产品详情

Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel CMOS Sample/update rate (Msps) 400 Features High Performance Rating Catalog Interpolation 2x, 4x Power consumption (typ) (mW) 435 SFDR (dB) 85 Architecture Current Source Operating temperature range (°C) -40 to 85 Reference type Int
Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel CMOS Sample/update rate (Msps) 400 Features High Performance Rating Catalog Interpolation 2x, 4x Power consumption (typ) (mW) 435 SFDR (dB) 85 Architecture Current Source Operating temperature range (°C) -40 to 85 Reference type Int
HTQFP (PHP) 48 81 mm² 9 x 9
  • 200-MSPS Maximum Input Data Rate
  • 400-MSPS Maximum Update Rate DAC
  • 76-dBc SFDR Over Full First Nyquist Zone With Single Tone Input Signal (Fout = 21 MHz)
  • 74-dBc ACPR W-CDMA at 15.36 MHz IF
  • 69-dBc ACPR W-CDMA at 30.72 MHz IF
  • Selectable 2x or 4x Interpolation Filter
    • Linear Phase
    • 0.05-dB Passband Ripple
    • 80-dB Stopband Attenuation
    • Stopband Transition 0.4-0.6 Fdata
    • Interpolation Filters Configurable in Either Low-Pass or High-Pass Mode, Allows For Selection Higher Order Image
  • On-chip 2x/4x PLL Clock Multiplier, PLL Bypass Mode
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • 1.8-V Digital and 3.3-V Analog Supply Operation
  • 1.8/3.3-V CMOS Compatible Interface
  • Power Dissipation: 435 mW at 400 MSPS
  • Package: 48-Pin TQFP
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel
      • CDMA: W-CDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/UWC-136
    • Test and Measurement: Arbitrary Waveform Generation
    • Direct Digital Synthesis (DDS)
    • Cable Modem Termination System

Excel is a trademark of Microsoft Corporation.
CommsDAC and PowerPAD are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

  • 200-MSPS Maximum Input Data Rate
  • 400-MSPS Maximum Update Rate DAC
  • 76-dBc SFDR Over Full First Nyquist Zone With Single Tone Input Signal (Fout = 21 MHz)
  • 74-dBc ACPR W-CDMA at 15.36 MHz IF
  • 69-dBc ACPR W-CDMA at 30.72 MHz IF
  • Selectable 2x or 4x Interpolation Filter
    • Linear Phase
    • 0.05-dB Passband Ripple
    • 80-dB Stopband Attenuation
    • Stopband Transition 0.4-0.6 Fdata
    • Interpolation Filters Configurable in Either Low-Pass or High-Pass Mode, Allows For Selection Higher Order Image
  • On-chip 2x/4x PLL Clock Multiplier, PLL Bypass Mode
  • Differential Scalable Current Outputs: 2 mA to 20 mA
  • On-Chip 1.2-V Reference
  • 1.8-V Digital and 3.3-V Analog Supply Operation
  • 1.8/3.3-V CMOS Compatible Interface
  • Power Dissipation: 435 mW at 400 MSPS
  • Package: 48-Pin TQFP
  • APPLICATIONS
    • Cellular Base Transceiver Station Transmit Channel
      • CDMA: W-CDMA, CDMA2000, IS-95
      • TDMA: GSM, IS-136, EDGE/UWC-136
    • Test and Measurement: Arbitrary Waveform Generation
    • Direct Digital Synthesis (DDS)
    • Cable Modem Termination System

Excel is a trademark of Microsoft Corporation.
CommsDAC and PowerPAD are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

The DAC5674 is a 14-bit resolution high-speed digital-to-analog converter (DAC) with integrated 4x-interpolation filter, on-board clock multiplier, and on-chip voltage reference. The device has been designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS) and waveform reconstruction in test and measurement applications.

The 4x-interpolation filter is implemented as a cascade of two 2x-interpolation filters, each of which can be configured for either low-pass or high-pass response. This enables the user to select one of the higher order images present at multiples of the input data rate clock while maintaining a low date input rate. The resulting high IF output frequency allows the user to omit the conventional first mixer in heterodyne transmitter architectures and directly up-convert to RF using only one mixer, thereby reducing system complexity and costs.

In 4x-interpolation low-pass response mode, the DACs excellent spurious free dynamic range (SFDR) at intermediate frequencies located in the first Nyquist zone (up to 40 MHz) allows for multicarrier transmission in cellular base transceiver stations (BTS). The low-pass interpolation mode thereby relaxes image filter requirements by filtering out the images in the adjacent Nyquist zones.

The DAC5674 PLL clock multiplier controls all internal clocks for the digital filters and DAC core. The differential clock input and internal clock circuitry provides for optimum jitter performance. Sine wave clock input signal is supported. The PLL can be bypassed by an external clock running at the DAC core update rate. The clock divider of the PLL ensures that the digital filters operate at the correct clock frequencies.

