产品详情

Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -24 Input type TTL-Compatible CMOS Output type 3-State Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Military Operating temperature range (°C) -55 to 125
Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -24 Input type TTL-Compatible CMOS Output type 3-State Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Military Operating temperature range (°C) -55 to 125
CFP (HV) 68 156.7504 mm² 12.52 x 12.52
  • Member of the Texas Instruments SCOPETM Family of Testability Products
  • Member of the Texas Instruments WidebusTM Family
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Two Boundary-Scan Cells per I/O for Greater Flexibility
  • State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
  • SCOPETM Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, CLAMP, and HIGHZ
    • Parallel-Signature Analysis at Inputs With Masking Option
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 68-Pin Ceramic Quad Flat Package Using 25-mil Center-to-Center Spacings

    SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

     

  • Member of the Texas Instruments SCOPETM Family of Testability Products
  • Member of the Texas Instruments WidebusTM Family
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Two Boundary-Scan Cells per I/O for Greater Flexibility
  • State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
  • SCOPETM Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, CLAMP, and HIGHZ
    • Parallel-Signature Analysis at Inputs With Masking Option
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 68-Pin Ceramic Quad Flat Package Using 25-mil Center-to-Center Spacings

    SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

     

The SN54ABT18502 scan test device with 18-bit universal bus transceiver is a member of the Texas Instruments SCOPETM testability integrated circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, this device is an 18-bit universal bus transceiver that combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. It can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPETM universal bus transceiver.

Data flow in each direction is controlled by output-enable ( and ), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When is low, the B outputs are active. When is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the , LEBA, and CLKBA inputs.

In the test mode, the normal operation of the SCOPETM universal bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Additional flexibility is provided in the test mode through the use of two boundary-scan cells (BSCs) for each I/O pin. This allows independent test data to be captured and forced at either bus (A or B). A PSA/COUNT instruction also is included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18502 is characterized for operation over the full military temperature range of -55°C to 125°C.

 

 

 

The SN54ABT18502 scan test device with 18-bit universal bus transceiver is a member of the Texas Instruments SCOPETM testability integrated circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, this device is an 18-bit universal bus transceiver that combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. It can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPETM universal bus transceiver.

Data flow in each direction is controlled by output-enable ( and ), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When is low, the B outputs are active. When is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the , LEBA, and CLKBA inputs.

In the test mode, the normal operation of the SCOPETM universal bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

Additional flexibility is provided in the test mode through the use of two boundary-scan cells (BSCs) for each I/O pin. This allows independent test data to be captured and forced at either bus (A or B). A PSA/COUNT instruction also is included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18502 is characterized for operation over the full military temperature range of -55°C to 125°C.

 

 

 

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 21
类型 标题 下载最新的英语版本 日期
* 数据表 Scan Test Device With 18-Bit Registered Bus Transceiver 数据表 (Rev. C) 1994年 8月 1日
* SMD SN54ABT18502 SMD 5962-94672 2016年 6月 21日
应用手册 Implications of Slow or Floating CMOS Inputs (Rev. E) 2021年 7月 26日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
选择指南 《高级总线接口逻辑器件选择指南》 英语版 2010年 7月 7日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 选择正确的电平转换解决方案 (Rev. A) 英语版 (Rev.A) 2006年 3月 23日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
应用手册 Quad Flatpack No-Lead Logic Packages (Rev. D) 2004年 2月 16日
应用手册 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
应用手册 Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002年 5月 10日
应用手册 Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997年 8月 1日
应用手册 Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 1997年 6月 1日
应用手册 使用逻辑器件进行设计 (Rev. C) 1997年 6月 1日
应用手册 Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 1997年 3月 1日
应用手册 Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 1996年 12月 1日
应用手册 Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
应用手册 Live Insertion 1996年 10月 1日
应用手册 Understanding Advanced Bus-Interface Products Design Guide 1996年 5月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

封装 引脚 下载
CFP (HV) 68 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频