
TMS320C55x DSP
Mnemonic Instruction Set

Reference Guide

Literature Number: SPRU374G
October 2002

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

The TMS320C55x DSP is a fixed-point digital signal processor (DSP) in the
TMS320 family, and it can use either of two forms of the instruction set: a
mnemonic form or an algebraic form. This book is a reference for the mnemonic
form of the instruction set. It contains information about the instructions used
for all types of operations. For information on the algebraic instruction set, see
TMS320C55x DSP Algebraic Instruction Set Reference Guide, SPRU375.

Notational Conventions

This book uses the following conventions.

� In syntax descriptions, the instruction is in a bold typeface. Portions of a
syntax in bold must be entered as shown. Here is an example of an
instruction syntax:

LMS Xmem, Ymem, ACx, ACy

LMS is the instruction, and it has four operands: Xmem, Ymem, ACx, and
ACy. When you use LMS, the operands should be actual dual data-
memory operand values and accumulator values. A comma and a space
(optional) must separate the four values.

� Square brackets, [and], identify an optional parameter. If you use an
optional parameter, specify the information within the brackets; do not type
the brackets themselves.

Related Documentation From Texas Instruments

iv

Related Documentation From Texas Instruments

The following books describe the C55x devices and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please identify
the book by its title and literature number.

TMS320C55x Technical Overview (SPRU393). This overview is an
introduction to the TMS320C55x digital signal processor (DSP). The
TMS320C55x is the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform. Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features of the TMS320C55x.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x digital signal processors (DSPs).

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the algebraic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the mnemonic instruction set.

TMS320C55x Programmer’s Guide (literature number SPRU376) describes
ways to optimize C and assembly code for the TMS320C55x DSPs and
explains how to write code that uses special features and instructions of
the DSP.

TMS320C55x Optimizing C Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C Compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

Trademarks

TMS320, TMS320C54x, TMS320C55x, C54x, and C55x are trademarks of
Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

Contents

v

Contents

1 Terms, Symbols, and Abbreviations 1-1.
Lists and defines the terms, symbols, and abbreviations used in the TMS320C55x DSP
mnemonic instruction set summary and in the individual instruction descriptions.

1.1 Instruction Set Terms, Symbols, and Abbreviations 1-2.
1.2 Instruction Set Conditional (cond) Fields 1-7.
1.3 Affect of Status Bits 1-9.

1.3.1 Accumulator Overflow Status Bit (ACOVx) 1-9.
1.3.2 C54CM Status Bit 1-9.
1.3.3 CARRY Status Bit 1-9.
1.3.4 FRCT Status Bit 1-9.
1.3.5 INTM Status Bit 1-9.
1.3.6 M40 Status Bit 1-10.
1.3.7 RDM Status Bit 1-12.
1.3.8 SATA Status Bit 1-12.
1.3.9 SATD Status Bit 1-13.
1.3.10 SMUL Status Bit 1-13.
1.3.11 SXMD Status Bit 1-13.
1.3.12 Test Control Status Bit (TCx) 1-13.

1.4 Instruction Set Notes and Rules 1-14.
1.4.1 Notes 1-14.
1.4.2 Rules 1-14.

1.5 Nonrepeatable Instructions 1-21.

2 Parallelism Features and Rules 2-1.
Describes the parallelism features and rules of the TMS320C55x DSP mnemonic instruction set.

2.1 Parallelism Features 2-2.
2.2 Parallelism Basics 2-3.
2.3 Resource Conflicts 2-4.

2.3.1 Operators 2-4.
2.3.2 Address Generation Units 2-4.
2.3.3 Buses 2-5.

2.4 Soft-Dual Parallelism 2-5.
2.4.1 Soft-Dual Parallelism of MAR Instructions 2-6.

2.5 Execute Conditionally Instructions 2-6.
2.6 Other Exceptions 2-7.

Contents

vi

3 Introduction to Addressing Modes 3-1.
Provides an introduction to the addressing modes of the TMS320C55x DSP.
3.1 Introduction to the Addressing Modes 3-2.
3.2 Absolute Addressing Modes 3-3.

3.2.1 k16 Absolute Addressing Mode 3-3.
3.2.2 k23 Absolute Addressing Mode 3-3.
3.2.3 I/O Absolute Addressing Mode 3-3.

3.3 Direct Addressing Modes 3-4.
3.3.1 DP Direct Addressing Mode 3-4.
3.3.2 SP Direct Addressing Mode 3-5.
3.3.3 Register-Bit Direct Addressing Mode 3-5.
3.3.4 PDP Direct Addressing Mode 3-5.

3.4 Indirect Addressing Modes 3-6.
3.4.1 AR Indirect Addressing Mode 3-6.
3.4.2 Dual AR Indirect Addressing Mode 3-14.
3.4.3 CDP Indirect Addressing Mode 3-16.
3.4.4 Coefficient Indirect Addressing Mode 3-18.

3.5 Circular Addressing 3-20.

4 Instruction Set Summary 4-1.
Summary of the TMS320C55x mnemonic instruction set.

5 Instruction Set Descriptions 5-1.
Detailed information on the TMS320C55x DSP mnemonic instruction set.
AADD (Modify Auxiliary or Temporary Register Content by Addition) 5-2.
AADD (Modify Data Stack Pointer) 5-6.
ABDST (Absolute Distance) 5-7.
ABS (Absolute Value) 5-9.
ADD (Addition) 5-12.
ADD (Dual 16-Bit Additions) 5-33.
ADD::MOV (Addition with Parallel Store Accumulator Content to Memory) 5-38.
ADDSUB (Dual 16-Bit Addition and Subtraction) 5-40.
ADDSUBCC (Addition or Subtraction Conditionally) 5-45.
ADDSUBCC (Addition, Subtraction, or Move Accumulator Content Conditionally) 5-47.
ADDSUB2CC (Addition or Subtraction Conditionally with Shift) 5-49.
ADDV (Addition with Absolute Value) 5-52.
AMAR (Modify Auxiliary Register Content) 5-54.
AMAR (Modify Extended Auxiliary Register Content) 5-56.
AMAR (Parallel Modify Auxiliary Register Contents) 5-57.
AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and Accumulate) 5-58. . .
AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and Subtract) 5-63.
AMAR::MPY (Modify Auxiliary Register Content with Parallel Multiply) 5-65.
AMOV (Load Extended Auxiliary Register with Immediate Value) 5-67.
AMOV (Modify Auxiliary or Temporary Register Content) 5-68.
AND (Bitwise AND) 5-72.
ASUB (Modify Auxiliary or Temporary Register Content by Subtraction) 5-81.
B (Branch Unconditionally) 5-85.
BAND (Bitwise AND Memory with Immediate Value and Compare to Zero) 5-89.

Contents

viiContents

BCC (Branch Conditionally) 5-90.
BCC (Branch on Auxiliary Register Not Zero) 5-94.
BCC (Compare and Branch) 5-97.
BCLR (Clear Accumulator, Auxiliary, or Temporary Register Bit) 5-100.
BCLR (Clear Memory Bit) 5-101.
BCLR (Clear Status Register Bit) 5-102.
BCNT (Count Accumulator Bits) 5-105.
BFXPA (Expand Accumulator Bit Field) 5-106.
BFXTR (Extract Accumulator Bit Field) 5-107.
BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit) 5-108.
BNOT (Complement Memory Bit) 5-109.
BSET (Set Accumulator, Auxiliary, or Temporary Register Bit) 5-110.
BSET (Set Memory Bit) 5-111.
BSET (Set Status Register Bit) 5-112.
BTST (Test Accumulator, Auxiliary, or Temporary Register Bit) 5-115.
BTST (Test Memory Bit) 5-117.
BTSTCLR (Test and Clear Memory Bit) 5-120.
BTSTNOT (Test and Complement Memory Bit) 5-121.
BTSTP (Test Accumulator, Auxiliary, or Temporary Register Bit Pair) 5-122.
BTSTSET (Test and Set Memory Bit) 5-124.
CALL (Call Unconditionally) 5-125.
CALLCC (Call Conditionally) 5-129.
CMP (Compare Memory with Immediate Value) 5-135.
CMP (Compare Accumulator, Auxiliary, or Temporary Register Content) 5-137.
CMPAND (Compare Accumulator, Auxiliary, or Temporary Register Content with AND) 5-139. .
CMPOR (Compare Accumulator, Auxiliary, or Temporary Register Content with OR) 5-144.
.CR (Circular Addressing Qualifier) 5-149.
DELAY (Memory Delay) 5-150.
EXP (Compute Exponent of Accumulator Content) 5-151.
FIRSADD (Symmetrical Finite Impulse Response Filter) 5-152.
FIRSSUB (Antisymmetrical Finite Impulse Response Filter) 5-154.
IDLE 5-156.
INTR (Software Interrupt) 5-157.
LMS (Least Mean Square) 5-159.
.LR (Linear Addressing Qualifier) 5-161.
MAC (Multiply and Accumulate) 5-162.
MACMZ (Multiply and Accumulate with Parallel Delay) 5-177.
MAC::MAC (Parallel Multiply and Accumulates) 5-179.
MAC::MPY (Multiply and Accumulate with Parallel Multiply) 5-186.
MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator from Memory) 5-189. . .
MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator Content

to Memory) 5-191.
MANT::NEXP (Compute Mantissa and Exponent of Accumulator Content) 5-193.
MAS (Multiply and Subtract) 5-195.
MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate) 5-204.
MAS::MAS (Parallel Multiply and Subtracts) 5-209.
MAS::MPY (Multiply and Subtract with Parallel Multiply) 5-212.
MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from Memory) 5-215.

Contents

viii

MASM::MOV (Multiply and Subtract with Parallel Store Accumulator Content
to Memory) 5-217.

MAX (Compare Accumulator, Auxiliary, or Temporary Register Content Maximum) 5-219.
MAXDIFF (Compare and Select Accumulator Content Maximum) 5-222.
MIN (Compare Accumulator, Auxiliary, or Temporary Register Content Minimum) 5-228.
MINDIFF (Compare and Select Accumulator Content Minimum) 5-231.
mmap (Memory-Mapped Register Access Qualifier) 5-237.
MOV (Load Accumulator from Memory) 5-239.
MOV (Load Accumulator Pair from Memory) 5-248.
MOV (Load Accumulator with Immediate Value) 5-251.
MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory) 5-254.
MOV (Load Accumulator, Auxiliary, or Temporary Register Content with

Immediate Value) 5-260.
MOV (Load Auxiliary or Temporary Register Pair from Memory) 5-264.
MOV (Load CPU Register from Memory) 5-265.
MOV (Load CPU Register with Immediate Value) 5-268.
MOV (Load Extended Auxiliary Register from Memory) 5-270.
MOV (Load Memory with Immediate Value) 5-271.
MOV (Move Accumulator Content to Auxiliary or Temporary Register) 5-272.
MOV (Move Accumulator, Auxiliary, or Temporary Register Content) 5-273.
MOV (Move Auxiliary or Temporary Register Content to Accumulator) 5-275.
MOV (Move Auxiliary or Temporary Register Content to CPU Register) 5-276.
MOV (Move CPU Register Content to Auxiliary or Temporary Register) 5-278.
MOV (Move Extended Auxiliary Register Content) 5-280.
MOV (Move Memory to Memory) 5-281.
MOV (Store Accumulator Content to Memory) 5-288.
MOV (Store Accumulator Pair Content to Memory) 5-308.
MOV (Store Accumulator, Auxiliary, or Temporary Register Content to Memory) 5-311.
MOV (Store Auxiliary or Temporary Register Pair Content to Memory) 5-315.
MOV (Store CPU Register Content to Memory) 5-316.
MOV (Store Extended Auxiliary Register Content to Memory) 5-320.
MOV::MOV (Load Accumulator from Memory with Parallel Store Accumulator Content

to Memory) 5-321.
MPY (Multiply) 5-323.
MPY::MAC (Multiply with Parallel Multiply and Accumulate) 5-336.
MPY::MPY (Parallel Multiplies) 5-338.
MPYM::MOV (Multiply with Parallel Store Accumulator Content to Memory) 5-340.
NEG (Negate Accumulator, Auxiliary, or Temporary Register Content) 5-342.
NOP (No Operation) 5-344.
NOT (Complement Accumulator, Auxiliary, or Temporary Register Content) 5-345.
OR (Bitwise OR) 5-346.
POP (Pop Top of Stack) 5-355.
POPBOTH (Pop Accumulator or Extended Auxiliary Register Content from

Stack Pointers) 5-362.
port (Peripheral Port Register Access Qualifiers) 5-363.
PSH (Push to Top of Stack) 5-365.
PSHBOTH (Push Accumulator or Extended Auxiliary Register Content to

Stack Pointers) 5-372.
RESET (Software Reset) 5-373.

Contents

ixContents

RET (Return Unconditionally) 5-377.
RETCC (Return Conditionally) 5-379.
RETI (Return from Interrupt) 5-381.
ROL (Rotate Left Accumulator, Auxiliary, or Temporary Register Content) 5-383.
ROR (Rotate Right Accumulator, Auxiliary, or Temporary Register Content) 5-385.
ROUND (Round Accumulator Content) 5-387.
RPT (Repeat Single Instruction Unconditionally) 5-389.
RPTADD (Repeat Single Instruction Unconditionally and Increment CSR) 5-394.
RPTB (Repeat Block of Instructions Unconditionally) 5-397.
RPTCC (Repeat Single Instruction Conditionally) 5-408.
RPTSUB (Repeat Single Instruction Unconditionally and Decrement CSR) 5-411.
SAT (Saturate Accumulator Content) 5-413.
SFTCC (Shift Accumulator Content Conditionally) 5-415.
SFTL (Shift Accumulator Content Logically) 5-417.
SFTL (Shift Accumulator, Auxiliary, or Temporary Register Content Logically) 5-420.
SFTS (Signed Shift of Accumulator Content) 5-423.
SFTS (Signed Shift of Accumulator, Auxiliary, or Temporary Register Content) 5-432.
SQA (Square and Accumulate) 5-437.
SQDST (Square Distance) 5-440.
SQR (Square) 5-442.
SQS (Square and Subtract) 5-445.
SUB (Dual 16-Bit Subtractions) 5-448.
SUB (Subtraction) 5-457.
SUB::MOV (Subtraction with Parallel Store Accumulator Content to Memory) 5-483.
SUBADD (Dual 16-Bit Subtraction and Addition) 5-485.
SUBC (Subtract Conditionally) 5-490.
SWAP (Swap Accumulator Content) 5-493.
SWAP (Swap Auxiliary Register Content) 5-494.
SWAP (Swap Auxiliary and Temporary Register Content) 5-495.
SWAP (Swap Temporary Register Content) 5-497.
SWAPP (Swap Accumulator Pair Content) 5-498.
SWAPP (Swap Auxiliary Register Pair Content) 5-499.
SWAPP (Swap Auxiliary and Temporary Register Pair Content) 5-500.
SWAPP (Swap Temporary Register Pair Content) 5-502.
SWAP4 (Swap Auxiliary and Temporary Register Pairs Content) 5-503.
TRAP (Software Trap) 5-505.
XCC (Execute Conditionally) 5-507.
XOR (Bitwise Exclusive OR) 5-514.

6 Instruction Opcodes in Sequential Order 6-1.
Provides the opcode in sequential order for each TMS320C55x DSP instruction syntax.

6.1 Instruction Set Opcodes 6-2.
6.2 Instruction Set Opcode Symbols and Abbreviations 6-15.

7 Cross-Reference of Algebraic and Mnemonic Instruction Sets 7-1.
Cross-Reference of TMS320C55x DSP Algebraic and Mnemonic Instruction Sets.

Figures

x

Figures

5–1 Status Registers Bit Mapping 5-104.
5–2 Status Registers Bit Mapping 5-114.
5–3 Effects of a Software Reset on Status Registers 5-376.
5–4 Legal Uses of Repeat Block of Instructions Unconditionally (RPTBLOCAL)

Instruction 5-401.

Tables

1–1 Instruction Set Terms, Symbols, and Abbreviations 1-2.
1–2 Operators Used in Instruction Set 1-6.
1–3 Instruction Set Conditional (cond) Field 1-7.
1–4 Nonrepeatable Instructions 1-21.
3–1 Addressing-Mode Operands 3-2.
3–2 Absolute Addressing Modes 3-3.
3–3 Direct Addressing Modes 3-4.
3–4 Indirect Addressing Modes 3-6.
3–5 DSP Mode Operands for the AR Indirect Addressing Mode 3-8.
3–6 Control Mode Operands for the AR Indirect Addressing Mode 3-12.
3–7 Dual AR Indirect Operands 3-15.
3–8 CDP Indirect Operands 3-17.
3–9 Coefficient Indirect Operands 3-19.
3–10 Circular Addressing Pointers 3-20.
4–1 Mnemonic Instruction Set Summary 4-3.
5–1 Opcodes for Load CPU Register from Memory Instruction 5-267.
5–2 Opcodes for Load CPU Register with Immediate Value Instruction 5-269.
5–3 Opcodes for Move Auxiliary or Temporary Register Content to CPU Register

Instruction 5-277.
5–4 Opcodes for Move CPU Register Content to Auxiliary or Temporary Register

Instruction 5-279.
5–5 Opcodes for Store CPU Register Content to Memory Instruction 5-319.
5–6 Effects of a Software Reset on DSP Registers 5-374.
6–1 Instruction Set Opcodes 6-2.
6–2 Instruction Set Opcode Symbols and Abbreviations 6-15.
7–1 Cross-Reference of Algebraic and Mnemonic Instruction Sets 7-2.

1-1

Terms, Symbols, and Abbreviations

This chapter lists and defines the terms, symbols, and abbreviations used in
the TMS320C55x DSP mnemonic instruction set summary and in the
individual instruction descriptions. Also provided are instruction set notes and
rules and a list of nonrepeatable instructions.

Topic Page

1.1 Instruction Set Terms, Symbols, and Abbreviations 1-2.

1.2 Instruction Set Conditional (cond) Fields 1-7.

1.3 Affect of Status Bits 1-9.

1.4 Instruction Set Notes and Rules 1-14.

1.5 Nonrepeatable Instructions 1-21.

Chapter 1

Instruction Set Terms, Symbols, and Abbreviations

Terms, Symbols, and Abbreviations1-2 SPRU374G

1.1 Instruction Set Terms, Symbols, and Abbreviations

Table 1–1 lists the terms, symbols, and abbreviations used and Table 1–2 lists
the operators used in the instruction set summary and in the individual instruc-
tion descriptions.

Table 1–1. Instruction Set Terms, Symbols, and Abbreviations

Symbol Meaning

[] Optional operands

40 If the optional 40 keyword is applied to the instruction, the instruction provides the option to
locally set M40 to 1 for the execution of the instruction

ACB Bus that brings D-unit registers to A-unit and P-unit operators

ACOVx Accumulator overflow status bit:
ACOV0, ACOV1, ACOV2, ACOV3

ACw, ACx,
ACy, ACz

Accumulator:
AC0, AC1, AC2, AC3

ARn_mod Content of selected auxiliary register (ARn) is premodified or postmodified in the address
generation unit.

ARx, ARy Auxiliary register:
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7

AU A unit

Baddr Register bit address

BitIn Shifted bit in: Test control flag 2 (TC2) or CARRY status bit

BitOut Shifted bit out: Test control flag 2 (TC2) or CARRY status bit

BORROW Logical complement of CARRY status bit

C, Cycles Execution in cycles. For conditional instructions, x/y field means:
x cycle, if the condition is true.
y cycle, if the condition is false.

CA Coefficient address generation unit

CARRY Value of CARRY status bit

Cmem Coefficient indirect operand referencing a 16-bit or 32-bit value in data space

cond Condition based on accumulator (ACx) value, auxiliary register (ARx) value, temporary
register (Tx) value, test control (TCx) flag, or CARRY status bit. See section 1.2.

CR Coefficient Read bus

CSR Computed single-repeat register

Instruction Set Terms, Symbols, and Abbreviations

1-3Terms, Symbols, and AbbreviationsSPRU374G

Table 1–1. Instruction Set Terms, Symbols, and Abbreviations (Continued)

Symbol Meaning

DA Data address generation unit

DR Data Read bus

dst Destination accumulator (ACx), lower 16 bits of auxiliary register (ARx), or temporary
register (Tx):
AC0, AC1, AC2, AC3
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
T0, T1, T2, T3

DU D unit

DW Data Write bus

Dx Data address label coded on x bits (absolute address)

E Indicates if the instruction contains a parallel enable bit.

KAB Constant bus

KDB Constant bus

kx Unsigned constant coded on x bits

Kx Signed constant coded on x bits

Lmem Long-word single data memory access (32-bit data access). Same legal inputs as Smem.

lx Program address label coded on x bits (unsigned offset relative to program counter
register)

Lx Program address label coded on x bits (signed offset relative to program counter register)

Operator Operator(s) used by an instruction.

Pipe, Pipeline Pipeline phase in which the instruction executes:
AD Address
D Decode
R Read
X Execute

pmad Program memory address

Px Program or data address label coded on x bits (absolute address)

RELOP Relational operators:
== equal to
< less than
>= greater than or equal to
!= not equal to

Instruction Set Terms, Symbols, and Abbreviations

Terms, Symbols, and Abbreviations1-4 SPRU374G

Table 1–1. Instruction Set Terms, Symbols, and Abbreviations (Continued)

Symbol Meaning

R or rnd If the optional R or rnd keyword is applied to the instruction, rounding is performed in the
instruction

RPTC Single-repeat counter register

S, Size Instruction size in bytes.

SA Stack address generation unit

saturate If the optional saturate keyword is applied to the input operand, the 40-bit output of the
operation is saturated

SHFT 4-bit immediate shift value, 0 to 15

SHIFTW 6-bit immediate shift value, –32 to +31

Smem Word single data memory access (16-bit data access)

SP Data stack pointer

src Source accumulator (ACx), lower 16 bits of auxiliary register (ARx), or temporary register
(Tx):
AC0, AC1, AC2, AC3
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
T0, T1, T2, T3

SSP System stack pointer

STx Status register:
ST0, ST1, ST2, ST3

TAx, TAy Auxiliary register (ARx) or temporary register (Tx):
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
T0, T1, T2, T3

TCx, TCy Test control flag:
TC1, TC2

TRNx Transition register:
TRN0, TRN1

Tx, Ty Temporary register:
T0, T1, T2, T3

U or uns If the optional U or uns keyword is applied to the input operand, the operand is zero ex-
tended

Instruction Set Terms, Symbols, and Abbreviations

1-5Terms, Symbols, and AbbreviationsSPRU374G

Table 1–1. Instruction Set Terms, Symbols, and Abbreviations (Continued)

Symbol Meaning

XAdst Destination extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), data page pointer (XDP), coefficient data pointer (XCDP), and extended auxiliary
register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

XARx All 23 bits of extended auxiliary register:
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

XAsrc Source extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), data page pointer (XDP), coefficient data pointer (XCDP), and extended auxiliary
register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

xdst Accumulator:
AC0, AC1, AC2, AC3

Destination extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), data page pointer (XDP), coefficient data pointer (XCDP), and extended auxiliary
register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

xsrc Accumulator:
AC0, AC1, AC2, AC3

Source extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), data page pointer (XDP), coefficient data pointer (XCDP), and extended auxiliary
register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

Xmem, Ymem Indirect dual data memory access (two data accesses)

Instruction Set Terms, Symbols, and Abbreviations

Terms, Symbols, and Abbreviations1-6 SPRU374G

Table 1–2. Operators Used in Instruction Set

Symbols Operators Evaluation

+ – ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ – Addition, subtraction Left to right

<< >> Signed left shift, right shift Left to right

< < < >>> Logical left shift, logical right shift Left to right

< <= Less than, less than or equal to Left to right

> >= Greater than, greater than or equal to Left to right

== != Equal to, not equal to Left to right

& Bitwise AND Left to right

| Bitwise OR Left to right

^ Bitwise exclusive OR (XOR) Left to right

Note: Unary +, –, and * have higher precedence than the binary forms.

Instruction Set Conditional (cond) Fields

1-7Terms, Symbols, and AbbreviationsSPRU374G

1.2 Instruction Set Conditional (cond) Fields

Table 1–3 lists the testing conditions available in the cond field of the conditional
instructions.

Table 1–3. Instruction Set Conditional (cond) Field

Bit or Register Condition (cond) Field For Condition to be True ...

Accumulator Tests the accumulator (ACx) content against 0. The comparison against 0
depends on M40 status bit:

� If M40 = 0, ACx(31–0) is compared to 0.

� If M40 = 1, ACx(39–0) is compared to 0.

ACx == #0 ACx content is equal to 0

ACx < #0 ACx content is less than 0

ACx > #0 ACx content is greater than 0

ACx != #0 ACx content is not equal to 0

ACx <= #0 ACx content is less than or equal to 0

ACx >= #0 ACx content is greater than or equal to 0

Accumulator Overflow
Status Bit

Tests the accumulator overflow status bit (ACOVx) against 1; when the
optional ! symbol is used before the bit designation, the bit can be tested
against 0. When this condition is used, the corresponding ACOVx is
cleared to 0.

overflow(ACx) ACOVx bit is set to 1

!overflow(ACx) ACOVx bit is cleared to 0

Auxiliary Register Tests the auxiliary register (ARx) content against 0.

ARx == #0 ARx content is equal to 0

ARx < #0 ARx content is less than 0

ARx > #0 ARx content is greater than 0

ARx != #0 ARx content is not equal to 0

ARx <= #0 ARx content is less than or equal to 0

ARx >= #0 ARx content is greater than or equal to 0

CARRY Status Bit Tests the CARRY status bit against 1; when the optional ! symbol is used
before the bit designation, the bit can be tested against 0.

CARRY CARRY bit is set to 1

!CARRY CARRY bit is cleared to 0

Instruction Set Conditional (cond) Fields

Terms, Symbols, and Abbreviations1-8 SPRU374G

Table 1–3. Instruction Set Conditional (cond) Field (Continued)

Bit or Register For Condition to be True ...Condition (cond) Field

Temporary Register Tests the temporary register (Tx) content against 0.

Tx == #0 Tx content is equal to 0

Tx < #0 Tx content is less than 0

Tx > #0 Tx content is greater than 0

Tx != #0 Tx content is not equal to 0

Tx <= #0 Tx content is less than or equal to 0

Tx >= #0 Tx content is greater than or equal to 0

Test Control Flags Tests the test control flags (TC1 and TC2) independently against 1; when
the optional ! symbol is used before the flag designation, the flag can be
tested independently against 0.

TCx TCx flag is set to 1

!TCx TCx flag is cleared to 0

TC1 and TC2 can be combined with an AND (&), OR (|), and XOR (^)
logical bit combinations:

TC1 & TC2 TC1 AND TC2 is equal to 1

!TC1 & TC2 TC1 AND TC2 is equal to 1

TC1 & !TC2 TC1 AND TC2 is equal to 1

!TC1 & !TC2 TC1 AND TC2 is equal to 1

TC1 | TC2 TC1 OR TC2 is equal to 1

!TC1 | TC2 TC1 OR TC2 is equal to 1

TC1 | !TC2 TC1 OR TC2 is equal to 1

!TC1 | !TC2 TC1 OR TC2 is equal to 1

TC1 ^ TC2 TC1 XOR TC2 is equal to 1

!TC1 ^ TC2 TC1 XOR TC2 is equal to 1

TC1 ^ !TC2 TC1 XOR TC2 is equal to 1

!TC1 ^ !TC2 TC1 XOR TC2 is equal to 1

Affect of Status Bits

1-9Terms, Symbols, and AbbreviationsSPRU374G

1.3 Affect of Status Bits

1.3.1 Accumulator Overflow Status Bit (ACOVx)

The ACOV[0–3] depends on M40:

� When M40 = 0, overflow is detected at bit position 31

� When M40 = 1, overflow is detected at bit position 39

If an overflow is detected, the destination accumulator overflow status bit is set
to 1.

1.3.2 C54CM Status Bit

� When C54CM = 0, the enhanced mode, the CPU supports code originally
developed for a TMS320C55x DSP.

� When C54CM = 1, the compatible mode, all the C55x CPU resources
remain available; therefore, as you translate code, you can take advan-
tage of the additional features on the C55x DSP to optimize your code.
This mode must be set when you are porting code that was originally
developed for a TMS320C54x DSP.

1.3.3 CARRY Status Bit

� When M40 = 0, the carry/borrow is detected at bit position 31

� When M40 = 1, the carry/borrow is detected at bit position 39

When performing a logical shift or signed shift that affects the CARRY status
bit and the shift count is zero, the CARRY status bit is cleared to 0.

1.3.4 FRCT Status Bit

� When FRCT = 0, the fractional mode is OFF and results of multiply opera-
tions are not shifted.

� When FRCT = 1, the fractional mode is ON and results of multiply opera-
tions are shifted left by 1 bit to eliminate an extra sign bit.

1.3.5 INTM Status Bit

The INTM bit globally enables or disables the maskable interrupts. This bit has
no effect on nonmaskable interrupts (those that cannot be blocked by software).

� When INTM = 0, all unmasked interrupts are enabled.

� When INTM = 1, all maskable interrupts are disabled.

Affect of Status Bits

Terms, Symbols, and Abbreviations1-10 SPRU374G

1.3.6 M40 Status Bit

� When M40 = 0:

� overflow is detected at bit position 31

� the carry/borrow is detected at bit position 31

� saturation values are 00 7FFF FFFFh (positive overflow) or
FF 8000 0000h (negative overflow)

� TMS320C54x DSP compatibility mode

� for conditional instructions, the comparison against 0 (zero) is
performed on 32 bits, ACx(31–0)

� When M40 = 1:

� overflow is detected at bit position 39

� the carry/borrow is detected at bit position 39

� saturation values are 7F FFFF FFFFh (positive overflow) or
80 0000 0000h (negative overflow)

� for conditional instructions, the comparison against 0 (zero) is
performed on 40 bits, ACx(39–0)

1.3.6.1 M40 Status Bit When Sign Shifting

In D-unit shifter:

� When shifting to the LSBs:

� when M40 = 0, the input to the shifter is modified according to SXMD
and then the modified input is shifted according to the shift quantity:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the
shifter

� bit 39 is extended according to SXMD

� the shifted-out bit is extracted at bit position 0

� When shifting to the MSBs:

� 0 is inserted at bit position 0

� if M40 = 0, the shifted-out bit is extracted at bit position 31

� if M40 = 1, the shifted-out bit is extracted at bit position 39

Affect of Status Bits

1-11Terms, Symbols, and AbbreviationsSPRU374G

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVx bit is set)

� the carry/borrow is detected at bit position 31

� if SATD = 1, when an overflow is detected, ACx saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow)

� TMS320C54x DSP compatibility mode

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVx bit is set)

� the carry/borrow is detected at bit position 39

� if SATD = 1, when an overflow is detected, ACx saturation values are
7F FFFF FFFFh (positive overflow) or 80 0000 0000h (negative
overflow)

In A-unit ALU:

� When shifting to the LSBs, bit 15 is sign extended

� When shifting to the MSBs, 0 is inserted at bit position 0

� After shifting, unless otherwise noted:

� overflow is detected at bit position 15 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATA = 1, when an overflow is detected, register saturation values
are 7FFFh (positive overflow) or 8000h (negative overflow)

1.3.6.2 M40 Status Bit When Logically Shifting

In D-unit shifter:

� When shifting to the LSBs:

� if M40 = 0, 0 is inserted at bit position 31 and the guard bits (39–32) of
the destination accumulator are cleared

� if M40 = 1, 0 is inserted at bit position 39

� the shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit

Affect of Status Bits

Terms, Symbols, and Abbreviations1-12 SPRU374G

� When shifting to the MSBs:

� 0 is inserted at bit position 0

� if M40 = 0, the shifted-out bit is extracted at bit position 31 and stored in
the CARRY status bit, and the guard bits (39–32) of the destination
accumulator are cleared

� if M40 = 1, the shifted-out bit is extracted at bit position 39 and stored in
the CARRY status bit

In A-unit ALU:

� When shifting to the LSBs:

� 0 is inserted at bit position 15

� the shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit

� When shifting to the MSBs:

� 0 is inserted at bit position 0

� the shifted-out bit is extracted at bit position 15 and stored in the
CARRY status bit

1.3.7 RDM Status Bit

When the optional rnd or R keyword is applied to the instruction, then rounding
is performed in the D-unit shifter. This is done according to RDM:

� When RDM = 0, the biased rounding to the infinite is performed. 8000h
(215) is added to the 40-bit result of the shift result.

� When RDM = 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit result of the shift result,
8000h (215) is added:

if(8000h < bit(15–0) < 10000h)

add 8000h to the 40-bit result of the shift result.

else if(bit(15–0) == 8000h)

if(bit(16) == 1)

add 8000h to the 40-bit result of the shift result.

If a rounding has been performed, the 16 lowest bits of the result are cleared
to 0.

1.3.8 SATA Status Bit

This status bit controls operations performed in the A unit.

� When SATA = 0, no saturation is performed.

� When SATA = 1 and an overflow is detected, the destination register is
saturated to 7FFFh (positive overflow) or 8000h (negative overflow).

Affect of Status Bits

1-13Terms, Symbols, and AbbreviationsSPRU374G

1.3.9 SATD Status Bit

This status bit controls operations performed in the D unit.

� When SATD = 0, no saturation is performed.

� When SATD = 1 and an overflow is detected, the destination register is
saturated.

1.3.10 SMUL Status Bit

� When SMUL = 0, the saturation mode is OFF.

� When SMUL = 1, the saturation mode is ON. When SMUL = 1, FRCT = 1,
and SATD = 1, the result of 18000h × 18000h is saturated to
00 7FFF FFFFh (regardless of the value of the M40 bit). This forces the
product of the two negative numbers to be a positive number. For multiply-
and-accumulate/subtract instructions, the saturation is performed after
the multiplication and before the addition/subtraction.

1.3.11 SXMD Status Bit

This status bit controls operations performed in the D unit.

� When SXMD = 0, input operands are zero extended.

� When SXMD = 1, input operands are sign extended.

1.3.12 Test Control Status Bit (TCx)

The test control status bits (TC1 or TC2) hold the result of a test performed by
the instruction.

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-14 SPRU374G

1.4 Instruction Set Notes and Rules

1.4.1 Notes

� Mnemonic syntax keywords and operand modifiers are case insensitive.
You can write:

ABDST *AR0, *ar1, AC0, ac1

or

aBdST *ar0, *aR1, aC0, Ac1

� Operands for commutative operations (+, *, &, |, ̂) can be arranged in any
order.

1.4.2 Rules

� Simple instructions are not allowed to span multiple lines. One exception,
single instructions that use the double colons, ::, notation to imply parallel-
ism. These instructions may be split up following the :: notation.

The following example shows a single instruction (dual multiply) occupy-
ing two lines:

MPYR40 uns(Xmem), uns(Cmem), ACx
:: MPYR40 uns(Ymem), uns(Cmem), ACy

� User-defined parallelism instructions (using || notation) are allowed to
span multiple lines. For example, all of the following instructions are legal:

MOV AC0, AC1 || MOV AC2, AC3

MOV AC0, AC1 ||
MOV AC2, AC3

MOV AC0, AC1
|| MOV AC2, AC3

MOV AC0, AC1
||
MOV AC2, AC3

1.4.2.1 Reserved Words

Register names are reserved and they may not be used as names of identifi-
ers, labels, etc. Mnemonic syntax names are not reserved.

Instruction Set Notes and Rules

1-15Terms, Symbols, and AbbreviationsSPRU374G

1.4.2.2 Mnemonic Syntax Roots

The following root words are used in the mnemonic syntax.

Root Meaning

ABS Absolute value

ADD Addition

AND Bitwise AND

B Branch

CALL Function call

CLR Assign the value to 0

CMP Compare

CNT Count

EXP Exponent

MAC Multiply and accumulate

MAR Modify auxiliary register content

MAS Multiply and subtract

MAX Maximum

MIN Minimum

MOV Move data

MPY Multiply

NEG Negate (2s complement)

NOT Bitwise complement (1s complement)

OR Bitwise OR

POP Pop from top of the stack

PSH Push to top of the stack

RET Return

ROL Rotate left

ROR Rotate right

RPT Repeat

SAT Saturate

SET Assign the value to 1

SFT Shift (left or right depending on sign of shift count)

SQA Square and add

SQR Square

SQS Square and subtract

SUB Subtraction

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-16 SPRU374G

SWAP Swap register contents

TST Test bit

XOR Bitwise exclusive-OR (XOR)

XPA Expand

XTR Extract

1.4.2.3 Mnemonic Syntax Prefixes

The following prefixes are used in the mnemonic syntax.

Prefix Meaning

A Instruction happens in address phase and is subject to circular
addressing effects. Also, it occurs in the DAGEN functional unit
and cannot be placed in parallel with any instruction that uses
dual addressing mode.

B Bit instruction. Note that B is also a root (branch), suffix (borrow),
and prefix (bit). The differences in context should prevent any
confusion.

1.4.2.4 Mnemonic Syntax Suffixes

Suffixes can be combined. For the multiply variant instructions, the combina-
tion order is: M K R {40, A, Z, or U}. This list does not imply that all of the suffixes
will ever be combined at once; but, when they are combined, they will be in this
order.

Suffix Meaning

40 Enables the M40 mode (all 40 bits of the accumulator count)

B Borrow

C Carry

CC Conditional

I Enable interrupts

K Multiply has a constant operand

L Logical shift (left or right depending on sign of shift count)

M This instruction has the option of assigning a memory operand to
T3; regardless of whether that assignment actually occurs.

R Round

S Signed shift (left or right depending on sign of shift count)

U Unsigned

V Absolute value

Z Delay on the memory operand

Instruction Set Notes and Rules

1-17Terms, Symbols, and AbbreviationsSPRU374G

1.4.2.5 Literal and Address Operands

Literals in the mnemonic strings are denoted as K or k fields. In the Smem
address modes that require an offset, the offset is also a literal (K16 or k3). 8-bit
and 16-bit literals are allowed to be linktime-relocatable; for other literals, the
value must be known at assembly time.

Addresses are the elements of the mnemonic strings denoted by P, L, and l.
Further, 16-bit and 24-bit absolute address Smem modes are addresses, as
is the dma Smem mode, denoted by the @ syntax. Addresses may be assem-
bly-time constants or symbolic linktime-known constants or expressions.

Both literals and addresses follow syntax rule 1. For addresses only, rules 2
and 3 also apply.

Rule 1

A valid address or literal is a # followed by one of the following:

� a number (#123)

� an identifier (#FOO)

� a parenthesized expression (#(FOO + 2))

Note that # is not used inside the expression.

Rule 2

When an address is used in a dma, the address does not need to have a lead-
ing #, be it a number, a symbol or an expression. These are all legal:

@#123

@123

@#foo

@foo

@#(foo+2)

@(foo+2)

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-18 SPRU374G

Rule 3

When used in contexts other than dma (such as branch targets or Smem-
absolute address), addresses generally need a leading #. As a convenience,
the # may be omitted in front of an identifier. These are all legal:

Branch Absolute Address
B #123 *(#123)

B #foo *(#foo)

B foo *(foo)

B #(foo+2) *(#(foo+2))

These are illegal:

B 123 *(123)

B (foo+2) *((foo+2))

1.4.2.6 Memory Operands

� Syntax of Smem is the same as that of Lmem or Baddr.

� In the following instruction syntaxes, Smem cannot reference to a
memory-mapped register (MMR). No instruction can access a byte within
a memory-mapped register. If Smem is an MMR in one of the following
syntaxes, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

MOV [uns(]high_byte(Smem)[)], dst

MOV [uns(]low_byte(Smem)[)], dst

MOV high_byte(Smem) << #SHIFTW, ACx

MOV low_byte(Smem) << #SHIFTW, ACx

MOV src, high_byte(Smem)

MOV src, low_byte(Smem)

� Syntax of Xmem is the same as that of Ymem.

� Syntax of coefficient operands, Cmem:

*CDP

*CDP+

*CDP–

*(CDP + T0), when C54CM = 0
*(CDP + AR0), when C54CM = 1

When an instruction uses a Cmem operand with paralleled instructions,
the pointer modification of the Cmem operand must be the same for both
instructions of the paralleled pair or the assembler generates an error. For
example:

MAC *AR2+, *CDP+, AC0
:: MAC *AR3+, *CDP+, AC1

Instruction Set Notes and Rules

1-19Terms, Symbols, and AbbreviationsSPRU374G

� An optional mmr prefix is allowed to be specified for indirect memory
operands, for example, mmr(*AR0). This is an assertion by you that this
is an access to a memory-mapped register. The assembler checks wheth-
er such access is legal in given circumstances.

The mmr prefix is supported for Xmem, Ymem, indirect Smem, indirect
Lmem, and Cmem operands. It is not supported for direct memory
operands; it is expected that an explicit mmap() instruction is used in
conjunction with direct memory operands to indicate MMR access.

Note that the mmr prefix is part of the syntax. It is an implementation
restriction that mmr cannot exchange positions with other prefixes around
the memory operand, such as dbl or uns. If several prefixes are specified,
mmr must be the innermost prefix. Thus, uns(mmr(*AR0)) is legal, but
mmr(uns(*AR0)) is not legal.

� The following indirect operands cannot be used for accesses to I/O
space. An instruction using one of these operands requires a 2-byte exten-
sion for the constant. This extension would prevent the use of the port()
qualifier needed to indicate an I/O-space access.

*ARn(#K16)

*+ARn(#K16)

*CDP(#K16)

*+CDP(#K16)

Also, the following instructions that include the delay operation cannot be
used for accesses to I/O space:

DELAY Smem

MACM[R]Z [T3 =] Smem, Cmem, ACx

Any illegal access to I/O space will generate a hardware bus-error
interrupt (BERRINT) to be handled by the CPU.

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-20 SPRU374G

1.4.2.7 Operand Modifiers

Operand modifiers look like function calls on operands. Note that uns is an
operand modifier meaning unsigned and that the instruction suffix U also
means unsigned. The operand modifier uns is used when the operand is
modified on the way to the rest of the operation (MAC). The instruction suffix
U is used when the whole operation is affected (MPYMU, CMPU, BCCU).

Modifier Meaning

dbl Access a true 32-bit memory operand

dual Access a 32-bit memory operand for use as two
independent 16-bit halves of the given operation

HI Access upper 16 bits of the accumulator

high_byte Access the high byte of the memory location

LO Access lower 16 bits of the accumulator

low_byte Access the low byte of the memory location

pair Dual register access

rnd Round

saturate Saturate

uns Unsigned operand (not used in MOV instructions)

When an instruction uses a Cmem operand with paralleled instructions and
the Cmem operand is defined as unsigned (uns), both Cmem operands of the
paralleled pair must be defined as unsigned (and reciprocally).

When an instruction uses both Xmem and Ymem operands with paralleled
instructions and the Xmem operand is defined as unsigned (uns), Ymem
operand must also be defined as unsigned (and reciprocally).

Nonrepeatable Instructions

1-21Terms, Symbols, and AbbreviationsSPRU374G

1.5 Nonrepeatable Instructions

Table 1–4 lists the instructions that cannot be used in a repeatable instruction.

Table 1–4. Nonrepeatable Instructions

Instruction Description Mnemonic Syntax That Cannot Be Repeated

ADD: Addition† ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy

ADD K16, Smem

AND: Bitwise AND† AND k16, Smem

B: Branch Unconditionally B ACx

B L7

B L16

B P24

BAND: Bitwise AND Memory with Immediate
Value and Compare to Zero†

BAND Smem, k16, TCx

BCC: Branch Conditionally BCC l4, cond

BCC L8, cond

BCC L16, cond

BCC P24, cond

BCC: Branch on Auxiliary Register Not Zero BCC L16, ARn_mod != #0

BCC: Compare and Branch BCC[U] L8, src RELOP K8

BCLR: Clear Status Register Bit BCLR k4, STx_55

BCLR f–name

BSET: Set Status Register Bit BSET k4, STx_55

BSET f–name

CALL: Call Unconditionally CALL ACx

CALL L16

CALL P24

CALLCC: Call Conditionally CALLCC L16, cond

CALLCC P24, cond

CMP: Compare Memory with Immediate Value† CMP Smem == K16, TCx

† This instruction may not be repeated when using the *(#k23) absolute addressing mode to access the memory operand
Smem.

Nonrepeatable Instructions

Terms, Symbols, and Abbreviations1-22 SPRU374G

Table 1–4. Nonrepeatable Instructions (Continued)

Instruction Description Mnemonic Syntax That Cannot Be Repeated

IDLE IDLE

INTR: Software Interrupt INTR k5

MAC: Multiply and Accumulate† MACMK[R] [T3 =]Smem, K8, [ACx,] ACy

MOV: Load Accumulator from Memory† MOV [uns(]Smem[)] << #SHIFTW, ACx

MOV: Load CPU Register from Memory MOV Smem, DP

MOV dbl(Lmem), RETA

MOV: Load CPU Register with Immediate
Value

MOV k16, DP

MOV: Load Memory with Immediate Value† MOV K16, Smem

MOV: Move CPU Register Content to
Auxiliary or Temporary Register

MOV RPTC, TAx

MOV: Store Accumulator Content to Memory† MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem

MOV [uns(][rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem

MOV: Store CPU Register Content to Memory MOV RETA, dbl(Lmem)

MPY: Multiply† MPYMK[R] [T3 =]Smem, K8, ACx

OR: Bitwise OR† OR k16, Smem

RESET: Software Reset RESET

RET: Return Unconditionally RET

RETCC: Return Conditionally RETCC cond

RETI: Return from Interrupt RETI

ROUND: Round Accumulator Content ROUND [ACx,] ACy

RPT: Repeat Single Instruction Unconditionally RPT k8

RPT k16

RPT CSR

RPTADD: Repeat Single Instruction
Unconditionally and Increment CSR

RPTADD CSR, TAx

RPTADD CSR, k4

† This instruction may not be repeated when using the *(#k23) absolute addressing mode to access the memory operand
Smem.

Nonrepeatable Instructions

1-23Terms, Symbols, and AbbreviationsSPRU374G

Table 1–4. Nonrepeatable Instructions (Continued)

Instruction Description Mnemonic Syntax That Cannot Be Repeated

RPTB: Repeat Block of Instructions
Unconditionally

RPTBLOCAL pmad

RPTB pmad

RPTCC: Repeat Single Instruction Conditionally RPTCC k8, cond

RPTSUB: Repeat Single Instruction
Unconditionally and Decrement CSR

RPTSUB CSR, k4

SUB: Subtraction† SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy

TRAP: Software Trap TRAP k5

XCC: Execute Conditionally XCC [label,]cond

XCCPART [label,]cond

XOR: Bitwise Exclusive OR (XOR)† XOR k16, Smem

† This instruction may not be repeated when using the *(#k23) absolute addressing mode to access the memory operand
Smem.

2-1

Parallelism Features and Rules

This chapter describes the parallelism features and rules of the
TMS320C55x DSP mnemonic instruction set.

Topic Page

2.1 Parallelism Features 2-2.

2.2 Parallelism Basics 2-3.

2.3 Resource Conflicts 2-4.

2.4 Soft-Dual Parallelism 2-5.

2.5 Execute Conditionally Instructions 2-6.

2.6 Other Exceptions 2-7.

Chapter 2

Parallelism Features

Parallelism Features and Rules2-2 SPRU374G

2.1 Parallelism Features

The C55x DSP architecture enables you to execute two instructions in
parallel within the same cycle of execution. The types of parallelism are:

� Built-in parallelism within a single instruction.

Some instructions perform two different operations in parallel. Double
colons, ::, are used to separate the two operations. This type of parallelism
is also called implied parallelism. For example:

MPY *AR0, *CDP, AC0
:: MPY *AR1, *CDP, AC1

This is a single instruction. The data
referenced by AR0 is multiplied by the
coefficient referenced by CDP. At the
same time, the data referenced by AR1
is multiplied by the same coefficient
(CDP).

� User-defined parallelism between two instructions.

Two instructions may be paralleled by you or the C compiler. The parallel
bars, ||, are used to separate the two instructions to be executed in parallel.
For example:

MPYM *AR1–, *CDP, AC1
|| XOR AR2, T1

The first instruction performs a
multiplication in the D-unit. The second
instruction performs a logical operation in
the A-unit ALU.

� Built-in parallelism can be combined with user-defined parallelism. For
example:

MPYM T3=*AR3+, AC1, AC2
|| MOV #5, AR1

The first instruction includes implied
parallelism. The second instruction is
paralleled by you.

Parallelism Basics

2-3Parallelism Features and RulesSPRU374G

2.2 Parallelism Basics

In the parallel pair, all of these constraints must be met:

� Total size of both instructions may not exceed 6 bytes.

� No resource conflicts as detailed in section 2.3.

� One instruction must have a parallel enable bit or the pair must qualify for
soft-dual parallelism as detailed in section 2.4.

� No memory operand may use an addressing mode that requires a
constant that is 16 bits or larger:

� *abs16(#k16)
� *(#k23)
� port(#k16)
� *ARn(K16)
� *+ARn(K16)
� *CDP(K16)
� *+CDP(K16)

� The following instructions cannot be in parallel:

� BCC P24,cond
� CALLCC P24, cond
� IDLE
� INTR k5
� RESET
� TRAP k5

� Neither instruction in the parallel pair can use any of these instruction or
operand modifiers:

� mmap()
� port()
� <instruction>.CR
� <instruction>.LR

� A particular register or memory location can only be written once per
pipeline phase. Violations of this rule take many forms. Loading the same
register twice is a simple case. Other cases include:

� Conflicting address mode modifications (for example, *AR2+ versus
*AR2–)

� Combining a SWAP instruction (modifies all of its registers) with any
other instruction that writes one of the same registers

Parallelism Basics

Parallelism Features and Rules2-4 SPRU374G

� Modifying the data stack pointer (SP) or system stack pointer (SSP) in
combination with:

� all Push to Top of Stack (PSH) instructions
� all Pop Top of Stack (POP) instructions
� all Call Conditionally (CALLCC) and Call Unconditionally (CALL)

instructions
� all Return Conditionally (RETCC), Return Unconditionally (RET),

and Return from Interrupt (RETI) instructions
� TRAP and INTR instructions

� When both instructions in a parallel pair modify a status bit, the value of
that status bit becomes undefined.

