产品详情

我们无法提供此信息。请参阅产品数据表
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6
  • Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuitry
  • Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges

 

  • Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuitry
  • Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges

 

These voltage-controlled oscillators (VCOs) are improved versions of the original VCO family: SN54LS124, SN54LS324 thru SN54LS327, SN74LS124, and SN74LS324 thru SN74LS327. These new devices feature improved voltage-to-frequency linearity, range, and compensation. With the exception of the 'LS624 and 'LS628, all of these devices feature two independent VCOs in a single monolithic chip. The 'LS624, 'LS625, 'LS626, and 'LS628 have complementary Z outputs. The output frequency for each VCO is established by a single external component (either a capacitor or crystal) in combination with voltage-sensitive inputs used for frequency control and frequency range. Each device has a voltage-sensitive input for frequency control; however, the 'LS624, 'LS628, and 'LS629 devices also have one for frequency range. (See Figures 1 thru 6).

The 'LS628 offers more precise temperature compensation than its 'LS624 counterpart. The 'LS624 features a 600 ohm internal timing resistor. The 'LS628 requires a timing resistor to be connected externally across Rext pins. Temperature compensation will be improved due to the temperature coefficient of the external resistor.

Figure 3 and Figure 6 contain the necessary information to choose the proper capacitor value to obtain the desired operating frequency.

A single 5-volt supply can be used: however, one set of supply voltage and ground pins (VCC and GND) is provided for the enable, synchronization-gating, and output sections, and a separate set (OSC VCC and OSC GND) is provided for the oscillator and associated frequency-control circuits so that effective isolation can be accomplished in the system. For operation of frequencies greater than 10 MHz, it is recommended that two independent supplies be used. Disabling either VCO of the 'LS625 and 'LS625 and 'LS627 can be achieved by removing the appropriate OSC VCC. An enable input is provided on the 'LS624, 'LS626, 'LS628, and 'LS629. When the enable input is low, the output is enabled: when the enable input is high, the internal oscillator is disabled, Y is high, and Z is low. Caution! Crosstalk may occur in the dual devices ('LS625, 'LS626, 'LS627 and 'LS629) when both VCOs are operated simultaneously. To minimize crosstalk, either of the following are recommended: (A) If frequencies are widely separated, use a 10-μh inductor between VCC pins. (B) If frequencies are closely spaced, use two separate VCC supplies or place two series diodes between the VCC pins.

The pulse-synchronization-gating section ensures that the first output pulse is neither clipped nor extended. The duty cycle of the square-wave output is fixed at approximately 50 percent.

The SN54LS624 thru SN54LS629 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS624 thru SN74LS629 are characterized for operation from 0°C to 70°C.

 

These voltage-controlled oscillators (VCOs) are improved versions of the original VCO family: SN54LS124, SN54LS324 thru SN54LS327, SN74LS124, and SN74LS324 thru SN74LS327. These new devices feature improved voltage-to-frequency linearity, range, and compensation. With the exception of the 'LS624 and 'LS628, all of these devices feature two independent VCOs in a single monolithic chip. The 'LS624, 'LS625, 'LS626, and 'LS628 have complementary Z outputs. The output frequency for each VCO is established by a single external component (either a capacitor or crystal) in combination with voltage-sensitive inputs used for frequency control and frequency range. Each device has a voltage-sensitive input for frequency control; however, the 'LS624, 'LS628, and 'LS629 devices also have one for frequency range. (See Figures 1 thru 6).

The 'LS628 offers more precise temperature compensation than its 'LS624 counterpart. The 'LS624 features a 600 ohm internal timing resistor. The 'LS628 requires a timing resistor to be connected externally across Rext pins. Temperature compensation will be improved due to the temperature coefficient of the external resistor.

Figure 3 and Figure 6 contain the necessary information to choose the proper capacitor value to obtain the desired operating frequency.

A single 5-volt supply can be used: however, one set of supply voltage and ground pins (VCC and GND) is provided for the enable, synchronization-gating, and output sections, and a separate set (OSC VCC and OSC GND) is provided for the oscillator and associated frequency-control circuits so that effective isolation can be accomplished in the system. For operation of frequencies greater than 10 MHz, it is recommended that two independent supplies be used. Disabling either VCO of the 'LS625 and 'LS625 and 'LS627 can be achieved by removing the appropriate OSC VCC. An enable input is provided on the 'LS624, 'LS626, 'LS628, and 'LS629. When the enable input is low, the output is enabled: when the enable input is high, the internal oscillator is disabled, Y is high, and Z is low. Caution! Crosstalk may occur in the dual devices ('LS625, 'LS626, 'LS627 and 'LS629) when both VCOs are operated simultaneously. To minimize crosstalk, either of the following are recommended: (A) If frequencies are widely separated, use a 10-μh inductor between VCC pins. (B) If frequencies are closely spaced, use two separate VCC supplies or place two series diodes between the VCC pins.

The pulse-synchronization-gating section ensures that the first output pulse is neither clipped nor extended. The duty cycle of the square-wave output is fixed at approximately 50 percent.

The SN54LS624 thru SN54LS629 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS624 thru SN74LS629 are characterized for operation from 0°C to 70°C.

 

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 11
类型 标题 下载最新的英语版本 日期
* 数据表 Voltage-Controlled Oscillators 数据表 1988年 3月 1日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
应用手册 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
应用手册 使用逻辑器件进行设计 (Rev. C) 1997年 6月 1日
应用手册 Designing with the SN54/74LS123 (Rev. A) 1997年 3月 1日
应用手册 Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
应用手册 Live Insertion 1996年 10月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

评估板

14-24-LOGIC-EVM — 采用 14 引脚至 24 引脚 D、DB、DGV、DW、DYY、NS 和 PW 封装的逻辑产品通用评估模块

14-24-LOGIC-EVM 评估模块 (EVM) 旨在支持采用 14 引脚至 24 引脚 D、DW、DB、NS、PW、DYY 或 DGV 封装的任何逻辑器件。

用户指南: PDF | HTML
英语版 (Rev.B): PDF | HTML
TI.com 上无现货
封装 引脚 下载
PDIP (N) 16 查看选项
SOIC (D) 16 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频