主页 电源管理 交流/直流和隔离式直流/直流开关稳压器 功率因数校正 (PFC) 控制器

具有 16V/9.7V VCC UVLO、6.75V/5.3V PWM UVLO 和 1:2 频率比的 PFC/PWM 组合控制器

UCC28514 处于停产状态
请考虑从这些替代产品中选择一款:
open-in-new 比较替代产品
功能与比较器件相同且具有相同引脚
UCC28512 正在供货 具有 16V/9.7V VCC UVLO、6.75V/3.55V PWM UVLO 和 1:1 频率比的 PFC/PWM 组合控制器 Replacement

产品详情

Topology Boost Control mode CCM Switching frequency (max) (kHz) 500 UVLO thresholds on/off (V) 16/10 Vin (max) (V) 18 Features Average current mode, Continuous Control Mode, Enable, Overvoltage protection, Supports Flyback Rating Catalog Operating temperature range (°C) -40 to 105 Duty cycle (max) (%) 100
Topology Boost Control mode CCM Switching frequency (max) (kHz) 500 UVLO thresholds on/off (V) 16/10 Vin (max) (V) 18 Features Average current mode, Continuous Control Mode, Enable, Overvoltage protection, Supports Flyback Rating Catalog Operating temperature range (°C) -40 to 105 Duty cycle (max) (%) 100
SOIC (DW) 20 131.84 mm² 12.8 x 10.3
  • Provides Control of PFC and PWM Power Stages In One Device
  • Leading-Edge PFC, Trailing-Edge PWM Modulation for Reduced Ripple
  • Built-In Sequencing of PFC and PWM Turn-On
  • 2-A Source and 3-A Sink Gate Drive for Both PFC and PWM Stages
  • Typical 16-ns Rise Time and 7-ns Fall Time into 1-nF Loads
  • PFC Features
    • Average-Current-Mode Control for Continuous Conduction Mode Operation
    • Highly-Linear Multiplier for Near-Unity Power Factor
    • Input Voltage Feedforward Implementation
    • Improved Load Transient Response
    • Accurate Power Limiting
    • Zero Power Detect
  • PWM Features
    • Peak-Current-Mode Control Operation
    • 1:1 or 1:2 PFC:PWM Frequency Options
    • Programmable maximum duty cycle
    • Programmable Soft-Start
    • Two Hysteresis Options for Differing Hold-Up Time Requirements

  • Provides Control of PFC and PWM Power Stages In One Device
  • Leading-Edge PFC, Trailing-Edge PWM Modulation for Reduced Ripple
  • Built-In Sequencing of PFC and PWM Turn-On
  • 2-A Source and 3-A Sink Gate Drive for Both PFC and PWM Stages
  • Typical 16-ns Rise Time and 7-ns Fall Time into 1-nF Loads
  • PFC Features
    • Average-Current-Mode Control for Continuous Conduction Mode Operation
    • Highly-Linear Multiplier for Near-Unity Power Factor
    • Input Voltage Feedforward Implementation
    • Improved Load Transient Response
    • Accurate Power Limiting
    • Zero Power Detect
  • PWM Features
    • Peak-Current-Mode Control Operation
    • 1:1 or 1:2 PFC:PWM Frequency Options
    • Programmable maximum duty cycle
    • Programmable Soft-Start
    • Two Hysteresis Options for Differing Hold-Up Time Requirements

The UCC28510 series of combination PFC/PWM controllers provide complete control functionality for any off-line power system requiring compliance with the IEC1000–3–2 harmonic reduction requirements. By combining the control and drive signals for the PFC and the PWM stages into a single device, significant performance and cost benefits are gained. By managing the modulation mechanisms of the two stages (leading-edge modulation for PFC and trailing-edge modulation for PWM), the ripple current in the boost capacitor is minimized.

Based on the average current mode control architecture with input voltage feedforward of prior PFC/PWM combination controllers, these devices offer performance advantages. Two new key PWM features are programmable maximum duty cycle and the 2x PWM frequency options to the base PFC frequency. For the PFC stage, the devices feature an improved multiplier and the use of a transconductance amplifier for enhanced transient response.

The core of the PFC section is in a three-input multiplier that generates the reference signal for the line current. The UCC28510 series features a highly linearized multiplier circuit capable of producing a low distortion reference for the line current over the full range of line and load conditions. A low-offset, high-bandwidth current error amplifier ensures that the actual inductor current (sensed through a resistor in the return path) follows the multiplier output command signal. The output voltage error is processed through a transconductance voltage amplifier.

The transient response of the circuit is enhanced by allowing a much faster charge/discharge of the voltage amplifier output capacitance when the output voltage falls outside a certain regulation window. A number of additional features such as UVLO circuit with selectable hysteresis levels, an accurate reference voltage for the voltage amplifier, zero power detect, OVP/enable, peak current limit, power limiting, high-current output gate driver characterize the PFC section.