2.3 Resource Conflicts

Every instruction uses some set of operators, address generation units, and
buses, collectively called resources, while executing. To determine which
resources are used by a specific instruction, see Table 4–1. Two instructions
in parallel use all the resources of the individual instructions. A resource
conflict occurs when two instructions use a combination of resources that is
not supported on the C55x device. This section details the resource conflicts.

2.3.1 Operators

You may use each of these operators only once:

� D Unit ALU
� D Unit Shift
� D Unit Swap
� A Unit Swap
� A Unit ALU
� P Unit

For an instruction that uses multiple operators, any other instruction that uses
one or more of those same operators may not be placed in parallel.

2.3.2 Address Generation Units

You may use no more than the indicated number of data address generation
units:

� 2 Data Address (DA) Generation Units
� 1 Coefficient Address (CA) Generation Unit
� 1 Stack Address (SA) Generation Unit

Parallelism Basics / Resource Conflicts

Soft-Dual Parallelism

2-5Parallelism Features and RulesSPRU374G

2.3.3 Buses

You may use no more than the indicated number of buses:

� 2 Data Read (DR) Buses
� 1 Coefficient Read (CR) Bus
� 2 Data Write (DW) Buses
� 1 ACB Bus – brings D-unit registers to A-unit and P-unit operators
� 1 KAB Bus – Constant Bus
� 1 KDB Bus – Constant Bus

2.4 Soft-Dual Parallelism

Instructions that reference memory operands do not have parallel enable bits.
Two such instructions may still be combined with a type of parallelism called
soft-dual parallelism. The constraints of soft-dual parallelism are:

� Both memory operands must meet the constraints of the dual AR indirect
addressing mode (Xmem and Ymem), as described in section 3.4.2. The
operands available for the dual AR indirect addressing mode are:

� *ARn
� *ARn+
� *ARn–
� *(ARn + AR0)
� *(ARn + T0)
� *(ARn – AR0)
� *(ARn – T0)
� *ARn(AR0)
� *ARn(T0)
� *(ARn + T1)
� *(ARn – T1)

� Neither instruction can contain any of the following:

� Instructions embedding high_byte(Smem) and low_byte(Smem):

� MOV [uns(]high_byte(Smem)[)], dst
� MOV [uns(]low_byte(Smem)[)], dst
� MOV low_byte(Smem) << #SHIFTW, ACx
� MOV high_byte(Smem) << #SHIFTW, ACx
� MOV src, high_byte(Smem)
� MOV src, low_byte(Smem)

Resource Conflicts / Soft-Dual Parallelism

Execute Conditionally Instructions

Parallelism Features and Rules2-6 SPRU374G

� These instructions that read and write the same memory location:

� BCLR src, Smem
� BNOT src, Smem
� BSET src, Smem
� BTSTCLR k4, Smem, TCx
� BTSTNOT k4, Smem, TCx
� BTSTSET k4, Smem, TCx

� With regard to soft-dual parallelism, the AMAR Smem instruction has the
same properties as any memory reference instruction.

2.4.1 Soft-Dual Parallelism of MAR Instructions

Although the following modify auxiliary register (MAR) instructions do not
reference memory and do not have parallel enable bits, they may be combined
together or with any other memory reference instructions (not limited to Xmem/
Ymem) to form soft-dual parallelism.

� AADD TAx, TAy
� AADD k8, TAx
� AMOV TAx, TAy
� AMOV k8, TAx
� ASUB TAx, TAy
� ASUB k8, TAx

Note that this is not the full list of MAR instructions; instructions
AMOV D16, TAx and AMAR Smem are not included.

2.5 Execute Conditionally Instructions

The parallelization of the execute conditionally (XCC) instructions does not
adhere to the descriptions in this chapter. All of the specific instances of legal
XCC parallelism are covered in the XCC descriptions in Chapter 5.

Soft-Dual Parallelism / Execute Conditionally Instructions

Other Exceptions

2-7Parallelism Features and RulesSPRU374G

2.6 Other Exceptions

The following are other exceptions not covered elsewhere in this chapter.

� These instructions, when k4 is a value of 0–8, change the value of the XDP
register:

� BSET k4, ST0_55
� BCLR k4, ST0_55

Therefore, they may not be combined with any of these load-the-DP
instructions:

� MOV Smem, DP
� MOV dbl(Lmem), XDP
� POPBOTH XDP

� An instruction that reads the repeat counter register (RPTC) may not be
combined with any single-repeat instruction:

� RPT
� RPTADD
� RPTSUB
� RPTCC

3-1

Introduction to Addressing Modes

This chapter provides an introduction to the addressing modes of the
TMS320C55x DSP.

Topic Page

3.1 Introduction to the Addressing Modes 3-2.

3.2 Absolute Addressing Modes 3-3.

3.3 Direct Addressing Modes 3-4.

3.4 Indirect Addressing Modes 3-6.

3.5 Circular Addressing 3-20.

Chapter 3

Introduction to the Addressing Modes

Introduction to Addressing Modes3-2 SPRU374G

3.1 Introduction to the Addressing Modes

The TMS320C55x DSP supports three types of addressing modes that enable
flexible access to data memory, to memory-mapped registers, to register bits,
and to I/O space:

� The absolute addressing mode allows you to reference a location by
supplying all or part of an address as a constant in an instruction.

� The direct addressing mode allows you to reference a location using an
address offset.

� The indirect addressing mode allows you to reference a location using a
pointer.

Each addressing mode provides one or more types of operands. An instruction
that supports an addressing-mode operand has one of the following syntax
elements listed in Table 3–1.

Table 3–1. Addressing-Mode Operands

Syntax
Element(s) Description

Baddr When an instruction contains Baddr, that instruction can access one or two bits in an
accumulator (AC0–AC3), an auxiliary register (AR0–AR7), or a temporary register (T0–T3).
Only the register bit test/set/clear/complement instructions support Baddr. As you write one of
these instructions, replace Baddr with a compatible operand.

Cmem When an instruction contains Cmem, that instruction can access a single word (16 bits) of data
from data memory. As you write the instruction, replace Cmem with a compatible operand.

Lmem When an instruction contains Lmem, that instruction can access a long word (32 bits) of data
from data memory or from a memory-mapped registers. As you write the instruction, replace
Lmem with a compatible operand.

Smem When an instruction contains Smem, that instruction can access a single word (16 bits) of data
from data memory, from I/O space, or from a memory-mapped register. As you write the
instruction, replace Smem with a compatible operand.

Xmem and
Ymem

When an instruction contains Xmem and Ymem, that instruction can perform two simultaneous
16-bit accesses to data memory. As you write the instruction, replace Xmem and Ymem with
compatible operands.

Absolute Addressing Modes

3-3Introduction to Addressing ModesSPRU374G

3.2 Absolute Addressing Modes
Table 3–2 lists the absolute addressing modes available.

Table 3–2. Absolute Addressing Modes

Addressing Mode Description

k16 absolute This mode uses the 7-bit register called DPH (high part of the extended data page
register) and a 16-bit unsigned constant to form a 23-bit data-space address. This mode
is used to access a memory location or a memory-mapped register.

k23 absolute This mode enables you to specify a full address as a 23-bit unsigned constant. This
mode is used to access a memory location or a memory-mapped register.

I/O absolute This mode enables you to specify an I/O address as a 16-bit unsigned constant. This
mode is used to access a location in I/O space.

3.2.1 k16 Absolute Addressing Mode

The k16 absolute addressing mode uses the operand *abs16(#k16), where
k16 is a 16-bit unsigned constant. DPH (the high part of the extended data
page register) and k16 are concatenated to form a 23-bit data-space address.

An instruction using this addressing mode encodes the constant as a 2-byte
extension to the instruction. Because of the extension, an instruction using this
mode cannot be executed in parallel with another instruction.

3.2.2 k23 Absolute Addressing Mode

The k23 absolute addressing mode uses the operand *(#k23), where k23 is
a 23-bit unsigned constant. An instruction using this addressing mode
encodes the constant as a 3-byte extension to the instruction (the most-signifi-
cant bit of this 3-byte extension is discarded). Because of the extension, an
instruction using this mode cannot be executed in parallel with another
instruction.

Instructions using the operand *(#k23) to access the memory operand Smem
cannot be used in a repeatable instruction. See Table 1–4 for a list of these
instructions.

3.2.3 I/O Absolute Addressing Mode

The I/O absolute addressing mode uses the port() operand qualifier. Enclose
a 16-bit unsigned constant in the parentheses of the port() qualifier, port(#k16);
there is no preceding asterisk, *, in this operand.

An instruction using this addressing mode encodes the constant as a 2-byte
extension to the instruction. Because of the extension, an instruction using this
mode cannot be executed in parallel with another instruction. The DELAY and
MACMZ instructions cannot use this mode.

Direct Addressing Modes

Introduction to Addressing Modes3-4 SPRU374G

3.3 Direct Addressing Modes

Table 3–3 lists the direct addressing modes available.

Table 3–3. Direct Addressing Modes

Addressing Mode Description

DP direct This mode uses the main data page specified by DPH (high part of the extended data
page register) in conjunction with the data page register (DP). This mode is used to
access a memory location or a memory-mapped register.

SP direct This mode uses the main data page specified by SPH (high part of the extended stack
pointers) in conjunction with the data stack pointer (SP). This mode is used to access
stack values in data memory.

Register-bit direct This mode uses an offset to specify a bit address. This mode is used to access one
register bit or two adjacent register bits.

PDP direct This mode uses the peripheral data page register (PDP) and an offset to specify an I/O
address. This mode is used to access a location in I/O space.

The DP direct and SP direct addressing modes are mutually exclusive. The
mode selected depends on the CPL bit in status register ST1_55:

CPL Addressing Mode Selected

0 DP direct addressing mode

1 SP direct addressing mode

The register-bit and PDP direct addressing modes are independent of the CPL bit.

3.3.1 DP Direct Addressing Mode

When an instruction uses the DP direct addressing mode, a 23-bit address is
formed. The 7 MSBs are taken from DPH that selects one of the 128 main data
pages (0 through 127). The 16 LSBs are the sum of two values:

� The value in the data page register (DP). DP identifies the start address
of a 128-word local data page within the main data page. This start
address can be any address within the selected main data page.

� A 7-bit offset (Doffset) calculated by the assembler. The calculation
depends on whether you are accessing data memory or a memory-
mapped register (using the mmap() qualifier).

The concatenation of DPH and DP is called the extended data page register
(XDP). You can load DPH and DP individually, or you can use an instruction
that loads XDP.

Direct Addressing Modes

3-5Introduction to Addressing ModesSPRU374G

3.3.2 SP Direct Addressing Mode

When an instruction uses the SP direct addressing mode, a 23-bit address is
formed. The 7 MSBs are taken from SPH. The 16 LSBs are the sum of the SP
value and a 7-bit offset that you specify in the instruction. The offset can be a
value from 0 to 127. The concatenation of SPH and SP is called the extended
data stack pointer (XSP). You can load SPH and SP individually, or you can
use an instruction that loads XSP.

On the first main data page, addresses 00 0000h–00 005Fh are reserved for
the memory-mapped registers. If any of your data stack is in main data page 0,
make sure it uses only addresses 00 0060h–00 FFFFh on that page.

3.3.3 Register-Bit Direct Addressing Mode

In the register-bit direct addressing mode, the offset you supply in the operand,
@bitoffset, is an offset from the LSB of the register. For example, if bitoffset
is 0, you are addressing the LSB of a register. If bitoffset is 3, you are address-
ing bit 3 of the register.

Only the register bit test/set/clear/complement instructions support this mode.
These instructions enable you to access bits in the following registers only: the
accumulators (AC0–AC3), the auxiliary registers (AR0–AR7), and the tempo-
rary registers (T0–T3).

3.3.4 PDP Direct Addressing Mode

When an instruction uses the PDP direct addressing mode, a 16-bit I/O
address is formed. The 9 MSBs are taken from the 9-bit peripheral data page
register (PDP) that selects one of the 512 peripheral data pages (0 through
511). Each page has 128 words (0 to 127). You select a particular word by
specifying a 7-bit offset (Poffset) in the instruction. For example, to access the
first word on a page, use an offset of 0.

You must use a port() qualifier to indicate that you are accessing an I/O-space
location rather than a data-memory location. The port() qualifier must enclose
the qualified read or write operand.

Indirect Addressing Modes

Introduction to Addressing Modes3-6 SPRU374G

3.4 Indirect Addressing Modes

Table 3–4 list the indirect addressing modes available. You may use these
modes for linear addressing or circular addressing.

Table 3–4. Indirect Addressing Modes

Addressing Mode Description

AR indirect This mode uses one of eight auxiliary registers (AR0–AR7) to point to data. The way the
CPU uses the auxiliary register to generate an address depends on whether you are
accessing data space (memory or memory-mapped registers), individual register bits,
or I/O space.

Dual AR indirect This mode uses the same address-generation process as the AR indirect addressing
mode. This mode is used with instructions that access two or more data-memory
locations.

CDP indirect This mode uses the coefficient data pointer (CDP) to point to data. The way the CPU
uses CDP to generate an address depends on whether you are accessing data space
(memory or memory-mapped registers), individual register bits, or I/O space.

Coefficient indirect This mode uses the same address-generation process as the CDP indirect addressing
mode. This mode is available to support instructions that can access a coefficient in data
memory at the same time they access two other data-memory values using the dual AR
indirect addressing mode.

3.4.1 AR Indirect Addressing Mode

The AR indirect addressing mode uses an auxiliary register ARn (n = 0, 1, 2,
3, 4, 5, 6, or 7) to point to data. The way the CPU uses ARn to generate an
address depends on the access type:

For An Access To ... ARn Contains ...

Data space
(memory or registers)

The 16 least significant bits (LSBs) of a 23-bit address.
The 7 most significant bits (MSBs) are supplied by
ARnH, which is the high part of extended auxiliary
register XARn. For accesses to data space, use an
instruction that loads XARn; ARn can be individually
loaded, but ARnH cannot be loaded.

A register bit (or bit pair) A bit number. Only the register bit test/set/clear/com-
plement instructions support AR indirect accesses to
register bits. These instructions enable you to access
bits in the following registers only: the accumulators
(AC0–AC3), the auxiliary registers (AR0–AR7), and
the temporary registers (T0–T3).

I/O space A 16-bit I/O address.

Indirect Addressing Modes

3-7Introduction to Addressing ModesSPRU374G

The AR indirect addressing-mode operand available depends on the ARMS
bit of status register ST2_55:

ARMS DSP Mode or Control Mode

0 DSP mode. The CPU can use the list of DSP mode operands
(Table 3–5), which provide efficient execution of DSP-intensive
applications.

1 Control mode. The CPU can use the list of control mode operands
(Table 3–6), which enable optimized code size for control system
applications.

Table 3–5 (page 3-8) introduces the DSP operands available for the AR
indirect addressing mode. Table 3–6 (page 3-12) introduces the control mode
operands. When using the tables, keep in mind that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the appropriate 16-bit buffer start address register (BSA01,
BSA23, BSA45, or BSA67) is added only if circular addressing is activated
for the chosen pointer.

� All additions to and subtractions from the pointers are done modulo 64K.
You cannot address data across main data pages without changing the
value in the extended auxiliary register (XARn).

Indirect Addressing Modes

Introduction to Addressing Modes3-8 SPRU374G

Table 3–5. DSP Mode Operands for the AR Indirect Addressing Mode

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn+ ARn is incremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn + 1
If 32-bit/2-bit operation: ARn = ARn + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn– ARn is decremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*+ARn ARn is incremented before the address is generated:
If 16-bit/1-bit operation: ARn = ARn + 1
If 32-bit/2-bit operation: ARn = ARn + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*–ARn ARn is decremented before the address is generated:
If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + AR0) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

3-9Introduction to Addressing ModesSPRU374G

Table 3–5. DSP Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn + T0) The 16-bit signed constant in T0 is added to ARn after the
address is generated:
ARn = ARn + T0

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – AR0) The 16-bit signed constant in AR0 is subtracted from ARn
after the address is generated:
ARn = ARn – AR0

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T0) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(AR0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in AR0 is used as an offset from
that base pointer.

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T0 is used as an offset from that
base pointer.

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T1) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T1 is used as an offset from that
base pointer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

Introduction to Addressing Modes3-10 SPRU374G

Table 3–5. DSP Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn + T1) The 16-bit signed constant in T1 is added to ARn after the
address is generated:
ARn = ARn + T1

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T1) The 16-bit signed constant in T1 is subtracted from ARn
after the address is generated:
ARn = ARn – T1

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + AR0B) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0
(The addition is done with reverse carry propagation)

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular buff-
er.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0B) The 16-bit signed constant in T0 is added to ARn after the
address is generated:
ARn = ARn + T0
(The addition is done with reverse carry propagation)

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular buff-
er.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

3-11Introduction to Addressing ModesSPRU374G

Table 3–5. DSP Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn – AR0B) The 16-bit signed constant in AR0 is subtracted from ARn
after the address is generated:
ARn = ARn – AR0
(The subtraction is done with reverse carry propagation)

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular
buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T0B) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0
(The subtraction is done with reverse carry propagation)

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular
buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(#K16) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from that
base pointer.

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Be-
cause of the extension, an instruction using this operand
cannot be executed in parallel with another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*+ARn(#K16) The 16-bit signed constant (K16) is added to ARn before
the address is generated:
ARn = ARn + K16

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Be-
cause of the extension, an instruction using this operand
cannot be executed in parallel with another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

Indirect Addressing Modes

Introduction to Addressing Modes3-12 SPRU374G

Table 3–6. Control Mode Operands for the AR Indirect Addressing Mode

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn+ ARn is incremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn + 1
If 32-bit/2-bit operation: ARn = ARn + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn– ARn is decremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register
Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + AR0) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0) The 16-bit signed constant in T0 is added to ARn after
the address is generated:
ARn = ARn + T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – AR0) The 16-bit signed constant in AR0 is subtracted from
ARn after the address is generated:
ARn = ARn – AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

3-13Introduction to Addressing ModesSPRU374G

Table 3–6. Control Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn – T0) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(AR0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in AR0 is used as an offset from
that base pointer.

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T0 is used as an offset from
that base pointer.

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(#K16) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from
that base pointer.

Note: When an instruction uses this operand, the
constant is encoded in a 2-byte extension to the
instruction. Because of the extension, an instruction
using this operand cannot be executed in parallel with
another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*+ARn(#K16) The 16-bit signed constant (K16) is added to ARn
before the address is generated:
ARn = ARn + K16

Note: When an instruction uses this operand, the
constant is encoded in a 2-byte extension to the
instruction. Because of the extension, an instruction
using this operand cannot be executed in parallel with
another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*ARn(short(#k3)) ARn is not modified. ARn is used as a base pointer. The
3-bit unsigned constant (k3) is used as an offset from
that base pointer. k3 is in the range 1 to 7.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

Introduction to Addressing Modes3-14 SPRU374G

3.4.2 Dual AR Indirect Addressing Mode

The dual AR indirect addressing mode enables you to make two data-memory
accesses through the eight auxiliary registers, AR0–AR7. As with single AR
indirect accesses to data space, the CPU uses an extended auxiliary register
to create each 23-bit address. You can use linear addressing or circular
addressing for each of the two accesses.

You may use the dual AR indirect addressing mode for:

� Executing an instruction that makes two 16-bit data-memory accesses. In
this case, the two data-memory operands are designated in the instruction
syntax as Xmem and Ymem. For example:

ADD Xmem, Ymem, ACx

� Executing two instructions in parallel. In this case, both instructions must
each access a single memory value, designated in the instruction
syntaxes as Smem or Lmem. For example:

MOV Smem, dst
|| AND Smem, src, dst

The operand of the first instruction is treated as an Xmem operand, and
the operand of the second instruction is treated as a Ymem operand.

The available dual AR indirect operands are a subset of the AR indirect oper-
ands. The ARMS status bit does not affect the set of dual AR indirect operands
available.

Note:

The assembler rejects code in which dual operands use the same auxiliary
register with two different auxiliary register modifications. You can use the
same ARn for both operands, if one of the operands is *ARn or *ARn(T0);
neither modifies ARn.

Table 3–7 (page 3-15) introduces the operands available for the dual AR
indirect addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the appropriate 16-bit buffer start address register (BSA01,
BSA23, BSA45, or BSA67) is added only if circular addressing is activated
for the chosen pointer.

� All additions to and subtractions from the pointers are done modulo 64K.
You cannot address data across main data pages without changing the
value in the extended auxiliary register (XARn).

Indirect Addressing Modes

3-15Introduction to Addressing ModesSPRU374G

Table 3–7. Dual AR Indirect Operands

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn+ ARn is incremented after the address is generated:
If 16-bit operation: ARn = ARn + 1
If 32-bit operation: ARn = ARn + 2

Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn– ARn is decremented after the address is generated:
If 16-bit operation: ARn = ARn – 1
If 32-bit operation: ARn = ARn – 2

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn + AR0) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn + T0) The 16-bit signed constant in T0 is added to ARn after
the address is generated:
ARn = ARn + T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn – AR0) The 16-bit signed constant in AR0 is subtracted from
ARn after the address is generated:
ARn = ARn – AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn – T0) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn(AR0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in AR0 is used as an offset from
that base pointer.

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

Indirect Addressing Modes

Introduction to Addressing Modes3-16 SPRU374G

Table 3–7. Dual AR Indirect Operands (Continued)

Operand Supported Access TypesPointer Modification

*ARn(T0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T0 is used as an offset from
that base pointer.

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn + T1) The 16-bit signed constant in T1 is added to ARn after
the address is generated:
ARn = ARn + T1

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn – T1) The 16-bit signed constant in T1 is subtracted from ARn
after the address is generated:
ARn = ARn – T1

Data-memory
(Smem, Lmem, Xmem, Ymem)

3.4.3 CDP Indirect Addressing Mode

The CDP indirect addressing mode uses the coefficient data pointer (CDP) to
point to data. The way the CPU uses CDP to generate an address depends
on the access type:

For An Access To ... CDP Contains ...

Data space
(memory or registers)

The 16 least significant bits (LSBs) of a 23-bit address.
The 7 most significant bits (MSBs) are supplied by
CDPH, the high part of the extended coefficient data
pointer (XCDP).

A register bit (or bit pair) A bit number. Only the register bit test/set/clear/com-
plement instructions support CDP indirect accesses to
register bits. These instructions enable you to access
bits in the following registers only: the accumulators
(AC0–AC3), the auxiliary registers (AR0–AR7), and
the temporary registers (T0–T3).

I/O space A 16-bit I/O address.

Table 3–8 (page 3-17) introduces the operands available for the CDP indirect
addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the 16-bit buffer start address register BSAC is added only if
circular addressing is activated for CDP.

Indirect Addressing Modes

3-17Introduction to Addressing ModesSPRU374G

� All additions to and subtractions from CDP are done modulo 64K. You can-
not address data across main data pages without changing the value of
CDPH (the high part of the extended coefficient data pointer).

Table 3–8. CDP Indirect Operands

Operand Pointer Modification Supported Access Types

*CDP CDP is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP+ CDP is incremented after the address is generated:
If 16-bit/1-bit operation: CDP = CDP + 1
If 32-bit/2-bit operation: CDP = CDP + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP– CDP is decremented after the address is generated:
If 16-bit/1-bit operation: CDP = CDP – 1
If 32-bit/2-bit operation: CDP = CDP – 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP(#K16) CDP is not modified. CDP is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from that
base pointer.

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction.
Because of the extension, an instruction using this
operand cannot be executed in parallel with another
instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

*+CDP(#K16) The 16-bit signed constant (K16) is added to CDP before
the address is generated:
CDP = CDP + K16

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Be-
cause of the extension, an instruction using this operand
cannot be executed in parallel with another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

Indirect Addressing Modes

Introduction to Addressing Modes3-18 SPRU374G

3.4.4 Coefficient Indirect Addressing Mode

The coefficient indirect addressing mode uses the same address-generation
process as the CDP indirect addressing mode for data-space accesses. The
coefficient indirect addressing mode is supported by select memory-to-
memory move and memory initialization instructions and by the following
arithmetical instructions:

� Dual multiply (accumulate/subtract)
� Finite impulse response filter
� Multiply
� Multiply and accumulate
� Multiply and subtract

Instructions using the coefficient indirect addressing mode to access data are
mainly instructions performing operations with three memory operands per
cycle. Two of these operands (Xmem and Ymem) are accessed with the dual
AR indirect addressing mode. The third operand (Cmem) is accessed with the
coefficient indirect addressing mode. The Cmem operand is carried on the BB
bus.

Keep the following facts about the BB bus in mind as you use the coefficient
indirect addressing mode:

� The BB bus is not connected to external memory. If a Cmem operand is
accessed through the BB bus, the operand must be in internal memory.

� Although the following instructions access Cmem operands, they do not
use the BB bus to fetch the 16-bit or 32-bit Cmem operand.

Instruction
Syntax

Description of
Cmem Access

Bus Used to
Access Cmem

MOV Cmem, Smem 16-bit read from Cmem DB

MOV Smem, Cmem 16-bit write to Cmem EB

MOV Cmem, dbl(Lmem) 32-bit read from Cmem CB for most significant
word (MSW)
DB for least significant
word (LSW)

MOV dbl(Lmem), Cmem 32-bit write to Cmem FB for MSW
EB for LSW

Indirect Addressing Modes

3-19Introduction to Addressing ModesSPRU374G

Consider the following instruction syntax. In one cycle, two multiplications can
be performed in parallel. One memory operand (Cmem) is common to both
multiplications, while dual AR indirect operands (Xmem and Ymem) are used
for the other values in the multiplication.

MPY Xmem, Cmem, ACx
:: MPY Ymem, Cmem, ACy

To access three memory values (as in the above example) in a single cycle,
the value referenced by Cmem must be located in a memory bank different
from the one containing the Xmem and Ymem values.

Table 3–9 introduces the operands available for the coefficient indirect
addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the 16-bit buffer start address register BSAC is added only if
circular addressing is activated for CDP.

� All additions to and subtractions from CDP are done modulo 64K. You can-
not address data across main data pages without changing the value of
CDPH (the high part of the extended coefficient data pointer).

Table 3–9. Coefficient Indirect Operands

Operand Pointer Modification Supported Access Type

*CDP CDP is not modified.1 Data-memory

*CDP+ CDP is incremented after the address is generated:
If 16-bit operation: CDP = CDP + 1
If 32-bit operation: CDP = CDP + 2

Data-memory

*CDP– CDP is decremented after the address is generated:
If 16-bit operation: CDP = CDP – 1
If 32-bit operation: CDP = CDP – 2

Data-memory

*(CDP + AR0) The 16-bit signed constant in AR0 is added to CDP after the
address is generated:
CDP = CDP + AR0

This operand is available when C54CM = 1. This operand is
usable when .c54cm_on is active at assembly time.

Data-memory

*(CDP + T0) The 16-bit signed constant in T0 is added to CDP after the
address is generated:
CDP = CDP + T0

This operand is available when C54CM = 0. This operand is
usable when .c54cm_off is active at assembly time.

Data-memory

Circular Addressing

Introduction to Addressing Modes3-20 SPRU374G

3.5 Circular Addressing

Circular addressing can be used with any of the indirect addressing modes.
Each of the eight auxiliary registers (AR0–AR7) and the coefficient data point-
er (CDP) can be independently configured to be linearly or circularly modified
as they act as pointers to data or to register bits, see Table 3–10. This configu-
ration is done with a bit (ARnLC) in status register ST2_55. To choose circular
modification, set the bit.

Table 3–10. Circular Addressing Pointers

Pointer
Linear/Circular Con-

figuration Bit
Supplier of

Main Data Page
Buffer Start Address

Register
Buffer Size

Register

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

CDP

ST2_55(0) = AR0LC

ST2_55(1) = AR1LC

ST2_55(2) = AR2LC

ST2_55(3) = AR3LC

ST2_55(4) = AR4LC

ST2_55(5) = AR5LC

ST2_55(6) = AR6LC

ST2_55(7) = AR7LC

ST2_55(8) = CDPLC

AR0H

AR1H

AR2H

AR3H

AR4H

AR5H

AR6H

AR7H

CDPH

BSA01

BSA01

BSA23

BSA23

BSA45

BSA45

BSA67

BSA67

BSAC

BK03

BK03

BK03

BK03

BK47

BK47

BK47

BK47

BKC

Each auxiliary register ARn has its own linear/circular configuration bit in ST2_55:

ARnLC ARn Is Used For ...

0 Linear addressing

1 Circular addressing

The CDPLC bit in status register ST2_55 configures the DSP to use CDP for
linear addressing or circular addressing:

CDPLC CDP Is Used For ...

0 Linear addressing

1 Circular addressing

You can use the circular addressing instruction qualifier, .CR, if you want every
pointer used by the instruction to be modified circularly, just add .CR to the end
of the instruction mnemonic (for example, ADD.CR). The circular addressing
instruction qualifier overrides the linear/circular configuration in ST2_55.

4-1

Instruction Set Summary

This chapter provides a summary of the TMS320C55x DSP mnemonic
instruction set (Table 4–1). With each instruction, you will find the availability
of a parallel enable bit, word count (size), cycle time, what pipeline phase the
instruction executes, in what operator unit the instruction executes, how many
of each address generation unit is used, and how many of each bus is used.

Table 4–1 does not list all of the resources that may be used by an instruction,
it only lists those that may result in a resource conflict, and thus prevent two
instructions from being in parallel. If an instruction lists nothing in a particular
column, it means that particular resource will never be in conflict for that
instruction.

The column heads of Table 4–1 are:

� Instruction: In cases where the resource usage of an instruction varies
with the kinds of registers, you see the notation <name>-AU for A-unit
registers and <name>-DU for D-unit registers. So, dst-AU is a destination
that is an A-unit register and src-DU is a source that is a D-unit register.
In the few cases where that notation is insufficient, you see the cases listed
in the Notes column.

� E: Whether that instruction has a parallel enable bit

� S: The size of the instruction in bytes

� C: Number of cycles required for the instruction

� Pipe: The pipeline phase in which the instruction executes:

Name Phase

AD Address

D Decode

R Read

X Execute

� Operator: Which operator(s) are used by this instruction. When an instruc-
tion uses multiple operators, any other instruction that uses one or more
of those same operators may not be placed in parallel.

Chapter 4

Instruction Set Summary

Instruction Set Summary4-2 SPRU374G

� Address Generation Unit: How many of each address generation unit is
used. The address generation units are:

Name Unit

DA Data Address Generation Unit

CA Coefficient Address Generation Unit

SA Stack Address Generation Unit

� Buses: How many of each bus is used. The buses are:

Name Bus

DR Data Read

CR Coefficient Read

DW Data Write

ACB Brings D-unit registers to A-unit and P-unit operators

KAB Constants

KDB Constants

Instruction S
et S

um
m

ary

4-3
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary

Address
Generation Unit Buses

No. Instruction E S C Pipe Operator DA CA SA DR CR DW ACB KAB KDB Notes

AADD: Modify Auxiliary or Temporary Register Content by Addition (page 5-2)

[1] AADD TAx, TAy N 3 1 AD 1

[2] AADD P8, TAx N 3 1 AD 1 1 .

AADD: Modify Data Stack Pointer (SP) (page 5-6)

AADD K8, SP Y 2 1 AD 1 .

ABDST: Absolute Distance (page 5-7)

ABDST Xmem, Ymem, ACx, ACy N 4 1 X DU_ALU 2 . . 2

ABS: Absolute Value (page 5-9)

ABS [src-AU,] dst-AU Y 2 1 X AU_ALU

ABS [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

ABS [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

ADD: Addition (page 5-12)

[1] ADD [src-AU,] dst-AU Y 2 1 X AU_ALU

ADD [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

ADD [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

[2] ADD k4, dst-AU Y 2 1 X AU_ALU 1

ADD k4, dst-DU Y 2 1 X DU_ALU 1

[3] ADD K16, [src-AU,] dst-AU N 4 1 X AU_ALU 1

ADD K16, [src-DU,] dst-AU N 4 1 X AU_ALU 1 . 1

ADD K16, [src,] dst-DU N 4 1 X DU_ALU 1 See Note 1.

[4] ADD Smem, [src-AU,] dst-AU N 3 1 X AU_ALU 1 . . 1

ADD Smem, [src-DU,] dst-AU N 3 1 X AU_ALU 1 . . 1 . . 1 . .

ADD Smem, [src,] dst-DU N 3 1 X DU_ALU 1 . . 1 See Note 1.

[5] ADD ACx << Tx, ACy Y 2 1 X DU_ALU +
DU_SHIFT

.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-4
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[6] ADD ACx << #SHIFTW, ACy Y 3 1 X DU_ALU +
DU_SHIFT

.

[7] ADD K16 << #16, [ACx,] ACy N 4 1 X DU_ALU 1

[8] ADD K16 << #SHFT, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

. 1

[9] ADD Smem << Tx, [ACx,] ACy N 3 1 X DU_ALU +
DU_SHIFT

1 . . 1

[10] ADD Smem << #16, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[11] ADD [uns(]Smem[)], CARRY, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[12] ADD [uns(]Smem[)], [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[13] ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

1 . . 1

[14] ADD dbl(Lmem), [ACx,] ACy N 3 1 X DU_ALU 1 . . 2

[15] ADD Xmem, Ymem, ACx N 3 1 X DU_ALU 2 . . 2

[16] ADD K16, Smem N 4 1 X DU_ALU 1 . . 1 . 1 . . 1

ADDV: Addition with Absolute Value (page 5-52)

ADD[R]V [ACx,] ACy Y 2 1 X DU_ALU

ADD: Dual 16-Bit Additions (page 5-33)

[1] ADD dual(Lmem), [ACx,] ACy N 3 1 X DU_ALU 1 . . 2

[2] ADD dual(Lmem), Tx, ACx N 3 1 X DU_ALU 1 . . 2

ADD::MOV: Addition with Parallel Store Accumulator Content to Memory (page 5-38)

ADD Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 . . .

ADDSUB: Dual 16-Bit Addition and Subtraction (page 5-40)

[1] ADDSUB Tx, Smem, ACx N 3 1 X DU_ALU 1 . . 1

[2] ADDSUB Tx, dual(Lmem), ACx N 3 1 X DU_ALU 1 . . 2

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-5
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

ADDSUBCC: Addition or Subtraction Conditionally (page 5-45)

[1] ADDSUBCC Smem, ACx, TC1, ACy N 3 1 X DU_ALU 1 . . 1

[2] ADDSUBCC Smem, ACx, TC2, ACy N 3 1 X DU_ALU 1 . . 1

ADDSUBCC: Addition, Subtraction, or Move Accumulator Content Conditionally (page 5-47)

ADDSUBCC Smem, ACx, TC1, TC2, ACy N 3 1 X DU_ALU 1 . . 1

ADDSUB2CC: Addition or Subtraction Conditionally with Shift (page 5-49)

ADDSUB2CC Smem, ACx, Tx, TC1, TC2, ACy N 3 1 X DU_ALU +
DU_SHIFT

1 . . 1

AMAR: Modify Auxiliary Register Content (page 5-54)

AMAR Smem N 2 1 AD 1 . . 1

AMAR: Modify Extended Auxiliary Register Content (page 5-56)

AMAR Smem, XAdst N 3 1 AD 1 . . 1

AMAR: Parallel Modify Auxiliary Register Contents (page 5-57)

AMAR Xmem, Ymem, Cmem N 4 1 X 2 1 . 2 1

AMAR::MAC: Modify Auxiliary Register Content with Parallel Multiply and Accumulate (page 5-58)

[1] AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

N 4 1 X DU_ALU 2 1 . 2 1

[2] AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx >> #16

N 4 1 X DU_ALU 2 1 . 2 1

AMAR::MAS: Modify Auxiliary Register Content with Parallel Multiply and Subtract (page 5-63)

AMAR Xmem
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

N 4 1 X DU_ALU 2 1 . 2 1

AMAR::MPY: Modify Auxiliary Register Content with Parallel Multiply (page 5-65)

AMAR Xmem
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

N 4 1 X DU_ALU 2 1 . 2 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-6
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

AMOV: Load Extended Auxiliary Register with Immediate Value (page 5-67)

AMOV k23, XAdst N 6 1 AD 1 . . 1

AMOV: Modify Auxiliary or Temporary Register Content (page 5-68)

[1] AMOV TAx, TAy N 3 1 AD 1

[2] AMOV P8, TAx N 3 1 AD 1 1 .

[3] AMOV D16, TAx N 4 1 AD 1 1 .

AND: Bitwise AND (page 5-72)

[1] AND src-AU, dst-AU Y 2 1 X AU_ALU

AND src-DU, dst-AU Y 2 1 X AU_ALU 1 . .

AND src, dst-DU Y 2 1 X DU_ALU See Note 1.

[2] AND k8, src-AU, dst-AU Y 3 1 X AU_ALU 1

AND k8, src-DU, dst-AU Y 3 1 X AU_ALU 1 . 1

AND k8, src, dst-DU Y 3 1 X DU_ALU 1 See Note 1.

[3] AND k16, src-AU, dst-AU N 4 1 X AU_ALU 1

AND k16, src-DU, dst-AU N 4 1 X AU_ALU 1 . 1

AND k16, src, dst-DU N 4 1 X DU_ALU 1 See Note 1.

[4] AND Smem, src-AU, dst-AU N 3 1 X AU_ALU 1 . . 1

AND Smem, src-DU, dst-AU N 3 1 X AU_ALU 1 . . 1 . . 1 . .

AND Smem, src, dst-DU N 3 1 X DU_ALU 1 . . 1 See Note 1.

[5] AND ACx << #SHIFTW[, ACy] Y 3 1 X DU_ALU +
DU_SHIFT

.

[6] AND k16 << #16, [ACx,] ACy N 4 1 X DU_ALU 1

[7] AND k16 << #SHFT, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

. 1

[8] AND k16, Smem N 4 1 X AU_ALU 1 . . 1 . 1 . . 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-7
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

ASUB: Modify Auxiliary or Temporary Register Content by Subtraction (page 5-81)

[1] ASUB TAx, TAy N 3 1 AD 1

[2] ASUB P8, TAx N 3 1 AD 1 1 .

B: Branch Unconditionally (page 5-85)

[1] B ACx N 2 10 X P_UNIT 1 . .

[2] B L7 Y 2 6† AD P_UNIT

[3] B L16 Y 3 6† AD P_UNIT

[4] B P24 N 4 5 D P_UNIT

† These instructions execute in 3 cycles if the addressed instruction is in the instruction buffer unit.

BAND: Bitwise AND Memory with Immediate Value and Compare to Zero (page 5-89)

[1] BAND Smem, k16, TC1 N 4 1 X AU_ALU 1 . . 1 1

[2] BAND Smem, k16, TC2 N 4 1 X AU_ALU 1 . . 1 1

BCC: Branch Conditionally (page 5-90)

[1] BCC l4, cond N 2 6/5† R P_UNIT

[2] BCC L8, cond Y 3 6/5† R P_UNIT

[3] BCC L16, cond N 4 6/5† R P_UNIT

[4] BCC P24, cond N 5 5/5† R P_UNIT

† x/y cycles: x cycles = condition true, y cycles = condition false

BCC: Branch on Auxiliary Register Not Zero (page 5-94)

BCC L16, ARn_mod ! = #0 N 4 6/5† AD P_UNIT 1

† x/y cycles: x cycles = condition true, y cycles = condition false

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-8
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

BCC: Compare and Branch (page 5-97)

BCC[U] L8, src-AU RELOP K8 N 4 7/6† X AU_ALU +
P_UNIT

. 1

BCC[U] L8, src-DU RELOP K8 N 4 7/6† X DU_ALU +
P_UNIT

. 1

† x/y cycles: x cycles = condition true, y cycles = condition false

BCLR: Clear Accumulator, Auxiliary, or Temporary Register Bit (page 5-100)

BCLR Baddr, src-AU N 3 1 X AU_ALU 1

BCLR Baddr, src-DU N 3 1 X DU_ALU 1

BCLR: Clear Memory Bit (page 5-101)

BCLR src, Smem N 3 1 X AU_ALU 1 . . 1 . 1 . . .

BCLR: Clear Status Register Bit (page 5-102)

[1] BCLR k4, ST0_55 Y 2 1 X AU_ALU 1

[2] BCLR k4, ST1_55 Y 2 1 X AU_ALU 1

[3] BCLR k4, ST2_55 Y 2 1 X AU_ALU 1

[4] BCLR k4, ST3_55 Y 2 1† X AU_ALU 1

[5] BCLR f–name Y 2 1† X AU_ALU 1

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed and the instruction is executed in 5 cycles regardless of the instruction context.

BCNT: Count Accumulator Bits (page 5-105)

[1] BCNT ACx, ACy, TC1, Tx Y 3 1 X DU_ALU +
DU_SHIFT
+ AU_ALU

. 1 . .

[2] BCNT ACx, ACy, TC2, Tx Y 3 1 X DU_ALU +
DU_SHIFT
+ AU_ALU

. 1 . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-9
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

BFXPA: Expand Accumulator Bit Field (page 5-106)

BFXPA k16, ACx, dst-AU N 4 1 X DU_ALU +
DU_SHIFT
+ AU_ALU

. 1 . 1

BFXPA k16, ACx, dst-DU N 4 1 X DU_ALU +
DU_SHIFT

. 1

BFXTR: Extract Accumulator Bit Field (page 5-107)

BFXTR k16, ACx, dst-AU N 4 1 X DU_ALU +
DU_SHIFT
+ AU_ALU

. 1 . 1

BFXTR k16, ACx, dst-DU N 4 1 X DU_ALU +
DU_SHIFT

. 1

BNOT: Complement Accumulator, Auxiliary, or Temporary Register Bit (page 5-108)

BNOT Baddr, src-AU N 3 1 X AU_ALU 1

BNOT Baddr, src-DU N 3 1 X DU_ALU 1

BNOT: Complement Memory Bit (page 5-109)

BNOT src, Smem N 3 1 X AU_ALU 1 . . 1 . 1 . . .

BSET: Set Accumulator, Auxiliary, or Temporary Register Bit (page 5-110)

BSET Baddr, src-AU N 3 1 X AU_ALU 1

BSET Baddr, src-DU N 3 1 X DU_ALU 1

BSET: Set Memory Bit (page 5-111)

BSET src, Smem N 3 1 X AU_ALU 1 . . 1 . 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-10
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

BSET: Set Status Register Bit (page 5-112)

[1] BSET k4, ST0_55 Y 2 1 X AU_ALU 1

[2] BSET k4, ST1_55 Y 2 1 X AU_ALU 1

[3] BSET k4, ST2_55 Y 2 1 X AU_ALU 1

[4] BSET k4, ST3_55 Y 2 1† X AU_ALU 1

[5] BSET f–name Y 2 1† X AU_ALU 1

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed and the instruction is executed in 5 cycles regardless of the instruction context.

BTST: Test Accumulator, Auxiliary, or Temporary Register Bit (page 5-115)

[1] BTST Baddr, src-AU, TC1 N 3 1 X AU_ALU 1

BTST Baddr, src-DU, TC1 N 3 1 X DU_ALU 1

[2] BTST Baddr, src-AU, TC2 N 3 1 X AU_ALU 1

BTST Baddr, src-DU, TC2 N 3 1 X DU_ALU 1

BTST: Test Memory Bit (page 5-117)

[1] BTST src, Smem, TCx N 3 1 X AU_ALU 1 . . 1

[2] BTST k4, Smem, TCx N 3 1 X AU_ALU 1 . . 1 1

BTSTCLR: Test and Clear Memory Bit (page 5-120)

[1] BTSTCLR k4, Smem, TC1 N 3 1 X AU_ALU 1 . . 1 . 1 . . 1

[2] BTSTCLR k4, Smem, TC2 N 3 1 X AU_ALU 1 . . 1 . 1 . . 1

BTSTNOT: Test and Complement Memory Bit (page 5-121)

[1] BTSTNOT k4, Smem, TC1 N 3 1 X AU_ALU 1 . . 1 . 1 . . 1

[2] BTSTNOT k4, Smem, TC2 N 3 1 X AU_ALU 1 . . 1 . 1 . . 1

BTSTP: Test Accumulator, Auxiliary, or Temporary Register Bit Pair (page 5-122)

BTSTP Baddr, src-AU N 3 1 X AU_ALU 1

BTSTP Baddr, src-DU N 3 1 X DU_ALU 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-11
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

BTSTSET: Test and Set Memory Bit (page 5-124)

[1] BTSTSET k4, Smem, TC1 N 3 1 X AU_ALU 1 . . 1 . 1 . . 1

[2] BTSTSET k4, Smem, TC2 N 3 1 X AU_ALU 1 . . 1 . 1 . . 1

CALL: Call Unconditionally (page 5-125)

[1] CALL ACx N 2 10 X P_UNIT 1 . 1 . . 2 1 . .

[2] CALL L16 Y 3 6 AD P_UNIT 1 . 1 . . 2 . . .

[3] CALL P24 N 4 5 D P_UNIT 1 . 1 . . 2 . . .

CALLCC: Call Conditionally (page 5-129)

[1] CALLCC L16, cond N 4 6/5† R P_UNIT 1 . 1 . . 2 . . .

[2] CALLCC P24, cond N 5 5/5† R P_UNIT 1 . 1 . . 2 . . .

† x/y cycles: x cycles = condition true, y cycles = condition false

CMP: Compare Memory with Immediate Value (page 5-135)

[1] CMP Smem == K16, TC1 N 4 1 X AU_ALU 1 . . 1 1

[2] CMP Smem == K16, TC2 N 4 1 X AU_ALU 1 . . 1 1

CMP: Compare Accumulator, Auxiliary, or Temporary Register Content (page 5-137)

[1] CMP[U] src-AU RELOP dst-AU, TC1 Y 3 1 X AU_ALU

CMP[U] src RELOP dst, TC1 Y 3 1 X AU_ALU 1 . . See Note 2.

CMP[U] src-DU RELOP dst-DU, TC1 Y 3 1 X DU_ALU

[2] CMP[U] src-AU RELOP dst-AU, TC2 Y 3 1 X AU_ALU

CMP[U] src RELOP dst, TC2 Y 3 1 X AU_ALU 1 . . See Note 2.

CMP[U] src-DU RELOP dst-DU, TC2 Y 3 1 X DU_ALU

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-12
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

CMPAND: Compare Accumulator, Auxiliary, or Temporary Register Content with AND (page 5-139)

[1] CMPAND[U] src-AU RELOP dst-AU, TCy, TCx Y 3 1 X AU_ALU

CMPAND[U] src RELOP dst, TCy, TCx Y 3 1 X AU_ALU 1 . . See Note 2.

CMPAND[U] src-DU RELOP dst-DU, TCy, TCx Y 3 1 X DU_ALU

[2] CMPAND[U] src-AU RELOP dst-AU, !TCy, TCx Y 3 1 X AU_ALU

CMPAND[U] src RELOP dst, !TCy, TCx Y 3 1 X AU_ALU 1 . . See Note 2.

CMPAND[U] src-DU RELOP dst-DU, !TCy, TCx Y 3 1 X DU_ALU

CMPOR: Compare Accumulator, Auxiliary, or Temporary Register Content with OR (page 5-144)

[1] CMPOR[U] src-AU RELOP dst-AU, TCy, TCx Y 3 1 X AU_ALU

CMPOR[U] src RELOP dst, TCy, TCx Y 3 1 X AU_ALU 1 . . See Note 2.

CMPOR[U] src-DU RELOP dst-DU, TCy, TCx Y 3 1 X DU_ALU

[2] CMPOR[U] src-AU RELOP dst-AU, !TCy, TCx Y 3 1 X AU_ALU

CMPOR[U] src RELOP dst, !TCy, TCx Y 3 1 X AU_ALU 1 . . See Note 2.

CMPOR[U] src-DU RELOP dst-DU, !TCy, TCx Y 3 1 X DU_ALU

.CR: Circular Addressing Qualifier (page 5-149)

<instruction>.CR N 1 1 AD

DELAY: Memory Delay (page 5-150)

DELAY Smem N 2 1 X 2 1 . 1 1 1 . . .

EXP: Compute Exponent of Accumulator Content (page 5-151)

EXP ACx, Tx Y 3 1 X DU_ALU +
DU_SHIFT
+ AU_ALU

. 1 . .

FIRSADD: Finite Impulse Response Filter, Symmetrical (page 5-152)

FIRSADD Xmem, Ymem, Cmem, ACx, ACy N 4 1 X DU_ALU 2 1 . 2 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-13
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

FIRSSUB: Finite Impulse Response Filter, Antisymmetrical (page 5-154)

FIRSSUB Xmem, Ymem, Cmem, ACx, ACy N 4 1 X DU_ALU 2 1 . 2 1

IDLE (page 5-156)

IDLE N 4 ? D P_UNIT

INTR: Software Interrupt (page 5-157)

INTR k5 N 2 3 D P_UNIT 1 . 1 . . 2 . . .

LMS: Least Mean Square (page 5-159)

LMS Xmem, Ymem, ACx, ACy N 4 1 X DU_ALU 2 . . 2

.LR: Linear Addressing Qualifier (page 5-161)

<instruction>.LR N 1 1 AD

MAC: Multiply and Accumulate (page 5-162)

[1] MAC[R] ACx, Tx, ACy[, ACy] Y 2 1 X DU_ALU

[2] MAC[R] ACy, Tx, ACx, ACy Y 2 1 X DU_ALU

[3] MACK[R] Tx, K8, [ACx,] ACy Y 3 1 X DU_ALU 1

[4] MACK[R] Tx, K16, [ACx,] ACy N 4 1 X DU_ALU 1

[5] MACM[R] [T3 =]Smem, Cmem, ACx N 3 1 X DU_ALU 1 1 . 1 1

[6] MACM[R] [T3 =]Smem, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[7] MACM[R] [T3 =]Smem, Tx, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[8] MACMK[R] [T3 =]Smem, K8, [ACx,] ACy N 4 1 X DU_ALU 1 . . 1 1

[9] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,] ACy N 4 1 X DU_ALU 2 . . 2

[10] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx >> #16[, ACy] N 4 1 X DU_ALU 2 . . 2

MACMZ: Multiply and Accumulate with Parallel Delay (page 5-177)

MACM[R]Z [T3 =]Smem, Cmem, ACx N 3 1 X DU_ALU 2 1 . 1 1 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-14
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

MAC::MAC: Parallel Multiply and Accumulates (page 5-179)

[1] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

[2] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

[3] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

N 4 1 X DU_ALU 2 1 . 2 1

MAC::MPY: Multiply and Accumulate with Parallel Multiply (page 5-186)

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

MACM::MOV: Multiply and Accumulate with Parallel Load Accumulator from Memory (page 5-189)

MACM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

N 4 1 X DU_ALU 2 . . 2

MACM::MOV: Multiply and Accumulate with Parallel Store Accumulator Content to Memory (page 5-191)

MACM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 . . .

