (absolute value) (4)			0.3	V
VTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm				
Array temperature, Long-term operational (6)(7) (8)(9)	20	25-45	65 ⁽¹⁰⁾	00
Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾	0		20	۰C
Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾ .	10		70	°C
Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. $^{(12)}$			10	°C
Illumination ⁽¹³⁾			Thermally limited	W/cm ²
ITAL ⁽⁵⁾ For Illumination Source Between 400 nm and 420 nm				
Array temperature, Long-term operational (6) (7) (8) (9)	20		30	°C
Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾			30	°C
Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. $^{(12)}$			10	°C
$[1], \dots, [n-4] = n (13)$			11	°C W/cm ² °C °C
Inumination (**)			26.6	W
ITAL ⁽⁵⁾ For Illumination Source <400 nm and >700 nm				
Array temperature, Long-term operational (6) (7) (8) (9)	20		40 (10)	•0
Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾	0		20	°C
Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾	10		70	°C
Illumination ⁽¹³⁾			10	mW/cm ²
	Supply voltage for LVCMOS core logic Supply voltage for LVDS receivers Mirror electrode and HVCMOS supply voltage Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) Supply voltage delta (absolute value) ⁽⁴⁾ TTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾ Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾ . Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ Illumination ⁽¹³⁾ TTAL ⁽⁵⁾ For Illumination Source Between 400 nm and 420 nm Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾ Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ Illumination ⁽¹³⁾ TTAL ⁽⁵⁾ For Illumination Source <400 nm and >700 nm Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾ Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾ <td>(2) (3) Supply voltage for LVCMOS core logic 3.0 Supply voltage for LVDS receivers 3.0 Mirror electrode and HVCMOS supply voltage 8.25 Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) -27 Supply voltage delta (absolute value) ⁽⁴⁾ -27 TTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm -27 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾ 0 Window temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1.⁽¹²⁾ 10 Illumination ⁽¹³⁾ </td> <td>(2) (8) Supply voltage for LVCMOS core logic 3.0 3.3 Supply voltage for LVDS receivers 3.0 3.3 Mirror electrode and HVCMOS supply voltage 8.25 8.5 Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) -27 Supply voltage delta (absolute value) ⁽⁴⁾ -27 TTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm -27 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 25-45 Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾ 0 0 Window temperature test points TP2 and TP3, Long-term operational⁽⁹⁾. 10 Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ Illumination⁽¹³⁾ 20 Window temperature test points TP2 and TP3, Long-term operational⁽⁹⁾ 20 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 Uindow temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ 10 Illumination⁽¹³⁾ Illumination Source <400 nm and >700 nm 20 10 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 20 11 Illumination</td> <td>(2) (3) Supply voltage for LVCMOS core logic 3.0 3.3 3.6 Supply voltage for LVDS receivers 3.0 3.3 3.6 Mirror electrode and HVCMOS supply voltage 8.25 8.5 8.75 Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) -27 26.5 Supply voltage delta (absolute value) ⁽⁴⁾ 0.3 0.3 0.3 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 25-45 65 ⁽¹⁰⁾ Array temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾⁽⁷⁾ ⁽¹¹⁾ 0 20 20 Window temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1.⁽¹²⁾ 10 Thermally limited Illumination⁽¹³⁾ Thermally 30 30 30 Vindow temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1.⁽¹²⁾ 10 70 Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1.⁽¹²⁾ 10 10 Illumination ⁽¹³⁾ Illumination Source Between 400 nm and 420 nm 30 30 30 30 30 30</td>	(2) (3) Supply voltage for LVCMOS core logic 3.0 Supply voltage for LVDS receivers 3.0 Mirror electrode and HVCMOS supply voltage 8.25 Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) -27 Supply voltage delta (absolute value) ⁽⁴⁾ -27 TTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm -27 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾ 0 Window temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ 10 Illumination ⁽¹³⁾	(2) (8) Supply voltage for LVCMOS core logic 3.0 3.3 Supply voltage for LVDS receivers 3.0 3.3 Mirror electrode and HVCMOS supply voltage 8.25 8.5 Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) -27 Supply voltage delta (absolute value) ⁽⁴⁾ -27 TTAL ⁽⁵⁾ For Illumination Source Between 420 nm and 700 nm -27 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 25-45 Array temperature, Short-term operational ⁽⁶⁾⁽⁷⁾ ⁽¹¹⁾ 0 0 Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾ . 10 Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ Illumination ⁽¹³⁾ 20 Window temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾ 20 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 Uindow temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ 10 Illumination ⁽¹³⁾ Illumination Source <400 nm and >700 nm 20 10 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 20 11 Illumination	(2) (3) Supply voltage for LVCMOS core logic 3.0 3.3 3.6 Supply voltage for LVDS receivers 3.0 3.3 3.6 Mirror electrode and HVCMOS supply voltage 8.25 8.5 8.75 Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by DLPA200s) -27 26.5 Supply voltage delta (absolute value) ⁽⁴⁾ 0.3 0.3 0.3 Array temperature, Long-term operational ⁽⁶⁾⁽⁷⁾ ⁽⁸⁾⁽⁹⁾ 20 25-45 65 ⁽¹⁰⁾ Array temperature test points TP2 and TP3, Long-term operational ⁽⁹⁾⁽⁷⁾ ⁽¹¹⁾ 0 20 20 Window temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ 10 Thermally limited Illumination ⁽¹³⁾ Thermally 30 30 30 Vindow temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ 10 70 Absolute temperature delta between the window test points (TP2, TP3) and the ceramic test point TP1. ⁽¹²⁾ 10 10 Illumination ⁽¹³⁾ Illumination Source Between 400 nm and 420 nm 30 30 30 30 30 30

(1) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the Recommended Operating Conditions limits.

(2) Voltages V_{CC} , V_{CC1} , and V_{CC2} are required for proper DMD operation. V_{SS} must also be connected.

(3) All voltages are referenced to common ground V_{SS} .

(4) Exceeding the recommended allowable absolute voltage difference between V_{CC} and V_{CC1} may result in excess current draw. The difference between VCC and V_{CC1}, |V_{CC} - V_{CC1}|, should be less than the specified limit.

(5) Optimal, long-term performance and optical efficiency of the Digital Micromirror Device (DMD) can be affected by various application parameters, including illumination spectrum, illumination power density, micromirror landed duty-cycle, ambient temperature (storage and operating), DMD temperature, ambient humidity (storage and operating), and power on or off duty cycle. TI recommends that application-specific effects be considered as early as possible in the design cycle.

(6) In some applications, the total DMD heat load can be dominated by the amount of incident light energy absorbed. See Micromirror Array Temperature Calculation for further details.

(7) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1 (TP1) shown in Figure 17 and the package thermal resistance in *Thermal Information* using Micromirror Array Temperature Calculation.

(8) Simultaneous exposure of the DMD to the maximum *Recommended Operating Conditions* for temperature and UV illumination will reduce device lifetime.

(9) Long-term is defined as the usable life of the device.

(10) Per Figure 1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to *Micromirror Landed-On and Landed-Off Duty Cycle* for a definition of micromirror landed duty cycle.

(11) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is defined as cumulative time over the usable life of the device and is less than 500 hours.

(12) The temperature delta is the highest difference between the ceramic test point (TP1) and window test points (TP2) and (TP3) in Figure 17.

(13) Total integrated illumination power density on the array in the indicated wavelength range.

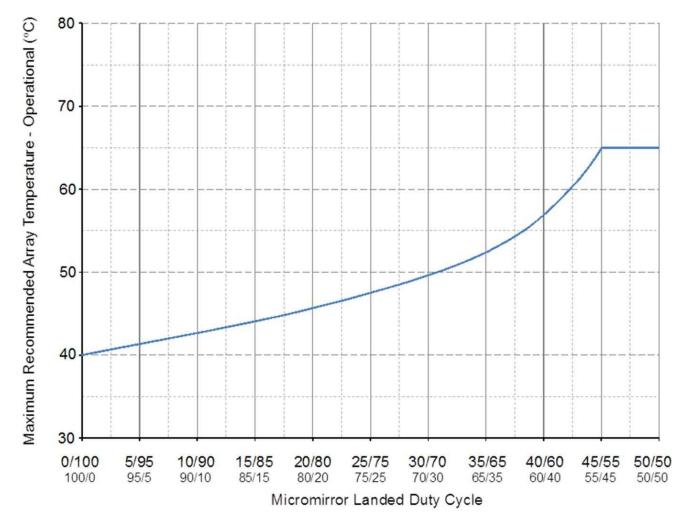


Figure 1. Max Recommended DMD Temperature – Derating Curve

7.5 Thermal Information

	DLP9500	
THERMAL METRIC	FLN (Package)	UNIT
	355 PINS	
Thermal resistance, active area to test point 1 (TP1) ⁽¹⁾	0.5	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package where it can be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the package within the Recommended Operating Conditions. The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

7.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage ⁽¹⁾ , See Figure 11	$V_{CC} = 3 \text{ V}, \text{ I}_{OH} = -20 \text{ mA}$	2.4			V

(1) Applies to LVCMOS pins only.