The PWM section features peak current mode control (with a ramp signal available to add slope compensation), programmable soft-start, accurate maximum duty cycle clamp, peak current limit and high-current output gate driver. The oscillator for the combination controller is available in two versions. In UCC28510, UCC28511, UCC28512, and UCC28513, the PWM and the PFC circuits are switched at the same frequency. In the UCC28514, UCC28515, UCC28516, and UCC28517, the PWM stage frequency is twice that of the PFC frequency. The PWM stage is suppressed until the PFC output has reached 90% of its programmed value during startup. During line dropout and turn off, the device allows the PWM stage to operate until the PFC output has dropped to 47% (UCC28512, UCC28513, UCC28516, and UCC28517) or 71% (UCC28510, UCC28511, UCC28514, and UCC28515) of its nominal value. See available options table on page 1 for a summary of options.

The UCC28510 family also features leading-edge modulation for the PFC stage and trailing-edge modulation for the PWM stage in order to reduce the ripple current in the boost output capacitor. The current amplifier implementation associated with this scheme also results in better noise immunity.

Available in 20-pin N and DW packages.

The UCC28510 series of combination PFC/PWM controllers provide complete control functionality for any off-line power system requiring compliance with the IEC1000–3–2 harmonic reduction requirements. By combining the control and drive signals for the PFC and the PWM stages into a single device, significant performance and cost benefits are gained. By managing the modulation mechanisms of the two stages (leading-edge modulation for PFC and trailing-edge modulation for PWM), the ripple current in the boost capacitor is minimized.

Based on the average current mode control architecture with input voltage feedforward of prior PFC/PWM combination controllers, these devices offer performance advantages. Two new key PWM features are programmable maximum duty cycle and the 2x PWM frequency options to the base PFC frequency. For the PFC stage, the devices feature an improved multiplier and the use of a transconductance amplifier for enhanced transient response.

The core of the PFC section is in a three-input multiplier that generates the reference signal for the line current. The UCC28510 series features a highly linearized multiplier circuit capable of producing a low distortion reference for the line current over the full range of line and load conditions. A low-offset, high-bandwidth current error amplifier ensures that the actual inductor current (sensed through a resistor in the return path) follows the multiplier output command signal. The output voltage error is processed through a transconductance voltage amplifier.

The transient response of the circuit is enhanced by allowing a much faster charge/discharge of the voltage amplifier output capacitance when the output voltage falls outside a certain regulation window. A number of additional features such as UVLO circuit with selectable hysteresis levels, an accurate reference voltage for the voltage amplifier, zero power detect, OVP/enable, peak current limit, power limiting, high-current output gate driver characterize the PFC section.

The PWM section features peak current mode control (with a ramp signal available to add slope compensation), programmable soft-start, accurate maximum duty cycle clamp, peak current limit and high-current output gate driver. The oscillator for the combination controller is available in two versions. In UCC28510, UCC28511, UCC28512, and UCC28513, the PWM and the PFC circuits are switched at the same frequency. In the UCC28514, UCC28515, UCC28516, and UCC28517, the PWM stage frequency is twice that of the PFC frequency. The PWM stage is suppressed until the PFC output has reached 90% of its programmed value during startup. During line dropout and turn off, the device allows the PWM stage to operate until the PFC output has dropped to 47% (UCC28512, UCC28513, UCC28516, and UCC28517) or 71% (UCC28510, UCC28511, UCC28514, and UCC28515) of its nominal value. See available options table on page 1 for a summary of options.

The UCC28510 family also features leading-edge modulation for the PFC stage and trailing-edge modulation for the PWM stage in order to reduce the ripple current in the boost output capacitor. The current amplifier implementation associated with this scheme also results in better noise immunity.

Available in 20-pin N and DW packages.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 9
类型 标题 下载最新的英语版本 日期
* 数据表 Advanced PFC/PWM Combination Controllers 数据表 (Rev. C) 2005年 9月 14日
应用手册 Avoiding Audible Noise at Light Loads When Using Leading Edge Triggered PFC Con (Rev. C) 2011年 4月 13日
应用手册 A New Synchronization Circuit for Power Converters (Rev. A) 2010年 4月 21日
应用手册 Bootstrap Circuit for Green Mode Applications 2006年 1月 27日
模拟设计期刊 UCC28517 100-W PFC power converter with 12-V, 8-W bias supply, Part 1 2005年 2月 28日
模拟设计期刊 UCC28517 100-W PFC power converter with 12-V, 8-W bias supply, Part 2 2005年 2月 28日
用户指南 Using the UCC28514 (Rev. A) 2004年 7月 27日
应用手册 Startup Current transient of the Leading Edge Triggered PFC Controllers 2004年 6月 30日
EVM 用户指南 UCC28517 Evaluation Module (EVM) User's Guide (Rev. C) 2003年 7月 28日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

封装 引脚 下载
SOIC (DW) 20 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频