MANT::NEXP: Compute Mantissa and Exponent of Accumulator Content (page 5-193)

MANT ACx, ACy
:: NEXP ACx, Tx

Y 3 1 X DU_ALU +
DU_SHIFT
+ AU_ALU

. 1 . .

MAS: Multiply and Subtract (page 5-195)

[1] MAS[R] Tx, [ACx,] ACy Y 2 1 X DU_ALU

[2] MASM[R] [T3 =]Smem, Cmem, ACx N 3 1 X DU_ALU 1 1 . 1 1

[3] MASM[R] [T3 =]Smem, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[4] MASM[R] [T3 =]Smem, Tx, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[5] MASM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,] ACy N 4 1 X DU_ALU 2 . . 2

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-15
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

MAS::MAC: Multiply and Subtract with Parallel Multiply and Accumulate (page 5-204)

[1] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

[2] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

N 4 1 X DU_ALU 2 1 . 2 1

MAS::MAS: Parallel Multiply and Subtracts (page 5-209)

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

MAS::MPY: Multiply and Subtract with Parallel Multiply (page 5-212)

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

MASM::MOV: Multiply and Subtract with Parallel Load Accumulator from Memory (page 5-215)

MASM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

N 4 1 X DU_ALU 2 . . 2

MASM::MOV: Multiply and Subtract with Parallel Store Accumulator Content to Memory (page 5-217)

MASM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 . . .

MAX: Compare Accumulator, Auxiliary, or Temporary Register Content Maximum (page 5-219)

MAX [src-AU,] dst-AU Y 2 1 X AU_ALU

MAX [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

MAX [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

MAXDIFF: Compare and Select Accumulator Content Maximum (page 5-222)

[1] MAXDIFF ACx, ACy, ACz, ACw Y 3 1 X DU_ALU

[2] DMAXDIFF ACx, ACy, ACz, ACw, TRNx Y 3 1 X DU_ALU

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-16
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

MIN: Compare Accumulator, Auxiliary, or Temporary Register Content Minimum (page 5-228)

MIN [src-AU,] dst-AU Y 2 1 X AU_ALU

MIN [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

MIN [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

MINDIFF: Compare and Select Accumulator Content Minimum (page 5-231)

[1] MINDIFF ACx, ACy, ACz, ACw Y 3 1 X DU_ALU

[2] DMINDIFF ACx, ACy, ACz, ACw, TRNx Y 3 1 X DU_ALU

mmap: Memory-Mapped Register Access Qualifier (page 5-237)

mmap N 1 1 D

MOV: Load Accumulator from Memory (page 5-239)

[1] MOV [rnd(]Smem << Tx[)], ACx N 3 1 X DU_ALU +
DU_SHIFT

1 . . 1

[2] MOV low_byte(Smem) << #SHIFTW, ACx N 3 1 X DU_ALU +
DU_SHIFT

1 . . 1

[3] MOV high_byte(Smem) << #SHIFTW, ACx N 3 1 X DU_ALU +
DU_SHIFT

1 . . 1

[4] MOV Smem << #16, ACx N 2 1 X DU_ALU 1 . . 1

[5] MOV [uns(]Smem[)], ACx N 3 1 X 1 . . 1

[6] MOV [uns(]Smem[)] << #SHIFTW, ACx N 4 1 X DU_ALU +
DU_SHIFT

1 . . 1

[7] MOV[40] dbl(Lmem), ACx N 3 1 X 1 . . 2

[8] MOV Xmem, Ymem, ACx N 3 1 X 2 . . 2

MOV: Load Accumulator Pair from Memory (page 5-248)

[1] MOV dbl(Lmem), pair(HI(ACx)) N 3 1 X 1 . . 2

[2] MOV dbl(Lmem), pair(LO(ACx)) N 3 1 X 1 . . 2

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-17
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

MOV: Load Accumulator with Immediate Value (page 5-251)

[1] MOV K16 << #16, ACx N 4 1 X DU_ALU 1

[2] MOV K16 << #SHFT, ACx N 4 1 X DU_ALU +
DU_SHIFT

. 1

MOV: Load Accumulator, Auxiliary, or Temporary Register from Memory (page 5-254)

[1] MOV Smem, dst N 2 1 X 1 . . 1

[2] MOV [uns(]high_byte(Smem)[)], dst N 3 1 X 1 . . 1

[3] MOV [uns(]low_byte(Smem)[)], dst N 3 1 X 1 . . 1

MOV: Load Accumulator, Auxiliary, or Temporary Register with Immediate Value (page 5-260)

[1] MOV k4, dst Y 2 1 X 1

[2] MOV –k4, dst Y 2 1 X 1

[3] MOV K16, dst N 4 1 X 1

MOV: Load Auxiliary or Temporary Register Pair from Memory (page 5-264)

MOV dbl(Lmem), pair(TAx) N 3 1 X 1 . . 2

MOV: Load CPU Register from Memory (page 5-265)

[1] MOV Smem, BK03 N 3 1 X 1 . . 1

[2] MOV Smem, BK47 N 3 1 X 1 . . 1

[3] MOV Smem, BKC N 3 1 X 1 . . 1

[4] MOV Smem, BSA01 N 3 1 X 1 . . 1

[5] MOV Smem, BSA23 N 3 1 X 1 . . 1

[6] MOV Smem, BSA45 N 3 1 X 1 . . 1

[7] MOV Smem, BSA67 N 3 1 X 1 . . 1

[8] MOV Smem, BSAC N 3 1 X 1 . . 1

[9] MOV Smem, BRC0 N 3 1 X 1 . . 1

[10] MOV Smem, BRC1 N 3 1 X 1 . . 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-18
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[11] MOV Smem, CDP N 3 1 X 1 . . 1

[12] MOV Smem, CSR N 3 1 X 1 . . 1

[13] MOV Smem, DP N 3 1 X 1 . . 1

[14] MOV Smem, DPH N 3 1 X 1 . . 1

[15] MOV Smem, PDP N 3 1 X 1 . . 1

[16] MOV Smem, SP N 3 1 X 1 . . 1

[17] MOV Smem, SSP N 3 1 X 1 . . 1

[18] MOV Smem, TRN0 N 3 1 X 1 . . 1

[19] MOV Smem, TRN1 N 3 1 X 1 . . 1

[20] MOV dbl(Lmem), RETA N 3 5 X 1 . . 2

MOV: Load CPU Register with Immediate Value (page 5-268)

[1] MOV k12, BK03 Y 3 1 AD 1 .

[2] MOV k12, BK47 Y 3 1 AD 1 .

[3] MOV k12, BKC Y 3 1 AD 1 .

[4] MOV k12, BRC0 Y 3 1 AD 1 .

[5] MOV k12, BRC1 Y 3 1 AD 1 .

[6] MOV k12, CSR Y 3 1 AD 1 .

[7] MOV k7, DPH Y 3 1 AD 1 .

[8] MOV k9, PDP Y 3 1 AD 1 .

[9] MOV k16, BSA01 N 4 1 AD 1 .

[10] MOV k16, BSA23 N 4 1 AD 1 .

[11] MOV k16, BSA45 N 4 1 AD 1 .

[12] MOV k16, BSA67 N 4 1 AD 1 .

[13] MOV k16, BSAC N 4 1 AD 1 .

[14] MOV k16, CDP N 4 1 AD 1 .

[15] MOV k16, DP N 4 1 AD 1 .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-19
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[16] MOV k16, SP N 4 1 AD 1 .

[17] MOV k16, SSP N 4 1 AD 1 .

MOV: Load Extended Auxiliary Register from Memory (page 5-270)

MOV dbl(Lmem), XAdst N 3 1 X 1 . . 2

MOV: Load Memory with Immediate Value (page 5-271)

[1] MOV K8, Smem N 3 1 X 1 1 . . 1

[2] MOV K16, Smem N 4 1 X 1 1 . . 1

MOV: Move Accumulator Content to Auxiliary or Temporary Register (page 5-272)

MOV HI(ACx), TAx Y 2 1 X AU_ALU 1 . .

MOV: Move Accumulator, Auxiliary, or Temporary Register Content (page 5-273)

MOV src-AU, dst-AU Y 2 1 X AU_ALU

MOV src-DU, dst-AU Y 2 1 X AU_ALU 1 . .

MOV src, dst-DU Y 2 1 X DU_ALU See Note 1.

MOV: Move Auxiliary or Temporary Register Content to Accumulator (page 5-275)

MOV TAx, HI(ACx) Y 2 1 X DU_ALU

MOV: Move Auxiliary or Temporary Register Content to CPU Register (page 5-276)

[1] MOV TAx, BRC0 Y 2 1 X AU_ALU

[2] MOV TAx, BRC1 Y 2 1 X AU_ALU

[3] MOV TAx, CDP Y 2 1 X AU_ALU

[4] MOV TAx, CSR Y 2 1 X AU_ALU

[5] MOV TAx, SP Y 2 1 X AU_ALU

[6] MOV TAx, SSP Y 2 1 X AU_ALU

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-20
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

MOV: Move CPU Register Content to Auxiliary or Temporary Register (page 5-278)

[1] MOV BRC0, TAx Y 2 1 X AU_ALU

[2] MOV BRC1, TAx Y 2 1 X AU_ALU

[3] MOV CDP, TAx Y 2 1 X AU_ALU

[4] MOV RPTC, TAx Y 2 1 X AU_ALU

[5] MOV SP, TAx Y 2 1 X AU_ALU

[6] MOV SSP, TAx Y 2 1 X AU_ALU

MOV: Move Extended Auxiliary Register Content (page 5-280)

MOV xsrc-AU, xdst-AU N 2 1 X AU_ALU

MOV xsrc-DU, xdst-AU N 2 1 X AU_ALU 1 . .

MOV xsrc, xdst-DU N 2 1 X DU_ALU See Note 1.

MOV: Move Memory to Memory (page 5-281)

[1] MOV Cmem, Smem N 3 1 X 2 . . 1 . 1 . . .

[2] MOV Smem, Cmem N 3 1 X 2 . . 1 . 1 . . .

[3] MOV Cmem,dbl(Lmem) N 3 1 X 2 . . 2 . 2 . . .

[4] MOV dbl(Lmem), Cmem N 3 1 X 2 . . 2 . 2 . . .

[5] MOV dbl(Xmem), dbl(Ymem) N 3 1 X 2 . . 2 . 2 . . .

[6] MOV Xmem, Ymem N 3 1 X 2 . . 2 . 2 . . .

MOV: Store Accumulator Content to Memory (page 5-288)

[1] MOV HI(ACx), Smem N 2 1 X 1 1 . . .

[2] MOV [rnd(]HI(ACx)[)], Smem N 3 1 X DU_SHIFT 1 1 . . .

[3] MOV ACx << Tx, Smem N 3 1 X DU_SHIFT 1 1 . . .

[4] MOV [rnd(]HI(ACx << Tx)[)], Smem N 3 1 X DU_SHIFT 1 1 . . .

[5] MOV ACx << #SHIFTW, Smem N 3 1 X DU_SHIFT 1 1 . . .

[6] MOV HI(ACx << #SHIFTW), Smem N 3 1 X DU_SHIFT 1 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-21
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[7] MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem N 4 1 X DU_SHIFT 1 1 . . .

[8] MOV [uns(] [rnd(]HI[(saturate](ACx)[)))], Smem N 3 1 X DU_SHIFT 1 1 . . .

[9] MOV [uns(] [rnd(]HI[(saturate](ACx << Tx)[)))], Smem N 3 1 X DU_SHIFT 1 1 . . .

[10] MOV [uns(](rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem N 4 1 X DU_SHIFT 1 1 . . .

[11] MOV ACx, dbl(Lmem) N 3 1 X 1 2 . . .

[12] MOV [uns(]saturate(ACx)[)], dbl(Lmem) N 3 1 X DU_SHIFT 1 2 . . .

[13] MOV ACx >> #1, dual(Lmem) N 3 1 X DU_SHIFT 1 2 . . .

[14] MOV ACx, Xmem, Ymem N 3 1 X 2 2 . . .

MOV: Store Accumulator Pair Content to Memory (page 5-308)

[1] MOV pair(HI(ACx)), dbl(Lmem) N 3 1 X 1 2 . . .

[2] MOV pair(LO(ACx)), dbl(Lmem) N 3 1 X 1 2 . . .

MOV: Store Accumulator, Auxiliary, or Temporary Register Content to Memory (page 5-311)

[1] MOV src, Smem N 2 1 X 1 1 . . .

[2] MOV src, high_byte(Smem) N 3 1 X 1 1 . . .

[3] MOV src, low_byte(Smem) N 3 1 X 1 1 . . .

MOV: Store Auxiliary or Temporary Register Pair Content to Memory (page 5-315)

MOV pair(TAx), dbl(Lmem) N 3 1 X 1 2 . . .

MOV: Store CPU Register Content to Memory (page 5-316)

[1] MOV BK03, Smem N 3 1 X 1 1 . . .

[2] MOV BK47, Smem N 3 1 X 1 1 . . .

[3] MOV BKC, Smem N 3 1 X 1 1 . . .

[4] MOV BSA01, Smem N 3 1 X 1 1 . . .

[5] MOV BSA23, Smem N 3 1 X 1 1 . . .

[6] MOV BSA45, Smem N 3 1 X 1 1 . . .

[7] MOV BSA67, Smem N 3 1 X 1 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-22
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[8] MOV BSAC, Smem N 3 1 X 1 1 . . .

[9] MOV BRC0, Smem N 3 1 X 1 1 . . .

[10] MOV BRC1, Smem N 3 1 X 1 1 . . .

[11] MOV CDP, Smem N 3 1 X 1 1 . . .

[12] MOV CSR, Smem N 3 1 X 1 1 . . .

[13] MOV DP, Smem N 3 1 X 1 1 . . .

[14] MOV DPH, Smem N 3 1 X 1 1 . . .

[15] MOV PDP, Smem N 3 1 X 1 1 . . .

[16] MOV SP, Smem N 3 1 X 1 1 . . .

[17] MOV SSP, Smem N 3 1 X 1 1 . . .

[18] MOV TRN0, Smem N 3 1 X 1 1 . . .

[19] MOV TRN1, Smem N 3 1 X 1 1 . . .

[20] MOV RETA, dbl(Lmem) N 3 5 X 1 2 . . .

MOV: Store Extended Auxiliary Register Content to Memory (page 5-320)

MOV XAsrc, dbl(Lmem) N 3 1 X 1 2 . . .

MOV::MOV: Load Accumulator from Memory with Parallel Store Accumulator Content to Memory (page 5-321)

MOV Xmem << #16, ACy
:: MOV HI(ACx << T2), Ymem

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 . . .

MPY: Multiply (page 5-323)

[1] MPY[R] [ACx,] ACy Y 2 1 X DU_ALU

[2] MPY[R] Tx, [ACx,] ACy Y 2 1 X DU_ALU

[3] MPYK[R] K8, [ACx,] ACy Y 3 1 X DU_ALU 1

[4] MPYK[R] K16, [ACx,] ACy N 4 1 X DU_ALU 1

[5] MPYM[R] [T3 =]Smem, Cmem, ACx N 3 1 X DU_ALU 1 1 . 1 1

[6] MPYM[R] [T3 =]Smem, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[7] MPYMK[R] [T3 =]Smem, K8, ACx N 4 1 X DU_ALU 1 . . 1 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-23
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[8] MPYM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx N 4 1 X DU_ALU 2 . . 2

[9] MPYM[R][U] [T3 =]Smem, Tx, ACx N 3 1 X DU_ALU 1 . . 1

MPY::MAC: Multiply with Parallel Multiply and Accumulate (page 5-336)

MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

N 4 1 X DU_ALU 2 1 . 2 1

MPY::MPY: Parallel Multiplies (page 5-338)

MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

N 4 1 X DU_ALU 2 1 . 2 1

MPYM::MOV: Multiply with Parallel Store Accumulator Content to Memory (page 5-340)

MPYM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 . . .

NEG: Negate Accumulator, Auxiliary, or Temporary Register Content (page 5-342)

NEG [src-AU,] dst-AU Y 2 1 X AU_ALU

NEG [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

NEG [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

NOP: No Operation (page 5-344)

[1] NOP Y 1 1 D

[2] NOP_16 Y 2 1 D

NOT: Complement Accumulator, Auxiliary, or Temporary Register Content (page 5-345)

NOT [src-AU,] dst-AU Y 2 1 X AU_ALU

NOT [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

NOT [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-24
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

OR: Bitwise OR (page 5-346)

[1] OR src-AU, dst-AU Y 2 1 X AU_ALU

OR src-DU, dst-AU Y 2 1 X AU_ALU 1 . .

OR src, dst-DU Y 2 1 X DU_ALU See Note 1.

[2] OR k8, src-AU, dst-AU Y 3 1 X AU_ALU 1

OR k8, src-DU, dst-AU Y 3 1 X AU_ALU 1 . 1

OR k8, src, dst-DU Y 3 1 X DU_ALU 1 See Note 1.

[3] OR k16, src-AU, dst-AU N 4 1 X AU_ALU 1

OR k16, src-DU, dst-AU N 4 1 X AU_ALU 1 . 1

OR k16, src, dst-DU N 4 1 X DU_ALU 1 See Note 1.

[4] OR Smem, src-AU, dst-AU N 3 1 X AU_ALU 1 . . 1

OR Smem, src-DU, dst-AU N 3 1 X AU_ALU 1 . . 1 . . 1 . .

OR Smem, src, dst-DU N 3 1 X DU_ALU 1 . . 1 See Note 1.

[5] OR ACx << #SHIFTW[, ACy] Y 3 1 X DU_ALU +
DU_SHIFT

.

[6] OR k16 << #16, [ACx,] ACy N 4 1 X DU_ALU 1

[7] OR k16 << #SHFT, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

. 1

[8] OR k16, Smem N 4 1 X AU_ALU 1 . . 1 . 1 . . 1

POP: Pop Top of Stack (page 5-355)

[1] POP dst1, dst2 Y 2 1 X 1 . 1 2

[2] POP dst Y 2 1 X 1 . 1 1

[3] POP dst, Smem N 3 1 X 1 . 1 2 . 1 . . .

[4] POP dbl(ACx) Y 2 1 X 1 . 1 2

[5] POP Smem N 2 1 X 1 . 1 1 . 1 . . .

[6] POP dbl(Lmem) N 2 1 X 1 . 1 2 . 2 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-25
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

POPBOTH: Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers (page 5-362)

POPBOTH xdst Y 2 1 X 1 . 1 2

port: Peripheral Port Register Access Qualifiers (page 5-363)

[1] port(Smem) N 1 1 D

[2] port(K16) N 3 1 D

PSH: Push to Top of Stack (page 5-365)

[1] PSH src1, src2 Y 2 1 X 1 . 1 . . 2 . . .

[2] PSH src Y 2 1 X 1 . 1 . . 1 . . .

[3] PSH src,Smem N 3 1 X 1 . 1 1 . 2 . . .

[4] PSH dbl(ACx) Y 2 1 X 1 . 1 . . 2 . . .

[5] PSH Smem N 2 1 X 1 . 1 1 . 1 . . .

[6] PSH dbl(Lmem) N 2 1 X 1 . 1 2 . 2 . . .

PSHBOTH: Push Accumulator or Extended Auxiliary Register Content to Stack Pointers (page 5-372)

PSHBOTH xsrc Y 2 1 X 1 . 1 . . 2 . . .

RESET: Software Reset (page 5-373)

RESET N 2 ? D P_UNIT

RET: Return Unconditionally (page 5-377)

RET Y 2 5 D P_UNIT 1 . 1 2

RETCC: Return Conditionally (page 5-379)

RETCC cond Y 3 5/5† R P_UNIT 1 . 1 2

† x/y cycles: x cycles = condition true, y cycles = condition false

RETI: Return from Interrupt (page 5-381)

RETI Y 2 5 D P_UNIT 1 . 1 2

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-26
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

ROL: Rotate Left Accumulator, Auxiliary, or Temporary Register Content (page 5-383)

ROL BitOut, src-AU, BitIn, dst-AU Y 3 1 X AU_ALU

ROL BitOut, src-DU, BitIn, dst-AU Y 3 1 X AU_ALU 1 . .

ROL BitOut, src, BitIn, dst-DU Y 3 1 X DU_ALU +
DU_SHIFT

. See Note 1.

ROR: Rotate Right Accumulator, Auxiliary, or Temporary Register Content (page 5-385)

ROR BitIn, src-AU, BitOut, dst-AU Y 3 1 X AU_ALU

ROR BitIn, src-DU, BitOut, dst-AU Y 3 1 X AU_ALU 1 . .

ROR BitIn, src, BitOut, dst-DU Y 3 1 X DU_ALU +
DU_SHIFT

. See Note 1.

ROUND: Round Accumulator Content (page 5-387)

ROUND [ACx,] ACy Y 2 1 X DU_ALU

RPT: Repeat Single Instruction Unconditionally (page 5-389)

[1] RPT k8 Y 2 1 AD P_UNIT 1 .

[2] RPT k16 Y 3 1 AD P_UNIT 1 .

[3] RPT CSR Y 2 1 AD P_UNIT

RPTADD: Repeat Single Instruction Unconditionally and Increment CSR (page 5-394)

[1] RPTADD CSR, TAx Y 2 1 X AU_ALU +
P_UNIT

.

[2] RPTADD CSR, k4 Y 2 1 X AU_ALU +
P_UNIT

. 1

RPTB: Repeat Block of Instructions Unconditionally (page 5-397)

[1] RPTBLOCAL pmad Y 2 1 AD P_UNIT

[2] RPTB pmad Y 3 1 AD P_UNIT

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-27
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

RPTCC: Repeat Single Instruction Conditionally (page 5-408)

RPTCC k8, cond Y 3 1 AD P_UNIT 1 .

RPTSUB: Repeat Single Instruction Unconditionally and Decrement CSR (page 5-411)

RPTSUB CSR, k4 Y 2 1 X AU_ALU +
P_UNIT

. 1

SAT: Saturate Accumulator Content (page 5-413)

SAT[R] [ACx,] ACy Y 2 1 X DU_ALU

SFTCC: Shift Accumulator Content Conditionally (page 5-415)

[1] SFTCC ACx, TC1 Y 2 1 X DU_ALU +
DU_SHIFT

.

[2] SFTCC ACx, TC2 Y 2 1 X DU_ALU +
DU_SHIFT

.

SFTL: Shift Accumulator Content Logically (page 5-417)

[1] SFTL ACx, Tx[, ACy] Y 2 1 X DU_ALU +
DU_SHIFT

.

[2] SFTL ACx, #SHIFTW[, ACy] Y 3 1 X DU_ALU +
DU_SHIFT

.

SFTL: Shift Accumulator, Auxiliary, or Temporary Register Content Logically (page 5-420)

[1] SFTL dst-AU, #1 Y 2 1 X AU_ALU

SFTL dst-DU, #1 Y 2 1 X DU_ALU +
DU_SHIFT

.

[2] SFTL dst-AU, #–1 Y 2 1 X AU_ALU

SFTL dst-DU, #–1 Y 2 1 X DU_ALU +
DU_SHIFT

.

SFTS: Signed Shift of Accumulator Content (page 5-423)

[1] SFTS ACx, Tx[, ACy] Y 2 1 X DU_ALU +
DU_SHIFT

.

[2] SFTS ACx, #SHIFTW[, ACy] Y 3 1 X DU_ALU +
DU_SHIFT

.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-28
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[3] SFTSC ACx, Tx[, ACy] Y 2 1 X DU_ALU +
DU_SHIFT

.

[4] SFTSC ACx, #SHIFTW[, ACy] Y 3 1 X DU_ALU +
DU_SHIFT

.

SFTS: Signed Shift of Accumulator, Auxiliary, or Temporary Register Content (page 5-432)

[1] SFTS dst-AU, #–1 Y 2 1 X AU_ALU

SFTS dst-DU, #–1 Y 2 1 X DU_ALU +
DU_SHIFT

.

[2] SFTS dst-AU, #1 Y 2 1 X AU_ALU

SFTS dst-DU, #1 Y 2 1 X DU_ALU +
DU_SHIFT

.

SQA: Square and Accumulate (page 5-437)

[1] SQA[R] [ACx,] ACy Y 2 1 X DU_ALU

[2] SQAM[R] [T3 =]Smem, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

SQDST: Square Distance (page 5-440)

SQDST Xmem, Ymem, ACx, ACy N 4 1 X DU_ALU 2 . . 2

SQR: Square (page 5-442)

[1] SQR[R] [ACx,] ACy Y 2 1 X DU_ALU

[2] SQRM[R] [T3 =]Smem, ACx N 3 1 X DU_ALU 1 . . 1

SQS: Square and Subtract (page 5-445)

[1] SQS[R] [ACx,] ACy Y 2 1 X DU_ALU

[2] SQSM[R] [T3 =]Smem, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

SUB: Dual 16-Bit Subtractions (page 5-448)

[1] SUB dual(Lmem), [ACx,] ACy N 3 1 X DU_ALU 1 . . 2

[2] SUB ACx, dual(Lmem), ACy N 3 1 X DU_ALU 1 . . 2

[3] SUB dual(Lmem), Tx, ACx N 3 1 X DU_ALU 1 . . 2

[4] SUB Tx, dual(Lmem), ACx N 3 1 X DU_ALU 1 . . 2

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-29
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

SUB: Subtraction (page 5-457)

[1] SUB [src-AU,] dst-AU Y 2 1 X AU_ALU

SUB [src-DU,] dst-AU Y 2 1 X AU_ALU 1 . .

SUB [src,] dst-DU Y 2 1 X DU_ALU See Note 1.

[2] SUB k4, dst-AU Y 2 1 X AU_ALU 1

SUB k4, dst-DU Y 2 1 X DU_ALU 1

[3] SUB K16, [src-AU,] dst-AU N 4 1 X AU_ALU 1

SUB K16, [src-DU,] dst-AU N 4 1 X AU_ALU 1 . 1

SUB K16, [src,] dst-DU N 4 1 X DU_ALU 1 See Note 1.

[4] SUB Smem, [src-AU,] dst-AU N 3 1 X AU_ALU 1 . . 1

SUB Smem, [src-DU,] dst-AU N 3 1 X AU_ALU 1 . . 1 . . 1 . .

SUB Smem, [src,] dst-DU N 3 1 X DU_ALU 1 . . 1 See Note 1.

[5] SUB src-AU, Smem, dst-AU N 3 1 X AU_ALU 1 . . 1

SUB src-DU, Smem, dst-AU N 3 1 X AU_ALU 1 . . 1 . . 1 . .

SUB src, Smem, dst-DU N 3 1 X DU_ALU 1 . . 1 See Note 1.

[6] SUB ACx << Tx, ACy Y 2 1 X DU_ALU +
DU_SHIFT

.

[7] SUB ACx << #SHIFTW, ACy Y 3 1 X DU_ALU +
DU_SHIFT

.

[8] SUB K16 << #16, [ACx,] ACy N 4 1 X DU_ALU 1

[9] SUB K16 << #SHFT, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

. 1

[10] SUB Smem << Tx, [ACx,] ACy N 3 1 X DU_ALU +
DU_SHIFT

1 . . 1

[11] SUB Smem << #16, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[12] SUB ACx, Smem << #16, ACy N 3 1 X DU_ALU 1 . . 1

[13] SUB [uns(]Smem[)], BORROW, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

[14] SUB [uns(]Smem[)], [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-30
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

[15] SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

1 . . 1

[16] SUB dbl(Lmem), [ACx,] ACy N 3 1 X DU_ALU 1 . . 2

[17] SUB ACx, dbl(Lmem), ACy N 3 1 X DU_ALU 1 . . 2

[18] SUB Xmem, Ymem, ACx N 3 1 X DU_ALU 2 . . 2

SUB::MOV: Subtraction with Parallel Store Accumulator Content to Memory (page 5-483)

SUB Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 . . .

SUBADD: Dual 16-Bit Subtraction and Addition (page 5-485)

[1] SUBADD Tx, Smem, ACx N 3 1 X DU_ALU 1 . . 1

[2] SUBADD Tx, dual(Lmem), ACx N 3 1 X DU_ALU 1 . . 2

SUBC: Subtract Conditionally (page 5-490)

SUBC Smem, [ACx,] ACy N 3 1 X DU_ALU 1 . . 1

SWAP: Swap Accumulator Content (page 5-493)

[1] SWAP AC0, AC2 Y 2 1 X DU_SWAP

[2] SWAP AC1, AC3 Y 2 1 X DU_SWAP

SWAP: Swap Auxiliary Register Content (page 5-494)

[1] SWAP AR0, AR1 Y 2 1 AD AU_SWAP

[2] SWAP AR0, AR2 Y 2 1 AD AU_SWAP

[3] SWAP AR1, AR3 Y 2 1 AD AU_SWAP

SWAP: Swap Auxiliary and Temporary Register Content (page 5-495)

[1] SWAP AR4, T0 Y 2 1 AD AU_SWAP

[2] SWAP AR5, T1 Y 2 1 AD AU_SWAP

[3] SWAP AR6, T2 Y 2 1 AD AU_SWAP

[4] SWAP AR7, T3 Y 2 1 AD AU_SWAP

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-31
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

SWAP: Swap Temporary Register Content (page 5-497)

[1] SWAP T0, T2 Y 2 1 AD AU_SWAP

[2] SWAP T1, T3 Y 2 1 AD AU_SWAP

SWAPP: Swap Accumulator Pair Content (page 5-498)

SWAPP AC0, AC2 Y 2 1 X DU_SWAP

SWAPP: Swap Auxiliary Register Pair Content (page 5-499)

SWAPP AR0, AR2 Y 2 1 AD AU_SWAP

SWAPP: Swap Auxiliary and Temporary Register Pair Content (page 5-500)

[1] SWAPP AR4, T0 Y 2 1 AD AU_SWAP

[2] SWAPP AR6, T2 Y 2 1 AD AU_SWAP

SWAPP: Swap Temporary Register Pair Content (page 5-502)

SWAPP T0, T2 Y 2 1 AD AU_SWAP

SWAP4: Swap Auxiliary and Temporary Register Pairs Content (page 5-503)

SWAP4 AR4, T0 Y 2 1 AD AU_SWAP

TRAP: Software Trap (page 5-505)

TRAP k5 N 2 ? D P_UNIT 1 . 1 . . 2 . . .

XCC: Execute Conditionally (page 5-507)

[1] XCC [label,]cond N 2 1 AD P_UNIT

[2] XCCPART [label,]cond N 2 1 X P_UNIT

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-32
Instruction S

et S
um

m
ary

S
P

R
U

374G

Table 4–1. Mnemonic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesKDBKABACBDWCRDRSACADAOperatorPipeCSEInstruction

XOR: Bitwise Exclusive OR (XOR) (page 5-514)

[1] XOR src-AU, dst-AU Y 2 1 X AU_ALU

XOR src-DU, dst-AU Y 2 1 X AU_ALU 1 . .

XOR src, dst-DU Y 2 1 X DU_ALU See Note 1.

[2] XOR k8, src-AU, dst-AU Y 3 1 X AU_ALU 1

XOR k8, src-DU, dst-AU Y 3 1 X AU_ALU 1 . 1

XOR k8, src, dst-DU Y 3 1 X DU_ALU 1 See Note 1.

[3] XOR k16, src-AU, dst-AU N 4 1 X AU_ALU 1

XOR k16, src-DU, dst-AU N 4 1 X AU_ALU 1 . 1

XOR k16, src, dst-DU N 4 1 X DU_ALU 1 See Note 1.

[4] XOR Smem, src-AU, dst-AU N 3 1 X AU_ALU 1 . . 1

XOR Smem, src-DU, dst-AU N 3 1 X AU_ALU 1 . . 1 . . 1 . .

XOR Smem, src, dst-DU N 3 1 X DU_ALU 1 . . 1 See Note 1.

[5] XOR ACx << #SHIFTW[, ACy] Y 3 1 X DU_ALU +
DU_SHIFT

.

[6] XOR k16 << #16, [ACx,] ACy N 4 1 X DU_ALU 1

[7] XOR k16 << #SHFT, [ACx,] ACy N 4 1 X DU_ALU +
DU_SHIFT

. 1

[8] XOR k16, Smem N 4 1 X AU_ALU 1 . . 1 . 1 . . 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

5-1

Instruction Set Descriptions

This chapter provides detailed information on the TMS320C55x DSP
mnemonic instruction set.

See section 1.1, Instruction Set Terms, Symbols, and Abbreviations, for defini-
tions of symbols and abbreviations used in the description of each instruction.
See Chapter 4 for a summary of the instruction set.

Chapter 5

AADD Modify Auxiliary or Temporary Register Content by Addition

Instruction Set Descriptions5-2 SPRU374G

Modify Auxiliary or Temporary Register Content by AdditionAADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AADD TAx, TAy No 3 1 AD

[2] AADD P8, TAx No 3 1 AD

Description These instructions perform, in the A-unit address generation units:

� an addition between two auxiliary or temporary registers, TAx and TAy,
and stores the result in TAy

� an addition between the auxiliary or temporary registers TAx and a
program address defined by a program address label assembled into
unsigned P8, and stores the result in TAx

The operation is performed in the address phase of the pipeline, however data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Status Bits Affected by ST2_55

Affects none

See Also See the following other related instructions:

� AMAR (Modify Auxiliary Register Content)

� AMAR (Modify Extended Auxiliary Register Content)

� AMOV (Modify Auxiliary or Temporary Register Content)

� ASUB (Modify Auxiliary or Temporary Register Content by Subtraction)

 Modify Auxiliary or Temporary Register Content by Addition AADD

5-3Instruction Set DescriptionsSPRU374G

Modify Auxiliary or Temporary Register Content by Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AADD TAx, TAy No 3 1 AD

Opcode 0001 010E FSSS xxxx FDDD 0000

0001 010E FSSS xxxx FDDD 1000

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, TAy

Description This instruction performs, in the A-unit address generation units, an addition
between two auxiliary or temporary registers, TAy and TAx, and stores the
result in TAy. The content of TAx is considered signed:

TAy = TAy + TAx

The operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the AADD instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

AADD Modify Auxiliary or Temporary Register Content by Addition

Instruction Set Descriptions5-4 SPRU374G

Example 1

Syntax Description

AADD T0, AR0 The content of AR0 is added to the signed content of T0 and the result is stored in AR0.

Before After

XAR0 01 0000 XAR0 01 8000

T0 8000 T0 8000

Example 2

Syntax Description

AADD T1, T0 The content of T0 is added to the content of T1 and the result is stored in T0.

 Modify Auxiliary or Temporary Register Content by Addition AADD

5-5Instruction Set DescriptionsSPRU374G

Modify Auxiliary or Temporary Register Content by Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] AADD P8, TAx No 3 1 AD

Opcode 0001 010E PPPP PPPP FDDD 0100

0001 010E PPPP PPPP FDDD 1100

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, P8

Description This instruction performs, in the A-unit address generation units, an addition
between the auxiliary or temporary register TAx and a program address
defined by a program address label assembled into unsigned P8, and stores
the result in TAx:

TAx = TAx + P8

The operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the AADD instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AADD #255, T0 The unsigned 8-bit value (255) is added to the content of T0 and the result is stored in T0.

AADD Modify Data Stack Pointer

Instruction Set Descriptions5-6 SPRU374G

Modify Data Stack PointerAADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AADD K8, SP Yes 2 1 AD

Opcode 0100 111E KKKK KKKK

Operands K8

Description This instruction performs an addition in the A-unit data-address generation
unit (DAGEN) in the address phase of the pipeline. The 8-bit signed constant,
K8, is sign extended to 16 bits and added to the data stack pointer (SP):

SP = SP + K8

When in 32-bit stack configuration, the system stack pointer (SSP) is also
modified. Updates of the SP and SSP (depending on the stack configuration)
should not be executed in parallel with this instruction.

Status Bits Affected by none

Affects none

Repeat Repeat

This instruction can be repeated.

Example

Syntax Description

AADD #127, SP The 8-bit value (127) is sign extended to 16 bits and added to the stack pointer (SP).

 Absolute Distance ABDST

5-7Instruction Set DescriptionsSPRU374G

Absolute DistanceABDST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ABDST Xmem, Ymem, ACx, ACy No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 1111 xxn%

Operands ACx, ACy, Xmem, Ymem

Description This instruction executes two operations in parallel: one in the D-unit MAC and
one in the D-unit ALU:

ACy = ACy + |HI(ACx)|
:: ACx = (Xmem << #16) – (Ymem << #16)

The absolute value of accumulator ACx content is computed and added to
accumulator ACy content through the D-unit MAC. When an overflow is
detected according to M40:

� the destination accumulator overflow status bit (ACOVy) is set

� the destination register (ACy) is saturated according to SATD

The Ymem content shifted left 16 bits is subtracted from the Xmem content
shifted left 16 bits in the D-unit ALU.

� Input operands (Xmem and Ymem) are sign extended to 40 bits according
to SXMD.

� CARRY status bit depends on M40. Subtraction borrow bit is reported in
CARRY status bit. It is the logical complement of CARRY status bit.

� When an overflow is detected according to M40:

� the destination accumulator overflow status bit (ACOVx) is set

� the destination register (ACx) is saturated according to SATD

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the subtract operation does not have any overflow detection,
report, and saturation after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

ABDST Absolute Distance

Instruction Set Descriptions5-8 SPRU374G

See Also See the following other related instructions:

� SQDST (Square Distance)

Example

Syntax Description

ABDST *AR0+, *AR1, AC0, AC1 The absolute value of the content of AC0 is added to the content of
AC1 and the result is stored in AC1. The content addressed by AR1 is
subtracted from the content addressed by AR0 and the result is stored
in AC0. The content of AR0 is incremented by 1.

Before After

AC0 00 0000 0000 AC0 00 4500 0000

AC1 00 E800 0000 AC1 00 E800 0000

AR0 202 AR0 203

AR1 302 AR1 302

202 3400 202 3400

302 EF00 302 EF00

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

M40 1 M40 1

SXMD 1 SXMD 1

 Absolute Value ABS

5-9Instruction Set DescriptionsSPRU374G

Absolute ValueABS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ABS [src,] dst Yes 2 1 X

Opcode 0011 001E FSSS FDDD

Operands dst, src

Description This instruction computes the absolute value of the source register (src):

dst = |src|

� When the destination register (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD.

� If M40 = 0, the sign of the source register is extracted at bit position 31.
If src(31) = 1, the source register content is negated. If src(31) = 0, the
source register content is moved to the destination accumulator.

� If M40 = 1, the sign of the source register is extracted at bit position 39.
If src(39) = 1, the source register content is negated. If src(39) = 0, the
source register content is moved to the destination accumulator.

� During the 40-bit move operation, an overflow and CARRY bit status
are detected according to M40:

� The destination accumulator overflow status bit (ACOVx) is set.

� The destination register is saturated according to SATD.

� The CARRY status bit is updated as follows: If the result of the
operation stored in the destination register is 0, CARRY is set;
otherwise, CARRY is cleared.

� When the destination register (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand of the instruction, the 16 LSBs
of the accumulator are used to perform the operation.

� The sign of the source register is extracted at bit position 15. If
src(15) = 1, the source register content is negated. If src(15) = 0, the
source register content is moved to the destination register. Overflow
is detected at bit position 15.

� The destination register is saturated according to SATA.

ABS Absolute Value

Instruction Set Descriptions5-10 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. To ensure compatibility versus overflow detection and saturation of
destination accumulator, this instruction must be executed with M40 = 0.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADDV (Addition with Absolute Value)

Example 1

Syntax Description

ABS AC0, AC1 The absolute value of the content of AC0 is stored in AC1.

Before After

AC1 00 0000 2000 AC1 7D FFFF EDCC

AC0 82 0000 1234 AC0 82 0000 1234

M40 1 M40 1

Example 2

Syntax Description

ABS AR1, AC1 The absolute value of the content of AR1 is stored in AC1.

Before After

AC1 00 0000 2000 AC1 00 0000 0000

AR1 0000 AR1 0000

CARRY 0 CARRY 1

Example 3

Syntax Description

ABS AR1, AC1 The absolute value of the content of AR1 is stored in AC1. Since SXMD = 1, AR1 content
is sign extended. The resulting 40-bit data is negated since M40 = 0 and AR1(31) = 1.

Before After

AC1 00 0000 2000 AC1 00 0000 7900

AR1 8700 AR1 8700

M40 0 M40 0

SXMD 1 SXMD 1

 Absolute Value ABS

5-11Instruction Set DescriptionsSPRU374G

Example 4

Syntax Description

ABS AC0, T1 The absolute value of the content of AC0(15–0) is stored in T1. The sign bit is extracted at
AC0(15). Since AC0(15) = 0, T1 = AC0(15–0).

Before After

T1 2000 T1 1234

AC0 80 0002 1234 AC0 80 0002 1234

Example 5

Syntax Description

ABS AC0, T1 The absolute value of the content of AC0(15–0) is stored in T1. The sign bit is extracted at
AC0(15). Since AC0(15) = 1, T1 equals the negated value of AC0(15–0).

Before After

T1 2000 T1 6DCC

AC0 80 0002 9234 AC0 80 0002 9234

ADD Addition

Instruction Set Descriptions5-12 SPRU374G

AdditionADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADD [src,] dst Yes 2 1 X

[2] ADD k4, dst Yes 2 1 X

[3] ADD K16, [src,] dst No 4 1 X

[4] ADD Smem, [src,] dst No 3 1 X

[5] ADD ACx << Tx, ACy Yes 2 1 X

[6] ADD ACx << #SHIFTW, ACy Yes 3 1 X

[7] ADD K16 << #16, [ACx,] ACy No 4 1 X

[8] ADD K16 << #SHFT, [ACx,] ACy No 4 1 X

[9] ADD Smem << Tx, [ACx,] ACy No 3 1 X

[10] ADD Smem << #16, [ACx,] ACy No 3 1 X

[11] ADD [uns(]Smem[)], CARRY, [ACx,] ACy No 3 1 X

[12] ADD [uns(]Smem[)], [ACx,] ACy No 3 1 X

[13] ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy No 4 1 X

[14] ADD dbl(Lmem), [ACx,] ACy No 3 1 X

[15] ADD Xmem, Ymem, ACx No 3 1 X

[16] ADD K16, Smem No 4 1 X

Description These instructions perform an addition operation.

Status Bits Affected by CARRY, C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

 Addition ADD

5-13Instruction Set DescriptionsSPRU374G

See Also See the following other related instructions:

� ADD (Dual 16-Bit Additions)

� ADD::MOV (Addition with Parallel Store Accumulator Content to Memory)

� ADDSUB (Dual 16-Bit Addition and Subtraction)

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

� ADDV (Addition with Absolute Value)

� SUB (Subtraction)

� SUBADD (Dual 16-Bit Subtraction and Addition)

ADD Addition

Instruction Set Descriptions5-14 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADD [src,] dst Yes 2 1 X

Opcode 0010 010E FSSS FDDD

Operands dst, src

Description This instruction performs an addition operation between two registers:

dst = dst + src

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD AC1, AC0 The content of AC1 is added to the content of AC0 and the result is stored in AC0.

 Addition ADD

5-15Instruction Set DescriptionsSPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ADD k4, dst Yes 2 1 X

Opcode 0100 000E kkkk FDDD

Operands dst, k4

Description This instruction performs an addition operation between a register content and
a 4-bit unsigned constant, k4:

dst = dst + k4

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD #15, AC0 The content of AC0 is added to an unsigned 4-bit value (15) and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-16 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ADD K16, [src,] dst No 4 1 X

Opcode 0111 1011 KKKK KKKK KKKK KKKK FDDD FSSS

Operands dst, K16, src

Description This instruction performs an addition operation between a register content and
a 16-bit signed constant, K16.

dst = src + K16

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The 16-bit constant, K16, is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

 Addition ADD

5-17Instruction Set DescriptionsSPRU374G

Repeat This instruction can be repeated.

Example

Syntax Description

ADD #2E00h, AC0, AC1 The content of AC0 is added to the signed 16-bit value (2E00h) and the result is
stored in AC1.

ADD Addition

Instruction Set Descriptions5-18 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ADD Smem, [src,] dst No 3 1 X

Opcode 1101 0110 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs an addition operation between a register content and
the content of a memory (Smem) location.

dst = src + Smem

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

 Addition ADD

5-19Instruction Set DescriptionsSPRU374G

Repeat This instruction can be repeated.

Example

Syntax Description

ADD *AR3+, T0, T1 The content of T0 is added to the content addressed by AR3 and the result is
stored in T1. AR3 is incremented by 1.

Before After

AR3 0302 AR3 0303

302 EF00 302 EF00

T0 3300 T0 3300

T1 0 T1 2200

CARRY 0 CARRY 1

ADD Addition

Instruction Set Descriptions5-20 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ADD ACx << Tx, ACy Yes 2 1 X

Opcode 0101 101E DDSS ss00

Operands ACx, ACy, Tx

Description This instruction performs an addition operation between an accumulator
content ACy and an accumulator content ACx shifted by the content of Tx:

ACy = ACy + (ACx << Tx)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD AC1 << T0, AC0 The content of AC1 shifted by the content of T0 is added to the content of AC0
and the result is stored in AC0.

 Addition ADD

5-21Instruction Set DescriptionsSPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ADD ACx << #SHIFTW, ACy Yes 3 1 X

Opcode 0001 000E DDSS 0011 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs an addition operation between an accumulator
content ACy and an accumulator content ACx shifted by the 6-bit value,
SHIFTW:

ACy = ACy + (ACx << #SHIFTW)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD AC1 << #31, AC0 The content of AC1 shifted left by 31 bits is added to the content of AC0 and the
result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-22 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ADD K16 << #16, [ACx,] ACy No 4 1 X

Opcode 0111 1010 KKKK KKKK KKKK KKKK SSDD 000x

Operands ACx, ACy, K16

Description This instruction performs an addition operation between an accumulator
content ACx and a 16-bit signed constant, K16, shifted left by 16 bits:

ACy = ACx + (K16 << #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD #FFFFh << #16, AC1, AC0 A signed 16-bit value (FFFFh) shifted left by 16 bits is added to the
content of AC1 and the result is stored in AC0.

 Addition ADD

5-23Instruction Set DescriptionsSPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] ADD K16 << #SHFT, [ACx,] ACy No 4 1 X

Opcode 0111 0000 KKKK KKKK KKKK KKKK SSDD SHFT

Operands ACx, ACy, K16, SHFT

Description This instruction performs an addition operation between an accumulator
content ACx and a 16-bit signed constant, K16, shifted left by the 4-bit value,
SHFT:

ACy = ACx + (K16 << #SHFT)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD #FFFFh << #15, AC1, AC0 A signed 16-bit value (FFFFh) shifted left by 15 bits is added to the
content of AC1 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-24 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] ADD Smem << Tx, [ACx,] ACy No 3 1 X

Opcode 1101 1101 AAAA AAAI SSDD ss00

Operands ACx, ACy, Tx, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location shifted by the
content of Tx:

ACy = ACx + (Smem << Tx)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

 Addition ADD

5-25Instruction Set DescriptionsSPRU374G

Example

Syntax Description

ADD *AR1 << T0, AC1, AC0 The content addressed by AR1 shifted left by the content of T0 is added
to the content of AC1 and the result is stored in AC0.

Before After

AC0 00 0000 0000 AC0 00 2330 0000

AC1 00 2300 0000 AC1 00 2300 0000

T0 000C T0 000C

AR1 0200 AR1 0200

200 0300 200 0300

SXMD 0 SXMD 0

M40 0 M40 0

ACOV0 0 ACOV0 0

CARRY 0 CARRY 1

ADD Addition

Instruction Set Descriptions5-26 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] ADD Smem << #16, [ACx,] ACy No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0100

Operands ACx, ACy, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location shifted left by
16 bits:

ACy = ACx + (Smem << #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. If the result
of the addition generates a carry, the CARRY status bit is set; otherwise,
the CARRY status bit is not affected.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD *AR3 << #16, AC1, AC0 The content addressed by AR3 shifted left by 16 bits is added to the
content of AC1 and the result is stored in AC0.

 Addition ADD

5-27Instruction Set DescriptionsSPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] ADD [uns(]Smem[)], CARRY, [ACx,] ACy No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 100u

Operands ACx, ACy, Smem

Description This instruction performs an addition operation of the accumulator content
ACx, the content of a memory (Smem) location, and the value of the CARRY
status bit:

ACy = ACx + Smem + CARRY

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD uns(*AR3), CARRY, AC1, AC0 The CARRY status bit and the unsigned content addressed by AR3
are added to the content of AC1 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-28 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] ADD [uns(]Smem[)], [ACx,] ACy No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 110u

Operands ACx, ACy, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location:

ACy = ACx + uns(Smem)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD uns(*AR3), AC1, AC0 The unsigned content addressed by AR3 is added to the content of AC1 and
the result is stored in AC0.

 Addition ADD

5-29Instruction Set DescriptionsSPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[13] ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy No 4 1 X

Opcode 1111 1001 AAAA AAAI uxSH IFTW SSDD 00xx

Operands ACx, ACy, SHIFTW, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location shifted by the 6-bit
value, SHIFTW:

ACy = ACx + (Smem << #SHIFTW)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

ADD uns(*AR3) << #31, AC1, AC0 The unsigned content addressed by AR3 shifted left by 31 bits is
added to the content of AC1 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-30 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[14] ADD dbl(Lmem), [ACx,] ACy No 3 1 X

Opcode 1110 1101 AAAA AAAI SSDD 000n

Operands ACx, ACy, Lmem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of data memory operand dbl(Lmem):

ACy = ACx + dbl(Lmem)

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD dbl(*AR3+), AC1, AC0 The content (long word) addressed by AR3 and AR3 + 1 is added to the
content of AC1 and the result is stored in AC0. Because this instruction is a
long-operand instruction, AR3 is incremented by 2 after the execution.