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OL}	Low-level output voltage ⁽¹⁾ , See Figure 11	V _{CC} = 3.6 V, I _{OH} = 15 mA			0.4	V
V _{MBRST}	Clocking pulse waveform applied to MBRST[29:0] input pins (supplied by DLPA200s)		-27		26.5	V
I _{OZ}	High-impedance output current ⁽¹⁾	V _{CC} = 3.6 V			10	μA
	List lough output summert (1)	$V_{OH} = 2.4 \text{ V}, V_{CC} \ge 3 \text{ V}$			-20	
I _{OH}	High-level output current ⁽¹⁾	V _{OH} = 1.7 V, V _{CC} ≥ 2.25 V			-15	mA
I _{OL}	Low-level output current ⁽¹⁾	$V_{OL} = 0.4 \text{ V}, V_{CC} \ge 3 \text{ V}$			15	mA
	Low-level output current V	$V_{OL} = 0.4 \text{ V}, V_{CC} \ge 2.25 \text{ V}$			14	ША
V _{IH}	High-level input voltage ⁽¹⁾		1.7		V _{CC} + 0.3	V
V _{IL}	Low-level input voltage ⁽¹⁾		-0.3		0.7	V
IIL	Low-level input current ⁽¹⁾	$V_{CC} = 3.6 \text{ V}, \text{ V}_{I} = 0 \text{ V}$			-60	μA
I _{IH}	High-level input current ⁽¹⁾	$V_{CC} = 3.6 V, V_{I} = V_{CC}$			60	μA
I _{CC}	Current into V _{CC} pin	V _{CC} = 3.6 V,			2990	mA
I _{CCI}	Current into V _{OFFSET} pin ⁽²⁾	V _{CCI} = 3.6 V			910	mA
I _{CC2}	Current into V _{CC2} pin	V _{CC2} = 8.75 V			25	mA
PD	Power dissipation			4.4		W
Z _{IN}	Internal differential impedance		95		105	Ω
Z _{LINE}	Line differential impedance (PWB, trace)		90	100	110	Ω
CI	Input capacitance (1)	f = 1 MHz			10	pF
Co	Output capacitance ⁽¹⁾	f = 1 MHz			10	pF
CIM	Input capacitance for MBRST[29:0] pins	f = 1 MHz	270		355	pF

(2) Exceeding the maximum allowable absolute voltage difference between V_{CC} and V_{CCI} may result in excess current draw (See *Absolute Maximum Ratings* for details).

7.7 LVDS Timing Requirements

over operating free-air temperature range (unless otherwise noted); see Figure 2

		MIN	NOM	MAX	UNIT
f _{DCLK_x}	DCLK_x clock frequency (where $x = [A, B, C, or D]$)	200		400	MHz
t _c	Clock cycle - DLCK_x	2.5			ns
t _w	Pulse duration - DLCK_x		1.25		ns
t _s	Setup time - D_x[15:0] and SCTRL_x before DCLK_x	0.35			ns
t _h	Hold time, D_x[15:0] and SCTRL_x after DCLK_x	0.35			ns
t _{skew}	Skew between any two buses (A ,B, C, and D)	-1.25		1.25	ns



Figure 2. LVDS Timing Waveforms

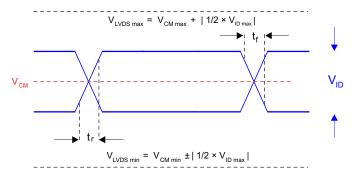
ZHCSA86E - AUGUST 2012 - REVISED AUGUST 2018

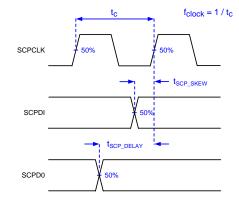
www.ti.com.cn

7.8 LVDS Waveform Requirements

over operating free-air temperature range (unless otherwise noted); see Figure 3

		MIN	NOM	MAX	UNIT
V _{ID}	Input differential voltage (absolute difference)	100	400	600	mV
V _{CM}	Common mode voltage		1200		mV
V _{LVDS}	LVDS voltage	0		2000	mV
t _r	Rise time (20% to 80%)	100		400	ps
t _r	Fall time (80% to 20%)	100		400	ps




Figure 3. LVDS Waveform Requirements

7.9 Serial Control Bus Timing Requirements

over operating free-air temperature range (unless otherwise noted); see Figure 4 and Figure 5

		MIN	NOM	MAX	UNIT
f_{SCP_CLK}	SCP clock frequency	50		500	kHz
t _{SCP_SKEW}	Time between valid SCP_DI and rising edge of SCP_CLK	-300		300	ns
t _{SCP_DELAY}	Time between valid SCP_DO and rising edge of SCP_CLK			960	ns
t SCP_EN	Time between falling edge of SCP_EN and the first rising edge of SCP_CLK	30			ns
t_SCP	Rise time for SCP signals			200	ns
t _{f_SCP}	Fall time for SCP signals			200	ns

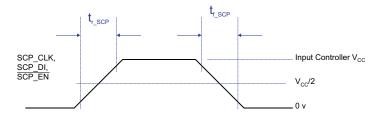


Figure 5. Serial Communications Bus Waveform Requirements

NSTRUMENTS

ÈXAS

7.10 Systems Mounting Interface Loads

PARAMETER		MIN	NOM	MAX	UNIT
	Thermal interface area (see Figure 6)			156	Ν
Maximum system mounting interface load to be applied to the:	Electrical interface area (see Figure 6)			1334	Ν
	Datum A Interface area (see Figure 6)			712	И

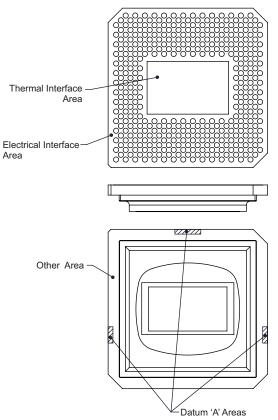
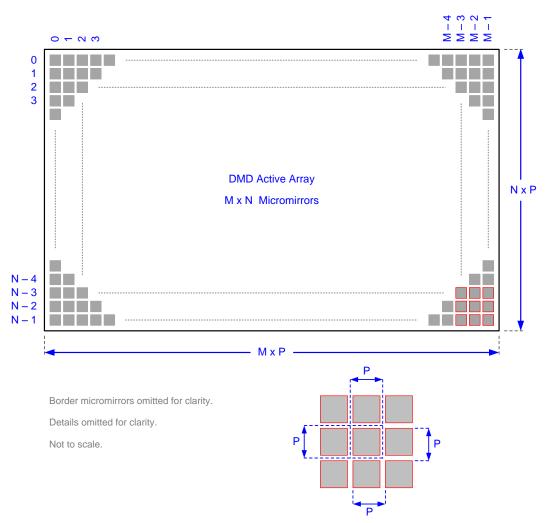


Figure 6. System Interface Loads


7.11 Micromirror Array Physical Characteristics

See 机械、封装和可订购信息 for additional details.

			VALUE	UNIT
М	A Number of active micromirror columns ⁽¹⁾		1920	micromirrors
Ν	N Number of active micromirror rows ⁽¹⁾		1080	micromirrors
Р	Micromirror (pixel) pitch (1)		10.8	μm
	Micromirror active array width (1)	M × P	20.736	mm
	Micromirror active array height (1)	N × P	11.664	mm
	Micromirror array border ⁽¹⁾ ⁽²⁾	Pond of micromirrors (POM)	10	micromirrors/side

(1)

See Figure 7. The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. (2) These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

Refer to the Micromirror Array Physical Characteristics table for M, N, and P specifications.

Figure 7. Micromirror Array Physical Characteristics

7.12 Micromirror Array Optical Characteristics

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. See the related application reports (listed in $\underline{n} \neq \underline{\chi} \neq \underline{\chi}$) for guidelines.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Micromitror tilt ongle	DMD parked state ^{(1) (2) (3)} , See Figure 12		0		dogrado
a Micromirror til	Micromirror tilt angle	DMD landed state ^{(1) (4) (5)} See Figure 12		12		degrees
β	Micromirror tilt angle variation (1) (4) (6) (7) (8)	See Figure 12	-1		1	degrees
	Micromirror crossover time ⁽⁹⁾			3		μs
	Micromirror switching time ⁽¹⁰⁾			13	22	μs
	Array switching time at 400 MHz with global reset ⁽¹¹⁾		56			μs
	New constitute existence (12)	Non-adjacent micromirrors			10	
	Non-operating micromirrors ⁽¹²⁾	Adjacent micromirrors			0	micromirrors
	Orientation of the micromirror axis-of-rotation (13)	See Figure 12	44	45	46	degrees
	Micromirror array optical efficiency (14) (15)	400 to 700 nm, with all micromirrors in the ON state		70%		

(1) Measured relative to the plane formed by the overall micromirror array.

- (2) Parking the micromirror array returns all of the micromirrors to an essentially flat (0°) state (as measured relative to the plane formed by the overall micromirror array).
- (3) When the micromirror array is parked, the tilt angle of each individual micromirror is uncontrolled.
- (4) Additional variation exists between the micromirror array and the package datums, as shown in 机械、封装和可订购信息.
- (5) When the micromirror array is landed, the tilt angle of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in an nominal angular position of +12°. A binary value of 0 results in a micromirror landing in an nominal angular position of -12°.
- (6) Represents the landed tilt angle variation relative to the nominal landed tilt angle.
- (7) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
- (8) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations and/or system contrast variation.
- (9) Micromirror crossover time is the transition time from landed to landed during a crossover transition and primarily a function of the natural response time of the micromirrors.
- (10) Micromirror switching time is the time after a micromirror clocking pulse until the micromirrors can be addressed again. It included the micromirror settling time.
- (11) Array switching is controlled and coordinated by the DLPC410 (DLPS024) and DLPA200 (DLPS015). Nominal switching time depends on the system implementation and represents the time for the entire micromirror array to be refreshed (array loaded plus reset and mirror settling time).
- (12) Non-operating micromirror is defined as a micromirror that is unable to transition nominally from the -12° position to +12° or vice versa.
- (13) Measured relative to the package datums 'B' and 'C', shown in the 机械、封装和可订购信息.
- (14) The minimum or maximum DMD optical efficiency observed in a specific application depends on numerous application-specific design variables, such as:
 - (a) Illumination wavelength, bandwidth/line-width, degree of coherence
 - (b) Illumination angle, plus angle tolerance
 - (c) Illumination and projection aperture size, and location in the system optical path
 - (d) Illumination overfill of the DMD micromirror array
 - (e) Aberrations present in the illumination source and/or path
 - (f) Aberrations present in the projection path

The specified nominal DMD optical efficiency is based on the following use conditions:

- (a) Visible illumination (400 to 700 nm)
- (b) Input illumination optical axis oriented at 24° relative to the window normal
- (c) Projection optical axis oriented at 0° relative to the window normal
- (d) f/3 illumination aperture
- (e) f / 2.4 projection aperture

Based on these use conditions, the nominal DMD optical efficiency results from the following four components:

- (a) Micromirror array fill factor: nominally 94%
- (b) Micromirror array diffraction efficiency: nominally 87%
- (c) Micromirror surface reflectivity: nominally 89%
- (d) Window transmission: nominally 96% (single pass, through two surface transitions)
- (15) Does not account for the effect of micromirror switching duty cycle, which is application dependent. Micromirror switching duty cycle represents the percentage of time that the micromirror is actually reflecting light from the optical illumination path to the optical projection path. This duty cycle depends on the illumination aperture size, the projection aperture size, and the micromirror array update rate.