The DAC5674 operates from an analog supply voltage of 3.3 V and a digital supply voltage of 1.8 V. The digital I/Os are 1.8-V and 3.3-V CMOS compatible. Power dissipation is 500 mW at maximum operating conditions. The DAC5674 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer coupled output with a 50- doubly terminated load. For a 20-mA full-scale output current both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2-dBm output power) are supported. The latter configuration is preferred for optimum performance at high output frequencies and update rates.

An accurate on-chip 1.2-V temperature compensated bandgap reference and control amplifier allows the user to adjust the full-scale output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied for maximum flexibility. The device features a SLEEP mode, which reduces the standby power to approximately 10 mW, thereby optimizing the power consumption for the system’s need.

The DAC5674 is available in a 48-pin HTQFP Powerpad™ plastic quad flatpack package. The device is characterized for operation over the industrial temperature range of –40°C to 85°C.

The DAC5674 is a 14-bit resolution high-speed digital-to-analog converter (DAC) with integrated 4x-interpolation filter, on-board clock multiplier, and on-chip voltage reference. The device has been designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS) and waveform reconstruction in test and measurement applications.

The 4x-interpolation filter is implemented as a cascade of two 2x-interpolation filters, each of which can be configured for either low-pass or high-pass response. This enables the user to select one of the higher order images present at multiples of the input data rate clock while maintaining a low date input rate. The resulting high IF output frequency allows the user to omit the conventional first mixer in heterodyne transmitter architectures and directly up-convert to RF using only one mixer, thereby reducing system complexity and costs.

In 4x-interpolation low-pass response mode, the DACs excellent spurious free dynamic range (SFDR) at intermediate frequencies located in the first Nyquist zone (up to 40 MHz) allows for multicarrier transmission in cellular base transceiver stations (BTS). The low-pass interpolation mode thereby relaxes image filter requirements by filtering out the images in the adjacent Nyquist zones.

The DAC5674 PLL clock multiplier controls all internal clocks for the digital filters and DAC core. The differential clock input and internal clock circuitry provides for optimum jitter performance. Sine wave clock input signal is supported. The PLL can be bypassed by an external clock running at the DAC core update rate. The clock divider of the PLL ensures that the digital filters operate at the correct clock frequencies.

The DAC5674 operates from an analog supply voltage of 3.3 V and a digital supply voltage of 1.8 V. The digital I/Os are 1.8-V and 3.3-V CMOS compatible. Power dissipation is 500 mW at maximum operating conditions. The DAC5674 provides a nominal full-scale differential current-output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The device has been specifically designed for a differential transformer coupled output with a 50- doubly terminated load. For a 20-mA full-scale output current both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2-dBm output power) are supported. The latter configuration is preferred for optimum performance at high output frequencies and update rates.

An accurate on-chip 1.2-V temperature compensated bandgap reference and control amplifier allows the user to adjust the full-scale output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied for maximum flexibility. The device features a SLEEP mode, which reduces the standby power to approximately 10 mW, thereby optimizing the power consumption for the system’s need.

The DAC5674 is available in a 48-pin HTQFP Powerpad™ plastic quad flatpack package. The device is characterized for operation over the industrial temperature range of –40°C to 85°C.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 10
类型 标题 下载最新的英语版本 日期
* 数据表 14-Bit 400 MSPS 2x/4x Interpolating CommsDAC DAC 数据表 (Rev. A) 2005年 10月 4日
模拟设计期刊 Q4 2009 Issue Analog Applications Journal 2018年 9月 24日
应用手册 Wideband Complementary Current Output DAC Single-Ended Interface (Rev. A) 2015年 5月 8日
模拟设计期刊 Interfacing op amps to high-speed DACs, Part 2: Current-sourcing DACs 2009年 10月 4日
应用手册 Passive Terminations for Current Output DACs 2008年 11月 10日
应用手册 所选封装材料的热学和电学性质 2008年 10月 16日
应用手册 高速数据转换 英语版 2008年 10月 16日
应用手册 CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters 2008年 6月 8日
应用手册 Phase Noise Performance and Jitter Cleaning Ability of CDCE72010 2008年 6月 2日
EVM 用户指南 DAC5674EVM 2002年 5月 29日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

评估板

DAC5674EVM — DAC5674 评估模块

DAC5674 is an evaluation module for DAC5674, a 400 MSPS digital to analog converter with 2x/4x interpolation. This evaluation module is designed to enable you to evaluate the device under various modes of operation.

用户指南: PDF
TI.com 上无现货
仿真模型

DAC5674 IBIS Model

SLWC061.ZIP (17 KB) - IBIS Model
计算工具

MATCHGAIN-CALC — 宽带辅助电流输出 DAC 转 SE 接口:增益和合规电压摆幅的改进匹配

NOTE: Calculator software is available when downloading the application note.
  • Click on "abstract" to view abstract of document.
  • Open the ZIP file to extract the calculator tool.
  • Open the PDF file to view the application note.

High-speed digital-to-analog converters (DACs) most often use a (...)

模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
封装 引脚 下载
HTQFP (PHP) 48 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

推荐产品可能包含与 TI 此产品相关的参数、评估模块或参考设计。

支持和培训

视频