 Addition ADD

5-31Instruction Set DescriptionsSPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[15] ADD Xmem, Ymem, ACx No 3 1 X

Opcode 1000 0001 XXXM MMYY YMMM 00DD

Operands ACx, Xmem, Ymem

Description This instruction performs an addition operation between the content of data
memory operand Xmem shifted left 16 bits, and the content of data memory
operand Ymem shifted left 16 bits:

ACx = (Xmem << #16) + (Ymem << #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD *AR3, *AR4, AC0 The content addressed by AR3 shifted left by 16 bits is added to the content
addressed by AR4 shifted left by 16 bits and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-32 SPRU374G

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[16] ADD K16, Smem No 4 1 X

Opcode 1111 0111 AAAA AAAI KKKK KKKK KKKK KKKK

Operands K16, Smem

Description This instruction performs an addition operation between a 16-bit signed
constant, K16, and the content of a memory (Smem) location:

Smem = Smem + K16

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD and
shifted by 16 bits to the MSBs before being added.

� Addition overflow is detected at bit position 31. If an overflow is detected,
accumulator 0 overflow status bit (ACOV0) is set.

� Addition carry report in CARRY status bit is extracted at bit position 31.

� If SATD is 1 when an overflow is detected, the result is saturated before
being stored in memory. Saturation values are 7FFFh or 8000h.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by SATD, SXMD

Affects ACOV0, CARRY

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

ADD #FFFFh, *AR3 The content addressed by AR3 is added to a signed 16-bit value and the result is
stored back into the location addressed by AR3.

 Dual 16–Bit Additions ADD

5-33Instruction Set DescriptionsSPRU374G

Dual 16-Bit AdditionsADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADD dual(Lmem), [ACx,]ACy No 3 1 X

[2] ADD dual(Lmem), Tx, ACx No 3 1 X

Description These instructions perform two paralleled addition operations in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� ADD (Addition)

� ADD::MOV (Addition with Parallel Store Accumulator Content to Memory)

� ADDSUB (Dual 16-Bit Addition and Subtraction)

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

� SUBADD (Dual 16-Bit Subtraction and Addition)

ADD Dual 16–Bit Additions

Instruction Set Descriptions5-34 SPRU374G

Dual 16-Bit Additions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADD dual(Lmem), [ACx,]ACy No 3 1 X

Opcode 1110 1110 AAAA AAAI SSDD 000x

Operands ACx, ACy, Lmem

Description This instruction performs two paralleled addition operations in one cycle:

HI(ACy) = HI(Lmem) + HI(ACx)
:: LO(ACy) = LO(Lmem) + LO(ACx)

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVy) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

 Dual 16–Bit Additions ADD

5-35Instruction Set DescriptionsSPRU374G

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD dual(*AR3), AC1, AC0 Both instructions are performed in parallel. When the Lmem address is even
(AR3 = even): The content of AC1(39–16) is added to the content addressed
by AR3 and the result is stored in AC0(39–16). The content of AC1(15–0) is
added to the content addressed by AR3 + 1 and the result is stored in
AC0(15–0).

ADD Dual 16–Bit Additions

Instruction Set Descriptions5-36 SPRU374G

Dual 16-Bit Additions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ADD dual(Lmem), Tx, ACx No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 100x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled addition operations in one cycle:

HI(ACx) = HI(Lmem) + Tx
:: LO(ACx) = LO(Lmem) + Tx

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

 Dual 16–Bit Additions ADD

5-37Instruction Set DescriptionsSPRU374G

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADD dual(*AR3), T0, AC0 Both instructions are performed in parallel. When the Lmem address is even
(AR3 = even): The content of T0 is added to the content addressed by AR3
and the result is stored in AC0(39–16). The duplicated content of T0 is added
to the content addressed by AR3 + 1 and the result is stored in AC0(15–0).

ADD::MOV Addition with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-38 SPRU374G

Addition with Parallel Store Accumulator Content to MemoryADD::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADD Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 100x xxxx

Operands ACx, ACy, T2, Xmem, Ymem

Description This instruction performs two operations in parallel, addition and store:

ACy = ACx + (Xmem << #16)
:: Ymem = HI(ACy << T2)

The first operation performs an addition between an accumulator content ACx
and the content of data memory operand Xmem shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. When
C54CM = 1, an intermediary shift operation is performed as if M40 is
locally set to 1 and no overflow detection, report, and saturation is done
after the shifting operation.

� When an overflow is detected, the accumulator is saturated according to
SATD.

The second operation shifts the accumulator ACy by the content of T2 and
stores ACy(31–16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACy(31–16), is stored to
the memory location.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

 Addition with Parallel Store Accumulator Content to Memory ADD::MOV

5-39Instruction Set DescriptionsSPRU374G

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADD (Addition)

� MOV (Store Accumulator Content to Memory)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

Example

Syntax Description

ADD *AR3 << #16, AC1, AC0
:: MOV HI(AC0 << T2), *AR4

Both instructions are performed in parallel. The content addressed by
AR3 shifted left by 16 bits is added to the content of AC1 and the result
is stored in AC0. The content of AC0 is shifted by the content of T2, and
AC0(31–16) is stored at the address of AR4.

ADDSUB Dual 16–Bit Addition and Subtraction

Instruction Set Descriptions5-40 SPRU374G

Dual 16-Bit Addition and SubtractionADDSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADDSUB Tx, Smem, ACx No 3 1 X

[2] ADDSUB Tx, dual(Lmem), ACx No 3 1 X

Description These instructions performs two paralleled arithmetical operations in one
cycle, an addition and subtraction.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� ADD (Addition)

� ADD (Dual 16-Bit Additions)

� SUB (Dual 16-Bit Subtractions)

� SUB (Subtraction)

� SUBADD (Dual 16-Bit Subtraction and Addition)

 Dual 16–Bit Addition and Subtraction ADDSUB

5-41Instruction Set DescriptionsSPRU374G

Dual 16-Bit Addition and Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADDSUB Tx, Smem, ACx No 3 1 X

Opcode 1101 1110 AAAA AAAI ssDD 1000

Operands ACx, Smem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle,
an addition and subtraction:

HI(ACx) = Smem + Tx
:: LO(ACx) = Smem – Tx

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The data memory operand Smem:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

ADDSUB Dual 16–Bit Addition and Subtraction

Instruction Set Descriptions5-42 SPRU374G

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADDSUB T1, *AR1, AC1 Both instructions are performed in parallel. The content addressed by AR1 is add-
ed to the content of T1 and the result is stored in AC1(39–16). The duplicated
content of T1 is subtracted from the duplicated content addressed by AR1 and the
result is stored in AC1(15–0).

Before After

AC1 00 2300 0000 AC1 00 2300 A300

T1 4000 T1 4000

AR1 0201 AR1 0201

201 E300 201 E300

SXMD 1 SXMD 1

M40 1 M40 1

ACOV0 0 ACOV0 0

CARRY 0 CARRY 1

 Dual 16–Bit Addition and Subtraction ADDSUB

5-43Instruction Set DescriptionsSPRU374G

Dual 16-Bit Addition and Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ADDSUB Tx, dual(Lmem), ACx No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 110x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle,
an addition and subtraction:

HI(ACx) = HI(Lmem) + Tx
:: LO(ACx) = LO(Lmem) – Tx

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

ADDSUB Dual 16–Bit Addition and Subtraction

Instruction Set Descriptions5-44 SPRU374G

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

ADDSUB T0, dual(*AR3), AC0 Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of T0 is added to the content addressed
by AR3 and the result is stored in AC0(39–16). The duplicated content of
T0 is subtracted from the content addressed by AR3 + 1 and the result is
stored in AC0(15–0).

 Addition or Subtraction Conditionally ADDSUBCC

5-45Instruction Set DescriptionsSPRU374G

Addition or Subtraction ConditionallyADDSUBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADDSUBCC Smem, ACx, TC1, ACy No 3 1 X

[2] ADDSUBCC Smem, ACx, TC2, ACy No 3 1 X

Opcode TC1 1101 1110 AAAA AAAI SSDD 0000

TC2 1101 1110 AAAA AAAI SSDD 0001

Operands ACx, ACy, Smem, TCx

Description This instruction evaluates the selected TCx status bit and based on the result
of the test, either an addition or a subtraction is performed. Evaluation of the
condition on the TCx status bit is performed during the Execute phase of the
instruction.

TC1 or TC2 Operation

0 ACy = ACx – (Smem << #16)

1 ACy = ACx + (Smem << #16)

� TCx = 0, then ACy = ACx – (Smem << #16):

This instruction subtracts the content of a memory (Smem) location shifted
left by 16 bits from accumulator ACx and stores the result in accumulator
ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� TCx = 1, then ACy = ACx + (Smem << #16):

This instruction performs an addition operation between accumulator ACx
and the content of a memory (Smem) location shifted left by 16 bits and
stores the result in accumulator ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

ADDSUBCC Addition or Subtraction Conditionally

Instruction Set Descriptions5-46 SPRU374G

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD, TCx

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

Example 1

Syntax Description

ADDSUBCC *AR3, AC1, TC1, AC0 If TC1 = 1, the content addressed by AR3 shifted left by 16 bits is
added to the content of AC1 and the result is stored in AC0. If
TC1 = 0, the content addressed by AR3 shifted left by 16 bits is
subtracted from the content of AC1 and the result is stored in AC0.

Example 2

Syntax Description

ADDSUBCC *AR1, AC0, TC2, AC1 TC2 = 1, the content addressed by AR1 shifted left by 16 bits is
added to the content of AC0 and the result is stored in AC1. The
result generated an overflow and a carry.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC1 00 0000 0000 AC1 01 1F00 0000

AR1 0200 AR1 0200

200 3300 200 3300

TC2 1 TC2 1

SXMD 0 SXMD 0

M40 0 M40 0

ACOV1 0 ACOV1 1

CARRY 0 CARRY 1

 Addition, Subtraction, or Move Accumulator Content Conditionally ADDSUBCC

5-47Instruction Set DescriptionsSPRU374G

Addition, Subtraction, or Move Accumulator Content ConditionallyADDSUBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADDSUBCC Smem, ACx, TC1, TC2, ACy No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0010

Operands ACx, ACy, Smem, TC1, TC2

Description This instruction evaluates the TCx status bits and based on the result of the
test, an addition, a subtraction, or a move is performed. Evaluation of the
condition on the TCx status bits is performed during the Execute phase of the
instruction.

TC1 TC2 Operation

0 0 ACy = ACx – (Smem << #16)

0 1 ACy = ACx

1 0 ACy = ACx + (Smem << #16)

1 1 ACy = ACx

� TC2 = 1, then ACy = ACx:

This instruction moves the content of ACx to ACy.

� The 40-bit move operation is performed in the D-unit ALU.

� During the 40-bit move operation, an overflow is detected according to
M40:

� the destination accumulator overflow status bit (ACOVy) is set.

� the destination register (ACy) is saturated according to SATD.

� TC1 = 0 and TC2 = 0, then ACy = ACx – (Smem << #16):

This instruction subtracts the content of a memory (Smem) location shifted
left by 16 bits from accumulator ACx and stores the result in accumulator
ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

ADDSUBCC Addition, Subtraction, or Move Accumulator Content Conditionally

Instruction Set Descriptions5-48 SPRU374G

� TC1 = 1 and TC2 = 0, then ACy = ACx + (Smem << #16):

This instruction performs an addition operation between accumulator ACx
and the content of a memory (Smem) location shifted left by 16 bits and
stores the result in accumulator ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD, TC1, TC2

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

Example

Syntax Description

ADDSUBCC *AR3, AC1, TC1, TC2, AC0 If TC2 = 1, the content of AC1 is stored in AC0. If TC2 = 0 and
TC1 = 1, the content addressed by AR3 shifted left by 16 bits is
added to the content of AC1 and the result is stored in AC0. If
TC2 = 0 and TC1 = 0, the content addressed by AR3 shifted left
by 16 bits is subtracted from the content of AC1 and the result is
stored in AC0.

 Addition or Subtraction Conditionally with Shift ADDSUB2CC

5-49Instruction Set DescriptionsSPRU374G

Addition or Subtraction Conditionally with ShiftADDSUB2CC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADDSUB2CC Smem, ACx, Tx, TC1, TC2, ACy No 3 1 X

Opcode 1101 1101 AAAA AAAI SSDD ss10

Operands ACx, ACy, Tx, Smem, TC1, TC2

Description This instruction evaluates the TC1 status bit and based on the result of the test,
either an addition or a subtraction is performed; this instruction evaluates the
TC2 status bit and based on the result of the test, either a shift left by 16 bits
or the content of Tx is performed. Evaluation of the condition on the TCx
status bits is performed during the Execute phase of the instruction.

TC1 TC2 Operation

0 0 ACy = ACx – (Smem << Tx)

0 1 ACy = ACx – (Smem << #16)

1 0 ACy = ACx + (Smem << Tx)

1 1 ACy = ACx + (Smem << #16)

� TC1 = 0 and TC2 = 0, then ACy = ACx – (Smem << Tx):

This instruction subtracts the content of a memory (Smem) location shifted
left by the content of Tx from an accumulator ACx and stores the result in
accumulator ACy.

� TC1 = 0 and TC2 = 1, then ACy = ACx – (Smem << #16):

This instruction subtracts the content of a memory (Smem) location shifted
left by 16 bits from an accumulator ACx and stores the result in
accumulator ACy.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

ADDSUB2CC Addition or Subtraction Conditionally with Shift

Instruction Set Descriptions5-50 SPRU374G

� TC1 = 1 and TC2 = 0, then ACy = ACx + (Smem << Tx):

This instruction performs an addition operation between an accumulator
ACx and the content of a memory (Smem) location shifted left by the
content of Tx and stores the result in accumulator ACy.

� TC1 = 1 and TC2 = 1, then ACy = ACx + (Smem << #16):

This instruction performs an addition operation between an accumulator
ACx and the content of a memory (Smem) location shifted left by 16 bits
and stores the result in accumulator ACy.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD, TC1, TC2

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

 Addition or Subtraction Conditionally with Shift ADDSUB2CC

5-51Instruction Set DescriptionsSPRU374G

Example

Syntax Description

ADDSUB2CC *AR2, AC0, T1, TC1, TC2, AC2 TC1 = 1 and TC2 = 0, the content addressed by AR2
shifted left by the content of T1 is added to the content of
AC0 and the result is stored in AC2. The result generated
an overflow.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC2 00 0000 0000 AC2 00 EC00 CC00

AR2 0201 AR2 0201

201 3300 201 3300

T1 0002 T1 0002

TC1 1 TC1 1

TC2 0 TC2 0

M40 0 M40 0

ACOV2 0 ACOV2 1

CARRY 0 CARRY 0

ADDV Addition with Absolute Value

Instruction Set Descriptions5-52 SPRU374G

Addition with Absolute ValueADDV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ADD[R]V [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 000%

Operands ACx, ACy

Description This instruction computes the absolute value of accumulator ACx and adds the
result to accumulator ACy. This instruction is performed in the D-unit MAC:

ACy = (ACy + |ACx|)

� The absolute value of accumulator ACx is computed by multiplying
ACx(32–16) by 00001h or 1FFFFh depending on bit 32 of the source
accumulator.

� If FRCT = 1, the absolute value is multiplied by 2.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

� The result of the absolute value of the higher part of ACx is in the lower
part of ACy.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

 Addition with Absolute Value ADDV

5-53Instruction Set DescriptionsSPRU374G

See Also See the following other related instructions:

� ABS (Absolute Value)

� ADD (Addition)

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

Example

Syntax Description

ADDV AC1, AC0 The absolute value of AC1 is added to the content of AC0 and the result is stored
in AC0.

AMAR Modify Auxiliary Register Content

Instruction Set Descriptions5-54 SPRU374G

Modify Auxiliary Register ContentAMAR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Smem No 2 1 AD

Opcode 1011 0100 AAAA AAAI

Operands Smem

Description This instruction performs, in the A-unit address generation units, the auxiliary
register modification specified by Smem as if a word single data memory
operand access was made. The operation is performed in the address phase
of the pipeline; however, data memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the AMAR() instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

 Modify Auxiliary Register Content AMAR

5-55Instruction Set DescriptionsSPRU374G

See Also See the following other related instructions:

� AADD (Modify Auxiliary or Temporary Register Content by Addition)

� AMAR (Modify Extended Auxiliary Register Content)

� AMAR (Parallel Modify Auxiliary Register Contents)

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� AMAR::MPY (Modify Auxiliary Register Content with Parallel Multiply)

� AMOV (Modify Auxiliary or Temporary Register Content)

� ASUB (Modify Auxiliary or Temporary Register Content by Subtraction)

Example

Syntax Description

AMAR *AR3+ The content of AR3 is incremented by 1.

AMAR Modify Extended Auxiliary Register Content

Instruction Set Descriptions5-56 SPRU374G

Modify Extended Auxiliary Register ContentAMAR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Smem, XAdst No 3 1 AD

Opcode 1110 1100 AAAA AAAI XDDD 1110

Operands Smem, XAdst

Description This instruction computes the effective address specified by the Smem
operand field and modifies the 23-bit destination register (XARx, XSP, XSSP,
XDP, or XCDP). This operation is completed in the address phase of the
pipeline by the A-unit address generator. Data memory is not accessed.

The premodification or postmodification of the auxiliary register (ARx), the use
of port(#K), and the use of the port(Smem) qualifier is not supported for this
instruction. The use of auxiliary register offset operations is supported. If the
corresponding bit (ARnLC) in status register ST2_55 is set to 1, the circular
buffer management also controls the result stored in XAdst.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Auxiliary Register Content)

� AMOV (Load Extended Auxiliary Register with Immediate Value)

� MOV (Load Extended Auxiliary Register from Memory)

� MOV (Move Extended Auxiliary Register Content)

� MOV (Store Extended Auxiliary Register Content to Memory)

Example

Syntax Description

AMAR *AR1, XAR0 The content of AR1 is loaded into XAR0.

 Parallel Modify Auxiliary Register Contents AMAR

5-57Instruction Set DescriptionsSPRU374G

Parallel Modify Auxiliary Register ContentsAMAR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Xmem, Ymem, Cmem No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 10mm xxxx xxxx

Operands Cmem, Xmem, Ymem

Description This instruction performs three parallel modify auxiliary register (MAR)
operations in one cycle. The auxiliary register modification is specified by:

� the content of data memory operand Xmem

� the content of data memory operand Ymem

� the content of a data memory operand Cmem, addressed using the
coefficient addressing mode

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Auxiliary Register Content)

� AMAR (Modify Extended Auxiliary Register Content)

Example

Syntax Description

AMAR *AR3+, *AR4–, *CDP AR3 is incremented by 1. AR4 is decremented by 1. CDP is not modified.

AMAR::MAC Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Instruction Set Descriptions5-58 SPRU374G

Modify Auxiliary Register Content with Parallel Multiply and AccumulateAMAR::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

No 4 1 X

[2] AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx >> #16

No 4 1 X

Description These instructions perform two parallel operations in one cycle: modify
auxiliary register (MAR), and multiply and accumulate (MAC). The operations
are executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� AMAR (Modify Auxiliary Register Content)

� AMAR::MPY (Modify Auxiliary Register Content with Parallel Multiply)

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MAC (Multiply and Accumulate)

 Modify Auxiliary Register Content with Parallel Multiply and Accumulate AMAR::MAC

5-59Instruction Set DescriptionsSPRU374G

Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 11mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR), and multiply and accumulate (MAC):

mar(Xmem)
:: ACx = ACx + (Ymem * Cmem)

The operations are executed in the two D-unit MACs. The first operation
performs an auxiliary register modification. The auxiliary register modification
is specified by the content of data memory operand Xmem.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

AMAR::MAC Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Instruction Set Descriptions5-60 SPRU374G

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional 40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AMAR *AR3+
:: MAC uns(*AR4), uns(*CDP), AC0

Both instructions are performed in parallel. AR3 is incremented by 1.
The unsigned content addressed by AR4 multiplied by the unsigned
content addressed by the coefficient data pointer register (CDP) is
added to the content of AC0 and the result is stored in AC0.

 Modify Auxiliary Register Content with Parallel Multiply and Accumulate AMAR::MAC

5-61Instruction Set DescriptionsSPRU374G

Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx >> #16

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 01mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR), and multiply and accumulate (MAC):

mar(Xmem)
:: ACx = (ACx >> #16) + (Ymem * Cmem)

The operations are executed in the two D-unit MACs. The first operation
performs an auxiliary register modification. The auxiliary register modification
is specified by the content of data memory operand Xmem.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx shifted right by 16 bits. The shifting
operation is performed with a sign extension of source accumulator
ACx(39).

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

AMAR::MAC Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Instruction Set Descriptions5-62 SPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional 40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AMAR *AR2+
:: MAC uns(*AR1), uns(*CDP), AC0 >> #16

Both instructions are performed in parallel. AR2 is increm-
ented by 1. The unsigned content addressed by AR1 multi-
plied by the unsigned content addressed by the coefficient
data pointer register (CDP) is added to the content of AC0
shifted right by 16 bits and the result is stored in AC0. An
overflow is detected in AC0.

Before After

AC0 00 6900 0000 AC0 00 95C0 9200

AC1 00 0023 0000 AC1 00 0023 0000

*AR1 EF00 *AR1 EF00

AR2 0201 AR2 0202

*CDP A067 *CDP A067

ACOV0 0 ACOV0 1

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

M40 0 M40 0

FRCT 0 FRCT 0

SATD 0 SATD 0

 Modify Auxiliary Register Content with Parallel Multiply and Subtract AMAR::MAS

5-63Instruction Set DescriptionsSPRU374G

Modify Auxiliary Register Content with Parallel Multiply and SubtractAMAR::MAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Xmem
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 00mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR), and multiply and subtract (MAS):

mar(Xmem)
:: ACx = ACx – (Ymem * Cmem)

The operations are executed in the two D-unit MACs. The first operation
performs an auxiliary register modification. The auxiliary register modification
is specified by the content of data memory operand Xmem.

The second operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Ymem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

AMAR::MAS Modify Auxiliary Register Content with Parallel Multiply and Subtract

Instruction Set Descriptions5-64 SPRU374G

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional 40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Auxiliary Register Content)

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� AMAR::MPY (Modify Auxiliary Register Content with Parallel Multiply)

� MAS (Multiply and Subtract)

Example

Syntax Description

AMAR *AR3+
:: MAS uns(*AR4), uns(*CDP), AC0

Both instructions are performed in parallel. AR3 is incremented by 1.
The unsigned content addressed by AR4 multiplied by the unsigned
content addressed by the coefficient data pointer register (CDP) is
subtracted from the content of AC0 and the result is stored in AC0.

 Modify Auxiliary Register Content with Parallel Multiply AMAR::MPY

5-65Instruction Set DescriptionsSPRU374G

Modify Auxiliary Register Content with Parallel MultiplyAMAR::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMAR Xmem
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 11mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR) and multiply:

mar(Xmem)
:: ACx = Ymem * Cmem

The operations are executed in the two D-unit MACs. The first operation
performs an auxiliary register modification. The auxiliary register modification
is specified by the content of data memory operand Xmem.

The second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

AMAR::MPY Modify Auxiliary Register Content with Parallel Multiply

Instruction Set Descriptions5-66 SPRU374G

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional 40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Auxiliary Register Content)

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MPY (Multiply)

Example

Syntax Description

AMAR *AR3+
:: MPY uns(*AR4), uns(*CDP), AC0

Both instructions are performed in parallel. AR3 is incremented by
1. The unsigned content addressed by AR4 is multiplied by the
unsigned content addressed by the coefficient data pointer register
(CDP) and the result is stored in AC0.

 Load Extended Auxiliary Register with Immediate Value AMOV

5-67Instruction Set DescriptionsSPRU374G

Load Extended Auxiliary Register with Immediate ValueAMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMOV k23, XAdst No 6 1 AD

Opcode 1110 1100 AAAA AAAI 0DDD 1110

Operands k23, XAdst

Description This instruction loads a 23-bit unsigned constant (k23) into the 23-bit
destination register (XARx, XSP, XSSP, XDP, or XCDP):

XAdst = k23

This operation is completed in the address phase of the pipeline by the A-unit
address generator. Data memory is not accessed.

The premodification or postmodification of the auxiliary register (ARx), the use
of port(#K), and the use of the port(Smem) qualifier is not supported for this
instruction. The use of auxiliary register offset operations is supported. If the
corresponding bit (ARnLC) in status register ST2_55 is set to 1, the circular
buffer management also controls the result stored in XAdst.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Extended Auxiliary Register Content)

� MOV (Load Extended Auxiliary Register from Memory)

� MOV (Move Extended Auxiliary Register Content)

� MOV (Store Extended Auxiliary Register Content to Memory)

Example

Syntax Description

AMOV #7FFFFFh, XAR0 The 23-bit value (7FFFFFh) is loaded into XAR0.

AMOV Modify Auxiliary or Temporary Register Content

Instruction Set Descriptions5-68 SPRU374G

Modify Auxiliary or Temporary Register ContentAMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMOV TAx, TAy No 3 1 AD

[2] AMOV P8, TAx No 3 1 AD

[3] AMOV D16, TAx No 4 1 AD

Description These instructions perform, in the A-unit address generation units:

� a move from auxiliary or temporary register TAx to auxiliary or temporary
register TAy

� a load in the auxiliary or temporary registers TAx of a program address
defined by a program address label assembled into P8

� a load in the auxiliary or temporary registers TAx of the absolute data
address signed constant D16

The operation is performed in the address phase of the pipeline, however data
memory is not accessed.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� AADD (Modify Auxiliary or Temporary Register Content by Addition)

� AMAR (Modify Auxiliary Register Content)

� AMAR (Modify Extended Auxiliary Register Content)

� ASUB (Modify Auxiliary or Temporary Register Content by Subtraction)

� MOV (Load Auxiliary or Temporary Register from Memory)

 Modify Auxiliary or Temporary Register Content AMOV

5-69Instruction Set DescriptionsSPRU374G

Modify Auxiliary or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AMOV TAx, TAy No 3 1 AD

Opcode 0001 010E FSSS xxxx FDDD 0001

0001 010E FSSS xxxx FDDD 1001

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, TAy

Description This instruction performs, in the A-unit address generation units, a move from
the auxiliary or temporary register TAx to auxiliary or temporary register TAy.
The operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example 1

Syntax Description

AMOV AR1, AR0 The content of AR1 is copied to AR0.

Example 2

Syntax Description

AMOV T1, T0 The content of T1 is copied to T0.

AMOV Modify Auxiliary or Temporary Register Content

Instruction Set Descriptions5-70 SPRU374G

Modify Auxiliary or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] AMOV P8, TAx No 3 1 AD

Opcode 0001 010E PPPP PPPP FDDD 0101

0001 010E PPPP PPPP FDDD 1101

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, P8

Description This instruction performs, in the A-unit address generation units, a load in the
auxiliary or temporary registers TAx of a program address defined by a
program address label assembled into P8. The operation is performed in the
address phase of the pipeline; however, data memory is not accessed.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example 1

Syntax Description

AMOV #255, AR0 The unsigned 8-bit value (255) is copied to AR0.

Example 2

Syntax Description

AMOV #255, T0 The unsigned 8-bit value (255) is copied to T0.

 Modify Auxiliary or Temporary Register Content AMOV

5-71Instruction Set DescriptionsSPRU374G

Modify Auxiliary or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] AMOV D16, TAx No 4 1 AD

Opcode 0111 0111 DDDD DDDD DDDD DDDD FDDD xxxx

Operands TAx, D16

Description This instruction performs, in the A-unit address generation units, a load in the
auxiliary or temporary registers TAx of the absolute data address signed
constant D16. The operation is performed in the address phase of the pipeline;
however, data memory is not accessed.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AMOV #FFFFh, T1 The address FFFFh is copied to T1.

AND Bitwise AND

Instruction Set Descriptions5-72 SPRU374G

Bitwise ANDAND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AND src, dst Yes 2 1 X

[2] AND k8, src, dst Yes 3 1 X

[3] AND k16, src, dst No 4 1 X

[4] AND Smem, src, dst No 3 1 X

[5] AND ACx << #SHIFTW[, ACy] Yes 3 1 X

[6] AND k16 << #16, [ACx,] ACy No 4 1 X

[7] AND k16 << #SHFT, [ACx,] ACy No 4 1 X

[8] AND k16, Smem No 4 1 X

Description These instructions perform a bitwise AND operation:

� In the D-unit, if the destination operand is an accumulator.

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register.

� In the A-unit ALU, if the destination operand is the memory.

Status Bits Affected by C54CM

Affects none

See Also See the following other related instructions:

� BAND (Bitwise AND Memory with Immediate Value and Compare to Zero)

� OR (Bitwise OR)

� XOR (Bitwise Exclusive OR)

 Bitwise AND AND

5-73Instruction Set DescriptionsSPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] AND src, dst Yes 2 1 X

Opcode 0010 100E FSSS FDDD

Operands dst, src

Description This instruction performs a bitwise AND operation between two registers:

dst = dst & src

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND AC0, AC1 The content of AC0 is ANDed with the content of AC1 and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 0F E340 5678 AC1 0E 2340 4640

AND Bitwise AND

Instruction Set Descriptions5-74 SPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] AND k8, src, dst Yes 3 1 X

Opcode 0001 100E kkkk kkkk FDDD FSSS

Operands dst, k8, src

Description This instruction performs a bitwise AND operation between a source (src)
register content and an 8-bit value, k8:

dst = src & k8

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND #FFh, AC1, AC0 The content of AC1 is ANDed with the unsigned 8-bit value (FFh) and the result is
stored in AC0.

 Bitwise AND AND

5-75Instruction Set DescriptionsSPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] AND k16, src, dst No 4 1 X

Opcode 0111 1101 kkkk kkkk kkkk kkkk FDDD FSSS

Operands dst, k16, src

Description This instruction performs a bitwise AND operation between a source (src)
register content and a 16-bit unsigned constant, k16:

dst = src & k16

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND #FFFFh, AC1, AC0 The content of AC1 is ANDed with the unsigned 16-bit value (FFFFh) and the
result is stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-76 SPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] AND Smem, src, dst No 3 1 X

Opcode 1101 1001 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs a bitwise AND operation between a source (src)
register content and a memory (Smem) location:

dst = src & Smem

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND *AR3, AC1, AC0 The content of AC1 is ANDed with the content addressed by AR3 and the result is
stored in AC0.

 Bitwise AND AND

5-77Instruction Set DescriptionsSPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] AND ACx << #SHIFTW[, ACy] Yes 3 1 X

Opcode 0001 000E DDSS 0000 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs a bitwise AND operation between an accumulator
(ACy) content and an accumulator (ACx) content shifted by the 6-bit value,
SHIFTW:

ACy = ACy & (ACx <<< #SHIFTW)

� The shift and AND operations are performed in one cycle in the D-unit
shifter.

� Input operands are zero extended to 40 bits.

� The input operand (ACx) is shifted by a 6-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the intermediary logical shift is performed as if M40 is
locally set to 1. The 8 upper bits of the 40-bit intermediary result are not
cleared.

Status Bits Affected by C54CM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND AC1 << #30, AC0 The content of AC0 is ANDed with the content of AC1 logically shifted left by
30 bits and the result is stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-78 SPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] AND k16 << #16, [ACx,] ACy No 4 1 X

Opcode 0111 1010 kkkk kkkk kkkk kkkk SSDD 010x

Operands ACx, ACy, k16

Description This instruction performs a bitwise AND operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by 16 bits:

ACy = ACx & (k16 <<< #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted 16 bits to the MSBs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND #FFFFh << #16, AC1, AC0 The content of AC1 is ANDed with the unsigned 16-bit value (FFFFh)
logically shifted left by 16 bits and the result is stored in AC0.

 Bitwise AND AND

5-79Instruction Set DescriptionsSPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] AND k16 << #SHFT, [ACx,] ACy No 4 1 X

Opcode 0111 0010 kkkk kkkk kkkk kkkk SSDD SHFT

Operands ACx, ACy, k16, SHFT

Description This instruction performs a bitwise AND operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by the 4-bit
value, SHFT:

ACy = ACx & (k16 <<< #SHFT)

� The shift and AND operations are performed in one cycle in the D-unit
shifter.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted by a 4-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AND #FFFFh << #15, AC1, AC0 The content of AC1 is ANDed with the unsigned 16-bit value (FFFFh)
logically shifted left by 15 bits and the result is stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-80 SPRU374G

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] AND k16, Smem No 4 1 X

Opcode 1111 0100 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem

Description This instruction performs a bitwise AND operation between a memory (Smem)
location and a 16-bit unsigned constant, k16.

Smem = Smem & k16

� The operation is performed on 16 bits in the A-unit ALU.

� The result is stored in memory.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

AND #0FC0, *AR1 The content addressed by AR1 is ANDed with the unsigned 16-bit value (FC0h)
and the result is stored in the location addressed by AR1.

Before After

*AR1 5678 *AR1 0640

 Modify Auxiliary or Temporary Register Content by Subtraction ASUB

5-81Instruction Set DescriptionsSPRU374G

Modify Auxiliary or Temporary Register Content by SubtractionASUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ASUB TAx, TAy No 3 1 AD

[2] ASUB P8, TAx No 3 1 AD

Description These instructions perform, in the A-unit address generation units:

� a subtraction between two auxiliary or temporary registers, TAy and TAx,
and stores the result in TAy

� a subtraction between the auxiliary or temporary registers TAx and a
program address defined by a program address label assembled into
unsigned P8, and stores the result in TAx

The operation is performed in the address phase of the pipeline, however data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Status Bits Affected by ST2_55

Affects none

See Also See the following other related instructions:

� AADD (Modify Auxiliary or Temporary Register Content by Addition)

� AMAR (Modify Auxiliary Register Content)

� AMAR (Modify Extended Auxiliary Register Content)

� AMOV (Modify Auxiliary or Temporary Register Content)

ASUB Modify Auxiliary or Temporary Register Content by Subtraction

Instruction Set Descriptions5-82 SPRU374G

Modify Auxiliary or Temporary Register Content by Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ASUB TAx, TAy No 3 1 AD

Opcode 0001 010E FSSS xxxx FDDD 0010

0001 010E FSSS xxxx FDDD 1010

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, TAy

Description This instruction performs, in the A-unit address generation units, a subtraction
between two auxiliary or temporary registers, TAy and TAx, and stores the
result in TAy. The content of TAx is considered signed:

TAy = TAy – TAx

The operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the ASUB instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

 Modify Auxiliary or Temporary Register Content by Subtraction ASUB

5-83Instruction Set DescriptionsSPRU374G

Example 1

Syntax Description

ASUB T0, AR0 The signed content of T0 is subtracted from the content of AR0 and the result is stored in
AR0.

Before After

XAR0 01 8000 XAR0 01 0000

T0 8000 T0 8000

Example 2

Syntax Description

ASUB T1, T0 The content of T1 is subtracted from the content of T0 and the result is stored in T0.

ASUB Modify Auxiliary or Temporary Register Content by Subtraction

Instruction Set Descriptions5-84 SPRU374G

Modify Auxiliary or Temporary Register Content by Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ASUB P8, TAx No 3 1 AD

Opcode 0001 010E PPPP PPPP FDDD 0110

0001 010E PPPP PPPP FDDD 1110

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, P8

Description This instruction performs, in the A-unit address generation units, a subtraction
between the auxiliary or temporary register TAx and a program address
defined by a program address label assembled into unsigned P8, and stores
the result in TAx:

TAx = TAx – P8

The operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the ASUB instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

ASUB #255, AR0 The unsigned 8-bit value (255) is subtracted from the signed content of AR0 and
the result is stored in AR0.

 Branch Unconditionally B

5-85Instruction Set DescriptionsSPRU374G

Branch UnconditionallyB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] B ACx No 2 10 X

[2] B L7 Yes 2 6† AD

[3] B L16 Yes 3 6† AD

[4] B P24 No 4 5 D

† This instruction executes in 3 cycles if the addressed instruction is in the instruction buffer unit.

Description This instruction branches to a 24-bit program address defined by the content
of the 24 lowest bits of an accumulator (ACx), or to a program address defined
by the program address label assembled into Lx or P24.

These instructions cannot be repeated.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� BCC (Branch Conditionally)

� BCC (Branch on Auxiliary Register Not Zero)

� BCC (Compare and Branch)

� CALL (Call Unconditionally)

B Branch Unconditionally

Instruction Set Descriptions5-86 SPRU374G

Branch Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] B ACx No 2 10 X

Opcode 1001 0001 xxxx xxSS

Operands ACx

Description This instruction branches to a 24-bit program address defined by the content
of the 24 lowest bits of an accumulator (ACx).

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

B AC0 Program control is passed to the program address defined by the content of AC0(23–0).

Before After

AC0 00 0000 403D AC0 00 0000 403D

PC 001F0A PC 00403D

 Branch Unconditionally B

5-87Instruction Set DescriptionsSPRU374G

Branch Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[2] B L7 Yes 2 6 AD

[3] B L16 Yes 3 6 AD

† Executes in 3 cycles if the addressed instruction is in the instruction buffer unit.

Opcode L7 0100 101E 0LLL LLLL

L16 0000 011E LLLL LLLL LLLL LLLL

Operands Lx

Description This instruction branches to a program address defined by a program address
label assembled into Lx.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

B branch Program control is passed to the absolute address defined by branch.

B branch

MOV #1, AC0 address: 004044

… …
branch
:

… … 006047

MOV #0, AC0

Before After

PC 004042 PC 006047

AC0 00 0000 0001 AC0 00 0000 0000

B Branch Unconditionally

Instruction Set Descriptions5-88 SPRU374G

Branch Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] B P24 No 4 5 D

Opcode 0110 1010 PPPP PPPP PPPP PPPP PPPP PPPP

Operands P24

Description This instruction branches to a program address defined by a program address
label assembled into P24.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

B branch Program control is passed to the absolute address defined by branch.

B branch

MOV #1, AC0 address: 004044

… …
branch
:

… … 006047

MOV #0, AC0

Before After

PC 004042 PC 006047

AC0 00 0000 0001 AC0 00 0000 0000

 Bitwise AND Memory with Immediate Value and Compare to Zero BAND

5-89Instruction Set DescriptionsSPRU374G

Bitwise AND Memory with Immediate Value and Compare to ZeroBAND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BAND Smem, k16, TC1 No 4 1 X

[2] BAND Smem, k16, TC2 No 4 1 X

Opcode TC1 1111 0010 AAAA AAAI kkkk kkkk kkkk kkkk

TC2 1111 0011 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem, TCx

Description This instruction performs a bit field manipulation in the A-unit ALU. The 16-bit
field mask, k16, is ANDed with the memory (Smem) operand and the result is
compared to 0:

if(((Smem) AND k16) == 0)

TCx = 0

else

TCx = 1

Status Bits Affected by none

Affects TCx

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

See Also See the following other related instructions:

� AND (Bitwise AND)

Example

Syntax Description

BAND *AR0, #0060h, TC1 The unsigned 16-bit value (0060h) is ANDed with the content addressed by
AR0. The result is 1, TC1 is set to 1.

Before After

*AR0 0040 *AR0 0040

TC1 0 TC1 1

BCC Branch Conditionally

Instruction Set Descriptions5-90 SPRU374G

Branch ConditionallyBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] BCC l4, cond No 2 6/5 R

[2] BCC L8, cond Yes 3 6/5 R

[3] BCC L16, cond No 4 6/5 R

[4] BCC P24, cond No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Description These instructions evaluate a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into l4, Lx, or P24. There is a 1-cycle latency
on the condition setting. A single condition can be tested as determined by the
cond field of the instruction. See Table 1–3 for a list of conditions.

The instruction selection depends on the branch offset between the current PC
value and the program branch address specified by the label.

These instructions cannot be repeated.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

See Also See the following other related instructions:

� B (Branch Unconditionally)

� BCC (Branch on Auxiliary Register Not Zero)

� BCC (Compare and Branch)

� CALLCC (Call Conditionally)

 Branch Conditionally BCC

5-91Instruction Set DescriptionsSPRU374G

Branch Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] BCC l4, cond No 2 6/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 0lll 1CCC CCCC

Operands cond, l4

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into l4. There is a 1-cycle latency on the
condition setting. A single condition can be tested as determined by the cond
field of the instruction. See Table 1–3 for a list of conditions.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

BCC branch, AC0 != #0 The content of AC0 is not equal to 0, control is passed to the program address
label defined by branch.

BCC branch, AC0 != #0

… … address: 004057

… …
branch
:

…… 00405A

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004055 PC 00405A

BCC Branch Conditionally

Instruction Set Descriptions5-92 SPRU374G

Branch Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[2] BCC L8, cond Yes 3 6/5 R

[3] BCC L16, cond No 4 6/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode L8 0000 010E xCCC CCCC LLLL LLLL

L16 0110 1101 xCCC CCCC LLLL LLLL LLLL LLLL

Operands cond, Lx

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into Lx. There is a 1-cycle latency on the
condition setting. A single condition can be tested as determined by the cond
field of the instruction. See Table 1–3 for a list of conditions.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

BCC branch, AC0 != #0 The content of AC0 is not equal to 0, control is passed to the program address
label defined by branch.

branch
:

…… 00305A

BCC branch, AC0 != #0

… … address: 004057

… …

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004055 PC 00305A

 Branch Conditionally BCC

5-93Instruction Set DescriptionsSPRU374G

Branch Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[4] BCC P24, cond No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1000 xCCC CCCC PPPP PPPP PPPP PPPP PPPP PPPP

Operands cond, P24

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into P24. There is a 1-cycle latency on the
condition setting. A single condition can be tested as determined by the cond
field of the instruction. See Table 1–3 for a list of conditions.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

BCC branch, AC0 != #0 The content of AC0 is not equal to 0, control is passed to the program address
label defined by branch.

.sect “code1”

… …
BCC branch, AC0 != #0

… … address: 004057

.sect “code2”

branch
:

…… 00F05A

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004055 PC 00F05A

BCC Branch on Auxiliary Register Not Zero

Instruction Set Descriptions5-94 SPRU374G

Branch on Auxiliary Register Not ZeroBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] BCC L16, ARn_mod != #0 No 4 6/5 AD

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 1111 1100 AAAA AAAI LLLL LLLL LLLL LLLL

Operands ARn_mod, L16

Description This instruction performs a conditional branch (selected auxiliary register
content not equal to 0) of the program counter (PC). The program branch
address is specified as a 16-bit signed offset, L16, relative to PC. Use this
instruction to branch within a 64K-byte window centered on the current PC
value.

The possible addressing operands can be grouped into three categories:

� ARx not modified (ARx as base pointer), some examples:
*AR1; No modification or offset
*AR1(#15); Use 16-bit immediate value (15) as offset
*AR1(T0); Use content of T0 as offset
*AR1(short(#4)); Use 3-bit immediate value (4) as offset

� ARx modified before being compared to 0, some examples:
*–AR1; Decrement by 1 before comparison
*+AR1(#20); Add 16-bit immediate value (20) before comparison

� ARx modified after being compared to 0, some examples:
*AR1+; Increment by 1 after comparison
*(AR1 – T1); Subtract content of T1 after comparison

1) The content of the selected auxiliary register (ARn) is premodified in the
address generation unit.

2) The (premodified) content of ARn is compared to 0 and sets the condition
in the address phase of the pipeline.

3) If the condition is not true, a branch occurs. If the condition is true, the
instructions are executed in sequence.

4) The content of ARn is postmodified in the address generation unit.

 Branch on Auxiliary Register Not Zero BCC

5-95Instruction Set DescriptionsSPRU374G

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

The premodifier *ARn(T0) is not available; *ARn(AR0) is available.

The postmodifiers *(ARn + T0) and *(ARn – T0) are not available;
*(ARn + AR0) and *(ARn – AR0) are available.

The legality of the modifier usage is checked by the assembler when using the
.c54cm_on and .c54cm_off assembler directives.

Status Bits Affected by C54CM

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� B (Branch Unconditionally)

� BCC (Branch Conditionally)

� BCC (Compare and Branch)

Example 1

Syntax Description

BCC branch, *AR1(#6) != #0 The content of AR1 is compared to 0. The content is not 0, program control
is passed to the program address label defined by branch.

BCC branch, *AR1(#6) != #0 address: 004004

… … ; 00400A

… …
branch
:

… … ; 00400C

Before After

AR1 0005 AR1 0005

PC 004004 PC 00400C

BCC Branch on Auxiliary Register Not Zero

Instruction Set Descriptions5-96 SPRU374G

Example 2

Syntax Description

BCC branch, *AR3– != #0 The content of AR3 is compared to 0. The content is 0, program control is
passed to the next instruction (the branch is not taken). AR3 is decremented by
1 after the comparison.

BCC branch, *AR3– != #0 address: 00400F

… … ; 004013

… …
branch
:

… … ; 004015

Before After

AR3 0000 AR3 FFFF

PC 00400F PC 004013

 Compare and Branch BCC

5-97Instruction Set DescriptionsSPRU374G

Compare and BranchBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] BCC[U] L8, src RELOP K8 No 4 7/6 X

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1111 FSSS ccxu KKKK KKKK LLLL LLLL

Operands K8, L8, RELOP, src

Description This instruction performs a comparison operation between a source (src)
register content and an 8-bit signed value, K8. The instruction performs a
comparison in the D-unit ALU or in the A-unit ALU. The comparison is
performed in the execute phase of the pipeline. If the result of the comparison
is true, a branch occurs.

The program branch address is specified as an 8-bit signed offset, L8, relative
to the program counter (PC). Use this instruction to branch within a 256-byte
window centered on the current PC value.

The comparison depends on the optional U keyword and, for accumulator
comparisons, on M40.

� In the case of an unsigned comparison, the 8-bit constant, K8, is zero
extended to:

� 16 bits, if the source (src) operand is an auxiliary or temporary register.

� 40 bits, if the source (src) operand is an accumulator.

� In the case of a signed comparison, the 8-bit constant, K8, is sign
extended to:

� 16 bits, if the source (src) operand is an auxiliary or temporary register.

� 40 bits, if the source (src) operand is an accumulator.

As the following table shows, the U keyword specifies an unsigned
comparison; M40 defines the comparison bit width of the accumulator.

U src Comparison Type

no TAx 16-bit signed comparison in A-unit ALU

no ACx if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx 16-bit unsigned comparison in A-unit ALU

yes ACx if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

BCC Compare and Branch

Instruction Set Descriptions5-98 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the conditions testing the accumulator contents are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� B (Branch Unconditionally)

� BCC (Branch Conditionally)

� BCC (Branch on Auxiliary Register Not Zero)

Example 1

Syntax Description

BCC branch, AC0 >= #12 The signed content of AC0 is compared to the sign-extended 8-bit value (12).
Because the content of AC0 is greater than or equal to 12, program control is
passed to the program address label defined by branch (004078h).

BCC branch, AC0 >= #12

… … address: 00 4075

… …
branch
:

… … 00 4078

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004071 PC 004078

 Compare and Branch BCC

5-99Instruction Set DescriptionsSPRU374G

Example 2

Syntax Description

BCC branch, T1 != #1 The content of T1 is not equal to 1, program control is passed to the next
instruction (the branch is not taken).

BCC branch, T1 != #1

… … address: 00407D

… …
branch
:

… … 004080

Before After

T1 0000 T1 0000

PC 4079 PC 407D

BCLR Clear Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-100 SPRU374G

Clear Accumulator, Auxiliary, or Temporary Register BitBCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BCLR Baddr, src No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 001x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction clears to 0 a single bit, as defined by the bit addressing mode,
Baddr, of the source register.

The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, the selected register bit value does not change.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BCLR (Clear Status Register Bit)

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Accumulator, Auxiliary, or Temporary Register Bit)

Example

Syntax Description

BCLR AR3, AC0 The bit at the position defined by the content of AR3(4–0) in AC0 is cleared to 0.

 Clear Memory Bit BCLR

5-101Instruction Set DescriptionsSPRU374G

Clear Memory BitBCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BCLR src, Smem No 3 1 X

Opcode 1110 0011 AAAA AAAI FSSS 1101

Operands Smem, src

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
clears to 0 a single bit, as defined by the content of the source (src) operand,
of a memory (Smem) location.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Accumulator, Auxiliary, or Temporary Register Bit)

� BCLR (Clear Status Register Bit)

� BNOT (Complement Memory Bit)

� BSET (Set Memory Bit)

Example

Syntax Description

BCLR AC0, *AR3 The bit at the position defined by AC0(3–0) in the content addressed by AR3 is
cleared to 0.

BCLR Clear Status Register Bit

Instruction Set Descriptions5-102 SPRU374G

Clear Status Register BitBCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BCLR k4, ST0_55 Yes 2 1 X

[2] BCLR k4, ST1_55 Yes 2 1 X

[3] BCLR k4, ST2_55 Yes 2 1 X

[4] BCLR k4, ST3_55 Yes 2 1† X

[5] BCLR f-name Yes 2 1† X

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed
and the instruction is executed in 5 cycles regardless of the instruction context.

Opcode ST0 0100 011E kkkk 0000

ST1 0100 011E kkkk 0010

ST2 0100 011E kkkk 0100

ST3 0100 011E kkkk 0110

Operands f-name, k4, STx_55

Description These instructions perform a bit manipulation in the A-unit ALU.

These instructions clear to 0 a single bit, as defined by a 4-bit immediate value,
k4, or the one-bit-wide status bit field name, f-name, in the selected status
register (ST0_55, ST1_55, ST2_55, or ST3_55).

Compatibility with C54x devices (C54CM = 1)

C55x DSP status registers bit mapping (Figure 5–1, page 5-104) does not
correspond to C54x DSP status registers bits.

Status Bits Affected by none

Affects Selected status bits

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� BCLR (Clear Accumulator, Auxiliary, or Temporary Register Bit)

� BCLR (Clear Memory Bit)

� BSET (Set Status Register Bit)

 Clear Status Register Bit BCLR

5-103Instruction Set DescriptionsSPRU374G

Example 1

Syntax Description

BCLR AR2LC, ST2_55 The ST2_55 bit position defined by the label (AR2LC, bit 2) is cleared to 0.