7.13 Window Characteristics

PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Window material designation	Corning 7056				
Window refractive index	At wavelength 589 nm		1.487		
Window flatness ⁽²⁾	Per 25 mm			4	fringes
Window artifact size	Within the Window Aperture ⁽³⁾			400	μm
Window aperture	See ⁽⁴⁾				
Illumination overfill	Refer to Illumination Overfill				
	At wavelength 405 nm. Applies to 0° and 24° AOI only.	95%			
Window transmittance, single-pass through both surfaces and glass ⁽⁵⁾	Minimum within the wavelength range 420 nm to 680 nm. Applies to all angles 0° to 30° AOI.	96%			
	Average over the wavelength range 420 nm to 680 nm. Applies to all angles 30° to 45° AOI.	96%			

(1) See *Window Characteristics and Optics* for more information.

(2) At a wavelength of 632.8 nm.

(3) See the 机械、封装和可订购信息 section at the end of this document for details regarding the size and location of the window aperture.
 (4) For details regarding the size and location of the window aperture, see the package mechanical characteristics listed in the Mechanical ICD in the Mechanical, Packaging, and Orderable Information section.

(5) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP DMD Window.

7.14 Chipset Component Usage Specification

The DLP9500 is a component of one or more DLP chipsets. Reliable function and operation of the DLP9500 requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.

8 Detailed Description

8.1 Overview

Optically, the DLP9500 consists of 2,073,600 highly reflective, digitally switchable, micrometer-sized mirrors (micromirrors), organized in a two-dimensional array of 1920 micromirror columns by 1080 micromirror rows (). Each aluminum micromirror is approximately 10.8 microns in size (see the *Micromirror Pitch* in) and is switchable between two discrete angular positions: -12° and 12°. The angular positions are measured relative to a 0° flat state, which is parallel to the array plane (see Figure 12). The tilt direction is perpendicular to the hinge-axis, which is positioned diagonally relative to the overall array. The On State landed position is directed toward row 0, column 0 (upper left) corner of the device package (see the *Micromirror Hinge-Axis Orientation* in). In the field of visual displays, the 1920 × 1080 pixel resolution is referred to as 1080p.

Each individual micromirror is positioned over a corresponding CMOS memory cell. The angular position of a specific micromirror is determined by the binary state (logic 0 or 1) of the corresponding CMOS memory cell contents, after the mirror clocking pulse is applied. The angular position $(-12^{\circ} \text{ or } +12^{\circ})$ of the individual micromirrors changes synchronously with a micromirror clocking pulse, rather than being synchronous with the CMOS memory cell data update. Therefore, writing a logic 1 into a memory cell followed by a mirror clocking pulse will result in the corresponding micromirror switching to a 12° position. Writing a logic 0 into a memory cell followed by a mirror clocking pulse will result in the corresponding micromirror switching to a -12° position.

Updating the angular position of the micromirror array consists of two steps. First, updating the contents of the CMOS memory. Second, application of a micromirror clocking pulse to all or a portion of the micromirror array (depending upon the configuration of the system). Micromirror clocking pulses are generated externally by two DLPA200s, with application of the pulses being coordinated by the DLPC410 controller.

Around the perimeter of the 1920 by 1080 array of micromirrors is a uniform band of border micromirrors. The border micromirrors are not user-addressable. The border micromirrors land in the -12° position once power has been applied to the device. There are 10 border micromirrors on each side of the 1920 by 1080 active array.

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018

Overview (continued)

Figure 8 shows a DLPC410 and DLP9500 chipset block diagram. The DLPC410 and DLPA200s control and coordinate the data loading and micromirror switching for reliable DLP9500 operation. The DLPR410 is the programmed PROM required to properly configure the DLPC410 controller. For more information on the chipset components, see *Application and Implementation*. For a typical system application using the DLP Discovery 4100 chipset including a DLP9500, see Figure 18.

8.2 Functional Block Diagram

Figure 8 shows a simplified system block diagram with the use of the DLPC410 with the following chipset components:

- **DLPC410** Xilinx [XC5VLX30] FPGA configured to provide high-speed DMD data and control, and DLPA200 timing and control
- **DLPR410** [XCF16PFSG48C] serial flash PROM contains startup configuration information (EEPROM)
- DLPA200 Two DMD micromirror drivers for the DLP9500 DMD
- **DLP9500** Spatial light modulator (DMD)

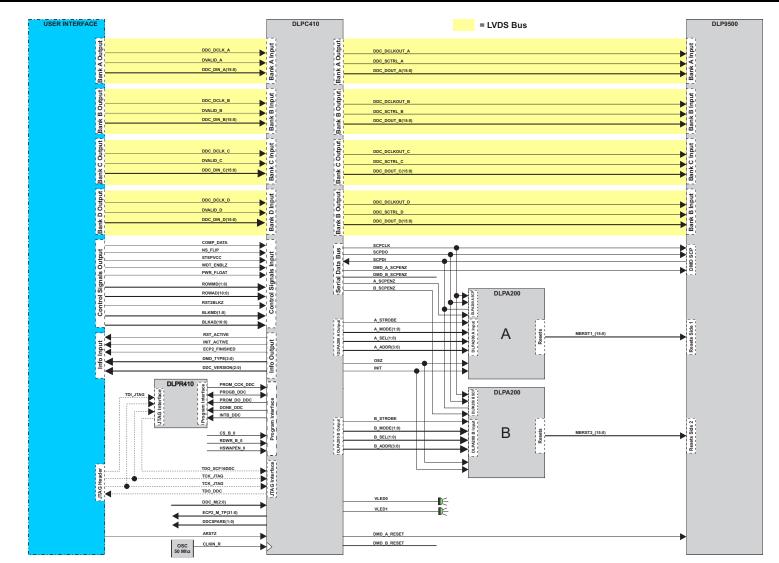


Figure 8. DLPC410, DLPA200, DLPR410, and DLP9500 Functional Block Diagram

8.3 Feature Description

DMD	ARRAY	SINGLE BLOCK MODE (Patterns/s)	GLOBAL RESET MODE (Patterns/s)	DATA RATE (Giga Pixels/s)	MIRROR PITCH
DLP9500 - 0.95" 1080p	1920 × 1080	23148	17857	48	10.8 μm

Table 1. DMD Overview

8.3.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset

The DLPC410 chipset includes the DLPC410 controller which provides a high-speed LVDS data and control interface for DMD control. This interface is also connected to a second FPGA used to drive applications (not included in the chipset). The DLPC410 generates DMD and DLPA200 initialization and control signals in response to the inputs on the control interface.

For more information, see the DLPC410 data sheet (DLPS024).

8.3.2 DLPA200 - DMD Micromirror Drivers

DLPA200 micromirror drivers provide the micromirror clocking pulse driver functions for the DMD. Two drivers are required for DLP9500.

The DLPA200 is designed to work with multiple DLP chipsets. Although the DLPA200 contains 16 MBSRT output pins, only 15 lines are used with the DLP9500 chipset. For more information see and the DLPA200 data sheet (DLPS015).

8.3.3 DLPR410 - PROM for DLP Discovery 4100 Chipset

The DLPC410 controller is configured at startup from the DLPR410 PROM. The contents of this PROM can not be altered. For more information, see the DLPR410 data sheet (DLPS027) the DLPC410 data sheet (DLPS024).

8.3.4 DLP9500 - DLP 0.95 1080p 2xLVDS Type-A DMD 1080p DMD

8.3.4.1 DLP9500 1080p Chipset Interfaces

This section will describe the interface between the different components included in the chipset. For more information on component interfacing, see *Application and Implementation*.

8.3.4.1.1 DLPC410 Interface Description

8.3.4.1.1.1 DLPC410 IO

Table 2 describes the inputs and outputs of the DLPC410 to the user. For more details on these signals, see the DLPC410 data sheet (DLPS024).

Table 2. Input/Output Description

PIN NAME	DESCRIPTION	I/O
ARST	Asynchronous active low reset	I
CLKIN_R	Reference clock, 50 MHz	I
DIN_[A,B,C,D](15:0)	LVDS DDR input for data bus A,B,C,D (15:0)	I
DCLKIN[A,B,C,D]	LVDS inputs for data clock (200 - 400 MHz) on bus A, B, C, and D	I
DVALID[A,B,C,D]	LVDS input used to start write sequence for bus A, B, C, and D	I
ROWMD(1:0)	DMD row address and row counter control	I
ROWAD(10:0)	DMD row address pointer	l
BLK_AD(3:0)	DMD mirror block address pointer	l
BLK_MD(1:0)	DMD mirror block reset and clear command modes	I
PWR_FLOAT	Used to float DMD mirrors before complete loss of power	I
DMD_TYPE(3:0)	DMD type in use	0
RST_ACTIVE	Indicates DMD mirror reset in progress	0
INIT_ACTIVE	Initialization in progress.	0
VLED0	System "heartbeat" signal	0
VLED1	Denotes initialization complete	0

8.3.4.1.1.2 Initialization

The *INIT_ACTIVE* (Table 2) signal indicates that the DLP9500, DLPA200s, and DLPC410 are in an initialization state after power is applied. During this initialization period, the DLPC410 is initializing the DLP9500 and DLPA200s by setting all internal registers to their correct states. When this signal goes low, the system has completed initialization. System initialization takes approximately 220 ms to complete. Data and command write cycles should not be asserted during the initialization.

