产品详情

Technology family CD4000 Rating Catalog Operating temperature range (°C) -55 to 125
Technology family CD4000 Rating Catalog Operating temperature range (°C) -55 to 125
PDIP (N) 16 181.42 mm² 19.3 x 9.4
  • Independent asynchronous inputs and outputs
  • 3-state outputs
  • Expandable in either direction
  • Status indicators on input and output
  • Reset capability
  • Standardized, symmetrical output characteristics
  • 100% tested for quiescent current at 20 V
  • 5-V, 10-V, and 15-V parametric ratings
  • Maximum input current of 1 uA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
  • Noise margin (over full package-temperature range): 1V at VDD = 5V, 2V at VDD = 10 V, 2.5 V at VDD = 15 V
  • Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
  • Applications
    • Bit rate smoothing
    • CPU/terminal buffering
    • Data communications
    • Peripheral buffering
    • Line printer input buffers
    • Auto dialers
    • CRT buffer memories
    • Radar data acquisition
  • Independent asynchronous inputs and outputs
  • 3-state outputs
  • Expandable in either direction
  • Status indicators on input and output
  • Reset capability
  • Standardized, symmetrical output characteristics
  • 100% tested for quiescent current at 20 V
  • 5-V, 10-V, and 15-V parametric ratings
  • Maximum input current of 1 uA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
  • Noise margin (over full package-temperature range): 1V at VDD = 5V, 2V at VDD = 10 V, 2.5 V at VDD = 15 V
  • Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
  • Applications
    • Bit rate smoothing
    • CPU/terminal buffering
    • Data communications
    • Peripheral buffering
    • Line printer input buffers
    • Auto dialers
    • CRT buffer memories
    • Radar data acquisition

CD40105B is a low-power first-in-first-out (FIFO) "elastic" storage register that can store 16 4-bit words. It is capable of handling input and output data at different shifting rates. This feature makes it particularly useful as a buffer between asynchronous systems.

Each word position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position's data is filed and a "0" denotes a vacancy in that positiion. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

Loading Data - Data can be entered whenever the DATA-IN READY (DIR) flag is high, by a low to high transition on the SHIFT-IN (SI) input. This input must go low momentarily before the next word is accepted by the FIFO. The DIR flag will go low momentarily, until the data have been transferred to the second location. The flag will remian low when all 16-word locations are filled with valid data, and further pulses on the SI input will be ignored until DIR goes high.

Unloading Data - As soon as the first work has rippled to the output, DATA-OUT READY (DOR) goes high, and data can be removed by a falling edge on the SO input. This falling edge causes the DOR signal to go low while the word on the output is dumped and the next word moves to the output. As long as valid data are available in the FIFO, the DOR signal will go high again signifying that the next word is ready at the output. When the FIFO is empty, DOR will remain low, and any further commands will be ignored until a "1" marker ripples down to the last control register, when DOR goes high. Unloading of data is inhibited while the 3-state control input is high. The 3-state control signal should not be shifted from high to low (data outputs turned on) while the SHIFT-OUT is a logic 0. This level change would cause the first word to be shifted out (unloaded) immediately and the data to be lost.

Cascading - The CD40105B can be cascaded to form longer registers simply by connecting the DIR to SO and DOR to SI. In the cascaded mode, a MASTER RESET pulse must be applied after the supply voltage is turned on. For words wider than 4 bits, the DIR and the DOR outputs must be gated together with AND gates. Their outputs drive the SI and SO inputs in paralled, if expanding is done in both directions (see Figs. 3 and 15).

3-State Outputs - In order to facilitate data busing, 3-state outputs are provided on the data output lines, while the load condition of the register can be detected by the state of the DOR output.

Master Reset - A high on the MASTER RESET (MR) sets all the contol logic marker bits to "0". DOR goes low and DIR goes high. The contents of the data register are not changed, only declared invalid, and will be superseded when the first word is loaded. The shift-in must be low during Master Reset. The CD40105B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD40105B is a low-power first-in-first-out (FIFO) "elastic" storage register that can store 16 4-bit words. It is capable of handling input and output data at different shifting rates. This feature makes it particularly useful as a buffer between asynchronous systems.

Each word position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position's data is filed and a "0" denotes a vacancy in that positiion. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

Loading Data - Data can be entered whenever the DATA-IN READY (DIR) flag is high, by a low to high transition on the SHIFT-IN (SI) input. This input must go low momentarily before the next word is accepted by the FIFO. The DIR flag will go low momentarily, until the data have been transferred to the second location. The flag will remian low when all 16-word locations are filled with valid data, and further pulses on the SI input will be ignored until DIR goes high.

Unloading Data - As soon as the first work has rippled to the output, DATA-OUT READY (DOR) goes high, and data can be removed by a falling edge on the SO input. This falling edge causes the DOR signal to go low while the word on the output is dumped and the next word moves to the output. As long as valid data are available in the FIFO, the DOR signal will go high again signifying that the next word is ready at the output. When the FIFO is empty, DOR will remain low, and any further commands will be ignored until a "1" marker ripples down to the last control register, when DOR goes high. Unloading of data is inhibited while the 3-state control input is high. The 3-state control signal should not be shifted from high to low (data outputs turned on) while the SHIFT-OUT is a logic 0. This level change would cause the first word to be shifted out (unloaded) immediately and the data to be lost.

Cascading - The CD40105B can be cascaded to form longer registers simply by connecting the DIR to SO and DOR to SI. In the cascaded mode, a MASTER RESET pulse must be applied after the supply voltage is turned on. For words wider than 4 bits, the DIR and the DOR outputs must be gated together with AND gates. Their outputs drive the SI and SO inputs in paralled, if expanding is done in both directions (see Figs. 3 and 15).

3-State Outputs - In order to facilitate data busing, 3-state outputs are provided on the data output lines, while the load condition of the register can be detected by the state of the DOR output.

Master Reset - A high on the MASTER RESET (MR) sets all the contol logic marker bits to "0". DOR goes low and DIR goes high. The contents of the data register are not changed, only declared invalid, and will be superseded when the first word is loaded. The shift-in must be low during Master Reset. The CD40105B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

下载 观看带字幕的视频 视频

您可能感兴趣的相似产品

open-in-new 比较替代产品
功能与比较器件相似
SN74AHC594 正在供货 具有输出寄存器的 8 位移位寄存器 Voltage range (2V to 5.5V), average drive strength (9mA), average propagation delay (12ns)
SN74HC595 正在供货 具有三态输出寄存器的 8 位移位寄存器 Smaller voltage range (2V to 6V)

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 8
类型 标题 下载最新的英语版本 日期
* 数据表 CMOS FIFO Register 数据表 1998年 11月 21日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
用户指南 Signal Switch Data Book (Rev. A) 2003年 11月 14日
应用手册 Understanding Buffered and Unbuffered CD4xxxB Series Device Characteristics 2001年 12月 3日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

评估板

14-24-LOGIC-EVM — 采用 14 引脚至 24 引脚 D、DB、DGV、DW、DYY、NS 和 PW 封装的逻辑产品通用评估模块

14-24-LOGIC-EVM 评估模块 (EVM) 旨在支持采用 14 引脚至 24 引脚 D、DW、DB、NS、PW、DYY 或 DGV 封装的任何逻辑器件。

用户指南: PDF | HTML
英语版 (Rev.B): PDF | HTML
TI.com 上无现货
封装 引脚 下载
PDIP (N) 16 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频