Before After

ST2_55 0006 ST2_55 0002

Example 2

Syntax Description

BCLR AR2LC The ST2_55 AR2LC (bit 2) is cleared to 0.

Before After

ST2_55 0006 ST2_55 0002

BCLR Clear Status Register Bit

Instruction Set Descriptions5-104 SPRU374G

Figure 5–1. Status Registers Bit Mapping

ST0_55

15 14 13 12 11 10 9

ACOV2† ACOV3† TC1† TC2 CARRY ACOV0 ACOV1

R/W–0 R/W–0 R/W–1 R/W–1 R/W–1 R/W–0 R/W–0

8 0

DP

R/W–0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40† SATD SXMD

R/W–0 R/W–0 R/W–1 R/W–0 R/W–1 R/W–0 R/W–0 R/W–1

7 6 5 4 0

C16 FRCT C54CM† ASM

R/W–0 R/W–0 R/W–1 R/W–0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

R/W–0 R/W–1 R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

ST3_55

15 14 13 12 11 8

CAFRZ† CAEN† CACLR† HINT‡ Reserved (always write 1100b)

R/W–0 R/W–0 R/W–0 R/W–1

7 6 5 4 3 2 1 0

CBERR† MPNMC§ SATA† Reserved CLKOFF SMUL SST

R/W–0 R/W–pins R/W–0 R/W–0 R/W–0 R/W–0

Legend: R = Read; W = Write; -n = Value after reset
† Highlighted bit: If you write to the protected address of the status register, a write to this bit has no effect, and the bit always

appears as a 0 during read operations.
‡ The HINT bit is not used for all C55x host port interfaces (HPIs). Consult the documentation for the specific C55x DSP.
§ The reset value of MPNMC may be dependent on the state of predefined pins at reset. To check this for a particular C55x DSP,

see the boot loader section of its data sheet.

 Count Accumulator Bits BCNT

5-105Instruction Set DescriptionsSPRU374G

Count Accumulator BitsBCNT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BCNT ACx, ACy, TC1, Tx Yes 3 1 X

[2] BCNT ACx, ACy, TC2, Tx Yes 3 1 X

Opcode TC1 0001 000E xxSS 1010 SSdd xxx0

TC2 0001 000E XXSS 1010 SSdd xxx1

Operands ACx, ACy, Tx, TCx

Description This instruction performs bit field manipulation in the D-unit shifter. The result
is stored in the selected temporary register (Tx). The A-unit ALU is used to
make the move operation.

Accumulator ACx is ANDed with accumulator ACy. The number of bits set to
1 in the intermediary result is evaluated and stored in the selected temporary
register (Tx). If the number of bits is even, the selected TCx status bit is cleared
to 0. If the number of bits is odd, the selected TCx status bit is set to 1.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

BCNT AC1, AC2, TC1, T1 The content of AC1 is ANDed with the content of AC2, the number of bits
set to 1 in the result is evaluated and stored in T1. The number of bits set
to 1 is odd, TC1 is set to 1.

Before After

AC1 7E 2355 4FC0 AC1 7E 2355 4FC0

AC2 0F E340 5678 AC2 0F E340 5678

T1 0000 T1 000B

TC1 0 TC1 1

BFXPA Expand Accumulator Bit Field

Instruction Set Descriptions5-106 SPRU374G

Expand Accumulator Bit FieldBFXPA

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BFXPA k16, ACx, dst No 4 1 X

Opcode 0111 0110 kkkk kkkk kkkk kkkk FDDD 01SS

Operands ACx, dst, k16

Description This instruction performs a bit field manipulation in the D-unit shifter. When the
destination register (dst) is an A-unit register (ARx or Tx), a dedicated bus
carries the output of the D-unit shifter directly into dst.

The 16-bit field mask, k16, is scanned from the least significant bits (LSBs) to
the most significant bits (MSBs). According to the bit set to 1 in the bit field
mask, the 16 LSBs of the source accumulator (ACx) bits are extracted and
separated with 0 toward the MSBs. The result is stored in dst.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BFXTR (Extract Accumulator Bit Field)

Example

Syntax Description

BFXPA #8024h, AC0, T2 Each bit of the unsigned 16-bit value (8024h) is scanned from the LSB to the MSB
to test for a 1. If the bit is set to 1, the bit in AC0 is extracted and separated with 0
toward the MSB in T2; otherwise, the corresponding bit in AC0 is not extracted.
The result is stored in T2.

Execution

#k16 (8024h) 1000 0000 0010 0100

AC0(15–0) 0010 1011 0110 0101

T2 1000 0000 0000 0100

Before After

AC0 00 2300 2B65 AC0 00 2300 2B65

T2 0000 T2 8004

 Extract Accumulator Bit Field BFXTR

5-107Instruction Set DescriptionsSPRU374G

Extract Accumulator Bit FieldBFXTR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BFXTR k16, ACx, dst No 4 1 X

Opcode 0111 0110 kkkk kkkk kkkk kkkk FDDD 00SS

Operands ACx, dst, k16

Description This instruction performs a bit field manipulation in the D-unit shifter. When the
destination register (dst) is an A-unit register (ARx or Tx), a dedicated bus
carries the output of the D-unit shifter directly into dst.

The 16-bit field mask, k16, is scanned from the least significant bits (LSBs) to
the most significant bits (MSBs). According to the bit set to 1 in the bit field
mask, the corresponding 16 LSBs of the source accumulator (ACx) bits are
extracted and packed toward the LSBs. The result is stored in dst.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BFXPA (Expand Accumulator Bit Field)

Example

Syntax Description

BFXTR #8024h, AC0, T2 Each bit of the unsigned 16-bit value (8024h) is scanned from the LSB to the
MSB to test for a 1. If the bit is set to 1, the corresponding bit in AC0 is
extracted and packed toward the LSB in T2; otherwise, the corresponding bit in
AC0 is not extracted. The result is stored in T2.

Execution

#k16 (8024h) 1000 0000 0010 0100

AC0(15–0) 0101 0101 1010 1010

T2 0000 0000 0000 0010

Before After

AC0 00 2300 55AA AC0 00 2300 55AA

T2 0000 T2 0002

BNOT Complement Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-108 SPRU374G

Complement Accumulator, Auxiliary, or Temporary Register BitBNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BNOT Baddr, src No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 011x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction complements a single bit, as defined by the bit addressing
mode, Baddr, of the source register.

The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, the selected register bit value does not change.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BNOT (Complement Memory Bit)

� NOT (Complement Accumulator, Auxiliary, or Temporary Register
Content)

Example

Syntax Description

BNOT AR1, T0 The bit at the position defined by the content of AR1(3–0) in T0 is complemented.

Before After

T0 E000 T0 F000

AR1 000C AR1 000C

 Complement Memory Bit BNOT

5-109Instruction Set DescriptionsSPRU374G

Complement Memory BitBNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BNOT src, Smem No 3 1 X

Opcode 1110 0011 AAAA AAAI FSSS 111x

Operands Smem, src

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
complements a single bit, as defined by the content of the source (src)
operand, of a memory (Smem) location.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Memory Bit)

� NOT (Complement Accumulator, Auxiliary, or Temporary Register Content)

Example

Syntax Description

BNOT AC0, *AR3 The bit at the position defined by AC0(3–0) in the content addressed by AR3 is
complemented.

BSET Set Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-110 SPRU374G

Set Accumulator, Auxiliary, or Temporary Register BitBSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BSET Baddr, src No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 000x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction sets to 1 a single bit, as defined by the bit addressing mode,
Baddr, of the source register.

The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, the selected register bit value does not change.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Accumulator, Auxiliary, or Temporary Register Bit)

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Memory Bit)

� BSET (Set Status Register Bit)

Example

Syntax Description

BSET AR3, AC0 The bit at the position defined by the content of AR3(4–0) in AC0 is set to 1.

 Set Memory Bit BSET

5-111Instruction Set DescriptionsSPRU374G

Set Memory BitBSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BSET src, Smem No 3 1 X

Opcode 1110 0011 AAAA AAAI FSSS 1100

Operands Smem, src

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
sets to 1 a single bit, as defined by the content of the source (src) operand, of
a memory (Smem) location.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BNOT (Complement Memory Bit)

� BSET (Set Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Status Register Bit)

Example

Syntax Description

BSET AC0, *AR3 The bit at the position defined by AC0(3–0) in the content addressed by AR3 is
set to 1.

BSET Set Status Register Bit

Instruction Set Descriptions5-112 SPRU374G

Set Status Register BitBSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BSET k4, ST0_55 Yes 2 1 X

[2] BSET k4, ST1_55 Yes 2 1 X

[3] BSET k4, ST2_55 Yes 2 1 X

[4] BSET k4, ST3_55 Yes 2 1† X

[5] BSET f-name Yes 2 1† X

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed
and the instruction is executed in 5 cycles regardless of the instruction context.

Opcode ST0 0100 011E kkkk 0001

ST1 0100 011E kkkk 0011

ST2 0100 011E kkkk 0101

ST3 0100 011E kkkk 0111

Operands k4, f-name, STx_55

Description These instructions perform a bit manipulation in the A-unit ALU.

These instructions set to 1 a single bit, as defined by a 4-bit immediate value,
k4, or the one-bit-wide status bit field name, f-name, in the selected status
register (ST0_55, ST1_55, ST2_55, or ST3_55).

Compatibility with C54x devices (C54CM = 1)

C55x DSP status registers bit mapping (Figure 5–2, page 5-114) does not
correspond to C54x DSP status register bits.

Status Bits Affected by none

Affects Selected status bits

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� BCLR (Clear Status Register Bit)

� BSET (Set Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Memory Bit)

 Set Status Register Bit BSET

5-113Instruction Set DescriptionsSPRU374G

Example 1

Syntax Description

BSET CARRY, ST0_55 The ST0_55 bit position defined by the label (CARRY, bit 11) is set to 1.

Before After

ST0_55 0000 ST0_55 0800

Example 2

Syntax Description

BSET CARRY The ST0_55 CARRY (bit 11) is set to 1.

Before After

ST0_55 0000 ST0_55 0800

BSET Set Status Register Bit

Instruction Set Descriptions5-114 SPRU374G

Figure 5–2. Status Registers Bit Mapping

ST0_55

15 14 13 12 11 10 9

ACOV2† ACOV3† TC1† TC2 CARRY ACOV0 ACOV1

R/W–0 R/W–0 R/W–1 R/W–1 R/W–1 R/W–0 R/W–0

8 0

DP

R/W–0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40† SATD SXMD

R/W–0 R/W–0 R/W–1 R/W–0 R/W–1 R/W–0 R/W–0 R/W–1

7 6 5 4 0

C16 FRCT C54CM† ASM

R/W–0 R/W–0 R/W–1 R/W–0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

R/W–0 R/W–1 R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

ST3_55

15 14 13 12 11 8

CAFRZ† CAEN† CACLR† HINT‡ Reserved (always write 1100b)

R/W–0 R/W–0 R/W–0 R/W–1

7 6 5 4 3 2 1 0

CBERR† MPNMC§ SATA† Reserved CLKOFF SMUL SST

R/W–0 R/W–pins R/W–0 R/W–0 R/W–0 R/W–0

Legend: R = Read; W = Write; -n = Value after reset
† Highlighted bit: If you write to the protected address of the status register, a write to this bit has no effect, and the bit always

appears as a 0 during read operations.
‡ The HINT bit is not used for all C55x host port interfaces (HPIs). Consult the documentation for the specific C55x DSP.
§ The reset value of MPNMC may be dependent on the state of predefined pins at reset. To check this for a particular C55x DSP,

see the boot loader section of its data sheet.

 Test Accumulator, Auxiliary, or Temporary Register Bit BTST

5-115Instruction Set DescriptionsSPRU374G

Test Accumulator, Auxiliary, or Temporary Register BitBTST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BTST Baddr, src, TC1 No 3 1 X

[2] BTST Baddr, src, TC2 No 3 1 X

Opcode TC1 1110 1100 AAAA AAAI FSSS 1000

TC2 1110 1100 AAAA AAAI FSSS 1001

Operands Baddr, src, TCx

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction tests a single bit of the source register location as defined by
the bit addressing mode, Baddr. The tested bit is copied into the selected TCx
status bit. The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, 0 is stored into the selected TCx status bit.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Accumulator, Auxiliary, or Temporary Register Bit)

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Accumulator, Auxiliary, or Temporary Register Bit)

� BTST (Test Memory Bit)

� BTSTP (Test Accumulator, Auxiliary, or Temporary Register Bit Pair)

BTST Test Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-116 SPRU374G

Example

Syntax Description

BTST @#12, T0, TC1 The bit at the position defined by the register bit address (12) in T0 is tested and
the tested bit is copied into TC1.

Before After

T0 FE00 T0 FE00

TC1 0 TC1 1

 Test Memory Bit BTST

5-117Instruction Set DescriptionsSPRU374G

Test Memory BitBTST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BTST src, Smem, TCx No 3 1 X

[2] BTST k4, Smem, TCx No 3 1 X

Description These instructions perform a bit manipulation in the A-unit ALU. These
instructions test a single bit of a memory (Smem) location. The bit tested is
defined by either the content of the source (src) operand or a 4-bit immediate
value, k4. The tested bit is copied into the selected TCx status bit.

For instruction [1], the generated bit address must be within 0–15 (only the
4 LSBs of the register are used to determine the bit position).

Status Bits Affected by none

Affects TCx

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BNOT (Complement Memory Bit)

� BSET (Set Memory Bit)

� BTST (Test Accumulator, Auxiliary, or Temporary Register Bit)

� BTSTCLR (Test and Clear Memory Bit)

� BTSTNOT (Test and Complement Memory Bit)

� BTSTP (Test Accumulator, Auxiliary, or Temporary Register Bit Pair)

� BTSTSET (Test and Set Memory Bit)

BTST Test Memory Bit

Instruction Set Descriptions5-118 SPRU374G

Test Memory Bit

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1a] BTST src, Smem, TC1 No 3 1 X

[1b] BTST src, Smem, TC2 No 3 1 X

Opcode TC1 1110 0000 AAAA AAAI FSSS xxx0

TC2 1110 0000 AAAA AAAI FSSS xxx1

Operands Smem, src, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. This instruction
tests a single bit of a memory (Smem) location. The bit tested is defined by the
content of the source (src) operand. The tested bit is copied into the selected
TCx status bit.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

BTST AC0, *AR0, TC1 The bit at the position defined by AC0(3–0) in the content addressed by AR0 is
tested and the tested bit is copied into TC1.

Before After

AC0 00 0000 0008 AC0 00 0000 0008

*AR0 00C0 *AR0 00C0

TC1 0 TC1 0

 Test Memory Bit BTST

5-119Instruction Set DescriptionsSPRU374G

Test Memory Bit

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2a] BTST k4, Smem, TC1 No 3 1 X

[2b] BTST k4, Smem, TC2 No 3 1 X

Opcode TC1 1101 1100 AAAA AAAI kkkk xx00

TC2 1101 1100 AAAA AAAI kkkk xx01

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. This instruction
tests a single bit of a memory (Smem) location. The bit tested is defined by a
4-bit immediate value, k4. The tested bit is copied into the selected TCx status
bit.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

BTST #12, *AR3, TC1 The bit at the position defined by an unsigned 4-bit value (12) in the content
addressed by AR3 is tested and the tested bit is copied into TC1.

BTSTCLR Test and Clear Memory Bit

Instruction Set Descriptions5-120 SPRU374G

Test and Clear Memory BitBTSTCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BTSTCLR k4, Smem, TC1 No 3 1 X

[2] BTSTCLR k4, Smem, TC2 No 3 1 X

Opcode TC1 1110 0011 AAAA AAAI kkkk 010x

TC2 1110 0011 AAAA AAAI kkkk 011x

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
tests a single bit, as defined by a 4-bit immediate value, k4, of a memory
(Smem) location. The tested bit is copied into status bit TCx and is cleared to
0 in Smem.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BNOT (Complement Memory Bit)

� BSET (Set Memory Bit)

� BTST (Test Memory Bit)

� BTSTNOT (Test and Complement Memory Bit)

� BTSTSET (Test and Set Memory Bit)

Example

Syntax Description

BTSTCLR #12, *AR3, TC1 The bit at the position defined by the unsigned 4-bit value (12) in the
content addressed by AR3 is tested and the tested bit is copied into TC1.
The selected bit (12) in the content addressed by AR3 is cleared to 0.

 Test and Complement Memory Bit BTSTNOT

5-121Instruction Set DescriptionsSPRU374G

Test and Complement Memory BitBTSTNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BTSTNOT k4, Smem, TC1 No 3 1 X

[2] BTSTNOT k4, Smem, TC2 No 3 1 X

Opcode TC1 1110 0011 AAAA AAAI kkkk 100x

TC2 1110 0011 AAAA AAAI kkkk 101x

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
tests a single bit, as defined by a 4-bit immediate value, k4, of a memory
(Smem) location and the tested bit is copied into status bit TCx and is
complemented in Smem.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BNOT (Complement Memory Bit)

� BSET (Set Memory Bit)

� BTST (Test Memory Bit)

� BTSTCLR (Test and Clear Memory Bit)

� BTSTSET (Test and Set Memory Bit)

Example

Syntax Description

BTSTNOT #12, *AR0, TC1 The bit at the position defined by the unsigned 4-bit value (12) in the
content addressed by AR0 is tested and the tested bit is copied into TC1.
The selected bit (12) in the content addressed by AR0 is complemented.

Before After

*AR0 0040 *AR0 1040

TC1 0 TC1 0

BTSTP Test Accumulator, Auxiliary, or Temporary Register Bit Pair

Instruction Set Descriptions5-122 SPRU374G

Test Accumulator, Auxiliary, or Temporary Register Bit PairBTSTP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BTSTP Baddr, src No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 010x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction tests two consecutive bits of the source register location as
defined by the bit addressing mode, Baddr and Baddr + 1. The tested bits are
copied into status bits TC1 and TC2:

� TC1 tests the bit that is defined by Baddr

� TC2 tests the bit defined by Baddr + 1

The generated bit address must be within:

� 0–38 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–38:

� If the generated bit address is 39, bit 39 of the register is stored into
TC1 and 0 is stored into TC2.

� In all other cases, 0 is stored into TC1 and TC2.

� 0–14 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position). If the
generated bit address is not within 0–14:

� If the generated bit address is 15, bit 15 of the register is stored into
TC1 and 0 is stored into TC2.

� In all other cases, 0 is stored into TC1 and TC2.

Status Bits Affected by none

Affects TC1, TC2

 Test Accumulator, Auxiliary, or Temporary Register Bit Pair BTSTP

5-123Instruction Set DescriptionsSPRU374G

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Accumulator, Auxiliary, or Temporary Register Bit)

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� BSET (Set Accumulator, Auxiliary, or Temporary Register Bit)

� BTST (Test Accumulator, Auxiliary, or Temporary Register Bit)

� BTST (Test Memory Bit)

Example

Syntax Description

BTSTP AR1(T0), AC0 The bit at the position defined by the content of AR1(T0) in AC0 is tested and the
tested bit is copied into TC1. The bit at the position defined by the content of
AR1(T0) + 1 in AC0 is tested and the tested bit is copied into TC2.

Before After

AC0 E0 1234 0000 AC0 E0 1234 0000

AR1 0026 AR1 0026

T0 0001 T0 0001

TC1 0 TC1 1

TC2 0 TC2 0

BTSTSET Test and Set Memory Bit

Instruction Set Descriptions5-124 SPRU374G

Test and Set Memory BitBTSTSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BTSTSET k4, Smem, TC1 No 3 1 X

[2] BTSTSET k4, Smem, TC2 No 3 1 X

Opcode TC1 1110 0011 AAAA AAAI kkkk 000x

TC2 1110 0011 AAAA AAAI kkkk 001x

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
tests a single bit, as defined by a 4-bit immediate value, k4, of a memory
(Smem) location. The tested bit is copied into status bit TCx and is set to 1 in
Smem.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BCLR (Clear Memory Bit)

� BNOT (Complement Memory Bit)

� BSET (Set Memory Bit)

� BTST (Test Memory Bit)

� BTSTCLR (Test and Clear Memory Bit)

� BTSTNOT (Test and Complement Memory Bit)

Example

Syntax Description

BTSTSET #12, *AR3, TC1 The bit at the position defined by the unsigned 4-bit value (12) in the
content addressed by AR3 is tested and the tested bit is copied into TC1.
The selected bit (12) in the content addressed by AR3 is set to 1.

 Call Unconditionally CALL

5-125Instruction Set DescriptionsSPRU374G

Call UnconditionallyCALL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] CALL ACx No 2 10 X

[2] CALL L16 Yes 3 6 AD

[3] CALL P24 No 4 5 D

Description This instruction passes control to a specified subroutine program address
defined by the content of the 24 lowest bits of the accumulator, ACx, or a
program address label assembled into L16 or P24.

Before beginning a called subroutine, the CPU automatically saves the value
of two internal registers: the program counter (PC) and a loop context register.
The CPU can use these values to re-establish the context of the interrupted
program sequence when the subroutine is done.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks (in memory). When the CPU returns
from a subroutine, the speed at which these values are restored is dependent
on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions.

These instructions cannot be repeated.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� B (Branch Unconditionally)

� CALLCC (Call Conditionally)

� RET (Return Unconditionally)

� RETCC (Return Conditionally)

CALL Call Unconditionally

Instruction Set Descriptions5-126 SPRU374G

Call Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] CALL ACx No 2 10 X

Opcode 1001 0010 xxxx xxSS

Operands ACx

Description This instruction passes control to a specified subroutine program address
defined by the content of the 24 lowest bits of the accumulator, ACx.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks. For fast-return mode operation, see
the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The 16 LSBs of the return address, from the
program counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP x 1 (Loop bits) PC(23 16)

After
SP y 1 PC(15 0)

After
Save → SSP = x – 1 (Loop bits):PC(23–16)

After
Save → SP = y – 1 PC(15–0)

Before → SSP x Previously saved data
Before → SP y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

CALL AC0 Program control is passed to the program address defined by the content of AC0(23–0).

 Call Unconditionally CALL

5-127Instruction Set DescriptionsSPRU374G

Call Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] CALL L16 Yes 3 6 AD

Opcode 0000 100E LLLL LLLL LLLL LLLL

Operands L16

Description This instruction passes control to a specified subroutine program address
defined by a program address label assembled into L16.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks. For fast-return mode operation, see
the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The 16 LSBs of the return address, from the
program counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP x 1 (Loop bits) PC(23 16)

After
SP y 1 PC(15 0)

After
Save → SSP = x – 1 (Loop bits):PC(23–16)

After
Save → SP = y – 1 PC(15–0)

Before → SSP x Previously saved data
Before → SP y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

CALL FOO Program control is passed to the program address label (FOO) assembled into the signed
16-bit offset value relative to the program counter register.

CALL Call Unconditionally

Instruction Set Descriptions5-128 SPRU374G

Call Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] CALL P24 No 4 5 D

Opcode 0110 1100 PPPP PPPP PPPP PPPP PPPP PPPP

Operands P24

Description This instruction passes control to a specified subroutine program address
defined by a program address label assembled into P24.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks. For fast-return mode operation, see
the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The 16 LSBs of the return address, from the
program counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP x 1 (Loop bits) PC(23 16)

After
SP y 1 PC(15 0)

After
Save → SSP = x – 1 (Loop bits):PC(23–16)

After
Save → SP = y – 1 PC(15–0)

Before → SSP x Previously saved data
Before → SP y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

CALL FOO Program control is passed to the program address label (FOO) assembled into an absolute
address defined by the 24-bit value.

 Call Conditionally CALLCC

5-129Instruction Set DescriptionsSPRU374G

Call ConditionallyCALLCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] CALLCC L16, cond No 4 6/5 R

[2] CALLCC P24, cond No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Description These instructions evaluate a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a subroutine call occurs to
the program address defined by the program address label assembled into
L16 or P24. There is a 1-cycle latency on the condition setting. A single
condition can be tested as determined by the cond field of the instruction. See
Table 1–3 for a list of conditions.

Before beginning a called subroutine, the CPU automatically saves the value
of two internal registers: the program counter (PC) and a loop context register.
The CPU can use these values to re-establish the context of the interrupted
program sequence when the subroutine is done.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks (in memory). When the CPU returns
from a subroutine, the speed at which these values are restored is dependent
on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions.

The instruction selection depends on the branch offset between the current PC
value and program subroutine address specified by the label.

These instructions cannot be repeated.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

CALLCC Call Conditionally

Instruction Set Descriptions5-130 SPRU374G

See Also See the following other related instructions:

� BCC (Branch Conditionally)

� CALL (Call Unconditionally)

� RETCC (Return Conditionally)

� RET (Return Unconditionally)

 Call Conditionally CALLCC

5-131Instruction Set DescriptionsSPRU374G

Call Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] CALLCC L16, cond No 4 6/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1110 xCCC CCCC LLLL LLLL LLLL LLLL

Operands cond, L16

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a subroutine call occurs to
the program address defined by the program address label assembled into
L16. There is a 1-cycle latency on the condition setting. A single condition can
be tested as determined by the cond field of the instruction. See Table 1–3 for
a list of conditions.

When a subroutine call occurs in the slow-return process (default), the return
address (from the PC) and the loop context bits are stored to the stacks. For
fast-return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the read phase
of the pipeline. The 16 LSBs of the return address, from the program
counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the read
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP 1 (Loop bits) PC(23 16)

After
SP 1 PC(15 0)

After
Save → SSP = x – 1 (Loop bits):PC(23–16)

After
Save → SP = y – 1 PC(15–0)

Before → SSP x Previously saved data
Before → SP y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

CALLCC Call Conditionally

Instruction Set Descriptions5-132 SPRU374G

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

CALLCC (subroutine), AC1 >= #2000h The content of AC1 is equal to or greater than 2000h, control is
passed to the program address label, subroutine. The program
counter (PC) is loaded with the subroutine program address.

 Call Conditionally CALLCC

5-133Instruction Set DescriptionsSPRU374G

Call Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[2] CALLCC P24, cond No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1001 xCCC CCCC PPPP PPPP PPPP PPPP PPPP PPPP

Operands cond, P24

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a subroutine call occurs to
the program address defined by the program address label assembled into
P24. There is a 1-cycle latency on the condition setting. A single condition can
be tested as determined by the cond field of the instruction. See Table 1–3 for
a list of conditions.

When a subroutine call occurs in the slow-return process (default), the return
address (from the PC) and the loop context bits are stored to the stacks. For
fast-return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the read phase
of the pipeline. The 16 LSBs of the return address, from the program
counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the read
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP 1 (Loop bits) PC(23 16)

After
SP 1 PC(15 0)

After
Save → SSP = x – 1 (Loop bits):PC(23–16)

After
Save → SP = y – 1 PC(15–0)

Before → SSP x Previously saved data
Before → SP y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

CALLCC Call Conditionally

Instruction Set Descriptions5-134 SPRU374G

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

CALLCC FOO, TC1 If TC1 is set to 1, control is passed to the program address label (FOO) assembled
into an absolute address defined by the 24-bit value. If TC1 is cleared to 0, the
program counter is incremented by 6 and the next instruction is executed.

 Compare Memory with Immediate Value CMP

5-135Instruction Set DescriptionsSPRU374G

Compare Memory with Immediate ValueCMP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] CMP Smem == K16, TC1 No 4 1 X

[2] CMP Smem == K16, TC2 No 4 1 X

Opcode TC1 1111 0000 AAAA AAAI KKKK KKKK KKKK KKKK

TC2 1111 0001 AAAA AAAI KKKK KKKK KKKK KKKK

Operands K16, Smem, TCx

Description This instruction performs a comparison in the A-unit ALU. The data memory
operand Smem is compared to the 16-bit signed constant, K16. If they are
equal, the TCx status bit is set to 1; otherwise, it is cleared to 0.

if((Smem) == K16)

TCx = 1

else

TCx = 0

Status Bits Affected by none

Affects TCx

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

See Also See the following other related instructions:

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

CMP Compare Memory with Immediate Value

Instruction Set Descriptions5-136 SPRU374G

Example 1

Syntax Description

CMP *AR1+ == #400h, TC1 The content addressed by AR1 is compared to the signed 16-bit value
(400h). Because they are equal, TC1 is set to 1. AR1 is incremented by 1.

Before After

AR1 0285 AR1 0286

0285 0400 0285 0400

TC1 0 TC1 1

Example 2

Syntax Description

CMP *AR1 == #400h, TC2 The content addressed by AR1 is compared to the signed 16-bit value
(400h). Because they are not equal, TC2 is cleared to 0.

Before After

AR1 0285 AR1 0285

0285 0000 0285 0000

TC2 0 TC2 0

 Compare Accumulator, Auxiliary, or Temporary Register Content CMP

5-137Instruction Set DescriptionsSPRU374G

Compare Accumulator, Auxiliary, or Temporary Register ContentCMP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] CMP[U] src RELOP dst, TC1 Yes 3 1 X

[2] CMP[U] src RELOP dst, TC2 Yes 3 1 X

Opcode TC1 0001 001E FSSS cc00 FDDD xux0

TC2 0001 001E FSSS cc00 FDDD xux1

Operands dst, RELOP, src, TCx

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0.

The comparison depends on the optional U keyword and on M40 for
accumulator comparisons. As the following table shows, the U keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons

U src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

CMP Compare Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-138 SPRU374G

Status Bits Affected by C54CM, M40

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� CMP (Compare Memory with Immediate Value)

� CMPAND (Compare Accumulator, Auxiliary, or Temporary Register
Content with AND)

� CMPOR (Compare Accumulator, Auxiliary, or Temporary Register
Content with OR)

� MAX (Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum)

� MIN (Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum)

Example 1

Syntax Description

CMP AC1 == T1, TC1 The signed content of AC1(15–0) is compared to the content of T1 and because
they are equal, TC1 is set to 1.

Before After

AC1 00 0028 0400 AC1 00 0028 0400

T1 0400 T1 0400

TC1 0 TC1 1

Example 2

Syntax Description

CMP T1 >= AC1, TC1 The content of T1 is compared to the signed content of AC1(15–0). The content of
T1 is greater than the content of AC1, TC1 is set to 1.

Before After

T1 0500 T1 0500

AC1 80 0000 0400 AC1 80 0000 0400

TC1 0 TC1 1

 Compare Accumulator, Auxiliary, or Temporary Register Content with AND CMPAND

5-139Instruction Set DescriptionsSPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content
with AND

CMPAND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] CMPAND[U] src RELOP dst, TCy, TCx Yes 3 1 X

[2] CMPAND[U] src RELOP dst, !TCy, TCx Yes 3 1 X

Description These instructions perform a comparison in the D-unit ALU or in the A-unit
ALU. Two accumulator, auxiliary registers, and temporary registers contents
are compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

See Also See the following other related instructions:

� CMP (Compare Memory with Immediate Value)

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

� CMPOR (Compare Accumulator, Auxiliary, or Temporary Register
Content with OR)

� MAX (Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum)

� MIN (Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum)

CMPAND Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Instruction Set Descriptions5-140 SPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

CMPAND[U] src RELOP dst, TCy, TCx

[1a] CMPAND[U] src RELOP dst, TC2, TC1 Yes 3 1 X

[1b] CMPAND[U] src RELOP dst, TC1, TC2 Yes 3 1 X

Opcode 0001 001E FSSS cc01 FDDD 0utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ANDed with TCy; TCx is
updated with this operation.

The comparison depends on the optional U keyword and on M40 for
accumulator comparisons. As the following table shows, the U keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons

U src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

 Compare Accumulator, Auxiliary, or Temporary Register Content with AND CMPAND

5-141Instruction Set DescriptionsSPRU374G

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

CMPAND AC1 == AC2, TC1, TC2 The content of AC1(31–0) is compared to the content of AC2(31–0).
The contents are equal (true), TC2 = TC1 & 1.

Before After

AC1 80 0028 0400 AC1 80 0028 0400

AC2 00 0028 0400 AC2 00 0028 0400

M40 0 M40 0

TC1 1 TC1 1

TC2 0 TC2 1

CMPAND Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Instruction Set Descriptions5-142 SPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

CMPAND[U] src RELOP dst, !TCy, TCx

[2a] CMPAND[U] src RELOP dst, !TC2, TC1 Yes 3 1 X

[2b] CMPAND[U] src RELOP dst, !TC1, TC2 Yes 3 1 X

Opcode 0001 001E FSSS cc01 FDDD 1utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ANDed with the complement
of TCy; TCx is updated with this operation.

The comparison depends on the optional U keyword and on M40 for
accumulator comparisons. As the following table shows, the U keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons

U src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

 Compare Accumulator, Auxiliary, or Temporary Register Content with AND CMPAND

5-143Instruction Set DescriptionsSPRU374G

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

CMPAND AC1 == AC2, !TC1, TC2 The content of AC1(31–0) is compared to the content of AC2(31–0).
The contents are equal (true), TC2 = !TC1 & 1.

Before After

AC1 80 0028 0400 AC1 80 0028 0400

AC2 00 0028 0400 AC2 00 0028 0400

M40 0 M40 0

TC1 1 TC1 1

TC2 0 TC2 0

CMPOR Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Instruction Set Descriptions5-144 SPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content
with OR

CMPOR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] CMPOR[U] src RELOP dst, TCy, TCx Yes 3 1 X

[2] CMPOR[U] src RELOP dst, !TCy, TCx Yes 3 1 X

Description These instructions perform a comparison in the D-unit ALU or in the A-unit
ALU. Two accumulator, auxiliary registers, and temporary registers contents
are compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

See Also See the following other related instructions:

� CMP (Compare Memory with Immediate Value)

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

� CMPAND (Compare Accumulator, Auxiliary, or Temporary Register
Content with AND)

� MAX (Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum)

� MIN (Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum)

 Compare Accumulator, Auxiliary, or Temporary Register Content with OR CMPOR

5-145Instruction Set DescriptionsSPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

CMPOR[U] src RELOP dst, TCy, TCx

[1a] CMPOR[U] src RELOP dst, TC2, TC1 Yes 3 1 X

[1b] CMPOR[U] src RELOP dst, TC1, TC2 Yes 3 1 X

Opcode 0001 001E FSSS cc10 FDDD 0utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ORed with TCy; TCx is
updated with this operation.

The comparison depends on the optional U keyword and on M40 for
accumulator comparisons. As the following table shows, the U keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons

U src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

CMPOR Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Instruction Set Descriptions5-146 SPRU374G

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

CMPORU AC1 != AR1, TC1, TC2 The unsigned content of AC1(15–0) is compared to the unsigned
content of AR1. The contents are equal (false), TC2 = TC1 | 0.

Before After

AC1 00 8028 0400 AC1 00 8028 0400

AR1 0400 AR1 0400

TC1 1 TC1 1

TC2 0 TC2 1

 Compare Accumulator, Auxiliary, or Temporary Register Content with OR CMPOR

5-147Instruction Set DescriptionsSPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

CMPOR[U] src RELOP dst, !TCy, TCx

[2a] CMPOR[U] src RELOP dst, !TC2, TC1 Yes 3 1 X

[2b] CMPOR[U] src RELOP dst, !TC1, TC2 Yes 3 1 X

Opcode 0001 001E FSSS cc10 FDDD 1utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ORed with the complement
of TCy; TCx is updated with this operation.

The comparison depends on the optional U keyword and on M40 for
accumulator comparisons. As the following table shows, the U keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons

U src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

CMPOR Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Instruction Set Descriptions5-148 SPRU374G

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

CMPORU AC1 != AR1, !TC1, TC2 The unsigned content of AC1(15–0) is compared to the unsigned
content of AR1. The contents are equal (false), TC2 = !TC1 | 0.

Before After

AC1 00 8028 0400 AC1 00 8028 0400

AR1 0400 AR1 0400

TC1 1 TC1 1

TC2 1 TC2 0

 Circular Addressing Qualifier .CR

5-149Instruction Set DescriptionsSPRU374G

Circular Addressing Qualifier.CR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] <instruction>.CR No 1 1 AD

Opcode 1001 1101

Operands none

Description This instruction is an instruction qualifier that can be paralleled only with any
instruction making an indirect Smem, Xmem, Ymem, Lmem, Baddr, or Cmem
addressing. This instruction cannot be executed in parallel with any other
types of instructions and it cannot be executed as a stand-alone instruction
(assembler generates an error message).

When this instruction is used in parallel, all modifications of ARx and CDP
pointer registers used in the indirect addressing mode are done circularly (as
if ST2_55 register bits 0 to 8 were set to 1).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

DELAY Memory Delay

Instruction Set Descriptions5-150 SPRU374G

Memory DelayDELAY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] DELAY Smem No 2 1 X

Opcode 1011 0110 AAAA AAAI

Operands Smem

Description This instruction copies the content of the memory (Smem) location into the
next higher address (Smem + 1). When the data is copied, the content of the
addressed location remains the same. A dedicated datapath is used to make
this memory move.

When this instruction is executed, the two address register arithmetic units
ARAU X and Y, of the A-unit data address generator unit, are used to compute
the two addresses Smem and Smem + 1. The address generation is not
affected by circular addressing; if Smem points to the end of a circular buffer,
Smem + 1 will point to an address outside the circular buffer.

The soft dual memory addressing mode mechanism cannot be applied to this
instruction. This instruction cannot use the port(#k16) addressing mode or be
paralleled with the port() operand qualifier.

This instruction cannot be used for accesses to I/O space. Any illegal access
to I/O space generates a hardware bus-error interrupt (BERRINT) to be
handled by the CPU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

DELAY *AR1+ The content addressed by AR1 is copied to the next higher address, AR1 + 1.
AR1 is incremented by 1.

Before After

AR1 0200 AR1 0201

200 3400 200 3400

201 0D80 201 3400

202 2030 202 2030

 Compute Exponent of Accumulator Content EXP

5-151Instruction Set DescriptionsSPRU374G

Compute Exponent of Accumulator ContentEXP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] EXP ACx, Tx Yes 3 1 X

Opcode 0001 000E xxSS 1000 xxdd xxxx

Operands ACx, Tx

Description This instruction computes the exponent of the source accumulator ACx in the
D-unit shifter. The result of the operation is stored in the temporary register Tx.
The A-unit ALU is used to make the move operation.

This exponent is a signed 2s-complement value in the –8 to 31 range. The
exponent is computed by calculating the number of leading bits in ACx and
subtracting 8 from this value. The number of leading bits is the number of shifts
to the MSBs needed to align the accumulator content on a signed 40-bit
representation.

ACx is not modified after the execution of this instruction. If ACx is equal to 0,
Tx is loaded with 0.

This instruction produces in Tx the opposite result than computed by the
Compute Mantissa and Exponent of Accumulator Content instruction (page
5-193).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MANT::EXP (Compute Mantissa and Exponent of Accumulator Content)

Example

Syntax Description

EXP AC0, T1 The exponent is computed by subtracting 8 from the number of leading bits in the
content of AC0. The exponent value is a signed 2s-complement value in the –8 to
31 range and is stored in T1.

Before After

AC0 FF FFFF FFCB AC0 FF FFFF FFCB

T1 0000 T1 0019

FIRSADD Symmetrical Finite Impulse Response Filter

Instruction Set Descriptions5-152 SPRU374G

Symmetrical Finite Impulse Response FilterFIRSADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] FIRSADD Xmem, Ymem, Cmem, ACx, ACy No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 11mm DDx0 DDU%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations: multiply and accumulate
(MAC), and addition. The operation is executed:

ACy = ACy + (ACx * Cmem)
:: ACx = (Xmem << #16) + (Ymem << #16)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of ACx(32–16) and
the content of a data memory operand Cmem, addressed using the coefficient
addressing mode, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

The second operation performs an addition operation between the content of
data memory operand Xmem, shifted left 16 bits, and the content of data
memory operand Ymem, shifted left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

 Symmetrical Finite Impulse Response Filter FIRSADD

5-153Instruction Set DescriptionsSPRU374G

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� FIRSSUB (Antisymmetrical Finite Impulse Response Filter)

Example

Syntax Description

FIRSADD *AR0, *AR1, *CDP, AC0, AC1 The content of AC0(32–16) multiplied by the content addressed
by the coefficient data pointer register (CDP) is added to the
content of AC1 and the result is stored in AC1. The content
addressed by AR0 shifted left by 16 bits is added to the content
addressed by AR1 shifted left by 16 bits and the result is stored
in AC0.

Before After

AC0 00 6900 0000 AC0 00 2300 0000

AC1 00 0023 0000 AC1 FF D8ED 3F00

*AR0 3400 *AR0 3400

*AR1 EF00 *AR1 EF00

*CDP A067 *CDP A067

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 1

FRCT 0 FRCT 0

SXMD 0 SXMD 0

FIRSSUB Antisymmetrical Finite Impulse Response Filter

Instruction Set Descriptions5-154 SPRU374G

Antisymmetrical Finite Impulse Response FilterFIRSSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] FIRSSUB Xmem, Ymem, Cmem, ACx, ACy No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 11mm DDx1 DDU%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations: multiply and accumulate
(MAC), and subtraction. The operation is executed:

ACy = ACy + (ACx * Cmem)
:: ACx = (Xmem << #16) – (Ymem << #16)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of ACx(32–16) and
the content of a data memory operand Cmem, addressed using the coefficient
addressing mode, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

The second operation subtracts the content of data memory operand Ymem,
shifted left 16 bits, from the content of data memory operand Xmem, shifted
left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

 Antisymmetrical Finite Impulse Response Filter FIRSSUB

5-155Instruction Set DescriptionsSPRU374G

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� FIRSADD (Symmetrical Finite Impulse Response Filter)

Example

Syntax Description

FIRSSUB *AR0, *AR1, *CDP, AC0, AC1 The content of AC0(32–16) multiplied by the content addressed
by the coefficient data pointer register (CDP) is added to the
content of AC1 and the result is stored in AC1. The content
addressed by AR1 shifted left by 16 bits is subtracted from the
content addressed by AR0 shifted left by 16 bits and the result
is stored in AC0.

Before After

AC0 00 6900 0000 AC0 00 4500 0000

AC1 00 0023 0000 AC1 FF D8ED 3F00

*AR0 3400 *AR0 3400

*AR1 EF00 *AR1 EF00

*CDP A067 *CDP A067

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

SXMD 0 SXMD 0

IDLE Idle

Instruction Set Descriptions5-156 SPRU374G

IdleIDLE

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] IDLE No 4 ? D

Opcode 0111 1010 xxxx xxxx xxxx xxxx xxxx 110x

Operands none

Description This instruction forces the program being executed to wait until an interrupt or
a reset occurs. The power-down mode that the processor operates in depends
on a configuration register accessible through the peripheral access
mechanism.

Status Bits Affected by INTM

Affects none

Repeat This instruction cannot be repeated.

 Software Interrupt INTR

5-157Instruction Set DescriptionsSPRU374G

Software InterruptINTR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] INTR k5 No 2 3 D

Opcode 1001 0101 0xxk kkkk

Operands k5

Description This instruction passes control to a specified interrupt service routine (ISR)
and interrupts are globally disabled (INTM bit is set to 1 after ST1_55 content
is pushed onto the data stack pointer). The ISR address is stored at the
interrupt vector address defined by the content of an interrupt vector pointer
(IVPD or IVPH) combined with the 5-bit constant, k5. This instruction is
executed regardless of the value of INTM bit.

Note:

DBSTAT (the debug status register) holds debug context information used
during emulation. Make sure the ISR does not modify the value that will be
returned to DBSTAT.

Before beginning an ISR, the CPU automatically saves the value of some CPU
registers and two internal registers: the program counter (PC) and a loop
context register. The CPU can use these values to re-establish the context of
the interrupted program sequence when the ISR is done.

In the slow-return process (default), the return address (from the PC), the loop
context bits, and some CPU registers are stored to the stacks (in memory).
When the CPU returns from an ISR, the speed at which these values are
restored is dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. Some CPU
registers are saved to the stacks (in memory). For fast-return mode operation,
see the TMS320C55x DSP CPU Reference Guide (SPRU371).

When control is passed to the ISR:

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The status register 2 (ST2_55) content is pushed
to the top of SP.

INTR Software Interrupt

Instruction Set Descriptions5-158 SPRU374G

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The 7 higher bits of status register 0 (ST0_55)
concatenated with 9 zeroes are pushed to the top of SSP.

� The SP is decremented by 1 word in the access phase of the pipeline. The
status register 1 (ST1_55) content is pushed to the top of SP.

� The SSP is decremented by 1 word in the access phase of the pipeline.
The debug status register (DBSTAT) content is pushed to the top of SSP.

� The SP is decremented by 1 word in the read phase of the pipeline. The
16 LSBs of the return address, from the program counter (PC), of the
called subroutine are pushed to the top of SP.

� The SSP is decremented by 1 word in the read phase of the pipeline. The
loop context bits concatenated with the 8 MSBs of the return address are
pushed to the top of SSP.

� The PC is loaded with the ISR program address. The active control flow
execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
S

→ SSP = x – 3 (Loop bits):PC(23–16) After
S

→ SP = y – 3 PC(15–0)
Save SSP = x – 2 DBSTAT Save SP = y – 2 ST1_55

SSP = x – 1 ST0_55(15–9) SP = y – 1 ST2_55

Before
S

→ SSP = x Previously saved data Before
S

→ SP = y Previously saved data
Save Save

Status Bits Affected by none

Affects INTM

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� RETI (Return from Interrupt)

� TRAP (Software Trap)

Example

Syntax Description

INTR #3 Program control is passed to the specified interrupt service routine. The interrupt vector
address is defined by the content of an interrupt vector pointer (IVPD) combined with the
unsigned 5-bit value (3).

 Least Mean Square LMS

5-159Instruction Set DescriptionsSPRU374G

Least Mean SquareLMS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] LMS Xmem, Ymem, ACx, ACy No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 110x xxx%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC), and addition. The instruction is executed:

ACy = ACy + (Xmem * Ymem)
:: ACx = round(ACx + (Xmem << #16))

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, sign extended to 17 bits, and the content of data memory
operand Ymem, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

The second operation performs an addition between an accumulator content
and the content of data memory operand Xmem shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. When an
overflow is detected, the accumulator is saturated according to SATD.

� Rounding is performed according to RDM.

LMS Least Mean Square

Instruction Set Descriptions5-160 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the rounding is performed without clearing the 16 lowest bits of
ACx. The addition operation has no overflow detection, report, and saturation
after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

LMS *AR0, *AR1, AC0, AC1 The content addressed by AR0 multiplied by the content addressed by AR1
is added to the content of AC1 and the result is stored in AC1. The content
addressed by AR0 shifted left by 16 bits is added to the content of AC0. The
result is rounded and stored in AC0.

Before After

AC0 00 1111 2222 AC0 00 2111 0000

AC1 00 1000 0000 AC1 00 1200 0000

*AR0 1000 *AR0 1000

*AR1 2000 *AR1 2000

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

 Linear Addressing Qualifier .LR

5-161Instruction Set DescriptionsSPRU374G

Linear Addressing Qualifier.LR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] <instruction>.LR No 1 1 AD

Opcode 1001 1100

Operands none

Description This instruction is an instruction qualifier that can be paralleled only with any
instruction making an indirect Smem, Xmem, Ymem, Lmem, Baddr, or Cmem
addressing. This instruction cannot be executed in parallel with any other
types of instructions and it cannot be executed as a stand-alone instruction
(assembler generates an error message).

When this instruction is used in parallel, all modifications of ARx and CDP
pointer registers used in the indirect addressing mode are done linearly (as if
ST2_55 register bits 0 to 8 were cleared to 0).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

MAC Multiply and Accumulate

Instruction Set Descriptions5-162 SPRU374G

Multiply and AccumulateMAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAC[R] ACx, Tx, ACy[, ACy] Yes 2 1 X

[2] MAC[R] ACy, Tx, ACx, ACy Yes 2 1 X

[3] MACK[R] Tx, K8, [ACx,] ACy Yes 3 1 X

[4] MACK[R] Tx, K16, [ACx,] ACy No 4 1 X

[5] MACM[R] [T3 =]Smem, Cmem, ACx No 3 1 X

[6] MACM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

[7] MACM[R] [T3 =]Smem, Tx, [ACx,] ACy No 3 1 X

[8] MACMK[R] [T3 =]Smem, K8, [ACx,] ACy No 4 1 X

[9] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,]
ACy

No 4 1 X

[10] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)],
ACx >> #16[, ACy]

No 4 1 X

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are:

� ACx(32–16)

� the content of Tx, sign extended to 17 bits

� the 8-bit signed constant, K8, sign extended to 17 bits

� the 16-bit signed constant, K16, sign extended to 17 bits

� the content of a memory (Smem) location, sign extended to 17 bits

� the content of a data memory operand Cmem, addressed using the
coefficient addressing mode, sign extended to 17 bits

� the content of data memory operand Xmem, extended to 17 bits, and the
content of data memory operand Ymem, extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

 Multiply and Accumulate MAC

5-163Instruction Set DescriptionsSPRU374G

See Also See the following other related instructions:

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� MACMZ (Multiply and Accumulate with Parallel Delay)

� MAC::MAC (Parallel Multiply and Accumulates)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MAS (Multiply and Subtract)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

MAC Multiply and Accumulate

Instruction Set Descriptions5-164 SPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAC[R] ACx, Tx, ACy[, ACy] Yes 2 1 X

Opcode 0101 011E DDSS ss0%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32–16) and the content of
Tx, sign extended to 17 bits:

ACy = ACy + (ACx * Tx)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MAC AC1, T0, AC0 The content of AC1 multiplied by the content of T0 is added to the content of AC0
and the result is stored in AC0.

 Multiply and Accumulate MAC

5-165Instruction Set DescriptionsSPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MAC[R] ACy, Tx, ACx, ACy Yes 2 1 X

Opcode 0101 100E DDSS ss1%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACy(32–16) and the content of
Tx, sign extended to 17 bits:

ACy = (ACy * Tx) + ACx

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACR AC1, T1, AC0, AC1 The content of AC1 multiplied by the content of T1 is added to the content of
AC0. The result is rounded and stored in AC1.

