产品详情

Function Counter Bits (#) 4 Technology family ALS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type 3-State Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Function Counter Bits (#) 4 Technology family ALS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type 3-State Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
PDIP (N) 20 228.702 mm² 24.33 x 9.4
  • Carry Output for n-Bit Cascading
  • Buffer-Type Outputs Drive Bus Lines Directly
  • Choice of Asynchronous or Synchronous Clearing and Loading
  • Internal Look-Ahead Circuitry for Fast Cascading
  • Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs
  • Carry Output for n-Bit Cascading
  • Buffer-Type Outputs Drive Bus Lines Directly
  • Choice of Asynchronous or Synchronous Clearing and Loading
  • Internal Look-Ahead Circuitry for Fast Cascading
  • Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear (ACLR\) or synchronous clear (SCLR\). ACLR\ (direct clear) overrides all other functions of the device, while SCLR\ overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load (ALOAD\) or by the combination of a low level at synchronous load (SLOAD\) and a positive-going clock transition. The counting function is enabled only when enable P (ENP), enable T (ENT), ACLR\, ALOAD\, SCLR\, and SLOAD\ are all high.

A high level at the output-enable () input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of OE\. ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.

The SN54ALS561A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS561A is characterized for operation from 0°C to 70°C.

 

 

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear (ACLR\) or synchronous clear (SCLR\). ACLR\ (direct clear) overrides all other functions of the device, while SCLR\ overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load (ALOAD\) or by the combination of a low level at synchronous load (SLOAD\) and a positive-going clock transition. The counting function is enabled only when enable P (ENP), enable T (ENT), ACLR\, ALOAD\, SCLR\, and SLOAD\ are all high.

A high level at the output-enable () input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of OE\. ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.

The SN54ALS561A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS561A is characterized for operation from 0°C to 70°C.

 

 

下载

您可能感兴趣的相似产品

open-in-new 比较替代产品
功能与比较器件相同,但引脚排列有所不同
SN74LV163A 正在供货 4 位同步二进制计数器 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 1
类型 标题 下载最新的英语版本 日期
* 数据表 Synchronous 4-Bit Counters With 3-State Outputs 数据表 (Rev. A) 1995年 1月 1日

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频