SN65LVDS152

正在供货

MuxIt ™ 接收器-解串器

产品详情

Function Deserializer, Receiver Protocols MuxIt Supply voltage (V) 3.3 Signaling rate (MBits) 200 Output signal LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
Function Deserializer, Receiver Protocols MuxIt Supply voltage (V) 3.3 Signaling rate (MBits) 200 Output signal LVTTL Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (DA) 32 89.1 mm² 11 x 8.1
  • A Member of the MuxIt Serializer-
    Deserializer Building-Block Chip Family
  • Supports Deserialization of One Serial Link Data Channel Input at Rates up to 200 Mbps
  • PLL Lock/Valid Input Provided to Enable Parallel Data and Clock Outputs
  • Cascadable With Additional SN65LVDS152 MuxIt Receiver-Deserializers for Wider
    Parallel Output Data Channel Widths
  • LVDS Compatible Differential Inputs and Outputs Meet or Exceed the Requirements
    of ANSI TIA/EIA-644-A
  • LVDS Input and Output ESD Protection Exceeds 12 kV HBM
  • LVTTL Compatible Inputs for Lock/Valid and Enables Are 5-V Tolerant
  • Operates With 3.3-V Supply
  • Packaged in 32-Pin DA Thin Shrink Small-Outline Package With 26-Mil
    Terminal Pitch

  • A Member of the MuxIt Serializer-
    Deserializer Building-Block Chip Family
  • Supports Deserialization of One Serial Link Data Channel Input at Rates up to 200 Mbps
  • PLL Lock/Valid Input Provided to Enable Parallel Data and Clock Outputs
  • Cascadable With Additional SN65LVDS152 MuxIt Receiver-Deserializers for Wider
    Parallel Output Data Channel Widths
  • LVDS Compatible Differential Inputs and Outputs Meet or Exceed the Requirements
    of ANSI TIA/EIA-644-A
  • LVDS Input and Output ESD Protection Exceeds 12 kV HBM
  • LVTTL Compatible Inputs for Lock/Valid and Enables Are 5-V Tolerant
  • Operates With 3.3-V Supply
  • Packaged in 32-Pin DA Thin Shrink Small-Outline Package With 26-Mil
    Terminal Pitch

MuxIt is a family of general-purpose, multiple-chip building blocks for implementing parallel data serializers and deserializers. The system allows for wide parallel data to be transmitted through a reduced number of transmission lines over distances greater than can be achieved with a single-ended (e.g., LVTTL or LVCMOS) data interface. The number of bits multiplexed per transmission line is user selectable, allowing for higher transmission efficiencies than with other existing fixed ratio solutions. MuxIt utilizes the LVDS (TIA/EIA-644-A) low voltage differential signaling technology for communications between the data source and data destination.

The MuxIt family initially includes three devices supporting simplex communications: the SN65LVDS150 phase locked loop frequency multiplier, the SN65LVDS151 serializer-transmitter, and the SN65LVDS152 receiver-deserializer.

The SN65LVDS152 consists of three LVDS differential transmission line receivers, an LVDS differential transmission line driver, a 10-bit serial-in/parallel-out shift register, plus associated input and output buffers. It receives serialized data over an LVDS transmission line link, deserializes (demultiplexes) it, and delivers it on parallel data outputs, DO–0 through DO–9. Data received over the link is clocked at a factor of M times the original parallel data frequency. The multiplexing ratio M, or number of bits per data clock cycle, is programmed with configuration pins (M1 → M5) on the companion SN65LVDS150 MuxIt programmable PLL frequency multiplier. Up to 10 bits of data may be deserialized and output by each SN65LVDS152. Two or more SN65LVDS152 units may be connected in series (cascaded) to accommodate wider parallel data paths for higher serialization values. The range of multiplexing ratio M supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier is between 4 and 40. shows some of the combinations of LCI and MCI supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier.

Data is serially shifted into the SN65LVDS152 shift register on the falling edges of the M-clock input (MCI). The data is latched out in parallel from the SN65LVDS152 shift register on the second rising edge after the first falling edge of the M-clock following a rising edge of the link clock input (LCI). The SN65LVDS152 includes LVDS differential line receivers for both the serialized link data stream (DI) and link clock (LCI). High-speed signals from the SN65LVDS150 MuxIt programmable frequency multiplier (MCI), plus the input and output for cascaded data (DI, CO) are carried over differential connections to minimize skew and jitter.

The enable input (EN) along with internal power-on reset (POR) controls the outputs. When Vcc is below 1.5 volts, or when EN is low, outputs are disabled. When VCC is above 3 V and EN is high, outputs are enabled and operating to specifications.

Parallel data bits are output from DO-n outputs in an order dependent on the value of the multiplexing ratio (frequency multiplier value) M. For values of M from 4 through 10, the cascade output (CO±) is not used, and only the top M parallel outputs (DO–9 through DO–[10-M]) are used. The data bit output on DO-9 corresponds to the data bit input on DI–[M–1] of the SN65LVDS151 serializer. Likewise, the data bit output on DO-[10-M] will correspond to the data bit input on DI–0 of the SN65LVDS151 serializer.