MAC Multiply and Accumulate

Instruction Set Descriptions5-166 SPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MACK[R] Tx, K8, [ACx,] ACy Yes 3 1 X

Opcode 0001 111E KKKK KKKK SSDD ss1%

Operands ACx, ACy, K8, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the 8-bit signed constant, K8, sign extended to 17 bits:

ACy = ACx + (Tx * K8)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACK T0, #FFh, AC1, AC0 The content of T0 multiplied by a signed 8-bit value (FFh) is added to the
content of AC1 and the result is stored in AC0.

 Multiply and Accumulate MAC

5-167Instruction Set DescriptionsSPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] MACK[R] Tx, K16, [ACx,] ACy No 4 1 X

Opcode 0111 1001 KKKK KKKK KKKK KKKK SSDD ss1%

Operands ACx, ACy, K16, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the 16-bit signed constant, K16, sign extended to 17 bits:

ACy = ACx + (Tx * K16)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACK T0, #FFFFh, AC1, AC0 The content of T0 multiplied by a signed 16-bit value (FFFFh) is added to
the content of AC1 and the result is stored in AC0.

MAC Multiply and Accumulate

Instruction Set Descriptions5-168 SPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] MACM[R] [T3 =]Smem, Cmem, ACx No 3 1 X

Opcode 1101 0001 AAAA AAAI U%DD 01mm

Description ACx, Cmem, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits, and the content of a data memory operand
Cmem, addressed using the coefficient addressing mode, sign extended to
17 bits:

ACx = ACx + (Smem * Cmem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVx) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

 Multiply and Accumulate MAC

5-169Instruction Set DescriptionsSPRU374G

Example

Syntax Description

MACMR *AR1, *CDP, AC2 The content addressed by AR1 multiplied by the content addressed by the
coefficient data pointer register (CDP) is added to the content of AC2. The
result is rounded and stored in AC2. The result generated an overflow.

Before After

AC2 00 EC00 0000 AC2 00 EC00 0000

AR1 0302 AR2 0302

CDP 0202 CDP 0202

302 FE00 302 FE00

202 0040 202 0040

ACOV2 0 ACOV2 1

MAC Multiply and Accumulate

Instruction Set Descriptions5-170 SPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] MACM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 00SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32–16) and the content of
a memory (Smem) location, sign extended to 17 bits:

ACy = ACy + (Smem * ACx)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACM *AR3, AC0, AC1 The content addressed by AR3 multiplied by the content of AC0 is added to the
content of AC1 and the result is stored in AC1.

 Multiply and Accumulate MAC

5-171Instruction Set DescriptionsSPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] MACM[R] [T3 =]Smem, Tx, [ACx,] ACy No 3 1 X

Opcode 1101 0100 AAAA AAAI U%DD ssSS

Description ACx, ACy, Smem, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of a memory (Smem) location, sign extended to
17 bits:

ACy = ACx + (Tx * Smem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACM *AR3, T0, AC1, AC0 The content addressed by AR3 multiplied by the content of T0 is added
to the content of AC1 and the result is stored in AC0.

MAC Multiply and Accumulate

Instruction Set Descriptions5-172 SPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] MACMK[R] [T3 =]Smem, K8, [ACx,] ACy No 4 1 X

Opcode 1111 1000 AAAA AAAI KKKK KKKK SSDD x1U%

Operands ACx, ACy, K8, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits, and the 8-bit signed constant, K8, sign
extended to 17 bits:

ACy = ACx + (Smem * K8)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD

Affects ACOVy

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

MACMK *AR3, #FFh, AC1, AC0 The content addressed by AR3 multiplied by a signed 8-bit value (FFh) is
added to the content of AC1 and the result is stored in AC0.

 Multiply and Accumulate MAC

5-173Instruction Set DescriptionsSPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,]
ACy

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM SSDD 001g uuU%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
Ymem, extended to 17 bits:

ACy = ACx + (Xmem * Ymem)

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MAC Multiply and Accumulate

Instruction Set Descriptions5-174 SPRU374G

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACMR uns(*AR2+), uns(*AR3+), AC3 The unsigned content addressed by AR2 multiplied by the
unsigned content addressed by AR3 is added to the content of
AC3. The result is rounded and stored in AC3. The result
generated an overflow. AR2 and AR3 are both incremented by 1.

Before After

AC3 00 2300 EC00 AC3 00 9221 0000

AR2 302 AR2 303

AR3 202 AR3 203

ACOV3 0 ACOV3 1

302 FE00 302 FE00

202 7000 202 7000

M40 0 M40 0

SATD 0 SATD 0

FRCT 0 FRCT 0

 Multiply and Accumulate MAC

5-175Instruction Set DescriptionsSPRU374G

Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)],
ACx >> #16[, ACy]

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM SSDD 010g uuU%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
Ymem, extended to 17 bits:

ACy = (ACx >> #16) + (Xmem * Ymem)

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx shifted right by 16 bits. The shifting
operation is performed with a sign extension of source accumulator
ACx(39).

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

MAC Multiply and Accumulate

Instruction Set Descriptions5-176 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MACM uns(*AR3), uns(*AR4), AC1 >> #16, AC0 The unsigned content addressed by AR3 multiplied by
the unsigned content addressed by AR4 is added to the
content of AC1 shifted right by 16 bits and the result is
stored in AC0.

 Multiply and Accumulate with Parallel Delay MACMZ

5-177Instruction Set DescriptionsSPRU374G

Multiply and Accumulate with Parallel DelayMACMZ

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MACM[R]Z [T3 =]Smem, Cmem, ACx No 3 1 X

Opcode 1101 0000 AAAA AAAI U%DD xxmm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC in parallel with the delay memory instruction. The input operands of the
multiplier are the content of a memory (Smem) location, sign extended to
17 bits, and the content of a data memory operand Cmem, addressed using
the coefficient addressing mode, sign extended to 17 bits.

ACx = ACx + (Smem * Cmem)
:: delay(Smem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVx) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

The soft dual memory addressing mode mechanism cannot be applied to this
instruction. This instruction cannot use the port(#k16) addressing mode or be
paralleled with the port() operand qualifier.

This instruction cannot be used for accesses to I/O space. Any illegal access
to I/O space generates a hardware bus-error interrupt (BERRINT) to be
handled by the CPU.

MACMZ Multiply and Accumulate with Parallel Delay

Instruction Set Descriptions5-178 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� MAC (Multiply and Accumulate)

� MAC::MAC (Parallel Multiply and Accumulates)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

Example

Syntax Description

MACMZ *AR3, *CDP, AC0 The content addressed by AR3 multiplied by the content addressed by the
coefficient data pointer register (CDP) is added to the content of AC0 and
the result is stored in AC0. The content addressed by AR3 is copied into the
next higher address.

 Parallel Multiply and Accumulates MAC::MAC

5-179Instruction Set DescriptionsSPRU374G

Parallel Multiply and AccumulatesMAC::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

[2] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

[3] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

No 4 1 X

Description These instructions perform two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� MAC (Multiply and Accumulate)

� MACMZ (Multiply and Accumulate with Parallel Delay)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MAS::MAS (Parallel Multiply and Subtracts)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

� MPY::MPY (Parallel Multiplies)

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-180 SPRU374G

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle:

ACx = ACx + (Xmem * Cmem)
:: ACy = ACy + (Ymem * Cmem)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

 Parallel Multiply and Accumulates MAC::MAC

5-181Instruction Set DescriptionsSPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MAC uns(*AR3), uns(*CDP), AC0
:: MAC uns(*AR4), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned content
addressed by AR3 multiplied by the unsigned content addressed by
the coefficient data pointer register (CDP) is added to the content of
AC0 and the result is stored in AC0. The unsigned content addressed
by AR4 multiplied by the unsigned content addressed by CDP is
added to the content of AC1 and the result is stored in AC1.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-182 SPRU374G

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle:

ACx = (ACx >> #16) + (Xmem * Cmem)
:: ACy = ACy + (Ymem * Cmem)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx shifted right
by 16 bits. The shifting operation is performed with a sign extension of
source accumulator ACx(39).

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

 Parallel Multiply and Accumulates MAC::MAC

5-183Instruction Set DescriptionsSPRU374G

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MAC uns(*AR3), uns(*CDP), AC0 >> #16
:: MAC uns(*AR4), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned
content addressed by AR3 multiplied by the unsigned con-
tent addressed by the coefficient data pointer register (CDP)
is added to the content of AC0 shifted right by 16 bits and
the result is stored in AC0. The unsigned content addressed
by AR4 multiplied by the unsigned content addressed by
CDP is added to the content of AC1 and the result is stored
in AC1.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-184 SPRU374G

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 11mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle:

ACx = (ACx >> #16) + (Xmem * Cmem)
:: ACy = (ACy >> #16) + (Ymem * Cmem)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator shifted right by 16 bits. The shifting operation
is performed with a sign extension of source accumulator bit 39.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

 Parallel Multiply and Accumulates MAC::MAC

5-185Instruction Set DescriptionsSPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MAC uns(*AR3), uns(*CDP), AC0 >> #16
:: MAC uns(*AR4), uns(*CDP), AC1 >> #16

Both instructions are performed in parallel. The unsigned
content addressed by AR3 multiplied by the unsigned
content addressed by the coefficient data pointer register
(CDP) is added to the content of AC0 shifted right by
16 bits and the result is stored in AC0. The unsigned
content addressed by AR4 multiplied by the unsigned
content addressed by CDP is added to the content of AC1
shifted right by 16 bits and the result is stored in AC1.

MAC::MPY Multiply and Accumulate with Parallel Multiply

Instruction Set Descriptions5-186 SPRU374G

Multiply and Accumulate with Parallel MultiplyMAC::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC), and multiply:

ACx = ACx + (Xmem * Cmem)
:: ACy = Ymem * Cmem

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

This second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

 Multiply and Accumulate with Parallel Multiply MAC::MPY

5-187Instruction Set DescriptionsSPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� MAC (Multiply and Accumulate)

� MACMZ (Multiply and Accumulate with Parallel Delay)

� MAC::MAC (Parallel Multiply and Accumulates)

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

MAC::MPY Multiply and Accumulate with Parallel Multiply

Instruction Set Descriptions5-188 SPRU374G

Example

Syntax Description

MAC uns(*AR3), uns(*CDP), AC0
:: MPY uns(*AR4), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned content
addressed by AR3 multiplied by the unsigned content addressed by
the coefficient data pointer register (CDP) is added to the content of
AC0 and the result is stored in AC0. The unsigned content addressed
by AR4 is multiplied by the unsigned content addressed by CDP and
the result is stored in AC1.

 Multiply and Accumulate with Parallel Load Accumulator from Memory MACM::MOV

5-189Instruction Set DescriptionsSPRU374G

Multiply and Accumulate with Parallel Load Accumulator from MemoryMACM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MACM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 101x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and accumulate
(MAC), and load:

ACx = ACx + (Tx * Xmem)
:: ACy = Ymem << #16

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVx) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation loads the content of data memory operand Ymem
shifted left by 16 bits to the accumulator ACy.

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

MACM::MOV Multiply and Accumulate with Parallel Load Accumulator from Memory

Instruction Set Descriptions5-190 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� MAC (Multiply and Accumulate)

� MACMZ (Multiply and Accumulate with Parallel Delay)

� MAC::MAC (Parallel Multiply and Accumulates)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

Example

Syntax Description

MACM *AR3, T0, AC0
:: MOV *AR4 << #16, AC1

Both instructions are performed in parallel. The content addressed by AR3
multiplied by the content of T0 is added to the content of AC0 and the result is
stored in AC0. The content addressed by AR4 shifted left by 16 bits is stored in
AC1.

 Multiply and Accumulate with Parallel Store Accumulator Content to Memory MACM::MOV

5-191Instruction Set DescriptionsSPRU374G

Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

MACM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MACM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 001x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and accumulate
(MAC), and store:

ACy = ACy + (Tx * Xmem)
:: Ymem = HI(ACx << T2)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31–16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31–16), is stored to
the memory location.

MACM::MOV Multiply and Accumulate with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-192 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAC (Modify Auxiliary Register Content with Parallel Multiply and
Accumulate)

� MAC (Multiply and Accumulate)

� MACMZ (Multiply and Accumulate with Parallel Delay)

� MAC::MAC (Parallel Multiply and Accumulates)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

Example

Syntax Description

MACM *AR3, T0, AC0
:: MOV HI(AC1 << T2), *AR4

Both instructions are performed in parallel. The content addressed by AR3
multiplied by the content of T0 is added to the content of AC0 and the result
is stored in AC0. The content of AC1 is shifted by the content of T2, and
AC1(31–16) is stored at the address of AR4.

 Compute Mantissa and Exponent of Accumulator Content MANT::NEXP

5-193Instruction Set DescriptionsSPRU374G

Compute Mantissa and Exponent of Accumulator ContentMANT::NEXP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MANT ACx, ACy
:: NEXP ACx, Tx

Yes 3 1 X2

Opcode 0001 000E DDSS 1001 xxdd xxxx

Operands ACx, ACy, Tx

Description This instruction computes the exponent and mantissa of the source
accumulator ACx. The computation of the exponent and the mantissa is
executed in the D-unit shifter. The exponent is computed and stored in the
temporary register Tx. The A-unit is used to make the move operation. The
mantissa is stored in the accumulator ACy.

The exponent is a signed 2s-complement value in the –31 to 8 range. The
exponent is computed by calculating the number of leading bits in ACx and
subtracting this value from 8. The number of leading bits is the number of shifts
to the MSBs needed to align the accumulator content on a signed 40-bit
representation.

The mantissa is obtained by aligning the ACx content on a signed 32-bit
representation. The mantissa is computed and stored in ACy.

� The shift operation is performed on 40 bits.

� When shifting to the LSBs, bit 39 of ACx is extended to bit 31.

� When shifting to the MSBs, 0 is inserted at bit position 0.

� If ACx is equal to 0, Tx is loaded with 8000h.

This instruction produces in Tx the opposite result than computed by the
Compute Exponent of Accumulator Content instruction (page 5-151).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� EXP (Compute Exponent of Accumulator Content)

MANT::NEXP Compute Mantissa and Exponent of Accumulator Content

Instruction Set Descriptions5-194 SPRU374G

Example 1

Syntax Description

MANT AC0, AC1
:: NEXP AC0, T1

The exponent is computed by subtracting the number of leading bits in the content of
AC0 from 8. The exponent value is a signed 2s-complement value in the –31 to 8
range and is stored in T1. The mantissa is computed by aligning the content of AC0
on a signed 32-bit representation. The mantissa value is stored in AC1.

Before After

AC0 21 0A0A 0A0A AC0 21 0A0A 0A0A

AC1 FF FFFF F001 AC1 00 4214 1414

T1 0000 T1 0007

Example 2

Syntax Description

MANT AC0, AC1
:: NEXP AC0, T1

The exponent is computed by subtracting the number of leading bits in the content of
AC0 from 8. The exponent value is a signed 2s-complement value in the –31 to 8
range and is stored in T1. The mantissa is computed by aligning the content of AC0
on a signed 32-bit representation. The mantissa value is stored in AC1.

Before After

AC0 00 E804 0000 AC0 00 E804 0000

AC1 FF FFFF F001 AC1 00 7402 0000

T1 0000 T1 0001

 Multiply and Subtract MAS

5-195Instruction Set DescriptionsSPRU374G

Multiply and SubtractMAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAS[R] Tx, [ACx,] ACy Yes 2 1 X

[2] MASM[R] [T3 =]Smem, Cmem, ACx No 3 1 X

[3] MASM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

[4] MASM[R] [T3 =]Smem, Tx, [ACx,] ACy No 3 1 X

[5] MASM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,]
ACy

No 4 1 X

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are:

� ACx(32–16)

� the content of Tx, sign extended to 17 bits

� the content of a memory (Smem) location, sign extended to 17 bits

� the content of a data memory operand Cmem, addressed using the
coefficient addressing mode, sign extended to 17 bits

� the content of data memory operand Xmem, extended to 17 bits, and the
content of data memory operand Ymem, extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MAC (Multiply and Accumulate)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MAS::MAS (Parallel Multiply and Subtracts)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

MAS Multiply and Subtract

Instruction Set Descriptions5-196 SPRU374G

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAS[R] Tx, [ACx,] ACy Yes 2 1 X

Opcode 0101 011E DDSS ss1%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are ACx(32–16) and the content of Tx, sign
extended to 17 bits:

ACy = ACy – (ACx * Tx)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

 Multiply and Subtract MAS

5-197Instruction Set DescriptionsSPRU374G

Example

Syntax Description

MASR T1, AC0, AC1 The content of AC0 multiplied by the content of T1 is subtracted from the content
of AC1. The result is rounded and stored in AC1.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC1 00 3400 0000 AC1 00 1680 0000

T1 2000 T1 2000

M40 0 M40 0

ACOV1 0 ACOV1 0

FRCT 0 FRCT 0

MAS Multiply and Subtract

Instruction Set Descriptions5-198 SPRU374G

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MASM[R] [T3 =]Smem, Cmem, ACx No 3 1 X

Opcode 1101 0001 AAAA AAAI U%DD 10mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits, and the content of a data memory operand
Cmem, addressed using the coefficient addressing mode, sign extended to
17 bits:

ACx = ACx – (Smem * Cmem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Multiply and Subtract MAS

5-199Instruction Set DescriptionsSPRU374G

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MASMR *AR1, *CDP, AC2 The content addressed by AR1 multiplied by the content addressed by the
coefficient data pointer register (CDP) is subtracted from the content of
AC2. The result is rounded and stored in AC2.

Before After

AC2 00 EC00 0000 AC2 00 EC01 0000

AR1 0302 AR2 0302

CDP 0202 CDP 0202

302 FE00 302 FE00

202 0040 202 0040

ACOV2 0 ACOV2 1

SATD 0 SATD 0

RDM 0 RDM 0

FRCT 0 FRCT 0

MAS Multiply and Subtract

Instruction Set Descriptions5-200 SPRU374G

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MASM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 01SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are ACx(32–16) and the content of a
memory (Smem) location, sign extended to 17 bits:

ACy = ACy – (Smem * ACx)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MASM *AR3, AC1, AC0 The content addressed by AR3 multiplied by the content of AC1 is subtracted
from the content of AC0 and the result is stored in AC0.

 Multiply and Subtract MAS

5-201Instruction Set DescriptionsSPRU374G

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] MASM[R] [T3 =]Smem, Tx, [ACx,] ACy No 3 1 X

Opcode 1101 0101 AAAA AAAI U%DD ssSS

Operands ACx, ACy, Smem, Tx

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of Tx, sign extended to
17 bits, and the content of a memory (Smem) location, sign extended to
17 bits:

ACy = ACx – (Tx * Smem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MASM *AR3, T0, AC1, AC0 The content addressed by AR3 multiplied by the content of T0 is subtracted
from the content of AC1 and the result is stored in AC0.

MAS Multiply and Subtract

Instruction Set Descriptions5-202 SPRU374G

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] MASM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,]
ACy

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM SSDD 011g uuU%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of data memory operand
Xmem, extended to 17 bits, and the content of data memory operand Ymem,
extended to 17 bits:

ACy = ACx – (Xmem * Ymem)

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Multiply and Subtract MAS

5-203Instruction Set DescriptionsSPRU374G

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MASM uns(*AR2+), uns(*AR3+), AC3 The unsigned content addressed by AR2 multiplied by the
unsigned content addressed by AR3 is subtracted from the content
of AC3 and the result is stored in AC3. AR2 and AR3 are both
incremented by 1.

Before After

AC3 00 2300 EC00 AC3 FF B3E0 EC00

AR2 302 AR2 303

AR3 202 AR3 203

ACOV3 0 ACOV3 0

302 FE00 302 FE00

202 7000 202 7000

FRCT 0 FRCT 0

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-204 SPRU374G

Multiply and Subtract with Parallel Multiply and AccumulateMAS::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

[2] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

No 4 1 X

Description These instructions perform two parallel operations in one cycle: multiply and
subtract (MAS), and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MAS (Multiply and Subtract)

� MAS::MAS (Parallel Multiply and Subtracts)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-205Instruction Set DescriptionsSPRU374G

Multiply and Subtract with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS), and multiply and accumulate (MAC):

ACx = ACx – (Xmem * Cmem)
:: ACy = ACy + (Ymem * Cmem)

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-206 SPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MASR40 uns(*AR0), uns(*CDP), AC0
:: MACR40 uns(*AR1), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned content
addressed by AR0 multiplied by the unsigned content addressed
by the coefficient data pointer register (CDP) is subtracted from the
content of AC0. The result is rounded and stored in AC0. The
unsigned content addressed by AR1 multiplied by the unsigned
content addressed by CDP is added to the content of AC1. The
result is rounded and stored in AC1.

Before After

AC0 00 6900 0000 AC0 00 486B 0000

AC1 00 0023 0000 AC1 00 95E3 0000

*AR0 3400 *AR0 3400

*AR1 EF00 *AR1 EF00

*CDP A067 *CDP A067

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-207Instruction Set DescriptionsSPRU374G

Multiply and Subtract with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS), and multiply and accumulate (MAC):

ACx = ACx – (Xmem * Cmem)
:: ACy = (ACy >> #16) + (Ymem * Cmem)

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy shifted right
by 16 bits. The shifting operation is performed with a sign extension of
source accumulator ACy(39).

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-208 SPRU374G

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MAS uns(*AR3), uns(*CDP), AC0
:: MAC uns(*AR4), uns(*CDP), AC1 >> #16

Both instructions are performed in parallel. The unsigned
content addressed by AR3 multiplied by the unsigned con-
tent addressed by the coefficient data pointer register (CDP)
is subtracted from the content of AC0 and the result is stored
in AC0. The unsigned content addressed by AR4 multiplied
by the unsigned content addressed by CDP is added to the
content of AC1 shifted right by 16 bits and the result is stored
in AC1.

 Parallel Multiply and Subtracts MAS::MAS

5-209Instruction Set DescriptionsSPRU374G

Parallel Multiply and SubtractsMAS::MAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and subtract (MAS) operations
in one cycle:

ACx = ACx – (Xmem * Cmem)
:: ACy = ACy – (Ymem * Cmem)

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Ymem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-210 SPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MAC::MAC (Parallel Multiply and Accumulates)

� MAS (Multiply and Subtract)

� MAS:: MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

� MPY::MPY (Parallel Multiplies)

 Parallel Multiply and Subtracts MAS::MAS

5-211Instruction Set DescriptionsSPRU374G

Example

Syntax Description

MAS uns(*AR3), uns(*CDP), AC0
:: MAS uns(*AR4), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned content
addressed by AR3 multiplied by the unsigned content addressed
by the coefficient data pointer register (CDP) is subtracted from the
content of AC0 and the result is stored in AC0. The unsigned
content addressed by AR4 multiplied by the unsigned content
addressed by CDP is subtracted from the content of AC1 and the
result is stored in AC1.

MAS::MPY Multiply and Subtract with Parallel Multiply

Instruction Set Descriptions5-212 SPRU374G

Multiply and Subtract with Parallel MultiplyMAS::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle, multiply and
subtract (MAS) and multiply:

ACx = ACx – (Xmem * Cmem)
:: ACy = Ymem * Cmem

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

The second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

 Multiply and Subtract with Parallel Multiply MAS::MPY

5-213Instruction Set DescriptionsSPRU374G

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MAS (Multiply and Subtract)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MAS::MAS (Parallel Multiply and Subtracts)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

MAS::MPY Multiply and Subtract with Parallel Multiply

Instruction Set Descriptions5-214 SPRU374G

Example

Syntax Description

MAS uns(*AR3), uns(*CDP), AC0
:: MPY uns(*AR4), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned content
addressed by AR3 multiplied by the unsigned content addressed
by the coefficient data pointer register (CDP) is subtracted from the
content of AC0 and the result is stored in AC0. The unsigned
content addressed by AR4 is multiplied by the unsigned content
addressed by CDP and the result is stored in AC1.

 Multiply and Subtract with Parallel Load Accumulator from Memory MASM::MOV

5-215Instruction Set DescriptionsSPRU374G

Multiply and Subtract with Parallel Load Accumulator from MemoryMASM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MASM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 100x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel, multiply and subtract
(MAS) and load:

ACx = ACx – (Tx * Xmem)
:: ACy = Ymem << #16

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation loads the content of data memory operand Ymem
shifted left by 16 bits to the accumulator ACy.

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MASM::MOV Multiply and Subtract with Parallel Load Accumulator from Memory

Instruction Set Descriptions5-216 SPRU374G

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory

� MAS (Multiply and Subtract)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MAS::MAS (Parallel Multiply and Subtracts)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

Example

Syntax Description

MASM *AR3, T0, AC0
:: MOV *AR4 << #16, AC1

Both instructions are performed in parallel. The content addressed by AR3
multiplied by the content of T0 is subtracted from the content of AC0 and the
result is stored in AC0. The content addressed by AR4 shifted left by 16 bits is
stored in AC1.

 Multiply and Subtract with Parallel Store Accumulator Content to Memory MASM::MOV

5-217Instruction Set DescriptionsSPRU374G

Multiply and Subtract with Parallel Store Accumulator Content to
Memory

MASM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MASM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 010x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and subtract
(MAS), and store:

ACy = ACy – (Tx * Xmem)
:: Ymem = HI(ACx << T2)

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31–16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31–16), is stored to
the memory location.

MASM::MOV Multiply and Subtract with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-218 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MAS (Modify Auxiliary Register Content with Parallel Multiply and
Subtract)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MAS (Multiply and Subtract)

� MAS::MAC (Multiply and Subtract with Parallel Multiply and Accumulate)

� MAS::MAS (Parallel Multiply and Subtracts)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

Example

Syntax Description

MASM *AR3, T0, AC0,
:: MOV HI(AC1 << T2), *AR4

Both instructions are performed in parallel. The content addressed by AR3
multiplied by the content of T0 is subtracted from the content of AC0 and
the result is stored in AC0. The content of AC1 is shifted by the content of
T2, and AC1(31–16) is stored at the address of AR4.

 Compare Accumulator, Auxiliary, or Temporary Register Content Maximum MAX

5-219Instruction Set DescriptionsSPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum

MAX

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAX [src,] dst Yes 2 1 X

Opcode 0010 111E FSSS FDDD

Operands dst, src

Description This instruction performs a maximum comparison in the D-unit ALU or in the
A-unit ALU. Two accumulator, auxiliary registers, and temporary registers
contents are compared. When an accumulator ACx is compared with an
auxiliary or temporary register TAx, the 16 lowest bits of ACx are compared
with TAx in the A-unit ALU. If the comparison is true, the TCx status bit is set
to 1; otherwise, it is cleared to 0.

� When the destination operand (dst) is an accumulator:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD.

� The operation is performed on 40 bits in the D-unit ALU:

If M40 = 0, src(31–0) content is compared to dst(31–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(31–0) > dst(31–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

If M40 = 1, src(39–0) content is compared to dst(39–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) > dst(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

� There is no overflow detection, overflow report, and saturation.

MAX Compare Accumulator, Auxiliary, or Temporary Register Content Maximum

Instruction Set Descriptions5-220 SPRU374G

� When the destination operand (dst) is an auxiliary or temporary register:

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� The operation is performed on 16 bits in the A-unit ALU:

The src(15–0) content is compared to the dst(15–0) content. The
extremum value is stored in dst.

step1: if (src(15–0) > dst(15–0))

step2: dst = src

� There is no overflow detection and saturation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. When the destination operand (dst) is an auxiliary or temporary
register, the instruction execution is not impacted by the C54CM status bit.
When the destination operand (dst) is an accumulator, this instruction always
compares the source operand (src) with AC1 as follows:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD

� The operation is performed on 40 bits in the D-unit ALU:

The src(39–0) content is compared to AC1(39–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) > AC1(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: { CARRY = 1; dst(39–0) = AC1(39–0) }

� There is no overflow detection, overflow report, and saturation.

Status Bits Affected by C54CM, M40, SXMD

Affects CARRY

Repeat This instruction can be repeated.

 Compare Accumulator, Auxiliary, or Temporary Register Content Maximum MAX

5-221Instruction Set DescriptionsSPRU374G

See Also See the following other related instructions:

� CMP (Compare Memory with Immediate Value)

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

� CMPAND (Compare Accumulator, Auxiliary, or Temporary Register
Content with AND)

� CMPOR (Compare Accumulator, Auxiliary, or Temporary Register
Content with OR)

� MAXDIFF (Compare and Select Accumulator Content Maximum)

� MIN (Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum)

Example 1

Syntax Description

MAX AC2, AC1 The content of AC2 is less than the content of AC1, the content of AC1 remains
the same and the CARRY status bit is set to 1.

Before After

AC2 00 0000 0000 AC2 00 0000 0000

AC1 00 8500 0000 AC1 00 8500 0000

SXMD 1 SXMD 1

M40 0 M40 0

CARRY 0 CARRY 1

Example 2

Syntax Description

MAX AR1, AC1 The content of AR1 is less than the content of AC1, the content of AC1 remains
the same and the CARRY status bit is set to 1.

Before After

AR1 8020 AR1 8020

AC1 00 0000 0040 AC1 00 0000 0040

CARRY 0 CARRY 1

Example 3

Syntax Description

MAX AC1, T1 The content of AC1(15–0) is greater than the content of T1, the content of
AC1(15–0) is stored in T1 and the CARRY status bit is cleared to 0.

Before After

AC1 00 0000 8020 AC1 00 0000 8020

T1 8010 T1 8020

CARRY 0 CARRY 0

MAXDIFF Compare and Select Accumulator Content Maximum

Instruction Set Descriptions5-222 SPRU374G

Compare and Select Accumulator Content MaximumMAXDIFF

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAXDIFF ACx, ACy, ACz, ACw Yes 3 1 X

[2] DMAXDIFF ACx, ACy, ACz, ACw, TRNx Yes 3 1 X

Description Instruction [1] performs two paralleled 16-bit extremum selections in the D-unit
ALU. Instruction [2] performs a single 40-bit extremum selection in the D-unit
ALU.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

See Also See the following other related instructions:

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

� MAX (Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum)

� MIN (Compare and Select Accumulator Content Minimum)

 Compare and Select Accumulator Content Maximum MAXDIFF

5-223Instruction Set DescriptionsSPRU374G

Compare and Select Accumulator Content Maximum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MAXDIFF ACx, ACy, ACz, ACw Yes 3 1 X

Opcode 0001 000E DDSS 1100 SSDD nnnn

Operands ACw, ACx, ACy, ACz

Description This instruction performs two paralleled 16-bit extremum selections in the
D-unit ALU in one cycle. This instruction performs a dual maximum search.

The two operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulators are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit data path).

For each datapath (high and low):

� ACx and ACy are the source accumulators.

� The differences are stored in accumulator ACw.

� The subtraction computation is equivalent to the dual 16-bit subtractions
instruction.

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVw) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh (positive) and 8000h (negative).

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh (positive) and FF 8000h (negative).

MAXDIFF Compare and Select Accumulator Content Maximum

Instruction Set Descriptions5-224 SPRU374G

� The extremum is stored in accumulator ACz.

� The extremum is searched considering the selected bit width of the
accumulators:

� for the lower 16-bit data path, the sign bit is extracted at bit position 15

� for the higher 24-bit data path, the sign bit is extracted at bit position 31

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs:

� TRN0 tracks the decision for the high part data path

� TRN1 tracks the decision for the low part data path

If the extremum value is the ACx high or low part, the decision bit is
cleared to 0; otherwise, it is set to 1:

TRN0 = TRN0 >> #1

TRN1 = TRN1 >> #1

ACw(39–16) = ACy(39–16) – ACx(39–16)

ACw(15–0) = ACy(15–0) – ACx(15–0)

if (ACx(31–16) > ACy(31–16))

{ bit(TRN0, 15) = #0 ; ACz(39–16) = ACx(39–16) }

else

{ bit(TRN0, 15) = #1 ; ACz(39–16) = ACy(39–16) }

if (ACx(15–0) > ACy(15–0))

{ bit(TRN1, 15) = #0 ; ACz(15–0) = ACx(15–0) }

else

{ bit(TRN1, 15) = #1 ; ACz(15–0) = ACy(15–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit data path (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

 Compare and Select Accumulator Content Maximum MAXDIFF

5-225Instruction Set DescriptionsSPRU374G

Example

Syntax Description

MAXDIFF AC0, AC1, AC2, AC1 The difference is stored in AC1. The content of AC0(39–16) is subtracted
from the content of AC1(39–16) and the result is stored in AC1(39–16).
Since SATD = 1 and an overflow is detected, AC1(39–16) = FF 8000h
(saturation). The content of AC0(15–0) is subtracted from the content of
AC1(15–0) and the result is stored in AC1(15–0). The maximum is stored
in AC2. The content of TRN0 and TRN1 is shifted right 1 bit. AC0(31–16)
is greater than AC1(31–16), AC0(39–16) is stored in AC2(39–16) and
TRN0(15) is cleared to 0. AC0(15–0) is greater than AC1(15–0),
AC0(15–0) is stored in AC2(15–0) and TRN1(15) is cleared to 0.

Before After

AC0 10 2400 2222 AC0 10 2400 2222

AC1 90 0000 0000 AC1 FF 8000 DDDE

AC2 00 0000 0000 AC2 10 2400 2222

SATD 1 SATD 1

TRN0 1000 TRN0 0800

TRN1 0100 TRN1 0080

ACOV1 0 ACOV1 1

CARRY 1 CARRY 0

MAXDIFF Compare and Select Accumulator Content Maximum

Instruction Set Descriptions5-226 SPRU374G

Compare and Select Accumulator Content Maximum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2a] DMAXDIFF ACx, ACy, ACz, ACw, TRN0 Yes 3 1 X

[2b] DMAXDIFF ACx, ACy, ACz, ACw, TRN1 Yes 3 1 X

Opcode TRN0 0001 000E DDSS 1101 SSDD xxx0

TRN1 0001 000E DDSS 1101 SSDD xxx1

Operands ACw, ACx, ACy, ACz, TRNx

Description This instruction performs a single 40-bit extremum selection in the D-unit ALU.
This instruction performs a maximum search.

� ACx and ACy are the two source accumulators.

� The difference between the source accumulators is stored in accumulator
ACw.

� The subtraction computation is equivalent to the subtraction instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� The extremum between the source accumulators is stored in accumulator
ACz.

� The extremum computation is similar to the compare register content
maximum instruction. However, the CARRY status bit is not updated by
the extremum search but by the subtraction instruction.

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs. If the extremum value is ACx, the decision bit is
cleared to 0; otherwise, it is set to 1.

 Compare and Select Accumulator Content Maximum MAXDIFF

5-227Instruction Set DescriptionsSPRU374G

If M40 = 0:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

if (ACx(31–0) > ACy(31–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

If M40 = 1:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

if (ACx(39–0) > ACy(39–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. However to ensure compatibility versus overflow detection and
saturation of the destination accumulator, this instruction must be executed
with M40 = 0.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

DMAXDIFF AC0, AC1, AC2, AC3, TRN1 The difference is stored in AC3. The content of AC0 is sub-
tracted from the content of AC1 and the result is stored in AC3.
The maximum is stored in AC2. The content of TRN1 is shifted
right 1 bit. AC0 is greater than AC1, AC0 is stored in AC2 and
TRN1(15) is cleared to 0.

Before After

AC0 10 2400 2222 AC0 10 2400 2222

AC1 00 8000 DDDE AC1 00 8000 DDDE

AC2 00 0000 0000 AC2 10 2400 2222

AC3 00 0000 0000 AC3 F0 5C00 BBBC

M40 1 M40 1

SATD 1 SATD 1

TRN1 0080 TRN1 0040

ACOV3 0 ACOV3 0

CARRY 0 CARRY 0

MIN Compare Accumulator, Auxiliary, or Temporary Register Content Minimum

Instruction Set Descriptions5-228 SPRU374G

Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum

MIN

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MIN [src,] dst Yes 2 1 X

Opcode 0011 000E FSSS FDDD

Operands dst, src

Description This instruction performs a minimum comparison in the D-unit ALU or in the
A-unit ALU. Two accumulator, auxiliary registers, and temporary registers
contents are compared. When an accumulator ACx is compared with an
auxiliary or temporary register TAx, the 16 lowest bits of ACx are compared
with TAx in the A-unit ALU. If the comparison is true, the TCx status bit is set
to 1; otherwise, it is cleared to 0.

� When the destination operand (dst) is an accumulator:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD.

� The operation is performed on 40 bits in the D-unit ALU:

If M40 = 0, src(31–0) content is compared to dst(31–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(31–0) < dst(31–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

If M40 = 1, src(39–0) content is compared to dst(39–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) < dst(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

� There is no overflow detection, overflow report, and saturation.

 Compare Accumulator, Auxiliary, or Temporary Register Content Minimum MIN

5-229Instruction Set DescriptionsSPRU374G

� When the destination operand (dst) is an auxiliary or temporary register:

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� The operation is performed on 16 bits in the A-unit ALU:

The src(15–0) content is compared to the dst(15–0) content. The
extremum value is stored in dst.

step1: if (src(15–0) < dst(15–0))

step2: dst = src

� There is no overflow detection and saturation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. When the destination operand (dst) is an auxiliary or temporary
register, the instruction execution is not impacted by the C54CM status bit.
When the destination operand (dst) is an accumulator, this instruction always
compares the source operand (src) with AC1 as follows:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD

� The operation is performed on 40 bits in the D-unit ALU:

The src(39–0) content is compared to AC1(39–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) < AC1(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: { CARRY = 1; dst(39–0) = AC1(39–0) }

� There is no overflow detection, overflow report, and saturation.

Status Bits Affected by C54CM, M40, SXMD

Affects CARRY

Repeat This instruction can be repeated.

MIN Compare Accumulator, Auxiliary, or Temporary Register Content Minimum

Instruction Set Descriptions5-230 SPRU374G

See Also See the following other related instructions:

� CMP (Compare Memory with Immediate Value)

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

� CMPAND (Compare Accumulator, Auxiliary, or Temporary Register
Content with AND)

� CMPOR (Compare Accumulator, Auxiliary, or Temporary Register
Content with OR)

� MAX (Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum)

� MINDIFF (Compare and Select Accumulator Content Minimum)

Example

Syntax Description

MIN AC1, T1 The content of AC1(15–0) is greater than the content of T1, the content of T1
remains the same and the CARRY status bit is set to 1.

Before After

AC1 00 8000 0000 AC1 00 8000 0000

T1 8020 T1 8020

CARRY 0 CARRY 1

 Compare and Select Accumulator Content Minimum MINDIFF

5-231Instruction Set DescriptionsSPRU374G

Compare and Select Accumulator Content MinimumMINDIFF

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MINDIFF ACx, ACy, ACz, ACw Yes 3 1 X

[2] DMINDIFF ACx, ACy, ACz, ACw, TRNx Yes 3 1 X

Description Instruction [1] performs two paralleled 16-bit extremum selections in the D-unit
ALU. Instruction [2] performs a single 40-bit extremum selection in the D-unit
ALU.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

See Also See the following other related instructions:

� CMP (Compare Accumulator, Auxiliary, or Temporary Register Content)

� MAX (Compare and Select Accumulator Content Maximum)

� MIN (Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum)

MINDIFF Compare and Select Accumulator Content Minimum

Instruction Set Descriptions5-232 SPRU374G

Compare and Select Accumulator Content Minimum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MINDIFF ACx, ACy, ACz, ACw Yes 3 1 X

Opcode 0001 000E DDSS 1110 SSDD xxxx

Operands ACw, ACx, ACy, ACz

Description This instruction performs two paralleled 16-bit extremum selections in the
D-unit ALU in one cycle. This instruction performs a dual minimum search.

The two operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulators are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit data path).

For each datapath (high and low):

� ACx and ACy are the source accumulators.

� The differences are stored in accumulator ACw.

� The subtraction computation is equivalent to the dual 16-bit subtractions
instruction.

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVw) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh (positive) and 8000h (negative).

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh (positive) and FF 8000h (negative).

 Compare and Select Accumulator Content Minimum MINDIFF

5-233Instruction Set DescriptionsSPRU374G

� The extremum is stored in accumulator ACz.

� The extremum is searched considering the selected bit width of the
accumulators:

� for the lower 16-bit data path, the sign bit is extracted at bit position 15

� for the higher 24-bit data path, the sign bit is extracted at bit position 31

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs:

� TRN0 tracks the decision for the high part data path

� TRN1 tracks the decision for the low part data path

If the extremum value is the ACx high or low part, the decision bit is
cleared to 0; otherwise, it is set to 1:

TRN0 = TRN0 >> #1

TRN1 = TRN1 >> #1

ACw(39–16) = ACy(39–16) – ACx(39–16)

ACw(15–0) = ACy(15–0) – ACx(15–0)

if (ACx(31–16) < ACy(31–16))

{ bit(TRN0, 15) = #0 ; ACz(39–16) = ACx(39–16) }

else

{ bit(TRN0, 15) = #1 ; ACz(39–16) = ACy(39–16) }

if (ACx(15–0) < ACy(15–0))

{ bit(TRN1, 15) = #0 ; ACz(15–0) = ACx(15–0) }

else

{ bit(TRN1, 15) = #1 ; ACz(15–0) = ACy(15–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit data path (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

MINDIFF Compare and Select Accumulator Content Minimum

Instruction Set Descriptions5-234 SPRU374G

Example

Syntax Description

MINDIFF AC0, AC1, AC2, AC1 The difference is stored in AC1. The content of AC0(39–16) is subtracted
from the content of AC1(39–16) and the result is stored in AC1(39–16).
Since SATD = 1 and an overflow is detected, AC1(39–16) = FF 8000h
(saturation). The content of AC0(15–0) is subtracted from the content of
AC1(15–0) and the result is stored in AC1(15–0). The minimum is stored
in AC2 (sign bit extracted at bits 31 and 15). The content of TRN0 and
TRN1 is shifted right 1 bit. AC0(31–16) is greater than or equal to
AC1(31–16), AC1(39–16) is stored in AC2(39–16) and TRN0(15) is set
to 1. AC0(15–0) is greater than or equal to AC1(15–0), AC1(15–0) is
stored in AC2(15–0) and TRN1(15) is set to 1.

Before After

AC0 10 2400 2222 AC0 10 2400 2222

AC1 00 8000 DDDE AC1 FF 8000 BBBC

AC2 10 2400 2222 AC2 00 8000 DDDE

SATD 1 SATD 1

TRN0 0800 TRN0 8400

TRN1 0040 TRN1 8020

ACOV1 0 ACOV1 1

CARRY 0 CARRY 1

 Compare and Select Accumulator Content Minimum MINDIFF

5-235Instruction Set DescriptionsSPRU374G

Compare and Select Accumulator Content Minimum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2a] DMINDIFF ACx, ACy, ACz, ACw, TRN0 Yes 3 1 X

[2b] DMINDIFF ACx, ACy, ACz, ACw, TRN1 Yes 3 1 X

Opcode TRN0 0001 000E DDSS 1111 SSDD xxx0

TRN1 0001 000E DDSS 1111 SSDD xxx1

Operands ACw, ACx, ACy, ACz, TRNx

Description This instruction performs a single 40-bit extremum selection in the D-unit ALU.
This instruction performs a minimum search.

� ACx and ACy are the two source accumulators.

� The difference between the source accumulators is stored in accumulator
ACw.

� The subtraction computation is equivalent to the subtraction instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� The extremum between the source accumulators is stored in accumulator
ACz.

� The extremum computation is similar to the compare register content
maximum instruction. However, the CARRY status bit is not updated by
the extremum search but by the subtraction instruction.

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs. If the extremum value is ACx, the decision bit is
cleared to 0; otherwise, it is set to 1.

MINDIFF Compare and Select Accumulator Content Minimum

Instruction Set Descriptions5-236 SPRU374G

If M40 = 0:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

if (ACx(31–0) < ACy(31–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

If M40 = 1:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

if (ACx(39–0) < ACy(39–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. However to ensure compatibility versus overflow detection and
saturation of the destination accumulator, this instruction must be executed
with M40 = 0.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

DMINDIFF AC0, AC1, AC2, AC3, TRN0 The difference is stored in AC3. The content of AC0 is sub-
tracted from the content of AC1 and the result is stored in AC3.
The minimum is stored in AC2. The content of TRN0 is shifted
right 1 bit. If AC0 is less than AC1, AC0 is stored in AC2 and
TRN0(15) is cleared to 0; otherwise, AC1 is stored in AC2 and
TRN0(15) is set to 1.

 Memory–Mapped Register Access Qualifier mmap

5-237Instruction Set DescriptionsSPRU374G

Memory-Mapped Register Access Qualifiermmap

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mmap No 1 1 D

Opcode 1001 1000

Operands none

Description This is an operand qualifier that can be paralleled with any instruction making
a Smem or Lmem direct memory access (dma). This operand qualifier allows
you to locally prevent the dma access from being relative to the data stack
pointer (SP) or the local data page register (DP). It forces the dma access to
be relative to the memory-mapped register (MMR) data page start address,
00 0000h.

This operand qualifier cannot be executed:

� as a stand-alone instruction (assembler generates an error message)

� in parallel with instructions not embedding an Smem or Lmem data
memory operand

� in parallel with instructions loading or storing a byte to a register (see Load
Accumulator, Auxiliary, or Temporary Register from Memory instructions
[2] and [3]; Load Accumulator from Memory instructions [2] and [3]; and
Store Accumulator, Auxiliary, or Temporary Register Content to Memory
instructions [2] and [3])

The MMRs are mapped as 16-bit data entities between addresses 0h and 5Fh.
The scratch-pad memory that is mapped between addresses 60h and 7Fh of
each main data pages of 64K words cannot be accessed through this
mechanism.

Any instruction using the mmap modifier cannot be combined with any other
user-defined parallelism instruction. The following instruction is not valid:

MOV AR1, mmap(@BSAC)
|| BSET CDPLC

The following instruction is valid:

MOV AR1, @BSAC
|| mmap

mmap Memory–Mapped Register Access Qualifier

Instruction Set Descriptions5-238 SPRU374G

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0, T2
|| mmap

The content of AC0(15–0) is copied into T2.

 Load Accumulator from Memory MOV

5-239Instruction Set DescriptionsSPRU374G

Load Accumulator from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV [rnd(]Smem << Tx[)], ACx No 3 1 X

[2] MOV low_byte(Smem) << #SHIFTW, ACx No 3 1 X

[3] MOV high_byte(Smem) << #SHIFTW, ACx No 3 1 X

[4] MOV Smem << #16, ACx No 2 1 X

[5] MOV [uns(]Smem[)], ACx No 3 1 X

[6] MOV [uns(]Smem[)] << #SHIFTW, ACx No 4 1 X

[7] MOV[40] dbl(Lmem), ACx No 3 1 X

[8] MOV Xmem, Ymem, ACx No 3 1 X

Description This instruction loads a 16-bit signed constant, K16, the content of a memory
(Smem) location, the content of a data memory operand (Lmem), or the
content of dual data memory operands (Xmem and Ymem) to a selected
accumulator (ACx).

Status Bits Affected by C54CM, M40, RDM, SATD, SXMD

Affects ACOVx

See Also See the following other related instructions:

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MOV (Load Accumulator Pair from Memory)

� MOV (Load Accumulator with Immediate Value)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value)

� MOV (Load Auxiliary or Temporary Register Pair from Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

MOV Load Accumulator from Memory

Instruction Set Descriptions5-240 SPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV [rnd(]Smem << Tx[)], ACx No 3 1 X

Opcode 1101 1101 AAAA AAAI x%DD ss11

Operands ACx, Smem, Tx

Description This instruction loads the content of a memory (Smem) location shifted by the
content of Tx to the accumulator (ACx):

ACx = Smem << Tx

� The input operand is sign extended to 40 bits according to SXMD.

� The input operand is shifted by the 4-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

� Rounding is performed in the D-unit shifter according to RDM, if the
optional rnd keyword is applied to the input operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation. The 6 LSBs of Tx are used to determine the shift quantity.
The 6 LSBs of Tx define a shift quantity within –32 to +31. When the value is
between –32 to –17, a modulo 16 operation transforms the shift quantity to
within –16 to –1.

Status Bits Affected by C54CM, M40, RDM, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *AR3 << T0, AC0 AC0 is loaded with the content addressed by AR3 shifted by the content of T0.

 Load Accumulator from Memory MOV

5-241Instruction Set DescriptionsSPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV low_byte(Smem) << #SHIFTW, ACx No 3 1 X

Opcode 1110 0001 AAAA AAAI DDSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction loads the low-byte content of a memory (Smem) location
shifted by the 6-bit value, SHIFTW, to the accumulator (ACx):

ACx = low_byte(Smem) << #SHIFTW

� The content of the memory location is sign extended to 40 bits according
to SXMD.

� The input operand is shifted by the 6-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV low_byte(*AR3) << #31, AC0 The low-byte content addressed by AR3 is shifted left by 31 bits
and loaded into AC0.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-242 SPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MOV high_byte(Smem) << #SHIFTW, ACx No 3 1 X

Opcode 1110 0010 AAAA AAAI DDSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction loads the high-byte content of a memory (Smem) location
shifted by the 6-bit value, SHIFTW, to the accumulator (ACx):

ACx = high_byte(Smem) << #SHIFTW

� The content of the memory location is sign extended to 40 bits according
to SXMD.

� The input operand is shifted by the 6-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV high_byte(*AR3) << #31, AC0 The high-byte content addressed by AR3 is shifted left by 31 bits
and loaded into AC0.

 Load Accumulator from Memory MOV

5-243Instruction Set DescriptionsSPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] MOV Smem << #16, ACx No 2 1 X

Opcode 1011 00DD AAAA AAAI

Operands ACx, Smem

Description This instruction loads the content of a memory (Smem) location shifted left by
16 bits to the accumulator (ACx):

ACx = Smem << #16

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, overflow detection, report, and saturation is done after the shifting
operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *AR3+ << #16, AC1 The content addressed by AR3 shifted left by 16 bits is loaded into AC1. AR3
is incremented by 1.