During initialization the user must send a training pattern to the DLPC410 on all data and DVALID lines to correctly align the data inputs to the data clock. For more information, see the interface training pattern information in the DLPC410 data sheet.

8.3.4.1.1.3 DMD Device Detection

The DLPC410 automatically detects the DMD type and device ID. DMD_TYPE (Table 2) is an output from the DLPC410 that contains the DMD information.

8.3.4.1.1.4 Power Down

To ensure long term reliability of the DLP9500, a shutdown procedure must be executed. Prior to power removal, assert the PWR_FLOAT (Table 2) signal and allow approximately 300 μ s for the procedure to complete. This procedure assures the mirrors are in a flat state.

8.3.4.1.2 DLPC410 to DMD Interface

8.3.4.1.2.1 DLPC410 to DMD IO Description

Table 3 lists the available controls and status pin names and their corresponding signal type, along with a brief functional description.

PIN NAME	DESCRIPTION	I/O
DDC_DOUT_[A,B,C,D](15:0)	LVDS DDR output to DMD data bus A,B,C,D (15:0)	0
DDC_DCLKOUT_[A,B,C,D]	LVDS output to DMD data clock A,B,C,D	0
DDC_SCTRL_[A,B,C,D]	LVDS DDR output to DMD data control A,B,C,D	0

Table 3. DLPC410 to DMD I/O Pin Descriptions

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018

8.3.4.1.2.2 Data Flow

Figure 9 shows the data traffic through the DLPC410. Special considerations are necessary when laying out the DLPC410 to allow best signal flow.

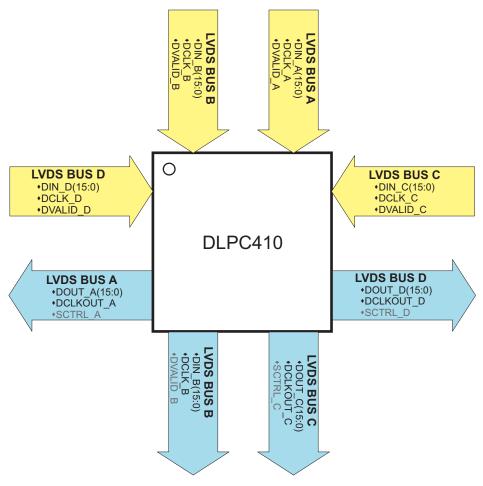


Figure 9. DLPC410 Data Flow

Four LVDS buses transfer the data from the user to the DLPC410. Each bus has its data clock that is input edge aligned with the data (DCLK). Each bus also has its own validation signal that qualifies the data input to the DLPC410 (DVALID).

Output LVDS buses transfer data from the DLPC410 to the DMD. Output buses LVDS C and LVDS D are used in addition to LVDS A and LVDS B with the DLP9500.

8.3.4.1.3 DLPC410 to DLPA200 Interface

8.3.4.1.3.1 DLPA200 Operation

The DLPA200 DMD micromirror driver is a mixed-signal application-specific integrated circuit (ASIC) that combines the necessary high-voltage power supply generation and micromirror clocking pulse functions for a family of DMDs. The DLPA200 is programmable and controllable to meet all current and anticipated DMD requirements.

The DLPA200 operates from a 12-V power supply input. For more detailed information on the DLPA200, see the DLPA200 data sheet.

8.3.4.1.3.2 DLPC410 to DLPA200 IO Description

The serial communications port (SCP) is a full duplex, synchronous, character-oriented (byte) port that allows exchange of commands from the DLPC410 to the DLPA200s.

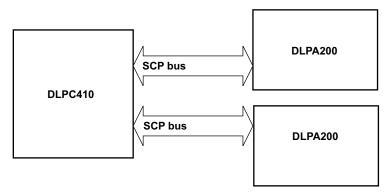


Figure 10. Serial Port System Configuration

Five signal lines are associated with the SCP bus: SCPEN, SCPCK, SCPDI, SCPDO, and IRQ.

Table 4 lists the available controls and status pin names and their corresponding signal type, along with a brief functional description.

PIN NAME	DESCRIPTION	I/O
A_SCPEN	Active-low chip select for DLPA200 serial bus	0
A_STROBE	DLPA200 control signal strobe	0
A_MODE(1:0)	DLPA200 mode control	0
A_SEL(1:0)	DLPA200 select control	0
A_ADDR(3:0)	DLPA200 address control	0
B_SCPEN	Active-low chip select for DLPA200 serial bus (2)	0
B_STROBE	DLPA200 control signal strobe (2)	0
B_MODE(1:0)	DLPA200 mode control	0
B_SEL(1:0)	DLPA200 select control	0
B_ADDR(3:0)	DLPA200 address control	0

Table 4. DLPC410 to DLPA200 I/O Pin Descriptions

The DLPA200 provides a variety of output options to the DMD by selecting logic control inputs: MODE[1:0], SEL[1:0] and reset group address A[3:0] (Table 4). The MODE[1:0] input determines whether a single output, two outputs, four outputs, or all outputs, will be selected. Output levels (VBIAS, VOFFSET, or VRESET) are selected by SEL[1:0] pins. Selected outputs are tri-stated on the rising edge of the STROBE signal and latched to the selected voltage level after a break-before-make delay. Outputs will remain latched at the last micromirror clocking pulse waveform level until the next micromirror clocking pulse waveform cycle.

8.3.4.1.4 DLPA200 to DLP9500 Interface

8.3.4.1.4.1 DLPA200 to DLP9500 Interface Overview

The DLPA200 generates three voltages: VBIAS, VRESET, and VOFFSET that are supplied to the DMD MBRST lines in various sequences through the micromirror clocking pulse driver function. VOFFSET is also supplied directly to the DMD as DMDVCC2. A fourth DMD power supply, DMDVCC, is supplied directly to the DMD by regulators.

The function of the micromirror clocking pulse driver is to switch selected outputs in patterns between the three voltage levels (VBIAS, VRESET and VOFFSET) to generate one of several micromirror clocking pulse waveforms. The order of these micromirror clocking pulse waveform events is controlled externally by the logic control inputs and timed by the STROBE signal. DLPC410 automatically detects the DMD type and then uses the DMD type to determine the appropriate micromirror clocking pulse waveform.

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018

A direct micromirror clocking pulse operation causes a mirror to transition directly from one latched state to the next. The address must already be set up on the mirror electrodes when the micromirror clocking pulse is initiated. Where the desired mirror display period does not allow for time to set up the address, a micromirror clocking pulse with release can be performed. This operation allows the mirror to go to a relaxed state regardless of the address while a new address is set up, after which the mirror can be driven to a new latched state.

A mirror in the relaxed state typically reflects light into a system collection aperture and can be thought of as off although the light is likely to be more than a mirror latched in the *off* state. System designers should carefully evaluate the impact of relaxed mirror conditions on optical performance.

8.3.5 Measurement Conditions

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. Figure 11 shows an equivalent test load circuit for the output under test. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. All rise and fall transition timing parameters are referenced to V_{IL} MAX and V_{IH} MIN for input clocks, V_{OL} MAX and V_{OH} MIN for output clocks.

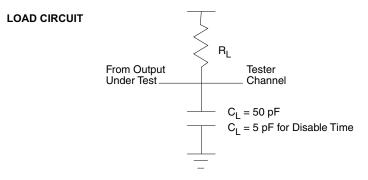


Figure 11. Test Load Circuit for AC Timing Measurements

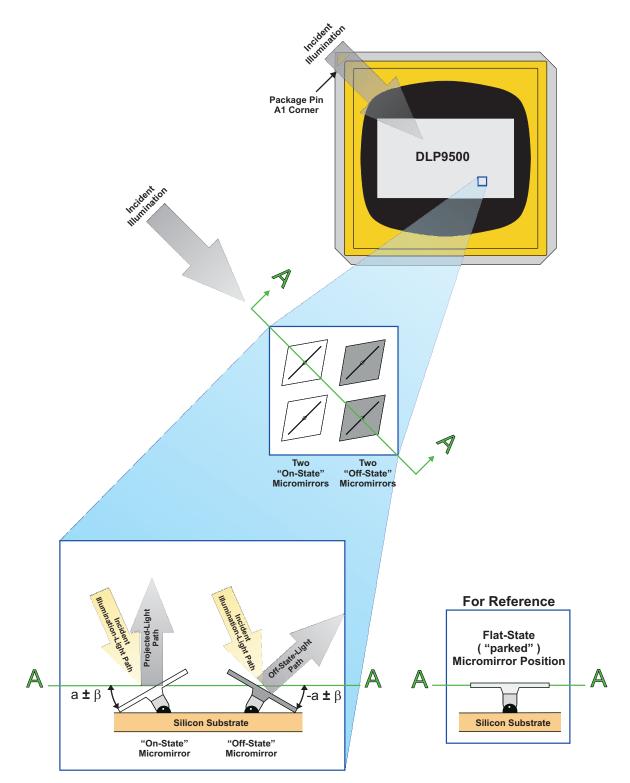


Figure 12. Micromirror Landed Positions and Light Paths

8.4 Device Functional Modes

The DLP9500 has only one functional mode; it is set to be highly optimized for low latency and high speed in generating mirror clocking pulses and timings.

When operated with the DLPC410 controller in conjunction with the DLPA200 drivers, the DLP9500 can be operated in several display modes. The DLP9500 is loaded as 15 blocks of 72 rows each. The first 64 bits of pixel data and last 64 bits of pixel data for all rows are not visible. Below is a representation of how the image is loaded by the different micromirror clocking pulse modes. Figure 13, Figure 14, Figure 15, and Figure 16 show how the image is loaded by the different micromirror clocking pulse modes.

