产品详情

Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel LVDS Sample/update rate (Msps) 400 Features High Performance Rating HiRel Enhanced Product Interpolation 1x Power consumption (typ) (mW) 820 SFDR (dB) 88 Architecture Current Sink Operating temperature range (°C) -55 to 125 Reference type Int
Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel LVDS Sample/update rate (Msps) 400 Features High Performance Rating HiRel Enhanced Product Interpolation 1x Power consumption (typ) (mW) 820 SFDR (dB) 88 Architecture Current Sink Operating temperature range (°C) -55 to 125 Reference type Int
HTQFP (PHP) 48 81 mm² 9 x 9
  • 400-MSPS Update Rate
  • Controlled Baseline
    • One Assembly
    • One Test Site
    • One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • LVDS-Compatible Input Interface
  • Spurious-Free Dynamic Range (SFDR) to Nyquist
    • 69 dBc at 70 MHz IF, 400 MSPS
  • W-CDMA Adjacent Channel Power Ratio (ACPR)
    • 73 dBc at 30.72-MHz IF, 122.88 MSPS
    • 71 dBc at 61.44-MHz IF, 245.76 MSPS
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • Single 3.3-V Supply Operation
  • Power Dissipation: 660 mW at fCLK = 400 MSPS, fOUT = 20 MHz
  • Package: 48-Pin PowerPAD Thermally-Enhanced Thin Quad Flat Pack (HTQFP) TJA = 29.1°C/W
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel:
      • CDMA: WCDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/GPRS
      • Supports Single-Carrier and Multicarrier Applications
    • Test and Measurement: Arbitrary Waveform Generation
    • Military Communications

PowerPAD is a trademark of Texas Instruments.

  • 400-MSPS Update Rate
  • Controlled Baseline
    • One Assembly
    • One Test Site
    • One Fabrication Site
  • Extended Temperature Performance of -55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • LVDS-Compatible Input Interface
  • Spurious-Free Dynamic Range (SFDR) to Nyquist
    • 69 dBc at 70 MHz IF, 400 MSPS
  • W-CDMA Adjacent Channel Power Ratio (ACPR)
    • 73 dBc at 30.72-MHz IF, 122.88 MSPS
    • 71 dBc at 61.44-MHz IF, 245.76 MSPS
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • Single 3.3-V Supply Operation
  • Power Dissipation: 660 mW at fCLK = 400 MSPS, fOUT = 20 MHz
  • Package: 48-Pin PowerPAD Thermally-Enhanced Thin Quad Flat Pack (HTQFP) TJA = 29.1°C/W
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel:
      • CDMA: WCDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/GPRS
      • Supports Single-Carrier and Multicarrier Applications
    • Test and Measurement: Arbitrary Waveform Generation
    • Military Communications

PowerPAD is a trademark of Texas Instruments.

The DAC5675 is a 14-bit resolution high-speed digital-to-analog converter (DAC). The DAC5675 is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675 has excellent spurious-free dynamic range (SFDR) at high intermediate frequencies, which makes it well-suited for multicarrier transmission in TDMA- and CDMA-based cellular base transceiver stations (BTSs).

The DAC5675 operates from a single-supply voltage of 3.3 V. Power dissipation is 660 mW at fCLK = 400 MSPS, fOUT = 70 MHz. The DAC5675 provides a nominal full-scale differential current output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AVDD.

The DAC5675 comprises a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels; that is, with low electromagnetic interference (EMI). LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675 and high-speed low-voltage CMOS ASICs or FPGAs. The DAC5675 current-source-array architecture supports update rates of up to 400 MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.

The DAC5675 has been specifically designed for a differential transformer-coupled output with a 50- doubly-terminated load. With the 20-mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (-2 dBm) is supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD - 1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675 features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675 is available in a 48-pin PowerPAD™ thermally-enhanced thin quad flat pack (HTQFP). This package increases thermal efficiency in a standard size IC package. The device is specified for operation over the military temperature range of -55°C to 125°C.

The DAC5675 is a 14-bit resolution high-speed digital-to-analog converter (DAC). The DAC5675 is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675 has excellent spurious-free dynamic range (SFDR) at high intermediate frequencies, which makes it well-suited for multicarrier transmission in TDMA- and CDMA-based cellular base transceiver stations (BTSs).

The DAC5675 operates from a single-supply voltage of 3.3 V. Power dissipation is 660 mW at fCLK = 400 MSPS, fOUT = 70 MHz. The DAC5675 provides a nominal full-scale differential current output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AVDD.

The DAC5675 comprises a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels; that is, with low electromagnetic interference (EMI). LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675 and high-speed low-voltage CMOS ASICs or FPGAs. The DAC5675 current-source-array architecture supports update rates of up to 400 MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.

The DAC5675 has been specifically designed for a differential transformer-coupled output with a 50- doubly-terminated load. With the 20-mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (-2 dBm) is supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD - 1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675 features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675 is available in a 48-pin PowerPAD™ thermally-enhanced thin quad flat pack (HTQFP). This package increases thermal efficiency in a standard size IC package. The device is specified for operation over the military temperature range of -55°C to 125°C.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 7
类型 标题 下载最新的英语版本 日期
* 数据表 DAC5675-EP 数据表 (Rev. A) 2006年 10月 24日
* 辐射与可靠性报告 DAC5675-EP Reliability Report 2018年 6月 11日
* VID DAC5675-EP VID V6205619 2016年 6月 21日
应用手册 所选封装材料的热学和电学性质 2008年 10月 16日
应用手册 高速数据转换 英语版 2008年 10月 16日
应用手册 CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters 2008年 6月 8日
应用手册 Phase Noise Performance and Jitter Cleaning Ability of CDCE72010 2008年 6月 2日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
封装 引脚 下载
HTQFP (PHP) 48 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频