Before After

AC1 00 0200 FC00 AC1 00 3400 0000

AR3 0200 AR3 0201

200 3400 200 3400

MOV Load Accumulator from Memory

Instruction Set Descriptions5-244 SPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] MOV [uns(]Smem[)], ACx No 3 1 X

Opcode 1101 1111 AAAA AAAI xxDD 010u

Operands ACx, Smem

Description This instruction loads the content of a memory (Smem) location to the
accumulator (ACx):

ACx = Smem

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The load operation in the accumulator uses a dedicated path independent
of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV uns(*AR3), AC0 The content addressed by AR3 is zero extended to 40 bits and loaded into AC0.

 Load Accumulator from Memory MOV

5-245Instruction Set DescriptionsSPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] MOV [uns(]Smem[)] << #SHIFTW, ACx No 4 1 X

Opcode 1111 1001 AAAA AAAI uxSH IFTW xxDD 10xx

Operands ACx, SHIFTW, Smem

Description This instruction loads the content of a memory (Smem) location, shifted by the
6-bit value, SHIFTW, to the accumulator (ACx):

ACx = Smem << #SHIFTW

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The input operand is shifted by the 6-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

MOV uns(*AR3) << #31, AC0 The content addressed by AR3 is zero extended to 40 bits, shifted left by
31 bits, and loaded into AC0.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-246 SPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] MOV[40] dbl(Lmem), ACx No 3 1 X

Opcode 1110 1101 AAAA AAAI xxDD 100g

Operands ACx, Lmem

Description This instruction loads the content of data memory operand (Lmem) to the
accumulator (ACx):

ACx = dbl(Lmem)

� The input operand is sign extended to 40 bits according to SXMD.

� The load operation in the accumulator uses a dedicated path independent
of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Status bit M40 is locally set to 1, if the optional 40 keyword is applied to
the input operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV40 dbl(*AR3–), AC0 The content (long word) addressed by AR3 and AR3 + 1 is loaded into AC0.
Because this instruction is a long-operand instruction, AR3 is decremented by 2
after the execution.

 Load Accumulator from Memory MOV

5-247Instruction Set DescriptionsSPRU374G

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] MOV Xmem, Ymem, ACx No 3 1 X

Opcode 1000 0001 XXXM MMYY YMMM 10DD

Operands ACx, Xmem, Ymem

Description This instruction performs a dual 16-bit load of accumulator high and low parts:

LO(ACx) = Xmem
:: HI(ACx) = Ymem

The operation is executed in dual 16-bit mode; however, it is independent of
the 40-bit D-unit ALU. The 16 lower bits of the accumulator are separated from
the higher 24 bits and the 8 guard bits are attached to the higher 16-bit
datapath.

� The data memory operand Xmem is loaded as a 16-bit operand to the
destination accumulator (ACx) low part. And, according to SXMD the data
memory operand Ymem is sign extended to 24 bits and is loaded to the
destination accumulator (ACx) high part.

� For the load operations in higher accumulator bits, overflow detection is
performed at bit position 31. If an overflow is detected, the destination
accumulator overflow status bit (ACOVx) is set.

� If SATD is 1 when an overflow is detected on the higher data path, a
saturation is performed with saturation value of 00 7FFFh.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, this instruction is executed as if SATD was locally cleared to 0.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *AR3, *AR4, AC0 The content at the location addressed by AR4, sign extended to 24 bits, is loaded
into AC0(39–16) and the content at the location addressed by AR3 is loaded into
AC0(15–0).

MOV Load Accumulator Pair from Memory

Instruction Set Descriptions5-248 SPRU374G

Load Accumulator Pair from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV dbl(Lmem), pair(HI(ACx)) No 3 1 X

[2] MOV dbl(Lmem), pair(LO(ACx)) No 3 1 X

Description This instruction loads the content of a data memory operand (Lmem) to the
selected accumulator pair, ACx and AC(x + 1).

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, ACOV(x + 1)

See Also See the following other related instructions:

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MOV (Load Accumulator from Memory)

� MOV (Load Accumulator with Immediate Value)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value)

� MOV (Load Auxiliary or Temporary Register Pair from Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

 Load Accumulator Pair from Memory MOV

5-249Instruction Set DescriptionsSPRU374G

Load Accumulator Pair from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV dbl(Lmem), pair(HI(ACx)) No 3 1 X

Opcode 1110 1101 AAAA AAAI xxDD 101x

Operands ACx, Lmem

Description This instruction loads the 16 highest bits of data memory operand (Lmem) to
the 16 highest bits of the accumulator (ACx) and loads the 16 lowest bits of
data memory operand (Lmem) to the 16 highest bits of accumulator AC(x + 1):

pair(HI(ACx)) = Lmem

� The load operation in the accumulator uses a dedicated path independent
of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Valid accumulators are AC0 and AC2.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, overflow detection, report, and saturation is done after the
operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, ACOV(x + 1)

Repeat This instruction can be repeated.

Example

Syntax Description

MOV dbl(*AR3+), pair(HI(AC2)) The 16 highest bits of the content at the location addressed by AR3 are
loaded into AC2(31–16) and the 16 lowest bits of the content at the
location addressed by AR3 + 1 are loaded into AC3(31–16). AR3 is
incremented by 1.

Before After

AC2 00 0200 FC00 AC2 00 3400 0000

AC3 00 0000 0000 AC3 00 0FD3 0000

AR3 0200 AR3 0201

200 3400 200 3400

201 0FD3 201 0FD3

MOV Load Accumulator Pair from Memory

Instruction Set Descriptions5-250 SPRU374G

Load Accumulator Pair from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV dbl(Lmem), pair(LO(ACx)) No 3 1 X

Opcode 1110 1101 AAAA AAAI xxDD 110x

Operands ACx, Lmem

Description This instruction loads the 16 highest bits of data memory operand (Lmem) to
the 16 lowest bits of the accumulator (ACx) and loads the 16 lowest bits of data
memory operand (Lmem) to the 16 lowest bits of accumulator AC(x + 1):

pair(LO(ACx)) = Lmem

� The load operation in the accumulator uses a dedicated path independent
of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Valid accumulators are AC0 and AC2.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV dbl(*AR3), pair(LO(AC0)) The 16 highest bits of the content at the location addressed by AR3 are
loaded into AC0(15–0) and the 16 lowest bits of the content at the
location addressed by AR3 + 1 are loaded into AC1(15–0).

 Load Accumulator with Immediate Value MOV

5-251Instruction Set DescriptionsSPRU374G

Load Accumulator with Immediate ValueMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV K16 << #16, ACx No 4 1 X

[2] MOV K16 << #SHFT, ACx No 4 1 X

Description This instruction loads a 16-bit signed constant, K16, to a selected accumulator
(ACx).

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

See Also See the following other related instructions:

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MOV (Load Accumulator from Memory)

� MOV (Load Accumulator Pair from Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value)

� MOV (Load Auxiliary or Temporary Register Pair from Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

MOV Load Accumulator with Immediate Value

Instruction Set Descriptions5-252 SPRU374G

Load Accumulator with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV K16 << #16, ACx No 4 1 X

Opcode 0111 1010 KKKK KKKK KKKK KKKK xxDD 101x

Operands ACx, K16

Description This instruction loads the 16-bit signed constant, K16, shifted left by 16 bits to
the accumulator (ACx):

ACx = K16 << #16

� The 16-bit constant, K16, is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, overflow detection, report, and saturation is done after the shifting
operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MOV #–2 << #16, AC0 AC0 is loaded with the signed 16-bit value (–2) shifted left by 16 bits.

 Load Accumulator with Immediate Value MOV

5-253Instruction Set DescriptionsSPRU374G

Load Accumulator with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV K16 << #SHFT, ACx No 4 1 X

Opcode 0111 0101 KKKK KKKK KKKK KKKK xxDD SHFT

Operands ACx, K16, SHFT

Description This instruction loads the 16-bit signed constant, K16, shifted left by the 4-bit
value, SHFT, to the accumulator (ACx):

ACx = K16 << #SHFT

� The 16-bit constant, K16, is sign extended to 40 bits according to SXMD.

� The input operand is shifted by the 4-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV #–2 << #15, AC0 AC0 is loaded with the signed 16-bit value (–2) shifted left by 15 bits.

MOV Load Accumulator, Auxiliary, or Temporary Register from Memory

Instruction Set Descriptions5-254 SPRU374G

Load Accumulator, Auxiliary, or Temporary Register from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV Smem, dst No 2 1 X

[2] MOV [uns(]high_byte(Smem)[)], dst No 3 1 X

[3] MOV [uns(]low_byte(Smem)[)], dst No 3 1 X

Description This instruction loads the content of a memory (Smem) location to a selected
destination (dst) register.

Status Bits Affected by M40, SXMD

Affects none

See Also See the following other related instructions:

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MOV (Load Accumulator from Memory)

� MOV (Load Accumulator Pair from Memory)

� MOV (Load Accumulator with Immediate Value)

� MOV (Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value)

� MOV (Load Auxiliary or Temporary Register Pair from Memory)

� MOV (Store Accumulator, Auxiliary, or Temporary Register Content to
Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

 Load Accumulator, Auxiliary, or Temporary Register from Memory MOV

5-255Instruction Set DescriptionsSPRU374G

Load Accumulator, Auxiliary, or Temporary Register from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV Smem, dst No 2 1 X

Opcode 1010 FDDD AAAA AAAI

Operands dst, Smem

Description This instruction loads the content of a memory (Smem) location to the
destination (dst) register.

dst = Smem

� When the destination register is an accumulator:

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The content of the memory location is sign extended to 16 bits.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *AR3+, AR1 AR1 is loaded with the content addressed by AR3. AR3 is incremented by 1.

Before After

AR1 FC00 AR1 3400

AR3 0200 AR3 0201

200 3400 200 3400

MOV Load Accumulator, Auxiliary, or Temporary Register from Memory

Instruction Set Descriptions5-256 SPRU374G

Load Accumulator, Auxiliary, or Temporary Register from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV [uns(]high_byte(Smem)[)], dst No 3 1 X

Opcode 1101 1111 AAAA AAAI FDDD 000u

Operands dst, Smem

Description This instruction loads the high-byte content of a memory (Smem) location to the
destination (dst) register:

dst = high_byte(Smem)

� When the destination register is an accumulator:

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits
according to SXMD.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The memory operand is extended to 16 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 16 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 16 bits
regardless of SXMD.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Load Accumulator, Auxiliary, or Temporary Register from Memory MOV

5-257Instruction Set DescriptionsSPRU374G

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV uns(high_byte(*AR3)), AC0 The high-byte content addressed by AR3 is zero extended to 40 bits
and loaded into AC0.

MOV Load Accumulator, Auxiliary, or Temporary Register from Memory

Instruction Set Descriptions5-258 SPRU374G

Load Accumulator, Auxiliary, or Temporary Register from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MOV [uns(]low_byte(Smem)[)], dst No 3 1 X

Opcode 1101 1111 AAAA AAAI FDDD 001u

Operands dst, Smem

Description This instruction loads the low-byte content of a memory (Smem) location to the
destination (dst) register:

dst = low_byte(Smem)

� When the destination register is an accumulator:

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits
according to SXMD.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The memory operand is extended to 16 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 16 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 16 bits
regardless of SXMD.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Load Accumulator, Auxiliary, or Temporary Register from Memory MOV

5-259Instruction Set DescriptionsSPRU374G

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV uns(low_byte(*AR3)), AC0 The low-byte content addressed by AR3 is zero extended to 40 bits
and loaded into AC0.

MOV Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Instruction Set Descriptions5-260 SPRU374G

Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value

MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV k4, dst Yes 2 1 X

[2] MOV –k4, dst Yes 2 1 X

[3] MOV K16, dst No 4 1 X

Description This instruction loads a 4-bit unsigned constant, k4; the 2s complement
representation of the 4-bit unsigned constant; or a 16-bit signed constant, K16,
to a selected destination (dst) register.

Status Bits Affected by M40, SXMD

Affects none

See Also See the following other related instructions:

� MACM::MOV (Multiply and Accumulate with Parallel Load Accumulator
from Memory)

� MASM::MOV (Multiply and Subtract with Parallel Load Accumulator from
Memory)

� MOV (Load Accumulator from Memory)

� MOV (Load Accumulator Pair from Memory)

� MOV (Load Accumulator with Immediate Value)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Load Auxiliary or Temporary Register Pair from Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

 Load Accumulator, Auxiliary, or Temporary Register with Immediate Value MOV

5-261Instruction Set DescriptionsSPRU374G

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV k4, dst Yes 2 1 X

Opcode 0011 110E kkkk FDDD

Operands dst, k4

Description This instruction loads the 4-bit unsigned constant, k4, to the destination (dst)
register:

dst = k4

� When the destination register is an accumulator:

� The 4-bit constant, k4, is zero extended to 40 bits.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The 4-bit constant, k4, is zero extended to 16 bits.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV #2, AC0 AC0 is loaded with the unsigned 4-bit value (2).

MOV Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Instruction Set Descriptions5-262 SPRU374G

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV –k4, dst Yes 2 1 X

Opcode 0011 111E kkkk FDDD

Operands dst, k4

Description This instruction loads the 2s complement representation of the 4-bit unsigned
constant, k4, to the destination (dst) register:

dst = –k4

� When the destination register is an accumulator:

� The 4-bit constant, k4, is negated in the I-unit, loaded into the
accumulator, and sign extended to 40 bits before being processed by
the D-unit as a signed constant.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The 4-bit constant, k4, is zero extended to 16 bits and negated in the
I-unit before being processed by the A-unit as a signed K16 constant.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV #–2, AC0 AC0 is loaded with a 2s complement representation of the unsigned 4-bit value (2).

 Load Accumulator, Auxiliary, or Temporary Register with Immediate Value MOV

5-263Instruction Set DescriptionsSPRU374G

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MOV K16, dst No 4 1 X

Opcode 0111 0110 KKKK KKKK KKKK KKKK FDDD 10xx

Operands dst, K16

Description This instruction loads the 16-bit signed constant, K16, to the destination (dst)
register:

dst = K16

� When the destination register is an accumulator, the 16-bit constant, K16,
is sign extended to 40 bits according to SXMD.

� When the destination register is an auxiliary or temporary register, the load
operation in the destination register uses a dedicated path independent
of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV #248, AC1 AC1 is loaded with the signed 16-bit value (248).

Before After

AC1 00 0200 FC00 AC1 00 0000 00F8

MOV Load Auxiliary or Temporary Register Pair from Memory

Instruction Set Descriptions5-264 SPRU374G

Load Auxiliary or Temporary Register Pair from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV dbl(Lmem), pair(TAx) No 3 1 X

Opcode 1110 1101 AAAA AAAI FDDD 111x

Operands Lmem, TAx

Description This instruction loads the 16 highest bits of data memory operand (Lmem) to
the temporary or auxiliary register (TAx) and loads the 16 lowest bits of data
memory operand (Lmem) to temporary or auxiliary register TA(x + 1):

pair(TAx) = Lmem

� The load operation in the temporary or auxiliary register uses a dedicated
path independent of the A-unit ALU.

� Valid auxiliary registers are AR0, AR2, AR4, and AR6.

� Valid temporary registers are T0 and T2.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMOV (Modify Auxiliary or Temporary Register Content)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value)

Example

Syntax Description

MOV dbl(*AR2), pair(T0) The 16 highest bits of the content at the location addressed by AR2 are loaded
into T0 and the 16 lowest bits of the content at the location addressed by AR2 + 1
are loaded into T1.

 Load CPU Register from Memory MOV

5-265Instruction Set DescriptionsSPRU374G

Load CPU Register from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV Smem, BK03 No 3 1 X

[2] MOV Smem, BK47 No 3 1 X

[3] MOV Smem, BKC No 3 1 X

[4] MOV Smem, BSA01 No 3 1 X

[5] MOV Smem, BSA23 No 3 1 X

[6] MOV Smem, BSA45 No 3 1 X

[7] MOV Smem, BSA67 No 3 1 X

[8] MOV Smem, BSAC No 3 1 X

[9] MOV Smem, BRC0 No 3 1 X

[10] MOV Smem, BRC1 No 3 1 X

[11] MOV Smem, CDP No 3 1 X

[12] MOV Smem, CSR No 3 1 X

[13] MOV Smem, DP No 3 1 X

[14] MOV Smem, DPH No 3 1 X

[15] MOV Smem, PDP No 3 1 X

[16] MOV Smem, SP No 3 1 X

[17] MOV Smem, SSP No 3 1 X

[18] MOV Smem, TRN0 No 3 1 X

[19] MOV Smem, TRN1 No 3 1 X

[20] MOV dbl(Lmem), RETA No 3 5 X

Opcode See Table 5–1 (page 5-267).

Operands Lmem, Smem

MOV Load CPU Register from Memory

Instruction Set Descriptions5-266 SPRU374G

Description Instructions [1] through [19] load the content of a memory (Smem) location to
the destination CPU register. This instruction uses a dedicated datapath
independent of the A-unit ALU and the D-unit operators to perform the
operation. The content of the memory location is zero extended to the bitwidth
of the destination CPU register.

The operation is performed in the execute phase of the pipeline. There is a
3-cycle latency between PDP, DP, SP, SSP, CDP, BSAx, BKx, BRCx, and CSR
loads and their use in the address phase by the A-unit address generator units
or by the P-unit loop control management.

For instruction [10], when BRC1 is loaded, the block repeat save register
(BRS1) is also loaded with the same value.

Instruction [20] loads the content of data memory operand (Lmem) to the 24-bit
RETA register (the return address of the calling subroutine) and to the 8-bit
CFCT register (active control flow execution context flags of the calling
subroutine):

� The 16 highest bits of Lmem are loaded into the CFCT register and into
the 8 highest bits of the RETA register.

� The 16 lowest bits of Lmem are loaded into the 16 lowest bits of the RETA
register.

When instruction [20] is decoded, the CPU pipeline is flushed and the
instruction is executed in 5 cycles, regardless of the instruction context.

Status Bits Affected by none

Affects none

Repeat Instructions [13] and [20] cannot be repeated; all other instructions can be
repeated.

See Also See the following other related instructions:

� MOV (Load CPU Register with Immediate Value)

 Load CPU Register from Memory MOV

5-267Instruction Set DescriptionsSPRU374G

Table 5–1. Opcodes for Load CPU Register from Memory Instruction

No. Syntax Opcode

[1] MOV Smem, BK03 1101 1100 AAAA AAAI 1001 xx10

[2] MOV Smem, BK47 1101 1100 AAAA AAAI 1010 xx10

[3] MOV Smem, BKC 1101 1100 AAAA AAAI 1011 xx10

[4] MOV Smem, BSA01 1101 1100 AAAA AAAI 0010 xx10

[5] MOV Smem, BSA23 1101 1100 AAAA AAAI 0011 xx10

[6] MOV Smem, BSA45 1101 1100 AAAA AAAI 0100 xx10

[7] MOV Smem, BSA67 1101 1100 AAAA AAAI 0101 xx10

[8] MOV Smem, BSAC 1101 1100 AAAA AAAI 0110 xx10

[9] MOV Smem, BRC0 1101 1100 AAAA AAAI x001 xx11

[10] MOV Smem, BRC1 1101 1100 AAAA AAAI x010 xx11

[11] MOV Smem, CDP 1101 1100 AAAA AAAI 0001 xx10

[12] MOV Smem, CSR 1101 1100 AAAA AAAI x000 xx11

[13] MOV Smem, DP 1101 1100 AAAA AAAI 0000 xx10

[14] MOV Smem, DPH 1101 1100 AAAA AAAI 1100 xx10

[15] MOV Smem, PDP 1101 1100 AAAA AAAI 1111 xx10

[16] MOV Smem, SP 1101 1100 AAAA AAAI 0111 xx10

[17] MOV Smem, SSP 1101 1100 AAAA AAAI 1000 xx10

[18] MOV Smem, TRN0 1101 1100 AAAA AAAI x011 xx11

[19] MOV Smem, TRN1 1101 1100 AAAA AAAI x100 xx11

[20] MOV dbl(Lmem), RETA 1110 1101 AAAA AAAI xxxx 011x

MOV Load CPU Register with Immediate Value

Instruction Set Descriptions5-268 SPRU374G

Load CPU Register with Immediate ValueMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV k12, BK03 Yes 3 1 AD

[2] MOV k12, BK47 Yes 3 1 AD

[3] MOV k12, BKC Yes 3 1 AD

[4] MOV k12, BRC0 Yes 3 1 AD

[5] MOV k12, BRC1 Yes 3 1 AD

[6] MOV k12, CSR Yes 3 1 AD

[7] MOV k7, DPH Yes 3 1 AD

[8] MOV k9, PDP Yes 3 1 AD

[9] MOV k16, BSA01 No 4 1 AD

[10] MOV k16, BSA23 No 4 1 AD

[11] MOV k16, BSA45 No 4 1 AD

[12] MOV k16, BSA67 No 4 1 AD

[13] MOV k16, BSAC No 4 1 AD

[14] MOV k16, CDP No 4 1 AD

[15] MOV k16, DP No 4 1 AD

[16] MOV k16, SP No 4 1 AD

[17] MOV k16, SSP No 4 1 AD

Opcode See Table 5–2 (page 5-269).

Operands kx

Description This instruction loads the unsigned constant, kx, to the destination CPU
register. This instruction uses a dedicated datapath independent of the A-unit
ALU and the D-unit operators to perform the operation. The constant is zero
extended to the bitwidth of the destination CPU register.

For instruction [5], when BRC1 is loaded, the block repeat save register
(BRS1) is also loaded with the same value.

The operation is performed in the address phase of the pipeline.

 Load CPU Register with Immediate Value MOV

5-269Instruction Set DescriptionsSPRU374G

Status Bits Affected by none

Affects none

Repeat Instruction [15] cannot be repeated; all other instructions can be repeated.

See Also See the following other related instructions:

� MOV (Load CPU Register from Memory)

Table 5–2. Opcodes for Load CPU Register with Immediate Value Instruction

No. Syntax Opcode

[1] MOV k12, BK03 0001 011E kkkk kkkk kkkk 0100

[2] MOV k12, BK47 0001 011E kkkk kkkk kkkk 0101

[3] MOV k12, BKC 0001 011E kkkk kkkk kkkk 0110

[4] MOV k12, BRC0 0001 011E kkkk kkkk kkkk 1001

[5] MOV k12, BRC1 0001 011E kkkk kkkk kkkk 1010

[6] MOV k12, CSR 0001 011E kkkk kkkk kkkk 1000

[7] MOV k7, DPH 0001 011E xxxx xkkk kkkk 0000

[8] MOV k9, PDP 0001 011E xxxk kkkk kkkk 0011

[9] MOV k16, BSA01 0111 1000 kkkk kkkk kkkk kkkk xxx0 011x

[10] MOV k16, BSA23 0111 1000 kkkk kkkk kkkk kkkk xxx0 100x

[11] MOV k16, BSA45 0111 1000 kkkk kkkk kkkk kkkk xxx0 101x

[12] MOV k16, BSA67 0111 1000 kkkk kkkk kkkk kkkk xxx0 110x

[13] MOV k16, BSAC 0111 1000 kkkk kkkk kkkk kkkk xxx0 111x

[14] MOV k16, CDP 0111 1000 kkkk kkkk kkkk kkkk xxx0 010x

[15] MOV k16, DP 0111 1000 kkkk kkkk kkkk kkkk xxx0 000x

[16] MOV k16, SP 0111 1000 kkkk kkkk kkkk kkkk xxx1 000x

[17] MOV k16, SSP 0111 1000 kkkk kkkk kkkk kkkk xxx0 001x

MOV Load Extended Auxiliary Register from Memory

Instruction Set Descriptions5-270 SPRU374G

Load Extended Auxiliary Register from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV dbl(Lmem), XAdst No 3 1 X

Opcode 1110 1101 AAAA AAAI XDDD 1111

Operands Lmem, XAdst

Description This instruction loads the lower 23 bits of the data addressed by data memory
operand (Lmem) to the 23-bit destination register (XARx, XSP, XSSP, XDP, or
XCDP).

XAdst = dbl(Lmem)

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Extended Auxiliary Register Content)

� AMOV (Load Extended Auxiliary Register with Immediate Value)

� MOV (Move Extended Auxiliary Register Content)

� MOV (Store Extended Auxiliary Register Content to Memory)

Example

Syntax Description

MOV dbl(*AR3), XAR1 The 7 lowest bits of the content at the location addressed by AR3 and the 16 bits
of the content at the location addressed by AR3 + 1 are loaded into XAR1.

Before After

XAR1 00 0000 XAR1 12 0FD3

AR3 0200 AR3 0200

200 3492 200 3492

201 0FD3 201 0FD3

 Load Memory with Immediate Value MOV

5-271Instruction Set DescriptionsSPRU374G

Load Memory with Immediate ValueMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV K8, Smem No 3 1 X

[2] MOV K16, Smem No 4 1 X

Opcode K8 1110 0110 AAAA AAAI KKKK KKKK

K16 1111 1011 AAAA AAAI KKKK KKKK KKKK KKKK

Operands Kx, Smem

Description These instructions initialize a data memory location. These instructions store
an 8-bit signed constant, K8, or a 16-bit signed constant, K16, to a memory
(Smem) location. They use a dedicated datapath to perform the operation.

For instruction [1], the immediate value is always signed extended to 16 bits
before being stored in memory.

Status Bits Affected by none

Affects none

Repeat Instruction [1] can be repeated. Instruction [2] cannot be repeated when using
the *(#k23) absolute addressing mode to access the memory operand
(Smem); when using other addressing modes, this instruction can be
repeated.

See Also See the following other related instructions:

� MOV (Move Memory to Memory)

Example

Syntax Description

MOV #248, *(#0501h) The signed 16-bit value (248) is loaded to address 501h.

Before After

0501 FC00 0501 F800

MOV Move Accumulator Content to Auxiliary or Temporary Register

Instruction Set Descriptions5-272 SPRU374G

Move Accumulator Content to Auxiliary or Temporary RegisterMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV HI(ACx), TAx Yes 2 1 X

Opcode 0100 010E 00SS FDDD

Operands ACx, TAx

Description This instruction moves the high part of the accumulator, ACx(31–16), to the
destination auxiliary or temporary register (TAx):

TAx = HI(ACx)

The 16-bit move operation is performed in the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MOV (Move Accumulator, Auxiliary, or Temporary Register Content)

� MOV (Move Auxiliary or Temporary Register Content to Accumulator)

Example

Syntax Description

MOV HI(AC0), AR2 The content of AC0(31–16) is copied to AR2.

Before After

AC0 01 E500 0030 AC0 01 E500 0030

AR2 0200 AR2 E500

 Move Accumulator, Auxiliary, or Temporary Register Content MOV

5-273Instruction Set DescriptionsSPRU374G

Move Accumulator, Auxiliary, or Temporary Register ContentMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV src, dst Yes 2 1 X

Opcode 0010 001E FSSS FDDD

Operands dst, src

Description This instruction moves the content of the source (src) register to the
destination (dst) register:

dst = src

� When the destination (dst) register is an accumulator:

� The 40-bit move operation is performed in the D-unit ALU.

� During the 40-bit move operation, an overflow is detected according to
M40:

� the destination accumulator overflow status bit (ACOVx) is set.

� the destination register (ACx) is saturated according to SATD.

� If the source (src) register is an auxiliary or temporary register, the
16 LSBs of the source register are sign extended to 40 bits according
to SXMD.

� When the destination (dst) register is an auxiliary or temporary register:

� The 16-bit move operation is performed in the A-unit ALU.

� If the source (src) register is an accumulator, the 16 LSBs of the
accumulator are used to perform the operation.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MOV (Move Accumulator Content to Auxiliary or Temporary Register)

� MOV (Move Auxiliary or Temporary Register Content to Accumulator)

� MOV (Move Auxiliary or Temporary Register Content to CPU Register)

� MOV (Move Extended Auxiliary Register Content)

MOV Move Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-274 SPRU374G

Example

Syntax Description

MOV AC0, AC1 The content of AC0 is copied to AC1. Because an overflow occurred, ACOV1 is
set to 1.

Before After

AC0 01 E500 0030 AC0 01 E500 0030

AC1 00 2800 0200 AC1 01 E500 0030

M40 0 M40 0

SATD 0 SATD 0

ACOV1 0 ACOV1 1

 Move Auxiliary or Temporary Register Content to Accumulator MOV

5-275Instruction Set DescriptionsSPRU374G

Move Auxiliary or Temporary Register Content to AccumulatorMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV TAx, HI(ACx) Yes 2 1 X

Opcode 0101 001E FSSS 00DD

Operands ACx, TAx

Description This instruction moves the content of the auxiliary or temporary register (TAx)
to the high part of the accumulator, ACx(31–16):

HI(ACx) = TAx

� The 16-bit move operation is performed in the D-unit ALU.

� During the 16-bit move operation, an overflow is detected according to
M40:

� the destination accumulator overflow status bit (ACOVx) is set.

� the destination accumulator (ACx) is saturated according to SATD.

� If the source (src) register is an auxiliary or temporary register, the
16 LSBs of the source register are sign extended to 40 bits according to
SXMD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MOV (Move Accumulator Content to Auxiliary or Temporary Register)

� MOV (Move Accumulator, Auxiliary, or Temporary Register Content)

� MOV (Move Auxiliary or Temporary Register Content to CPU Register)

� MOV (Move Extended Auxiliary Register Content)

Example

Syntax Description

MOV T0, HI(AC0) The content of T0 is copied to AC0(31–16).

MOV Move Auxiliary or Temporary Register Content to CPU Register

Instruction Set Descriptions5-276 SPRU374G

Move Auxiliary or Temporary Register Content to CPU RegisterMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV TAx, BRC0 Yes 2 1 X

[2] MOV TAx, BRC1 Yes 2 1 X

[3] MOV TAx, CDP Yes 2 1 X

[4] MOV TAx, CSR Yes 2 1 X

[5] MOV TAx, SP Yes 2 1 X

[6] MOV TAx, SSP Yes 2 1 X

Opcode See Table 5–3 (page 5-277).

Operands TAx

Description This instruction moves the content of the auxiliary or temporary register (TAx)
to the selected CPU register. All the move operations are performed in the
execute phase of the pipeline and the A-unit ALU is used to transfer the content
of the registers.

There is a 3-cycle latency between SP, SSP, CDP, TAx, CSR, and BRCx
update and their use in the address phase by the A-unit address generator
units or by the P-unit loop control management.

For instruction [2] when BRC1 is loaded with the content of TAx, the block
repeat save register (BRS1) is also loaded with the same value.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MOV (Move Accumulator Content to Auxiliary or Temporary Register)

� MOV (Move Accumulator, Auxiliary, or Temporary Register Content)

� MOV (Move Auxiliary or Temporary Register Content to Accumulator)

� MOV (Move CPU Register Content to Auxiliary or Temporary Register)

� MOV (Move Extended Auxiliary Register Content)

 Move Auxiliary or Temporary Register Content to CPU Register MOV

5-277Instruction Set DescriptionsSPRU374G

Example

Syntax Description

MOV T1, BRC1 The content of T1 is copied to the block repeat register (BRC1) and to the block
repeat save register (BRS1).

Before After

T1 0034 T1 0034

BRC1 00EA BRC1 0034

BRS1 00EA BRS1 0034

Table 5–3. Opcodes for Move Auxiliary or Temporary Register Content to CPU Register
Instruction

No. Syntax Opcode

[1] MOV TAx, BRC0 0101 001E FSSS 1110

[2] MOV TAx, BRC1 0101 001E FSSS 1101

[3] MOV TAx, CDP 0101 001E FSSS 1010

[4] MOV TAx, CSR 0101 001E FSSS 1100

[5] MOV TAx, SP 0101 001E FSSS 1000

[6] MOV TAx, SSP 0101 001E FSSS 1001

MOV Move CPU Register Content to Auxiliary or Temporary Register

Instruction Set Descriptions5-278 SPRU374G

Move CPU Register Content to Auxiliary or Temporary RegisterMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV BRC0, TAx Yes 2 1 X

[2] MOV BRC1, TAx Yes 2 1 X

[3] MOV CDP, TAx Yes 2 1 X

[4] MOV SP, TAx Yes 2 1 X

[5] MOV SSP, TAx Yes 2 1 X

[6] MOV RPTC, TAx Yes 2 1 X

Opcode See Table 5–4 (page 5-279).

Operands TAx

Description This instruction moves the content of the selected CPU register to the auxiliary
or temporary register (TAx). All the move operations are performed in the
execute phase of the pipeline and the A-unit ALU is used to transfer the content
of the registers.

For instructions [1] and [2], BRCx is decremented in the address phase of the
last instruction of a loop. These instructions have a 3-cycle latency
requirement versus the last instruction of a loop.

For instructions [3], [4], and [5], there is a 3-cycle latency between SP, SSP,
CDP, and TAx update and their use in the address phase by the A-unit address
generator units or by the P-unit loop control management.

Status Bits Affected by none

Affects none

Repeat Instruction [6] cannot be repeated; all other instructions can be repeated.

See Also See the following other related instructions:

� MOV (Move Accumulator Content to Auxiliary or Temporary Register)

� MOV (Move Auxiliary or Temporary Register Content to CPU Register)

� MOV (Store CPU Register Content to Memory)

 Move CPU Register Content to Auxiliary or Temporary Register MOV

5-279Instruction Set DescriptionsSPRU374G

Example

Syntax Description

MOV BRC1, T1 The content of block repeat register (BRC1) is copied to T1.

Before After

T1 0034 T1 00EA

BRC1 00EA BRC1 00EA

Table 5–4. Opcodes for Move CPU Register Content to Auxiliary or Temporary Register
Instruction

No. Syntax Opcode

[1] MOV BRC0, TAx 0100 010E 1100 FDDD

[2] MOV BRC1, TAx 0100 010E 1101 FDDD

[3] MOV CDP, TAx 0100 010E 1010 FDDD

[4] MOV SP, TAx 0100 010E 1000 FDDD

[5] MOV SSP, TAx 0100 010E 1001 FDDD

[6] MOV RPTC, TAx 0100 010E 1110 FDDD

MOV Move Extended Auxiliary Register Content

Instruction Set Descriptions5-280 SPRU374G

Move Extended Auxiliary Register ContentMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV xsrc, xdst No 2 1 X

Opcode 1001 0000 XSSS XDDD

Operands xdst, xsrc

Description This instruction moves the content of the source register (xsrc) to the
destination register (xdst):

xdst = xsrc

� When the destination register (xdst) is an accumulator (ACx) and the
source register (xsrc) is a 23-bit register (XARx, XSP, XSSP, XDP, or
XCDP):

� The 23-bit move operation is performed in the D-unit ALU.

� The upper bits of ACx are filled with 0.

� When the source register (xsrc) is an accumulator (ACx) and the
destination register (xdst) is a 23-bit register (XARx, XSP, XSSP, XDP, or
XCDP):

� The 23-bit move operation is performed in the A-unit ALU.

� The lower 23 bits of ACx are loaded into xdst.

� When both the source register (xsrc) and the destination register (xdst) are
accumulators, the Move Accumulator Content instruction (MOV src, dst)
is assembled.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Extended Auxiliary Register Content)

� AMOV (Load Extended Auxiliary Register with Immediate Value)

� MOV (Load Extended Auxiliary Register from Memory)

� MOV (Store Extended Auxiliary Register Content to Memory)

Example

Syntax Description

MOV AC0, XAR1 The lower 23 bits of AC0 are loaded into XAR1.

 Move Memory to Memory MOV

5-281Instruction Set DescriptionsSPRU374G

Move Memory to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV Cmem, Smem No 3 1 X

[2] MOV Smem, Cmem No 3 1 X

[3] MOV Cmem, dbl(Lmem) No 3 1 X

[4] MOV dbl(Lmem), Cmem No 3 1 X

[5] MOV dbl(Xmem), dbl(Ymem) No 3 1 X

[6] MOV Xmem, Ymem No 3 1 X

Description These instructions store the content of a memory location to a memory
location. They use a dedicated datapath to perform the operation.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� MOV (Store Accumulator, Auxiliary, or Temporary Register Content to
Memory)

� MOV (Store Accumulator Content to Memory)

� MOV (Store Auxiliary or Temporary Register Pair Content to Memory)

� MOV (Store CPU Register Content to Memory)

� MOV (Store Extended Auxiliary Register Content to Memory)

MOV Move Memory to Memory

Instruction Set Descriptions5-282 SPRU374G

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV Cmem, Smem No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 00mm

Operands Cmem, Smem

Description This instruction stores the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, to a memory (Smem)
location:

Smem = Cmem

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *CDP, *(#0500h) The content addressed by the coefficient data pointer register (CDP) is copied to
address 0500h.

Before After

*CDP 3400 *CDP 3400

500 0000 500 3400

 Move Memory to Memory MOV

5-283Instruction Set DescriptionsSPRU374G

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV Smem, Cmem No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 01mm

Operands Cmem, Smem

Description This instruction stores the content of a memory (Smem) location to a data
memory location (Cmem) addressed using the coefficient addressing mode:

Cmem = Smem

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *AR3, *CDP The content addressed by AR3 is copied in the location addressed by the
coefficient data pointer register (CDP).

MOV Move Memory to Memory

Instruction Set Descriptions5-284 SPRU374G

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MOV Cmem, dbl(Lmem) No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 10mm

Operands Cmem, Lmem

Description This instruction stores the content of two consecutive data memory (Cmem)
locations, addressed using the coefficient addressing mode, to two
consecutive data memory (Lmem) locations:

Lmem = dbl(Cmem)

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *(CDP + T0), dbl(*AR1) The content (long word) addressed by the coefficient data pointer register
(CDP) and CDP + 1 is copied in the location addressed by AR1 and
AR1 + 1, respectively. After the memory store, CDP is incremented by the
content of T0 (5).

Before After

T0 0005 T0 0005

CDP 0200 CDP 0205

AR1 0300 AR1 0300

200 3400 200 3400

201 0FD3 201 0FD3

300 0000 300 3400

301 0000 301 0FD3

 Move Memory to Memory MOV

5-285Instruction Set DescriptionsSPRU374G

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] MOV dbl(Lmem), Cmem No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 11mm

Operands Cmem, Lmem

Description This instruction stores the content of two consecutive data memory (Lmem)
locations to two consecutive data memory (Cmem) locations addressed using
the coefficient addressing mode:

dbl(Cmem) = Lmem

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV dbl(*AR3+), *CDP The content (long word) addressed by AR3 and AR3 + 1 is copied in the location
addressed by the coefficient data pointer register (CDP) and CDP + 1, respective-
ly. Because this instruction is a long-operand instruction, AR3 is incremented by 2
after the execution.

MOV Move Memory to Memory

Instruction Set Descriptions5-286 SPRU374G

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] MOV dbl(Xmem), dbl(Ymem) No 3 1 X

Opcode 1000 0000 XXXM MMYY YMMM 00xx

Operands Xmem, Ymem

Description This instruction stores the content of two consecutive data memory (Xmem)
locations, addressed using the dual addressing mode, to two consecutive data
memory (Ymem) locations:

dbl(Ymem) = dbl(Xmem)

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV dbl(*AR0), dbl(*AR1) The content addressed by AR0 is copied in the location addressed by AR1
and the content addressed by AR0 + 1 is copied in the location addressed
by AR1 + 1.

Before After

AR0 0300 AR0 0300

AR1 0400 AR1 0400

300 3400 300 3400

301 0FD3 301 0FD3

400 0000 400 3400

401 0000 401 0FD3

 Move Memory to Memory MOV

5-287Instruction Set DescriptionsSPRU374G

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] MOV Xmem, Ymem No 3 1 X

Opcode 1000 0000 XXXM MMYY YMMM 01xx

Operands Xmem, Ymem

Description This instruction stores the content of data memory (Xmem) location,
addressed using the dual addressing mode, to data memory (Ymem) location:

Ymem = Xmem

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV *AR5, *AR3 The content addressed by AR5 is copied in the location addressed by AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-288 SPRU374G

Store Accumulator Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV HI(ACx), Smem No 2 1 X

[2] MOV [rnd(]HI(ACx)[)], Smem No 3 1 X

[3] MOV ACx << Tx, Smem No 3 1 X

[4] MOV [rnd(]HI(ACx << Tx)[)], Smem No 3 1 X

[5] MOV ACx << #SHIFTW, Smem No 3 1 X

[6] MOV HI(ACx << #SHIFTW), Smem No 3 1 X

[7] MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem No 4 1 X

[8] MOV [uns(][rnd(]HI[(saturate](ACx)[)))], Smem No 3 1 X

[9] MOV [uns(][rnd(]HI[(saturate](ACx << Tx)[)))], Smem No 3 1 X

[10] MOV [uns(][rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem No 4 1 X

[11] MOV ACx, dbl(Lmem) No 3 1 X

[12] MOV [uns(]saturate(ACx)[)], dbl(Lmem) No 3 1 X

[13] MOV ACx >> #1, dual(Lmem) No 3 1 X

[14] MOV ACx, Xmem, Ymem No 3 1 X

Description This instruction stores the content of the selected accumulator (ACx) to a
memory (Smem) location, to a data memory operand (Lmem), or to dual data
memory operands (Xmem and Ymem).

Status Bits Affected by C54CM, RDM, SXMD

Affects none

 Store Accumulator Content to Memory MOV

5-289Instruction Set DescriptionsSPRU374G

See Also See the following other related instructions:

� ADD::MOV (Addition with Parallel Store Accumulator Content to Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Store Accumulator Pair Content to Memory)

� MOV (Store Accumulator, Auxiliary, or Temporary Register Content to
Memory)

� MOV (Store Auxiliary or Temporary Register Pair Content to Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

� MPYM::MOV (Multiply with Parallel Store Accumulator Content to
Memory)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-290 SPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV HI(ACx), Smem No 2 1 X

Opcode 1011 11SS AAAA AAAI

Operands ACx, Smem

Description This instruction stores the high part of the accumulator, ACx(31–16), to the
memory (Smem) location:

Smem = HI(ACx)

The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV HI(AC0), *AR3 The content of AC0(31–16) is stored at the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-291Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV [rnd(]HI(ACx)[)], Smem No 3 1 X

Opcode 1110 1000 AAAA AAAI SSxx x0x%

Operands ACx, Smem

Description This instruction stores the high part of the accumulator, ACx(31–16), to the
memory (Smem) location:

Smem = HI(ACx)

Rounding is performed in the D-unit shifter according to RDM, if the optional
rnd keyword is applied to the input operand.

Status Bits Affected by RDM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV rnd(HI(AC0)), *AR3 The content of AC0(31–16) is rounded and stored at the location addressed by
AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-292 SPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MOV ACx << Tx, Smem No 3 1 X

Opcode 1110 0111 AAAA AAAI SSss 00xx

Operands ACx, Smem, Tx

Description This instruction shifts the accumulator, ACx, by the content of Tx and stores
the low part of the accumulator, ACx(15–0), to the memory (Smem) location:

Smem = LO(ACx << Tx)

If the 16-bit value in Tx is not within –32 to +31, the shift is saturated to –32 or
+31 and the shift is performed with this value. The input operand is shifted in
the D-unit shifter according to SXMD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, the 6 LSBs of Tx are used
to determine the shift quantity. The 6 LSBs of Tx define a shift quantity within
–32 to +31. When the 16-bit value in Tx is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0 << T0, *AR3 The content of AC0 is shifted by the content of T0 and AC0(15–0) is stored at the
location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-293Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] MOV [rnd(]HI(ACx << Tx)[)], Smem No 3 1 X

Opcode 1110 0111 AAAA AAAI SSss 10x%

Operands ACx, Smem, Tx

Description This instruction shifts the accumulator, ACx, by the content of Tx and stores
high part of the accumulator, ACx(31–16), to the memory (Smem) location:

Smem = HI(ACx << Tx)

If the 16-bit value in Tx is not within –32 to +31, the shift is saturated to –32 or
+31 and the shift is performed with this value. The input operand is shifted in
the D-unit shifter according to SXMD. Rounding is performed in the D-unit
shifter according to RDM, if the optional rnd keyword is applied to the input
operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, the 6 LSBs of Tx are used
to determine the shift quantity. The 6 LSBs of Tx define a shift quantity within
–32 to +31. When the 16-bit value in Tx is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, RDM, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV rnd(HI(AC0 << T0)), *AR3 The content of AC0 is shifted by the content of T0, is rounded, and
AC0(31–16) is stored at the location addressed by AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-294 SPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] MOV ACx << #SHIFTW, Smem No 3 1 X

Opcode 1110 1001 AAAA AAAI SSSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the low part of the accumulator, ACx(15–0), to the memory (Smem)
location:

Smem = LO(ACx << #SHIFTW)

The input operand is shifted by the 6-bit value in the D-unit shifter according
to SXMD

Status Bits Affected by SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0 << #31, *AR3 The content of AC0 is shifted left by 31 bits and AC0(15–0) is stored at the
location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-295Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] MOV HI(ACx << #SHIFTW), Smem No 3 1 X

Opcode 1110 1010 AAAA AAAI SSSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the high part of the accumulator, ACx(31–16), to the memory (Smem)
location:

Smem = HI(ACx << #SHIFTW)

The input operand is shifted by the 6-bit value in the D-unit shifter according
to SXMD.

Status Bits Affected by SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV HI(AC0 << #31), *AR3 The content of AC0 is shifted left by 31 bits and AC0(31–16) is stored at the
location addressed by AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-296 SPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem No 4 1 X

Opcode 1111 1010 AAAA AAAI xxSH IFTW SSxx x0x%

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the high part of the accumulator, ACx(31–16), to the memory (Smem)
location:

Smem = HI(ACx << #SHIFTW)

The input operand is shifted by the 6-bit value in the D-unit shifter according
to SXMD. Rounding is performed in the D-unit shifter according to RDM, if the
optional rnd keyword is applied to the input operand.

Status Bits Affected by RDM, SXMD

Affects none

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

MOV rnd(HI(AC0 << #31)), *AR3 The content of AC0 is shifted left by 31 bits, is rounded, and
AC0(31–16) is stored at the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-297Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] MOV [uns(][rnd(]HI[(saturate](ACx)[)))], Smem No 3 1 X

Opcode 1110 1000 AAAA AAAI SSxx x1u%

Operands ACx, Smem

Description This instruction stores the high part of the accumulator, ACx(31–16), to the
memory (Smem) location:

Smem = HI(ACx)

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� If the optional rnd keyword is applied to the input operand, rounding is
performed in the D-unit shifter according to RDM.

� When a rounding overflow is detected and if the optional saturate keyword
is applied to the input operand, the 40-bit output of the operation is
saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the round operation:

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-298 SPRU374G

Status Bits Affected by C54CM, RDM, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV uns(rnd(HI(saturate(AC0)))), *AR3 The unsigned content of AC0 is rounded, is saturated, and
AC0(31–16) is stored at the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-299Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] MOV [uns(][rnd(]HI[(saturate](ACx << Tx)[)))], Smem No 3 1 X

Opcode 1110 0111 AAAA AAAI SSss 11u%

Operands ACx, Smem, Tx

Description This instruction shifts the accumulator, ACx, by the content of Tx and stores
the high part of the accumulator, ACx(31–16), to the memory (Smem) location.

Smem = HI(ACx << Tx)

If the 16-bit value in Tx is not within –32 to +31, the shift is saturated to –32 or
+31 and the shift is performed with this value.

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� The input operand is shifted in the D-unit shifter according to SXMD.

� When shifting, the sign position of the input operand is compared to the
shift quantity.

� If the optional uns keyword is applied to the input operand, this
comparison is performed against bit 32 of the shifted operand.

� If the optional uns keyword is not applied, this comparison is
performed against bit 31 of the shifted operand that is considered
signed (the sign is defined by bit 39 of the input operand and SXMD).

� An overflow is generated accordingly.

� If the optional rnd keyword is applied to the input operand, rounding is
performed in the D-unit shifter according to RDM.

� When a shift or rounding overflow is detected and if the optional saturate
keyword is applied to the input operand, the 40-bit output of the operation
is saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-300 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1:

� Overflow detection at the output of the shifter consists of checking if the
sign of the input operand is identical to the most-significant bits of the
40-bit result of the shift and round operation.

� If the optional uns keyword is applied to the input operand, then bits
39–32 of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand,
then bits 39–31 of the result are compared to bit 39 of the input
operand and SXMD.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the 16-bit value in Tx
is between –32 to –17, a modulo 16 operation transforms the shift quantity
to within –16 to –1.

Status Bits Affected by C54CM, RDM, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV uns(rnd(HI(saturate(AC0 << T0)))), *AR3 The unsigned content of AC0 is shifted by the content of
T0, is rounded, is saturated, and AC0(31–16) is stored at
the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-301Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] MOV [uns(][rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem No 4 1 X

Opcode 1111 1010 AAAA AAAI uxSH IFTW SSxx x1x%

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the high part of the accumulator, ACx(31–16), to the memory (Smem)
location:

Smem = HI(ACx << #SHIFTW)

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� The input operand is shifted by the 6-bit value in the D-unit shifter
according to SXMD.

� When shifting, the sign position of the input operand is compared to the
shift quantity.

� If the optional uns keyword is applied to the input operand, this
comparison is performed against bit 32 of the shifted operand.

� If the optional uns keyword is not applied, this comparison is
performed against bit 31 of the shifted operand that is considered
signed (the sign is defined by bit 39 of the input operand and SXMD).

� An overflow is generated accordingly.

� If the optional rnd keyword is applied to the input operand, rounding is
performed in the D-unit shifter according to RDM.

� When a shift or rounding overflow is detected and if the optional saturate
keyword is applied to the input operand, the 40-bit output of the operation
is saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-302 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation.

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SXMD

Affects none

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

MOV uns(rnd(HI(saturate(AC0 << #31)))), *AR3 The unsigned content of AC0 is shifted left by 31 bits, is
rounded, is saturated, and AC0(31–16) is stored at the
location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-303Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] MOV ACx, dbl(Lmem) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 10x0

Operands ACx, Lmem

Description This instruction stores the content of the accumulator, ACx(31–0), to the data
memory operand (Lmem):

dbl(Lmem) = ACx

The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0, dbl(*AR3) The content of AC0 is stored at the locations addressed by AR3 and AR3 + 1.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-304 SPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] MOV [uns(]saturate(ACx)[)], dbl(Lmem) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 10u1

Operands ACx, Lmem

Description This instruction stores the content of the accumulator, ACx(31–0), to the data
memory operand (Lmem):

dbl(Lmem) = saturate(ACx)

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� The 40-bit output of the operation is saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

� The store operation to the memory location uses the D-unit shifter.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation.