There are four micromirror clocking pulse modes that determine which blocks are *reset* when a micromirror clocking pulse command is issued:

- Single block mode
- Dual block mode
- Quad block mode
- Global mode

8.4.1 Single Block Mode

In single block mode, a single block can be loaded and reset in any order. After a block is loaded, it can be reset to transfer the information to the mechanical state of the mirrors.

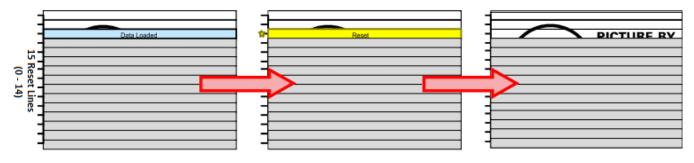


Figure 13. Single Block Mode

8.4.2 Dual Block Mode

In dual block mode, reset blocks are paired together as follows (0-1), (2-3), (4-5), (6-7), (8-9), (10-11), (12-13), and (14). These pairs can be reset in any order. After data is loaded a pair can be reset to transfer the information to the mechanical state of the mirrors.

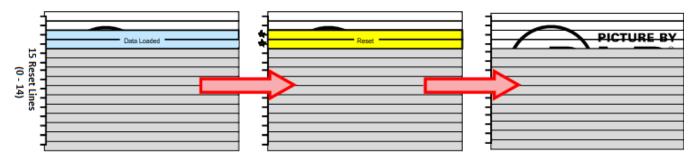


Figure 14. Dual Block Mode

Device Functional Modes (continued)

8.4.3 Quad Block Mode

In quad block mode, reset blocks are grouped together in fours as follows (0-3), (4-7), (8-11) and (12-14). Each quad group can be randomly addressed and reset. After a quad group is loaded, it can be reset to transfer the information to the mechanical state of the mirrors.

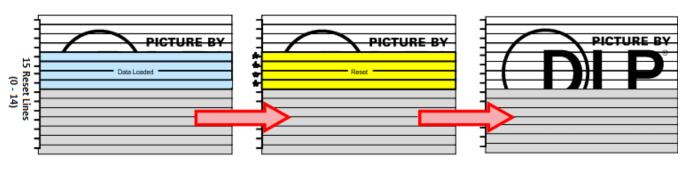


Figure 15. Quad Block Mode

8.4.4 Global Block Mode

In global mode, all reset blocks are grouped into a single group and reset together. The entire DMD must be loaded with the desired data before issuing a Global Reset to transfer the information to the mechanical state of the mirrors.

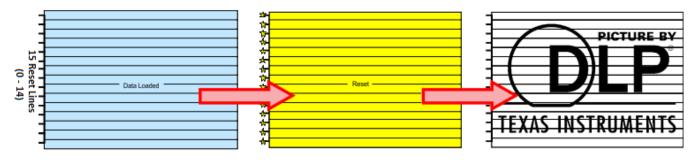


Figure 16. Global Mode

TEXAS INSTRUMENTS

www.ti.com.cn

8.5 Window Characteristics and Optics

NOTE

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

8.5.1 Optical Interface and System Image Quality

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

8.5.2 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination, projection pupils, or both to block out flat-state and stray light from the projection lens. The mirror tilt angle defines DMD capability to separate the *ON* optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display's border and/or active area could occur.

8.5.3 Pupil Match

TI recommends the exit pupil of the illumination is nominally centered within 2° (two degrees) of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display's border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

8.5.4 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the optical architecture of a particular system, overfill light may have to be further reduced below the suggested 10% level to be acceptable.

8.6 Micromirror Array Temperature Calculation

8.6.1 Thermal Test Points

The temperature of the DMD case can be measured directly. For consistency, thermal test point locations 1, 2, and 3 are defined as shown in Figure 17.

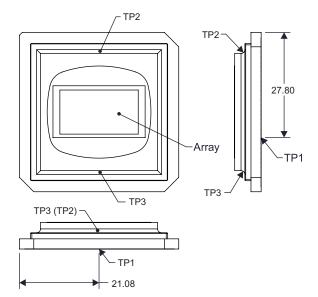


Figure 17. Thermal Test Points

Micromirror Array Temperature Calculation (continued)

8.6.2 Micromirror Array Temperature Calculation - Lumens Based

Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:

- the measurement points (Figure 17)
- the package thermal resistance
- the electrical power
- the illumination heat load

The relationship between micromirror array temperature and the reference ceramic temperature (thermal test point TP1 in Figure 17) is provided by the following equations:

 $T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$

 $Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$

where

- T_{ARRAY} = computed array temperature (°C)
- T_{CERAMIC} = measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = thermal resistance of DMD package (specified in Thermal Information) from array to ceramic TP1 (°C/W)
- Q_{ARRAY} = total power (electrical + absorbed) on the array (Watts)
- Q_{ELECTRICAL} = nominal electrical power (Watts)
- $Q_{ILLUMINATION} = (C_{L2W} \times SL)$ (Watts)
- C_{L2W} = conversion constant for screen lumens to power on DMD (Watts/lumen)
- SL = measured screen lumens

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 Watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The conversion constant C_{L2W} is based on the DMD input illumination characteristics. It assumes a spectral efficiency of 300 lumens/Watt for the projected light and an illumination distribution of 83.7% on the active array and 16.3% on the array border. The equations shown above are valid for a system with a total projection efficiency through the projection lens from the DMD to the screen of 87%.

Sample calculation for typical application:

- T_{Ceramic} = 55°C (measured)
- SL = 2000 Im (measured)
- Q_{ELECTRICAL} = 4.4 Watts
- R_{ARRAY-TO-CERAMIC} = 0.5 °C/W
- C_{L2W} = 0.00274 W/Im
- Q_{ARRAY} = 4.4 + (0.00274 W/lm × 2000 lm) = 9.88 W
- T_{ARRAY} = 55°C + (9.88 W x 0.5 °C) = 59.9 °C

Micromirror Array Temperature Calculation (continued)

8.6.3 Micromirror Array Temperature Calculation - Power Density Based

Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:

- the measurement points (Figure 17)
- the package thermal resistance
- the electrical power
- the illumination heat load

The relationship between array temperature and the reference ceramic temperature (thermal test point TP1 in Figure 17) is provided by the following equations:

 $T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$

 $Q_{ARRAY} = Q_{ELECTRICAL} + (0.42 \times Q_{INCIDENT})$

where

- T_{ARRAY} = computed array temperature (°C)
- T_{CERAMIC} = measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = thermal resistance of DMD package (specified in Thermal Information) from array to ceramic TP1 (°C/W)
- Q_{ARRAY} = total power (electrical + absorbed) on the array (Watts)
- Q_{ELECTRICAL} = nominal electrical power (Watts)
- Q_{INCIDENT} = total incident optical power on DMD (Watts)

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for each DMD chip in a system. It assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border.

Sample Calculation for each DMD in a system with a measured illumination power density:

- T_{Ceramic} = 20°C (measured)
- ILL_{DENSITY} = 11 Watts per cm² (optical power on DMD per unit area) (measured)
- Overfill = 16.3% (optical design)
- Q_{ELECTRICAL} = 4.4 Watts
- R_{ARRAY-TO-CERAMIC} = 0.5 °C/W
- Area of array = (2.0736 cm x 1.1664 cm) = 2.419 cm²
- ILL_{AREA} = 2.419 cm² / (83.7%) = 2.89 cm²
- Q_{INCIDENT} =11 W/cm² x 2.89 cm² = 31.79 W
- Q_{ARRAY} = 4.4 W + (0.42 x 31.79 W) = 17.75 W
- T_{ARRAY} = 20°C + (17.75 W x 0.5 °C) = 28.9 °C

8.7 Micromirror Landed-On and Landed-Off Duty Cycle

8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the On–state versus the amount of time the same micromirror is landed in the Off–state.

As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On-state 100% of the time (and in the Off-state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off-state 100% of the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Because a micromirror can only be landed in one state or the other (on or off), the two numbers (percentages) always add to 100.

8.7.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD's micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the usable life of the DMD.

Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

8.7.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD, and this interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD's usable life. This is quantified in the derating curve shown in Figure 1. The importance of this curve is that:

- All points along this curve represent the same usable life.
- All points above this curve represent lower usable life (and the further away from the curve, the lower the usable life).
- All points below this curve represent higher usable life (and the further away from the curve, the higher the usable life).

In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at for a give long-term average landed duty.

8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the landed duty cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel will experience a 0/100 landed duty cycle.

Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in Table 5.

GRAYSCALE VALUE	LANDED DUTY CYCLE
0%	0/100
10%	10/90
20%	20/80
30%	30/70
40%	40/60
50%	50/50
60%	60/40
70%	70/30
80%	80/20
90%	90/10
100%	100/0

Table 5. Grayscale Value and Landed Duty Cycle

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed to achieve the desired white point.

During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:

Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% × Blue_Scale_Value)

where:

Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red, Green, and Blue are displayed (respectively) to achieve the desired white point.

For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (to achieve the desired white point), then the landed duty for various combinations of red, green, blue color intensities would be as shown in Table 6.

RED CYCLE PERCENTAGE 50%	GREEN CYCLE PERCENTAGE 20%	BLUE CYCLE PERCENTAGE 30%	LANDED DUTY CYCLE		
RED SCALE VALUE	GREEN SCALE VALUE	BLUE SCALE VALUE			
0%	0%	0%	0/100		
100%	0%	0%	50/50		
0%	100%	0%	20/80		
0%	0%	100%	30/70		
12%	0%	0%	6/94		
0%	35%	0%	7/93		
0%	0%	60%	18/82		
100%	100%	0%	70/30		
0%	100%	100%	50/50		
100%	0%	100%	80/20		
12%	35%	0%	13/87		
0%	35%	60%	25/75		
12%	0%	60%	24/76		
100%	100%	100%	100/0		

Table 6. Example Landed Duty Cycle for Full-Color

TEXAS INSTRUMENTS

www.ti.com.cn

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DLP9500 devices must be coupled with the DLPC410 controller to provide a reliable solution for many different applications. The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC410. Applications of interest include 3D printing, lithography, medical systems, and compressive sensing.