For values of M greater than 10, the cascade output (CO±) is used to connect multiple SN65LVDS152 deserializers. In this case the higher-order unit(s) output 10 bits each of the highest numbered bits that are input into the SN65LVDS151 serializer(s). The lowest numbered input bits are output on the lowest-order SN65LVDS152 deserializer in descending order from output DO–9. The number of bits is equal to M mod(10). reflects this information, where X = M mod(10)

Additional information on output bit ordering in cascaded applications can be found in the MuxIt Application Report.

MuxIt is a family of general-purpose, multiple-chip building blocks for implementing parallel data serializers and deserializers. The system allows for wide parallel data to be transmitted through a reduced number of transmission lines over distances greater than can be achieved with a single-ended (e.g., LVTTL or LVCMOS) data interface. The number of bits multiplexed per transmission line is user selectable, allowing for higher transmission efficiencies than with other existing fixed ratio solutions. MuxIt utilizes the LVDS (TIA/EIA-644-A) low voltage differential signaling technology for communications between the data source and data destination.

The MuxIt family initially includes three devices supporting simplex communications: the SN65LVDS150 phase locked loop frequency multiplier, the SN65LVDS151 serializer-transmitter, and the SN65LVDS152 receiver-deserializer.

The SN65LVDS152 consists of three LVDS differential transmission line receivers, an LVDS differential transmission line driver, a 10-bit serial-in/parallel-out shift register, plus associated input and output buffers. It receives serialized data over an LVDS transmission line link, deserializes (demultiplexes) it, and delivers it on parallel data outputs, DO–0 through DO–9. Data received over the link is clocked at a factor of M times the original parallel data frequency. The multiplexing ratio M, or number of bits per data clock cycle, is programmed with configuration pins (M1 → M5) on the companion SN65LVDS150 MuxIt programmable PLL frequency multiplier. Up to 10 bits of data may be deserialized and output by each SN65LVDS152. Two or more SN65LVDS152 units may be connected in series (cascaded) to accommodate wider parallel data paths for higher serialization values. The range of multiplexing ratio M supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier is between 4 and 40. shows some of the combinations of LCI and MCI supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier.

Data is serially shifted into the SN65LVDS152 shift register on the falling edges of the M-clock input (MCI). The data is latched out in parallel from the SN65LVDS152 shift register on the second rising edge after the first falling edge of the M-clock following a rising edge of the link clock input (LCI). The SN65LVDS152 includes LVDS differential line receivers for both the serialized link data stream (DI) and link clock (LCI). High-speed signals from the SN65LVDS150 MuxIt programmable frequency multiplier (MCI), plus the input and output for cascaded data (DI, CO) are carried over differential connections to minimize skew and jitter.

The enable input (EN) along with internal power-on reset (POR) controls the outputs. When Vcc is below 1.5 volts, or when EN is low, outputs are disabled. When VCC is above 3 V and EN is high, outputs are enabled and operating to specifications.

Parallel data bits are output from DO-n outputs in an order dependent on the value of the multiplexing ratio (frequency multiplier value) M. For values of M from 4 through 10, the cascade output (CO±) is not used, and only the top M parallel outputs (DO–9 through DO–[10-M]) are used. The data bit output on DO-9 corresponds to the data bit input on DI–[M–1] of the SN65LVDS151 serializer. Likewise, the data bit output on DO-[10-M] will correspond to the data bit input on DI–0 of the SN65LVDS151 serializer.

For values of M greater than 10, the cascade output (CO±) is used to connect multiple SN65LVDS152 deserializers. In this case the higher-order unit(s) output 10 bits each of the highest numbered bits that are input into the SN65LVDS151 serializer(s). The lowest numbered input bits are output on the lowest-order SN65LVDS152 deserializer in descending order from output DO–9. The number of bits is equal to M mod(10). reflects this information, where X = M mod(10)

Additional information on output bit ordering in cascaded applications can be found in the MuxIt Application Report.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 4
类型 标题 下载最新的英语版本 日期
* 数据表 Muxit Receiver-Deserializer 数据表 (Rev. A) 2011年 9月 16日
应用手册 Performance of MuxIt(TM) with Different Cable Lengths 2001年 7月 20日
EVM 用户指南 MuxIt Evaluation Module (EVM) User's Guide 2001年 1月 23日
应用手册 The MuxIt Data Transmission System Applications, Examples, and Design Guidelines 2000年 12月 19日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

仿真模型

SN65LVDS152 IBIS Model

SLLC055.ZIP (7 KB) - IBIS Model
模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
模拟工具

TINA-TI — 基于 SPICE 的模拟仿真程序

TINA-TI 提供了 SPICE 所有的传统直流、瞬态和频域分析以及更多。TINA 具有广泛的后处理功能,允许您按照希望的方式设置结果的格式。虚拟仪器允许您选择输入波形、探针电路节点电压和波形。TINA 的原理图捕获非常直观 - 真正的“快速入门”。

TINA-TI 安装需要大约 500MB。直接安装,如果想卸载也很容易。我们相信您肯定会爱不释手。

TINA 是德州仪器 (TI) 专有的 DesignSoft 产品。该免费版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需获取可用 TINA-TI 模型的完整列表,请参阅:SpiceRack - 完整列表 

需要 HSpice (...)

用户指南: PDF
英语版 (Rev.A): PDF
封装 引脚 下载
TSSOP (DA) 32 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频