9.2 Typical Application

A typical embedded system application using the DLPC410 controller and DLP9500 is shown in Figure 18. In this configuration, the DLPC410 controller supports input from an FPGA. The FPGA sends low-level data to the controller, enabling the system to be highly optimized for low latency and high speed.

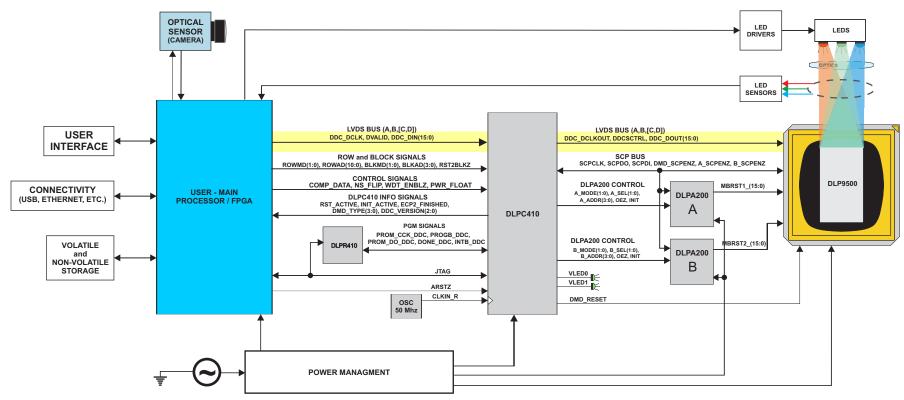


Figure 18. DLPC410 and DLP9500 Embedded Example Block Diagram

www.ti.com.cn

NSTRUMENTS

FXAS

9.2.1 Design Requirements

All applications using the DLP9500 1080p chipset require both the controller and the DMD components for operation. The system also requires an external parallel flash memory device loaded with the DLPC410 configuration and support firmware. The chipset has several system interfaces and requires some support circuitry. The following interfaces and support circuitry are required:

- DLPC410 system interfaces:
 - Control interface
 - Trigger interface
 - Input data interface
 - Illumination interface
 - Reference clock
 - Program interface
- DLP9500 interfaces:
 - DLPC410 to DLP9500 digital data
 - DLPC410 to DLP9500 control interface
 - DLPC410 to DLP9500 micromirror reset control interface
 - DLPC410 to DLPA200 micromirror driver
 - DLPA200 to DLP9500 micromirror reset

9.2.1.1 Device Description

The DLP9500 1080p chipset offers developers a convenient way to design a wide variety of industrial, medical, telecom and advanced display applications by delivering maximum flexibility in formatting data, sequencing data, and light patterns.

The DLP9500 1080p chipset includes the following four components: DMD digital controller (DLPC410), EEPROM (DLPR410), DMD micromirror driver (DLPA200), and a DMD (DLP9500).

DLPC410 Digital Controller for DLP Discovery 4100 chipset

- · Provides high speed 2XLVDS data and control interface to the user
- Drives mirror clocking pulse and timing information to the DLPA200
- Supports random row addressing
- Controls illumination

DLPR410 PROM for DLP Discovery 4100 chipset

• Contains startup configuration information for the DLPC410

DLPA200 DMD Micromirror Driver

 Generates micromirror clocking pulse control (sometimes referred to as a reset) of 15 banks of DMD mirrors. (Two are required for the DLP9500).

DLP9500 DLP 0.95 1080p 2xLVDS Type-A DMD

Steers light in two digital positions (+12° and -12°) using 1920 × 1080 micromirror array of aluminum mirrors.

QUANTITY	TI PART	DESCRIPTION
1	DLP9500	DLP 0.95 1080p 2xLVDS Type-A DMD
1	DLPC410	Digital Controller for DLP Discovery 4100 chipset
1	DLPR410	PROM for DLP Discovery 4100 chipset
2	DLPA200	DMD Micromirror Driver

Table 7. DLP DLP9500 Chipset Configurations

Reliable function and operation of DLP9500 1080p chipsets require the components be used in conjunction with each other. This document describes the proper integration and use of the DLP9500 1080p chipset components.

The DLP9500 1080p chipset can be combined with a user programmable application FPGA (not included) to create high performance systems.

9.2.2 Detailed Design Procedure

The DLP9500 DMD is well suited for visible light applications requiring fast, spatially programmable light patterns using the micromirror array. See the block diagram in Figure 8 to see the connections between the DLP9500 DMD, the DLPC410 digital controller, the DLPR410 EEPROM, and the DLPA200 DMD micromirror drivers. An example application block diagram can be found in Figure 18. Layout guidelines should be followed for reliability.

10 Power Supply Recommendations

10.1 Power-Up Sequence (Handled by the DLPC410)

The sequence of events for DMD system power-up is:

- 1. Apply logic supply voltages to the DLPA200 and to the DMD according to DMD specifications.
- 2. Place DLPA200 drivers into high impedance states.
- 3. Turn on DLPA200 bias, offset, or reset supplies according to driver specifications.
- 4. After all supply voltages are assured to be within the limits specified and with all micromirror clocking pulse operations logically suspended, enable all drivers to either VOFFSET or VBIAS level.
- 5. Begin micromirror clocking pulse operations.

10.2 DMD Power-Up and Power-Down Procedures

Failure to adhere to the prescribed power-up and power-down procedures may affect device reliability. The DLP9500 power-up and power-down procedures are defined by the DLPC410 data sheet (DLPS024). These procedures must be followed to ensure reliable operation of the device.

11 Layout

11.1 Layout Guidelines

The DLP9500 is part of a chipset that is controlled by the DLPC410 in conjunction with the DLPA200. These guidelines are targeted at designing a PCB board with these components.

11.1.1 Impedance Requirements

Signals should be routed to have a matched impedance of 50 Ω ±10% except for LVDS differential pairs (DMD_DAT_Xnn, DMD_DCKL_Xn, and DMD_SCTRL_Xn) which should be matched to 100 Ω ±10% across each pair.

11.1.2 PCB Signal Routing

When designing a PCB board for the DLP9500 controlled by the DLPC410 in conjunction with the DLPA200s, the following are recommended:

Signal trace corners should be no sharper than 45°. Adjacent signal layers should have the predominate traces routed orthogonal to each other. TI recommends that critical signals be hand routed in the following order: DDR2 Memory, DMD (LVDS signals), then DLPA200 signals.

TI does not recommend signal routing on power or ground planes.

TI does not recommend ground plane slots.

High speed signal traces should not cross over slots in adjacent power and/or ground planes.

SIGNAL	CONSTRAINTS
LVDS (DMD_DAT_xnn, DMD_DCKL_xn, and DMD_SCTRL_xn)	P-to-N data, clock, and SCTRL: <10 mils (0.25 mm); Pair-to-pair <10 mils (0.25 mm); Bundle-to-bundle <2000 mils (50 mm, for example DMD_DAT_Ann to DMD_DAT_Bnn) Trace width: 4 mil (0.1 mm) Trace spacing: In ball field – 4 mil (0.11 mm); PCB etch – 14 mil (0.36 mm) Maximum recommended trace length <6 inches (150 mm)

Table 8. Important Signal Trace Constraints

Table 9. Power Trace Widths and Spacing

SIGNAL NAME	SIGNAL NAME MINIMUM TRACE WIDTH		LAYOUT REQUIREMENTS
GND	Maximize	5 mil (0.13 mm)	Maximize trace width to connecting pin as a minimum
VCC, VCC2	VCC, VCC2 20 mil (0.51 mm) 10 mil (0.25 mr		
MBRST[14:0]	11 mil (0.28 mm)	15 mil (0.38 mm)	

11.1.3 Fiducials

Fiducials for automatic component insertion should be 0.05-inch copper with a 0.1-inch cutout (antipad). Fiducials for optical auto insertion are placed on three corners of both sides of the PCB.

11.1.4 PCB Layout Guidelines

A target impedance of 50 Ω for single ended signals and 100 Ω between LVDS signals is specified for all signal layers.

11.1.4.1 DMD Interface

The digital interface from the DLPC410 to the DMD are LVDS signals that run at clock rates up to 400 MHz. Data is clocked into the DMD on both the rising and falling edge of the clock, so the data rate is 800 MHz. The LVDS signals should have 100 Ω differential impedance. The differential signals should be matched but kept as short as possible. Parallel termination at the LVDS receiver is in the DMD; therefore, on board termination is not necessary.

11.1.4.1.1 Trace Length Matching

The DLPC410 DMD data signals require precise length matching. Differential signals should have impedance of 100 Ω (with 5% tolerance). It is important that the propagation delays are matched. The maximum differential pair uncoupled length is 100 mils with a relative propagation delay of ±25 mil between the p and n. Matching all signals exactly will maximize the channel margin. The signal path through all boards, flex cables and internal DMD routing must be considered in this calculation.

11.1.4.2 DLP9500 Decoupling

General decoupling capacitors for the DLP9500 should be distributed around the PCB and placed to minimize the distance from IC voltage and ground pads. Each decoupling capacitor (0.1 μ F recommended) should have vias directly to the ground and power planes. Via sharing between components (discreet or integrated) is discouraged. The power and ground pads of the DLP9500 should be tied to the voltage and ground planes with their own vias.

11.1.4.2.1 Decoupling Capacitors

Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and ground pin of the component. TI recommends that the placement of and routing for the decoupling capacitors meet the following guidelines:

- The supply voltage pin of the capacitor should be located close to the device supply voltage pin or pins. The decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be tied to the voltage or ground plane through separate vias.
- The trace lengths of the voltage and ground connections for decoupling capacitors and components should be less than 0.1 inch to minimize inductance.
- The trace width of the power and ground connection to decoupling capacitors and components should be as wide as possible to minimize inductance.
- Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance and improve noise performance.
- Decoupling performance can be improved by using low ESR and low ESL capacitors.

11.1.4.3 VCC and VCC2

The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND pads of the DMD should be tied to the VCC and ground planes with their own vias.

The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the distance from the DMD's VCC2 and ground pads. Using wide etch from the decoupling capacitors to the DMD connection will reduce inductance and improve decoupling performance.

11.1.4.4 DMD Layout

See the respective sections in this data sheet for package dimensions, timing and pin out information.

11.1.4.5 DLPA200

The DLPA200 generates the micromirror clocking pulses for the DMD. The DMD-drive outputs from the DLPA200 (MBRST[29:0] should be routed with minimum trace width of 11 mil and a minimum spacing of 15 mil. The VCC and VCC2 traces from the output capacitors to the DLPA200 should also be routed with a minimum trace width and spacing of 11 mil and 15 mil, respectively. See the DLPA200 customer data sheet DLPS015 for mechanical package and layout information.

DLP9500 ZHCSA86E – AUGUST 2012 – REVISED AUGUST 2018

11.2 Layout Example

For LVDS (and other differential signal) pairs and groups, it is important to match trace lengths. In the area of the dashed lines, Figure 19 shows correct matching of signal pair lengths with serpentine sections to maintain the correct impedance.

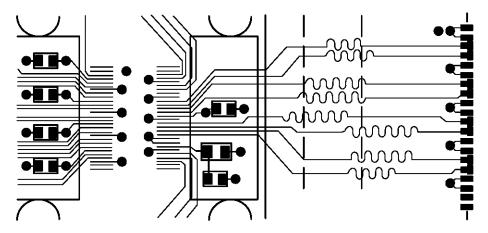


Figure 19. Mitering LVDS Traces to Match Lengths

12 器件和文档支持

- 12.1 器件支持
- 12.1.1 器件命名规则

图 20 提供了读取任一 DLP 器件完整器件名称的图例。

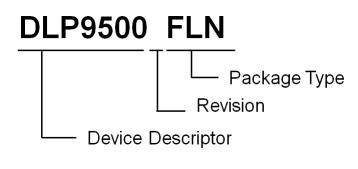


图 20. 器件命名规则

12.1.2 器件标记

图 21 显示了器件标记字段。

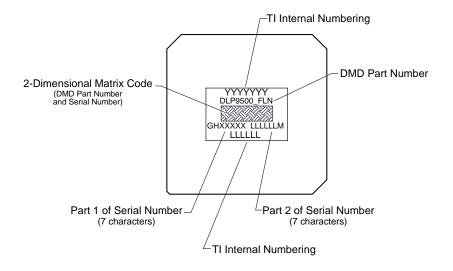


图 21. DLP9500 器件标记

DLP9500 ZHCSA86E – AUGUST 2012–REVISED AUGUST 2018 TEXAS INSTRUMENTS

www.ti.com.cn

12.2 文档支持

12.2.1 相关文档

以下文档包含关于使用 DLP9500 器件的更多信息。

- 《适用于 DLP Discovery 4100 芯片组的 DLPC410 数字控制器数据表》
- 《DLPA200 DMD 微镜驱动器数据表》
- 《适用于 DLP Discovery 4100 芯片组的 DLPR410 PROM 数据表》

12.3 相关链接

下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链接。

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持和社区					
DLP9500	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处					
DLPA200	DLPA200 请单击此处 DLPC410 请单击此处		请单击此处	请单击此处	请单击此处					
DLPC410			请单击此处	请单击此处	请单击此处					
DLPR410	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处					

表 10. 相关链接

12.4 接收文档更新通知

要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.5 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **71** 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.6 商标

Discovery, E2E are trademarks of Texas Instruments. DLP is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.7 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

12.8 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DLP9500BFLN	ACTIVE	CLGA	FLN	355	12	RoHS & Green	NI-PD-AU	N / A for Pkg Type	20 to 70		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

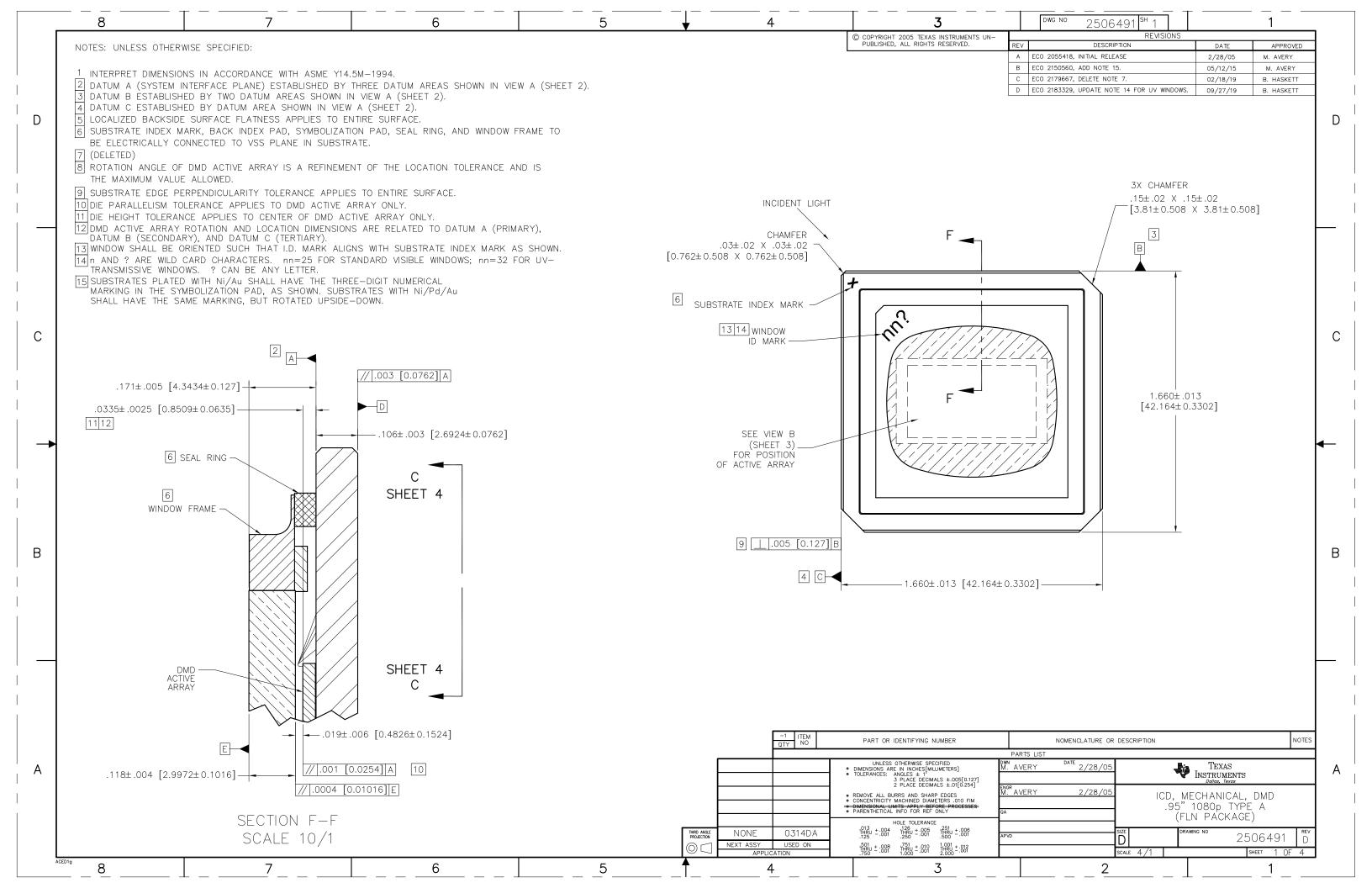
OBSOLETE: TI has discontinued the production of the device.

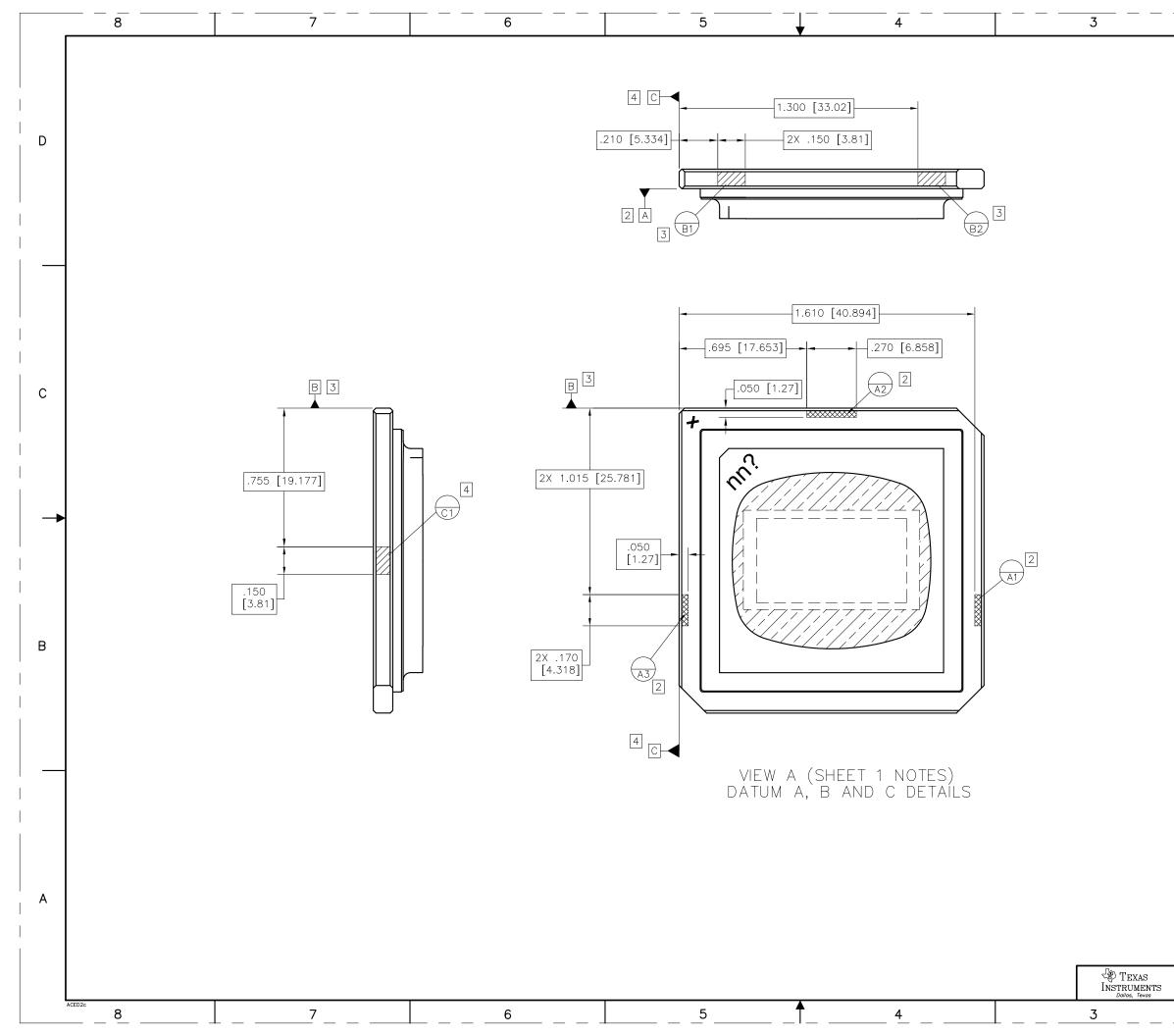
⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

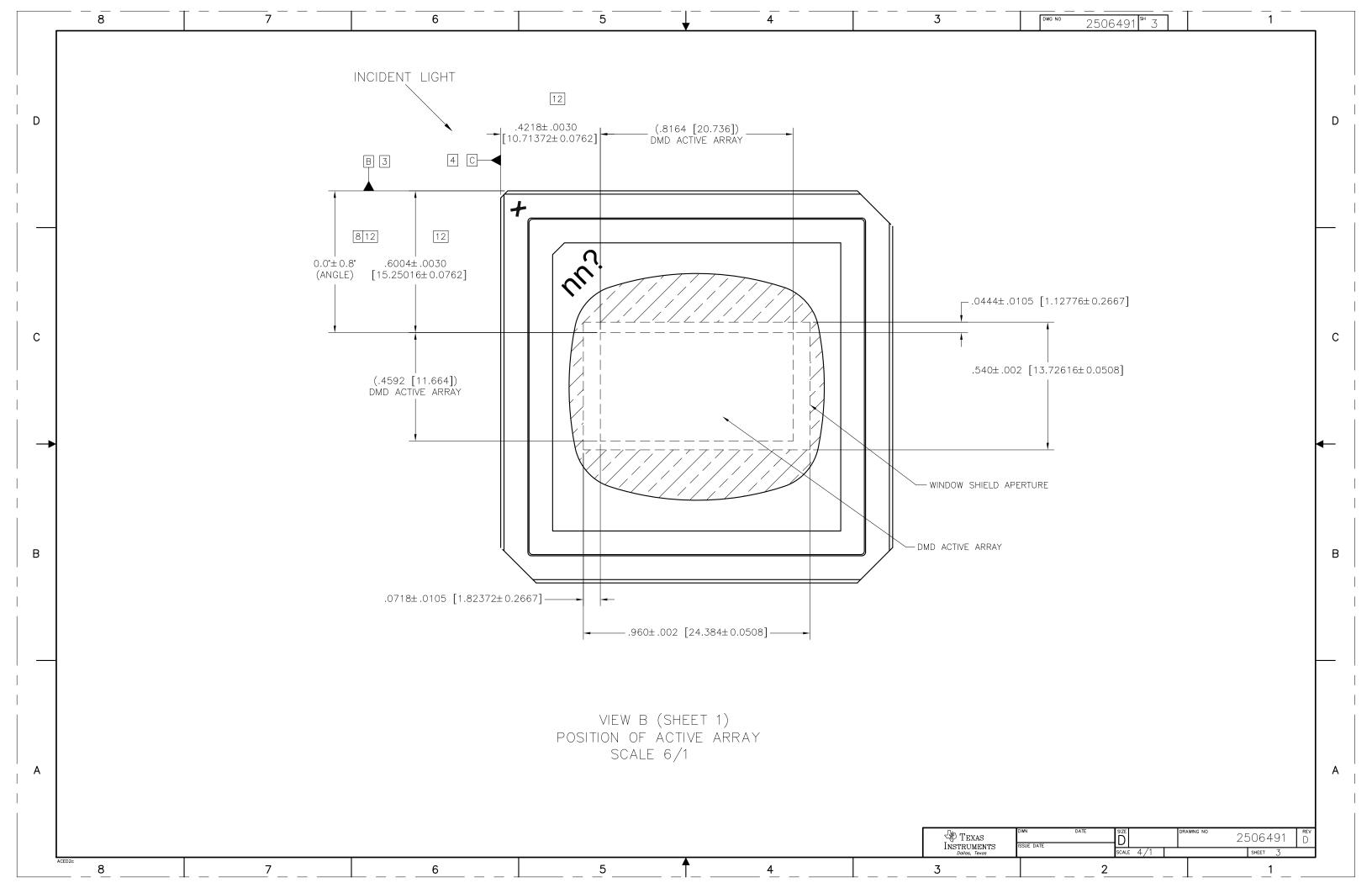
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

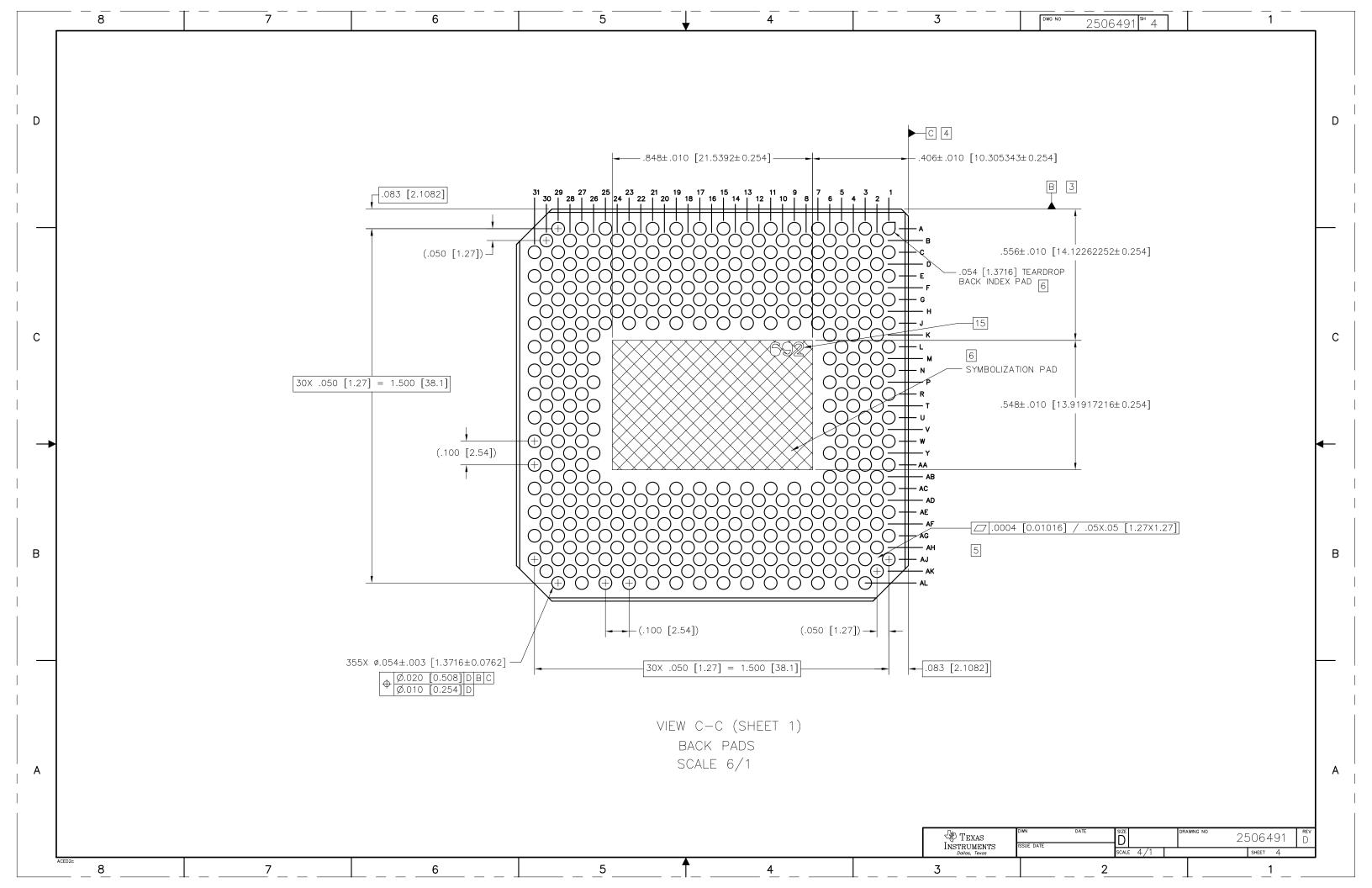
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.


⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

 	DWG NO		б491 ^{вн} 2	>	T				
	1			<u> </u>					
									D
									С
									◀──
									В
									A
WN SSUE DA	DA	TE	D		DRAWING NO		6491	rev D	
		_ 2	scale 4/1			SHE	et 2		

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司