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, SXMD

Affects none

 Store Accumulator Content to Memory MOV

5-305Instruction Set DescriptionsSPRU374G

Repeat This instruction can be repeated.

Example

Syntax Description

MOV uns(saturate(AC0)), dbl(*AR3) The unsigned content of AC0 is saturated and stored at the
locations addressed by AR3 and AR3 + 1.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-306 SPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[13] MOV ACx >> #1, dual(Lmem) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 1101

Operands ACx, Lmem

Description This instruction performs two store operations in parallel and is executed in the
D-unit shifter:

HI(Lmem) = HI(ACx) >> #1
:: LO(Lmem) = LO(ACx) >> #1

� The 16 highest bits of the accumulator, ACx(31–16), shifted right by 1 bit
(bit 31 is sign extended according to SXMD), are stored to the
16 highest bits of the data memory operand (Lmem).

� The 16 lowest bits, ACx(15–0), shifted right by 1 bit (bit 15 is sign extended
according to SXMD), are stored to the 16 lowest bits of the data memory
operand (Lmem).

Status Bits Affected by SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0 >> #1,dual(*AR3) The content of AC0(31–16), shifted right by 1 bit, is stored at the location
addressed by AR1 and the content of AC0(15–0), shifted right by 1 bit, is
stored at the location addressed by AR1 + 1.

 Store Accumulator Content to Memory MOV

5-307Instruction Set DescriptionsSPRU374G

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[14] MOV ACx, Xmem, Ymem No 3 1 X

Opcode 1000 0000 XXXM MMYY YMMM 10SS

Operands ACx, Xmem, Ymem

Description This instruction performs two store operations in parallel:

Xmem = LO(ACx)
:: Ymem = HI(ACx)

� The 16 lowest bits of the accumulator, ACx(15–0), are stored to data
memory operand Xmem.

� The 16 highest bits, ACx(31–16), are stored to data memory operand Ymem.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0, *AR1, *AR2 The content of AC0(15–0) is stored at the location addressed by AR1 and the
content of AC0(31–16) is stored at the location addressed by AR2.

Before After

AC0 01 4500 0030 AC0 01 4500 0030

AR1 0200 AR1 0200

AR2 0201 AR2 0201

200 3400 200 0030

201 0FD3 201 4500

MOV Store Accumulator Pair Content to Memory

Instruction Set Descriptions5-308 SPRU374G

Store Accumulator Pair Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV pair(HI(ACx)), dbl(Lmem) No 3 1 X

[2] MOV pair(LO(ACx)), dbl(Lmem) No 3 1 X

Description This instruction stores the content of the selected accumulator pair, ACx and
AC(x + 1), to a data memory operand (Lmem).

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� ADD::MOV (Addition with Parallel Store Accumulator Content to Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Store Accumulator Content to Memory)

� MOV (Store Accumulator, Auxiliary, or Temporary Register Content to
Memory)

� MOV (Store Auxiliary or Temporary Register Pair Content to Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

� MPYM::MOV (Multiply with Parallel Store Accumulator Content to
Memory)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

 Store Accumulator Pair Content to Memory MOV

5-309Instruction Set DescriptionsSPRU374G

Store Accumulator Pair Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV pair(HI(ACx)), dbl(Lmem) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 1110

Operands ACx, Lmem

Description This instruction stores the 16 highest bits of the accumulator, ACx(31–16), to
the 16 highest bits of the data memory operand (Lmem) and stores the
16 highest bits of AC(x + 1) to the16 lowest bits of data memory operand
(Lmem):

Lmem = pair(HI(ACx))

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Valid accumulators are AC0 and AC2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV pair(HI(AC0)), dbl(*AR1+) The content of AC0(31–16) is stored at the location addressed by AR1
and the content of AC1(31–16) is stored at the location addressed by
AR1 + 1. AR1 is incremented by 2.

Before After

AC0 01 4500 0030 AC0 01 4500 0030

AC1 03 5644 F800 AC1 03 5644 F800

AR1 0200 AR1 0202

200 3400 200 4500

201 0FD3 201 5644

MOV Store Accumulator Pair Content to Memory

Instruction Set Descriptions5-310 SPRU374G

Store Accumulator Pair Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV pair(LO(ACx)), dbl(Lmem) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 1111

Operands ACx, Lmem

Description This instruction stores the 16 lowest bits of the accumulator, ACx(15–0), to the
16 highest bits of the data memory operand (Lmem) and stores the 16 lowest
bits of AC(x + 1) to the16 lowest bits of data memory operand (Lmem):

Lmem = pair(LO(ACx))

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Valid accumulators are AC0 and AC2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV pair(LO(AC0)), dbl(*AR3) The content of AC0(15–0) is stored at the location addressed by AR3 and
the content of AC1(15–0) is stored at the location addressed by AR3 + 1.

 Store Accumulator, Auxiliary, or Temporary Register Content to Memory MOV

5-311Instruction Set DescriptionsSPRU374G

Store Accumulator, Auxiliary, or Temporary Register Content to
Memory

MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV src, Smem No 2 1 X

[2] MOV src, high_byte(Smem) No 3 1 X

[3] MOV src, low_byte(Smem) No 3 1 X

Description This instruction stores the content of the selected source (src) register to a
memory (Smem) location.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� ADD::MOV (Addition with Parallel Store Accumulator Content to Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Store Accumulator Content to Memory)

� MOV (Store Accumulator Pair Content to Memory)

� MOV (Store Auxiliary or Temporary Register Pair Content to Memory)

� MOV::MOV (Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory)

� MPYM::MOV (Multiply with Parallel Store Accumulator Content to
Memory)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

MOV Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Instruction Set Descriptions5-312 SPRU374G

Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV src, Smem No 2 1 X

Opcode 1100 FSSS AAAA AAAI

Operands Smem, src

Description This instruction stores the content of the source (src) register to a memory
(Smem) location:

Smem = src

� When the source register is an accumulator:

� The low part of the accumulator, ACx(15–0), is stored to the memory
location.

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� When the source register is an auxiliary or temporary register:

� The content of the auxiliary or temporary register is stored to the
memory location.

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0, *(#0E10h) The content of AC0(15–0) is stored at location E10h.

Before After

AC0 23 0400 6500 AC0 23 0400 6500

0E10 0000 0E10 6500

 Store Accumulator, Auxiliary, or Temporary Register Content to Memory MOV

5-313Instruction Set DescriptionsSPRU374G

Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MOV src, high_byte(Smem) No 3 1 X

Opcode 1110 0101 AAAA AAAI FSSS 01x0

Operands Smem, src

Description This instruction stores the low byte (bits 7–0) of the source (src) register to the
high byte (bits 15–8) of the memory (Smem) location. The low byte (bits 7–0)
of Smem is unchanged:

high_byte(Smem) = src

� When the source register is an accumulator:

� The low part of the accumulator, ACx(7–0), is stored to the high byte of
the memory location.

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� When the source register is an auxiliary or temporary register:

� The low part (bits 7–0) content of the auxiliary or temporary register is
stored to the high byte of the memory location.

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC1, high_byte(*AR1) The content of AC1(7–0) is stored in the high byte (bits 15–8) at the location
addressed by AR1.

Before After

AC1 20 FC00 6788 AC1 20 FC00 6788

AR1 0200 AR1 0200

200 6903 200 8803

MOV Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Instruction Set Descriptions5-314 SPRU374G

Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MOV src, low_byte(Smem) No 3 1 X

Opcode 1110 0101 AAAA AAAI FSSS 01x1

Operands Smem, src

Description This instruction stores the low byte (bits 7–0) of the source (src) register to the
low byte (bits 7–0) of the memory (Smem) location. The high byte (bits 15–8)
of Smem is unchanged:

low_byte(Smem) = src

� When the source register is an accumulator:

� The low part of the accumulator, ACx(7–0), is stored to the low byte of
the memory location.

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� When the source register is an auxiliary or temporary register:

� The low part (bits 7–0) content of the auxiliary or temporary register is
stored to the low byte of the memory location.

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MOV AC0, low_byte(*AR3) The content of AC0(7–0) is stored in the low byte (bits 7–0) at the location
addressed by AR3.

 Store Auxiliary or Temporary Register Pair Content to Memory MOV

5-315Instruction Set DescriptionsSPRU374G

Store Auxiliary or Temporary Register Pair Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV pair(TAx), dbl(Lmem) No 3 1 X

Opcode 1110 1011 AAAA AAAI FSSS 1100

Operands TAx, Lmem

Description This instruction stores the content of the temporary or auxiliary register (TAx)
to the 16 highest bits of the data memory operand (Lmem) and stores the
content of TA(x + 1) to the 16 lowest bits of data memory operand (Lmem):

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

� Valid auxiliary registers are AR0, AR2, AR4, and AR6.

� Valid temporary registers are T0 and T2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Store Accumulator, Auxiliary, or Temporary Register Content to
Memory)

Example

Syntax Description

MOV pair(T0), dbl(*AR2) The content of T0 is stored at the location addressed by AR2 and the content
of T1 is stored at the location addressed by AR2 + 1.

MOV Store CPU Register Content to Memory

Instruction Set Descriptions5-316 SPRU374G

Store CPU Register Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV BK03, Smem No 3 1 X

[2] MOV BK47, Smem No 3 1 X

[3] MOV BKC, Smem No 3 1 X

[4] MOV BSA01, Smem No 3 1 X

[5] MOV BSA23, Smem No 3 1 X

[6] MOV BSA45, Smem No 3 1 X

[7] MOV BSA67, Smem No 3 1 X

[8] MOV BSAC, Smem No 3 1 X

[9] MOV BRC0, Smem No 3 1 X

[10] MOV BRC1, Smem No 3 1 X

[11] MOV CDP, Smem No 3 1 X

[12] MOV CSR, Smem No 3 1 X

[13] MOV DP, Smem No 3 1 X

[14] MOV DPH, Smem No 3 1 X

[15] MOV PDP, Smem No 3 1 X

[16] MOV SP, Smem No 3 1 X

[17] MOV SSP, Smem No 3 1 X

[18] MOV TRN0, Smem No 3 1 X

[19] MOV TRN1, Smem No 3 1 X

[20] MOV RETA, dbl(Lmem) No 3 5 X

Opcode See Table 5–5 (page 5-319).

Operands Lmem, Smem

 Store CPU Register Content to Memory MOV

5-317Instruction Set DescriptionsSPRU374G

Description These instructions store the content of the selected source CPU register to a
memory (Smem) location or a data memory operand (Lmem).

For instructions [9] and [10], the block repeat register (BRCx) is decremented
in the address phase of the last instruction of the loop. These instructions have
a 3-cycle latency requirement versus the last instruction of the loop.

For instruction [20], the content of the 24-bit RETA register (the return address
of the calling subroutine) and the 8-bit CFCT register (active control flow
execution context flags of the calling subroutine) are stored to the data
memory operand (Lmem):

� The content of the CFCT register and the 8 highest bits of the RETA
register are stored in the 16 highest bits of Lmem.

� The 16 lowest bits of the RETA register are stored in the 16 lowest bits of
Lmem.

When instruction [20] is decoded, the CPU pipeline is flushed and the
instruction is executed in 5 cycles, regardless of the instruction context.

Status Bits Affected by none

Affects none

Repeat Instruction [20] cannot be repeated; all other instructions can be repeated.

See Also See the following other related instructions:

� MOV (Load CPU Register from Memory)

� MOV (Load CPU Register with Immediate Value)

� MOV (Move CPU Register Content to Auxiliary or Temporary Register)

� MOV (Store Accumulator Content to Memory)

� MOV (Store Accumulator Pair Content to Memory)

� MOV (Store Accumulator, Auxiliary, or Temporary Register Content to
Memory)

� MOV (Store Auxiliary or Temporary Register Pair Content to Memory)

Example 1

Syntax Description

MOV SP, *AR1+ The content of the data stack pointer (SP) is stored in the location addressed by
AR1. AR1 is incremented by 1.

Before After

AR1 0200 AR1 0201

SP 0200 SP 0200

200 0000 200 0200

MOV Store CPU Register Content to Memory

Instruction Set Descriptions5-318 SPRU374G

Example 2

Syntax Description

MOV SSP, *AR1+ The content of the system stack pointer (SSP) is stored in the location addressed
by AR1. AR1 is incremented by 1.

Before After

AR1 0201 AR1 0202

SSP 0000 SSP 0000

201 00FF 201 0000

Example 3

Syntax Description

MOV TRN0, *AR1+ The content of the transition register (TRN0) is stored in the location addressed
by AR1. AR1 is incremented by 1.

Before After

AR1 0202 AR1 0203

TRN0 3490 TRN0 3490

202 0000 202 3490

Example 4

Syntax Description

MOV TRN1, *AR1+ The content of the transition register (TRN1) is stored in the location addressed
by AR1. AR1 is incremented by 1.

Before After

AR1 0203 AR1 0204

TRN1 0020 TRN1 0020

203 0000 203 0020

Example 5

Syntax Description

MOV RETA, dbl(*AR3) The contents of the RETA and CFCT are stored in the location addressed by AR3
and AR3 + 1.

 Store CPU Register Content to Memory MOV

5-319Instruction Set DescriptionsSPRU374G

Table 5–5. Opcodes for Store CPU Register Content to Memory Instruction

No. Syntax Opcode

[1] MOV BK03, Smem 1110 0101 AAAA AAAI 1001 10xx

[2] MOV BK47, Smem 1110 0101 AAAA AAAI 1010 10xx

[3] MOV BKC, Smem 1110 0101 AAAA AAAI 1011 10xx

[4] MOV BSA01, Smem 1110 0101 AAAA AAAI 0010 10xx

[5] MOV BSA23, Smem 1110 0101 AAAA AAAI 0011 10xx

[6] MOV BSA45, Smem 1110 0101 AAAA AAAI 0100 10xx

[7] MOV BSA67, Smem 1110 0101 AAAA AAAI 0101 10xx

[8] MOV BSAC, Smem 1110 0101 AAAA AAAI 0110 10xx

[9] MOV BRC0, Smem 1110 0101 AAAA AAAI x001 11xx

[10] MOV BRC1, Smem 1110 0101 AAAA AAAI x010 11xx

[11] MOV CDP, Smem 1110 0101 AAAA AAAI 0001 10xx

[12] MOV CSR, Smem 1110 0101 AAAA AAAI x000 11xx

[13] MOV DP, Smem 1110 0101 AAAA AAAI 0000 10xx

[14] MOV DPH, Smem 1110 0101 AAAA AAAI 1100 10xx

[15] MOV PDP, Smem 1110 0101 AAAA AAAI 1111 10xx

[16] MOV SP, Smem 1110 0101 AAAA AAAI 0111 10xx

[17] MOV SSP, Smem 1110 0101 AAAA AAAI 1000 10xx

[18] MOV TRN0, Smem 1110 0101 AAAA AAAI x011 11xx

[19] MOV TRN1, Smem 1110 0101 AAAA AAAI x100 11xx

[20] MOV RETA, dbl(Lmem) 1110 1011 AAAA AAAI xxxx 01xx

MOV Store Extended Auxiliary Register Content to Memory

Instruction Set Descriptions5-320 SPRU374G

Store Extended Auxiliary Register Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV XAsrc, dbl(Lmem) No 3 1 X

Opcode 1110 1101 AAAA AAAI XSSS 0101

Operands Lmem, XAsrc

Description This instruction moves the content of the 23-bit source register (XARx, XSP,
XSSP, XDP, or XCDP) to the 32-bit data memory location addressed by data
memory operand (Lmem). The upper 9 bits of the data memory are filled with 0:

dbl(Lmem) = XAsrc

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR (Modify Extended Auxiliary Register Content)

� AMOV (Load Extended Auxiliary Register with Immediate Value)

� MOV (Load Extended Auxiliary Register from Memory)

� MOV (Move Extended Auxiliary Register Content)

Example

Syntax Description

MOV XAR1, dbl(*AR3) The 7 highest bits of XAR1 are moved to the 7 lowest bits of the location
addressed by AR3, the 9 highest bits are filled with 0, and the 16 lowest bits of
XAR1 are moved to the location addressed by AR3 + 1.

Before After

XAR1 7F 3492 XAR1 7F 3492

AR3 0200 AR3 0200

200 3765 200 007F

201 0FD3 201 3492

 Load Accumulator from Memory with Parallel Store Accumulator Content to Memory MOV::MOV

5-321Instruction Set DescriptionsSPRU374G

Load Accumulator from Memory with Parallel Store Accumulator
Content to Memory

MOV::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MOV Xmem << #16, ACy
:: MOV HI(ACx << T2), Ymem

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 110x xxxx

Operands ACx, ACy, T2, Xmem, Ymem

Description This instruction performs two operations in parallel, load and store:

ACy = Xmem << #16
:: Ymem = HI(ACx << T2)

The first operation loads the content of data memory operand Xmem shifted
left by 16 bits to the accumulator ACy.

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31–16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31–16), is stored to
the memory location.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

MOV::MOV Load Accumulator from Memory with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-322 SPRU374G

See Also See the following other related instructions:

� MOV (Load Accumulator from Memory)

� MOV (Load Accumulator Pair from Memory)

� MOV (Load Accumulator with Immediate Value)

� MOV (Load Accumulator, Auxiliary, or Temporary Register from Memory)

� MOV (Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value)

Example

Syntax Description

MOV *AR3 << #16, AC0
:: MOV HI(AC1 << T2), *AR4

Both instructions are performed in parallel. The content addressed by
AR3 shifted left by 16 bits is stored in AC0. The content of AC1 is shifted
by the content of T2, and AC1(31–16) is stored at the address of AR4.

 Multiply MPY

5-323Instruction Set DescriptionsSPRU374G

MultiplyMPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MPY[R] [ACx,] ACy Yes 2 1 X

[2] MPY[R] Tx, [ACx,] ACy Yes 2 1 X

[3] MPYK[R] K8, [ACx,] ACy Yes 3 1 X

[4] MPYK[R] K16, [ACx,] ACy No 4 1 X

[5] MPYM[R] [T3 =]Smem, Cmem, ACx No 3 1 X

[6] MPYM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

[7] MPYMK[R] [T3 =]Smem, K8, ACx No 4 1 X

[8] MPYM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx No 4 1 X

[9] MPYM[R][U] [T3 =]Smem, Tx, ACx No 3 1 X

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are:

� ACx(32–16)

� the content of Tx, sign extended to 17 bits

� the 8-bit signed constant, K8, sign extended to 17 bits

� the 16-bit signed constant, K16, sign extended to 17 bits

� the content of a memory (Smem) location, sign extended to 17 bits

� the content of a data memory operand Cmem, addressed using the
coefficient addressing mode, sign extended to 17 bits

� the content of data memory operand Xmem, extended to 17 bits, and the
content of data memory operand Ymem, extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

MPY Multiply

Instruction Set Descriptions5-324 SPRU374G

See Also See the following other related instructions:

� AMAR::MPY (Modify Auxiliary Register Content with Parallel Multiply)

� MAC (Multiply and Accumulate)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MAS (Multiply and Subtract)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MPY::MAC (Multiply with Parallel Multiply and Accumulate)

� MPY::MPY (Parallel Multiplies)

� MPYM::MOV (Multiply with Parallel Store Accumulator Content to
Memory)

� SQR (Square)

 Multiply MPY

5-325Instruction Set DescriptionsSPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MPY[R] [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 011%

Operands ACx, ACy

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32–16) and ACy(32–16):

ACy = ACy * ACx

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MPY AC1, AC0 The content of AC1 is multiplied by the content of AC0 and the result is stored in AC1.

Before After

AC0 02 6000 3400 AC0 02 6000 3400

AC1 00 C000 0000 AC1 00 4800 0000

M40 1 M40 1

FRCT 0 FRCT 0

ACOV1 0 ACOV1 0

MPY Multiply

Instruction Set Descriptions5-326 SPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] MPY[R] Tx, [ACx,] ACy Yes 2 1 X

Opcode 0101 100E DDSS ss0%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32–16) and the content of Tx, sign
extended to 17 bits:

ACy = ACx * Tx

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MPY T0, AC1, AC0 The content of AC1 is multiplied by the content of T0 and the result is stored in AC0.

 Multiply MPY

5-327Instruction Set DescriptionsSPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] MPYK[R] K8, [ACx,] ACy Yes 3 1 X

Opcode 0001 111E KKKK KKKK SSDD xx0%

Operands ACx, ACy, K8

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32–16) and the 8-bit signed constant, K8,
sign extended to 17 bits:

ACy = ACx * K8

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

MPYK #–2, AC1, AC0 The content of AC1 is multiplied by a signed 8-bit value (–2) and the result is
stored in AC0.

MPY Multiply

Instruction Set Descriptions5-328 SPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] MPYK[R] K16, [ACx,] ACy No 4 1 X

Opcode 0111 1001 KKKK KKKK KKKK KKKK SSDD xx0%

Operands ACx, ACy, K16

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32–16) and the 16-bit signed constant,
K16, sign extended to 17 bits:

ACy = ACx * K16

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MPYK #–64, AC1, AC0 The content of AC1 is multiplied by a signed 16-bit value (–64) and the result is
stored in AC0.

 Multiply MPY

5-329Instruction Set DescriptionsSPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] MPYM[R] [T3 =]Smem, Cmem, ACx No 3 1 X

Opcode 1101 0001 AAAA AAAI U%DD 00mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of a memory (Smem) location, sign
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, sign extended to 17 bits:

ACx = Smem * Cmem

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MPY Multiply

Instruction Set Descriptions5-330 SPRU374G

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MPYM *AR3, *CDP, AC0 The content addressed by AR3 is multiplied by the content addressed by
the coefficient data pointer register (CDP) and the result is stored in AC0.

 Multiply MPY

5-331Instruction Set DescriptionsSPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] MPYM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Opcode 1101 0011 AAAA AAAI U%DD 00SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32–16) and the content of a memory
(Smem) location, sign extended to 17 bits:

ACy = Smem * ACx

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

MPYM *AR3, AC1, AC0 The content addressed by AR3 is multiplied by the content of AC1 and the result
is stored in AC0.

MPY Multiply

Instruction Set Descriptions5-332 SPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] MPYMK[R] [T3 =]Smem, K8, ACx No 4 1 X

Opcode 1111 1000 AAAA AAAI KKKK KKKK xxDD x0U%

Operands ACx, K8, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of a memory (Smem) location, sign
extended to 17 bits, and the 8-bit signed constant, K8, sign extended to
17 bits:

ACx = Smem * K8

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM

Affects none

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

MPYMK *AR3, #–2, AC0 The content addressed by AR3 is multiplied a signed 8-bit value (–2) and the
result is stored in AC0.

 Multiply MPY

5-333Instruction Set DescriptionsSPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] MPYM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM xxDD 000g uuU%

Operands ACx, Xmem, Ymem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Xmem,
extended to 17 bits, and the content of data memory operand Ymem, extended
to 17 bits:

ACx = Xmem * Ymem

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MPY Multiply

Instruction Set Descriptions5-334 SPRU374G

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MPYM uns(*AR3), uns(*AR4), AC0 The unsigned content addressed by AR3 is multiplied by the unsigned
content addressed by AR4 and the result is stored in AC0.

 Multiply MPY

5-335Instruction Set DescriptionsSPRU374G

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] MPYM[R][U] [T3 =]Smem, Tx, ACx No 3 1 X

Opcode 1101 0011 AAAA AAAI U%DD u1ss

Operands ACx, Smem, Tx

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of Tx, sign extended to 17 bits, and
the content of a memory (Smem) location, sign extended to 17 bits:

ACx = Tx * Smem

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is extended to 40 bits according to U.

� If the optional U keyword is applied to the instruction, the 32-bit result
is zero extended to 40 bits.

� If the optional U keyword is not applied to the instruction, the 32-bit
result is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

MPYMU *AR3, T0, AC0 The content addressed by AR3 is multiplied by the content of T0 and the
unsigned result is stored in AC0.

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-336 SPRU374G

Multiply with Parallel Multiply and AccumulateMPY::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and accumulate (MAC):

ACx = Xmem * Cmem
:: ACy = (ACy >> #16) + (Ymem * Cmem)

The first operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Xmem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy shifted right
by 16 bits. The shifting operation is performed with a sign extension of
source accumulator ACy(39).

 Multiply with Parallel Multiply and Accumulate MPY::MAC

5-337Instruction Set DescriptionsSPRU374G

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� MAC (Multiply and Accumulate)

� MAC::MAC (Parallel Multiply and Accumulates)

� MPY (Multiply)

Example

Syntax Description

MPY uns(*AR3), uns(*CDP), AC0
:: MAC uns(*AR4), uns(*CDP), AC1 >> #16

Both instructions are performed in parallel. The unsigned
content addressed by AR3 is multiplied by the unsigned
content addressed by the coefficient data pointer register
(CDP) and the result is stored in AC0. The unsigned content
addressed by AR4 multiplied by the unsigned content
addressed by CDP is added to the content of AC1 shifted
right by 16 bits and the result is stored in AC1.

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-338 SPRU374G

Parallel MultipliesMPY::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply operations in one cycle:

ACx = Xmem * Cmem
:: ACy = Ymem * Cmem

The first operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Xmem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

This second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

 Parallel Multiplies MPY::MPY

5-339Instruction Set DescriptionsSPRU374G

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional 40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� AMAR Xmem

� AMAR Ymem

� AMAR Cmem

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� AMAR::MPY (Modify Auxiliary Register Content with Parallel Multiply)

� MAC::MAC (Parallel Multiply and Accumulates)

� MAC::MPY (Multiply and Accumulate with Parallel Multiply)

� MAS::MAS (Parallel Multiply and Subtracts)

� MAS::MPY (Multiply and Subtract with Parallel Multiply)

� MPY (Multiply)

Example

Syntax Description

MPY uns(*AR3), uns(*CDP), AC0
:: MPY uns(*AR4), uns(*CDP), AC1

Both instructions are performed in parallel. The unsigned content
addressed by AR3 is multiplied by the unsigned content addressed
by the coefficient data pointer register (CDP) and the result is stored
in AC0. The unsigned content addressed by AR4 is multiplied by the
unsigned content addressed by CDP and the result is stored in AC1.

MPYM::MOV Multiply with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-340 SPRU374G

Multiply with Parallel Store Accumulator Content to MemoryMPYM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MPYM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 000x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and store:

ACy = Tx * Xmem
:: Ymem = HI(ACx << T2)

The first operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of Tx, sign extended to 17 bits, and
the content of data memory operand Xmem, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31–16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31–16), is stored to
the memory location.

 Multiply with Parallel Store Accumulator Content to Memory MPYM::MOV

5-341Instruction Set DescriptionsSPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADD::MOV (Addition with Parallel Store Accumulator Content to Memory)

� MACM::MOV (Multiply and Accumulate with Parallel Store Accumulator
Content to Memory)

� MASM::MOV (Multiply and Subtract with Parallel Store Accumulator
Content to Memory)

� MOV (Store Accumulator Content to Memory)

� MPY (Multiply)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

Example

Syntax Description

MPYMR *AR0+, T0, AC1
:: MOV HI(AC0 << T2), *AR1+

Both instructions are performed in parallel. The content addressed by AR0
is multiplied by the content of T0. Since FRCT = 1, the result is multiplied by
2, rounded, and stored in AC1. The content of AC0 is shifted by the content
of T2, and AC0(31–16) is stored at the address of AR1. AR0 and AR1 are
both incremented by 1.

Before After

AC0 FF 8421 1234 AC0 FF 8421 1234

AC1 00 0000 0000 AC1 00 2000 0000

AR0 0200 AR0 0201

AR1 0300 AR1 0301

T0 4000 T0 4000

T2 0004 T2 0004

200 4000 200 4000

300 1111 300 4211

FRCT 1 FRCT 1

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

NEG Negate Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-342 SPRU374G

Negate Accumulator, Auxiliary, or Temporary Register ContentNEG

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] NEG [src,] dst Yes 2 1 X

Opcode 0011 010E FSSS FDDD

Operands dst, src

Description This instruction computes the 2s complement of the content of the source
register (src):

dst = – src

This instruction clears the CARRY status bit to 0 for all nonzero values of src.
If src equals 0, the CARRY status bit is set to 1.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Negate Accumulator, Auxiliary, or Temporary Register Content NEG

5-343Instruction Set DescriptionsSPRU374G

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� NOT (Complement Accumulator, Auxiliary, or Temporary Register Content)

Example

Syntax Description

NEG AC1, AC0 The 2s complement of the content of AC1 is stored in AC0.

NOP No Operation

Instruction Set Descriptions5-344 SPRU374G

No OperationNOP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] NOP Yes 1 1 D

[2] NOP_16 Yes 2 1 D

Opcode 0010 000E

Operands none

Description Instruction [1] increments the program counter register (PC) by 1 byte.
Instruction [2] increments the PC by 2 bytes.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

NOP The program counter (PC) is incremented by 1 byte.

 Complement Accumulator, Auxiliary, or Temporary Register Content NOT

5-345Instruction Set DescriptionsSPRU374G

Complement Accumulator, Auxiliary, or Temporary Register ContentNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] NOT [src,] dst Yes 2 1 X

Opcode 0011 011E FSSS FDDD

Operands dst, src

Description This instruction computes the 1s complement (bitwise complement) of the
content of the source register (src).

� When the destination (dst) operand is an accumulator:

� The bit inversion is performed on 40 bits in the D-unit ALU and the
result is stored in the destination accumulator.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The bit inversion is performed on 16 bits in the A-unit ALU and the
result is stored in the destination auxiliary or temporary register.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� BNOT (Complement Accumulator, Auxiliary, or Temporary Register Bit)

� BNOT (Complement Memory Bit)

� NEG (Negate Accumulator, Auxiliary, or Temporary Register Content)

Example

Syntax Description

NOT AC0, AC1 The content of AC0 is complemented and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 00 2300 5678 AC1 81 DCAA B03F

OR Bitwise OR

Instruction Set Descriptions5-346 SPRU374G

Bitwise OROR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] OR src, dst Yes 2 1 X

[2] OR k8, src, dst Yes 3 1 X

[3] OR k16, src, dst No 4 1 X

[4] OR Smem, src, dst No 3 1 X

[5] OR ACx << #SHIFTW[, ACy] Yes 3 1 X

[6] OR k16 << #16, [ACx,] ACy No 4 1 X

[7] OR k16 << #SHFT, [ACx,] ACy No 4 1 X

[8] OR k16, Smem No 4 1 X

Description These instructions perform a bitwise OR operation:

� In the D-unit, if the destination operand is an accumulator.

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register.

� In the A-unit ALU, if the destination operand is the memory.

Status Bits Affected by C54CM

Affects none

See Also See the following other related instructions:

� AND (Bitwise AND)

� XOR (Bitwise Exclusive OR)

 Bitwise OR OR

5-347Instruction Set DescriptionsSPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] OR src, dst Yes 2 1 X

Opcode 0010 101E FSSS FDDD

Operands dst, src

Description This instruction performs a bitwise OR operation between two registers:

dst = dst | src

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR AC1, AC0 The content of AC0 is ORed with the content of AC1 and the result is stored in AC0.

OR Bitwise OR

Instruction Set Descriptions5-348 SPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] OR k8, src, dst Yes 3 1 X

Opcode 0001 101E kkkk kkkk FDDD FSSS

Operands dst, k8, src

Description This instruction performs a bitwise OR operation between a source (src)
register content and an 8-bit value, k8:

dst = src | k8

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR #FFh, AC1, AC0 The content of AC1 is ORed with the unsigned 8-bit value (FFh) and the result is
stored in AC0.

 Bitwise OR OR

5-349Instruction Set DescriptionsSPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] OR k16, src, dst No 4 1 X

Opcode 0111 1110 kkkk kkkk kkkk kkkk FDDD FSSS

Operands dst, k16, src

Description This instruction performs a bitwise OR operation between a source (src)
register content and a 16-bit unsigned constant, k16:

dst = src | k16

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR #FFFFh, AC1, AC0 The content of AC1 is ORed with the unsigned 16-bit value (FFFFh) and the result
is stored in AC0.

OR Bitwise OR

Instruction Set Descriptions5-350 SPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] OR Smem, src, dst No 3 1 X

Opcode 1101 1010 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs a bitwise OR operation between a source (src)
register content and a memory (Smem) location:

dst = src | Smem

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR *AR3, AC1, AC0 The content of AC1 is ORed with the content addressed by AR3 and the result is
stored in AC0.

 Bitwise OR OR

5-351Instruction Set DescriptionsSPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] OR ACx << #SHIFTW[, ACy] Yes 3 1 X

Opcode 0001 000E DDSS 0001 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs a bitwise OR operation between an accumulator
(ACy) content and and an accumulator (ACx) content shifted by the 6-bit value,
SHIFTW:

ACy = ACy | (ACx <<< #SHIFTW)

� The shift and OR operations are performed in one cycle in the D-unit
shifter.

� Input operands are zero extended to 40 bits.

� The input operand (ACx) is shifted by a 6-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the intermediary logical shift is performed as if M40 is
locally set to 1. The 8 upper bits of the 40-bit intermediary result are not
cleared.

Status Bits Affected by C54CM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR AC0 << #4, AC1 The content of AC1 is ORed with the content of AC0 logically shifted left by 4 bits
and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 0F E340 5678 AC1 0F F754 FE78

OR Bitwise OR

Instruction Set Descriptions5-352 SPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] OR k16 << #16, [ACx,] ACy No 4 1 X

Opcode 0111 1010 kkkk kkkk kkkk kkkk SSDD 011x

Operands ACx, ACy, k16

Description This instruction performs a bitwise OR operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by 16 bits:

ACy = ACx | (k16 <<< #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted 16 bits to the MSBs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR #FFFFh << #16, AC1, AC0 The content of AC1 is ORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 16 bits and the result is stored in AC0.

 Bitwise OR OR

5-353Instruction Set DescriptionsSPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] OR k16 << #SHFT, [ACx,] ACy No 4 1 X

Opcode 0111 0011 kkkk kkkk kkkk kkkk SSDD SHFT

Operands ACx, ACy, k16, SHFT

Description This instruction performs a bitwise OR operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by the 4-bit
value, SHFT:

ACy = ACx | (k16 <<< #SHFT)

� The shift and OR operations are performed in one cycle in the D-unit
shifter.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted by a 4-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

OR #FFFFh << #15, AC1, AC0 The content of AC1 is ORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 15 bits and the result is stored in AC0.

OR Bitwise OR

Instruction Set Descriptions5-354 SPRU374G

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] OR k16, Smem No 4 1 X

Opcode 1111 0101 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem

Description This instruction performs a bitwise OR operation between a memory (Smem)
location and a 16-bit unsigned constant, k16:

Smem = Smem | k16

� The operation is performed on 16 bits in the A-unit ALU.

� The result is stored in memory.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

OR #0FC0h, *AR1 The content addressed by AR1 is ORed with the unsigned 16-bit value (FC0h)
and the result is stored in the location addressed by AR1.

Before After

*AR1 5678 *AR1 5FF8

 Pop Top of Stack POP

5-355Instruction Set DescriptionsSPRU374G

Pop Top of StackPOP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] POP dst1, dst2 Yes 2 1 X

[2] POP dst Yes 2 1 X

[3] POP dst, Smem No 3 1 X

[4] POP dbl(ACx) Yes 2 1 X

[5] POP Smem No 2 1 X

[6] POP dbl(Lmem) No 2 1 X

Description These instructions move the content of the data memory location addressed
by the data stack pointer (SP) to:

� an accumulator, auxiliary, or temporary register
� a data memory location

When the destination register is an accumulator, the guard bits and the
16 higher bits of the accumulator, ACx(39–16), are reloaded (unchanged) with
the current value and are not modified by these instructions.

The increment operation performed on SP is done by the A-unit address
generator dedicated to the stack addressing management.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� POPBOTH (Pop Accumulator or Extended Auxiliary Register Content
from Stack Pointers)

� PSH (Push to Top of Stack)

� PSHBOTH (Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers)

POP Pop Top of Stack

Instruction Set Descriptions5-356 SPRU374G

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] POP dst1, dst2 Yes 2 1 X

Opcode 0011 101E FSSS FDDD
Note: FSSS = dst1, FDDD = dst2

Operands dst1, dst2

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to destination register dst1 and moves the content of the 16-bit data
memory location pointed by SP + 1 to destination register dst2.

When the destination register, dst1 or dst2, is an accumulator, the content of
the 16-bit data memory operand is moved to the destination accumulator low
part, ACx(15–0). The guard bits and the 16 higher bits of the accumulator,
ACx(39–16), are reloaded (unchanged) with the current value and are not
modified by this instruction. SP is incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

POP AC0, AC1 The content of the memory location pointed by the data stack pointer (SP) is copied to
AC0(15–0) and the content of the memory location pointed by SP + 1 is copied to
AC1(15–0). bits 39–16 of the accumulators are unchanged. The SP is incremented by 2.

Before After

AC0 00 4500 0000 AC0 00 4500 4890

AC1 F7 5678 9432 AC1 F7 5678 2300

SP 0300 SP 0302

300 4890 300 4890

301 2300 301 2300

 Pop Top of Stack POP

5-357Instruction Set DescriptionsSPRU374G

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] POP dst Yes 2 1 X

Opcode 0101 000E FDDD x010

Operands dst

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to destination register dst.

When the destination register, dst, is an accumulator, the content of the 16-bit
data memory operand is moved to the destination accumulator low part,
ACx(15–0). The guard bits and the 16 higher bits of the accumulator,
ACx(39–16), are reloaded (unchanged) with the current value and are not
modified by this instruction. SP is incremented by 1.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

POP AC0 The content of the memory location pointed by the data stack pointer (SP) is copied to
AC0(15–0). bits 39–16 of AC0 are unchanged. The SP is incremented by 1.

POP Pop Top of Stack

Instruction Set Descriptions5-358 SPRU374G

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] POP dst, Smem No 3 1 X

Opcode 1110 0100 AAAA AAAI FDDD x1xx

Operands dst, Smem

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to destination register dst and moves the content of the 16-bit data
memory location pointed by SP + 1 to data memory (Smem) location.

When the destination register, dst, is an accumulator, the content of the 16-bit
data memory operand is moved to the destination accumulator low part,
ACx(15–0). The guard bits and the 16 higher bits of the accumulator,
ACx(39–16), are reloaded (unchanged) with the current value and are not
modified by this instruction. SP is incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

POP AC0, *AR3 The content of the memory location pointed by the data stack pointer (SP) is copied to
AC0(15–0) and the content of the memory location pointed by SP + 1 is copied to the
location addressed by AR3. bits 39–16 of AC0 are unchanged. The SP is incremented
by 2.

 Pop Top of Stack POP

5-359Instruction Set DescriptionsSPRU374G

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] POP dbl(ACx) Yes 2 1 X

Opcode 0101 000E xxDD x011

Operands ACx

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to the accumulator high part ACx(31–16) and moves the content of the
16-bit data memory location pointed by SP + 1 to the accumulator low part
ACx(15–0).

The guard bits of the accumulator, ACx(39–32), are reloaded (unchanged)
with the current value and are not modified by this instruction. SP is
incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

POP dbl(AC1) The content of the memory location pointed by the data stack pointer (SP) is copied to
AC1(31–16) and the content of the memory location pointed by SP + 1 is copied to
AC1(15–0). bits 39–32 of AC1 are unchanged. The SP is incremented by 2.

Before After

AC1 03 3800 FC00 AC1 03 5644 F800

SP 0304 SP 0306

304 5644 304 5644

305 F800 305 F800

POP Pop Top of Stack

Instruction Set Descriptions5-360 SPRU374G

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] POP Smem No 2 1 X

Opcode 1011 1011 AAAA AAAI

Operands Smem

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to data memory (Smem) location. SP is incremented by 1.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

POP *AR1 The content of the memory location pointed by the data stack pointer (SP) is copied to
the location addressed by AR1. The SP is incremented by 1.

Before After

AR1 0200 AR1 0200

SP 0300 SP 0301

200 3400 200 6903

300 6903 300 6903

 Pop Top of Stack POP

5-361Instruction Set DescriptionsSPRU374G

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] POP dbl(Lmem) No 2 1 X

Opcode 1011 1000 AAAA AAAI

Operands Lmem

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to the 16 highest bits of data memory location Lmem and moves the
content of the 16-bit data memory location pointed by SP + 1 to the 16 lowest
bits of data memory location Lmem.

When Lmem is at an even address, the two 16-bit values popped from the
stack are stored at memory location Lmem in the same order. When Lmem is
at an odd address, the two 16-bit values popped from the stack are stored at
memory location Lmem in the reverse order.

SP is incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

POP dbl(*AR3–) The content of the memory location pointed by the data stack pointer (SP) is copied to
the 16 highest bits of the location addressed by AR3 and the content of the memory
location pointed by SP + 1 is copied to the 16 lowest bits of the location addressed by
AR3. Because this instruction is a long-operand instruction, AR3 is decremented by 2
after the execution. The SP is incremented by 2.

POPBOTH Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers

Instruction Set Descriptions5-362 SPRU374G

Pop Accumulator or Extended Auxiliary Register Content from
Stack Pointers

POPBOTH

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] POPBOTH xdst Yes 2 1 X

Opcode 0101 000E XDDD 0100

Operands xdst

Description This instruction moves the content of two 16-bit data memory locations
addressed by the data stack pointer (SP) and system stack pointer (SSP) to
accumulator ACx or to the 23-bit destination register (XARx, XSP, XSSP, XDP,
or XCDP).

The content of xdst(15–0) is loaded from the location addressed by SP and the
content of xdst(31–16) is loaded from the location addressed by SSP.

When xdst is a 23-bit register, the upper 9 bits of the data memory addressed
by SSP are discarded and only the 7 lower bits of the data memory are loaded
into the high part of xdst(22–16).

When xdst is an accumulator, the guard bits, ACx(39–32), are reloaded
(unchanged) with the current value and are not modified by this instruction.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� POP (Pop Top of Stack)

� PSH (Push to Top of Stack)

� PSHBOTH (Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers)

 Peripheral Port Register Access Qualifiers port

5-363Instruction Set DescriptionsSPRU374G

Peripheral Port Register Access Qualifiersport

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] port(Smem) No 1 1 D

[2] port(k16) No 3 1 D

Opcode 1001 1001

1001 1010

Operands k16, Smem

Description These operand qualifiers allow you to locally disable access toward the data
memory and enable access to the 64K-word I/O space. The I/O data location
is specified by the Smem, Xmem, or Ymem fields.

� An operand qualifier may be included in any instruction making a word
single data memory access Smem or Xmem that is used in a read
operation, except the DELAY and MACMZ instructions.

� An operand qualifier may be included in any instruction making a word
single data memory access Smem or Ymem that is used in a write
operation, except the DELAY and MACMZ instructions.

� An operand qualifier cannot be executed as a stand-alone instruction
(assembler generates an error message).

Any instruction making a word single data memory access Smem (except
those listed above) can use the port(k16) addressing mode to access the
64K-word I/O space with an immediate address. When an instruction uses
port(k16), the 16-bit unsigned constant, k16, is encoded in a 2-byte extension
to the instruction. Because of the extension, an instruction using port(k16)
cannot be executed in parallel with another instruction.

The following indirect operands cannot be used for accesses to I/O space. An
instruction using one of these operands requires a 2-byte extension to the
instruction. Because of the extension, an instruction using one of the following
indirect operands cannot be executed with these operand qualifiers.

� *ARn(#K16)

� *+ARn(#K16)

� *CDP(#K16)

� *+CDP(#K16)

port Peripheral Port Register Access Qualifiers

Instruction Set Descriptions5-364 SPRU374G

Status Bits Affected by none

Affects none

Repeat An instruction using this operand qualifier can be repeated.

Example 1

Syntax Description

MOV port(*CDP+), T2 The content addressed by CDP (I/O address) is loaded into T2. After being used
for the address, CDP is incremented by 1.

Example 2

Syntax Description

MOV *CDP, port(#456h) The content addressed by CDP is written to I/O address 456h.

 Push to Top of Stack PSH

5-365Instruction Set DescriptionsSPRU374G

Push to Top of StackPSH

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] PSH src1, src2 Yes 2 1 X

[2] PSH src Yes 2 1 X

[3] PSH src,Smem No 3 1 X

[4] PSH dbl(ACx) Yes 2 1 X

[5] PSH Smem No 2 1 X

[6] PSH dbl(Lmem) No 2 1 X

Description These instructions move one or two operands to the data memory location
addressed by the data stack pointer (SP). The operands may be:

� an accumulator, auxiliary, or temporary register
� a data memory location

The decrement operation performed on SP is done by the A-unit address
generator dedicated to the stack addressing management.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� POP (Pop Top of Stack)

� POPBOTH (Pop Accumulator or Extended Auxiliary Register Content
from Stack Pointers)

� PSHBOTH (Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers)

PSH Push to Top of Stack

Instruction Set Descriptions5-366 SPRU374G

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] PSH src1, src2 Yes 2 1 X

Opcode 0011 100E FSSS FDDD
Note: FSSS = src1, FDDD = src2

Operands src1, src2

Description This instruction decrements SP by 2, then moves the content of the source
register src1 to the 16-bit data memory location pointed by SP and moves the
content of the source register src2 to the 16-bit data memory location pointed
by SP + 1.

When the source register, src1 or src2, is an accumulator, the source
accumulator low part, ACx(15–0), is moved to the 16-bit data memory
operand.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

PSH AR0, AC1 The data stack pointer (SP) is decremented by 2. The content of AR0 is copied to the
memory location pointed by SP and the content of AC1(15–0) is copied to the memory
location pointed by SP + 1.

Before After

AR0 0300 AR0 0300

AC1 03 5644 F800 AC1 03 5644 F800

SP 0300 SP 02FE

2FE 0000 2FE 0300

2FF 0000 2FF F800

300 5890 300 5890

 Push to Top of Stack PSH

5-367Instruction Set DescriptionsSPRU374G

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] PSH src Yes 2 1 X

Opcode 0101 000E FSSS x110

Operands src

Description This instruction decrements SP by 1, then moves the content of the source
register (src) to the 16-bit data memory location pointed by SP. When the
source register is an accumulator, the source accumulator low part,
ACx(15–0), is moved to the 16-bit data memory operand.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

PSH AC0 The data stack pointer (SP) is decremented by 1. The content of AC0(15–0) is copied to
the memory location pointed by SP.

PSH Push to Top of Stack

Instruction Set Descriptions5-368 SPRU374G

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] PSH src, Smem No 3 1 X

Opcode 1110 0100 AAAA AAAI FSSS x0xx

Operands Smem, src

Description This instruction decrements SP by 2, then moves the content of the source
register (src) to the 16-bit data memory location pointed by SP and moves the
content of the data memory (Smem) location to the 16-bit data memory
location pointed by SP + 1.

When the source register is an accumulator, the source accumulator low part,
ACx(15–0), is moved to the 16-bit data memory operand.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

PSH AC0, *AR3 The data stack pointer (SP) is decremented by 2. The content of AC0(15–0) is copied to
the memory location pointed by SP and the content addressed by AR3 is copied to the
memory location pointed by SP + 1.

 Push to Top of Stack PSH

5-369Instruction Set DescriptionsSPRU374G

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] PSH dbl(ACx) Yes 2 1 X

Opcode 0101 000E xxSS x111

Operands ACx

Description This instruction decrements SP by 2, then moves the content of the
accumulator high part ACx(31–16) to the 16-bit data memory location pointed
by SP and moves the content of the accumulator low part ACx(15–0) to the
16-bit data memory location pointed by SP + 1.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

PSH dbl(AC0) The data stack pointer (SP) is decremented by 2. The content of AC0(31–16) is copied
to the memory location pointed by SP and the content of AC0(15–0) is copied to the
memory location pointed by SP + 1.

PSH Push to Top of Stack

Instruction Set Descriptions5-370 SPRU374G

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] PSH Smem No 2 1 X

Opcode 1011 0101 AAAA AAAI

Operands Smem

Description This instruction decrements SP by 1, then moves the content of the data
memory (Smem) location to the 16-bit data memory location pointed by SP.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

PSH *AR1 The data stack pointer (SP) is decremented by 1. The content addressed by AR1 is copied
to the memory location pointed by SP.

Before After

*AR1 6903 *AR1 6903

SP 0305 SP 0304

304 0000 304 6903

305 0300 305 0300

 Push to Top of Stack PSH

5-371Instruction Set DescriptionsSPRU374G

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] PSH dbl(Lmem) No 2 1 X

Opcode 1011 0111 AAAA AAAI

Operands Lmem

Description This instruction decrements SP by 2, then moves the 16 highest bits of data
memory location Lmem to the 16-bit data memory location pointed by SP and
moves the 16 lowest bits of data memory location Lmem to the 16-bit data
memory location pointed by SP + 1.

When Lmem is at an even address, the two 16-bit values pushed onto the
stack are stored at memory location Lmem in the same order. When Lmem is
at an odd address, the two 16-bit values pushed onto the stack are stored at
memory location Lmem in the reverse order.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

PSH dbl(*AR3–) The data stack pointer (SP) is decremented by 2. The 16 highest bits of the content at
the location addressed by AR3 are copied to the memory location pointed by SP and
the 16 lowest bits of the content at the location addressed by AR3 are copied to the
memory location pointed by SP + 1. Because this instruction is a long-operand
instruction, AR3 is decremented by 2 after the execution.

PSHBOTH Push Accumulator or Extended Auxiliary Register Content to Stack Pointers

Instruction Set Descriptions5-372 SPRU374G

Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers

PSHBOTH

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] PSHBOTH xsrc Yes 2 1 X

Opcode 0101 000E XSSS 0101

Operands xsrc

Description This instruction moves the lower 32 bits of ACx or the content of the 23-bit
source register (XARx, XSP, XSSP, XDP, or XCDP) to the two 16-bit memory
locations addressed by the data stack pointer (SP) and system stack pointer
(SSP).

The content of xsrc(15–0) is moved to the location addressed by SP and the
content of xsrc(31–16) is moved to the location addressed by SSP.

When xsrc is a 23-bit register, the upper 9 bits of the location addressed by
SSP are filled with 0.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� POP (Pop Top of Stack)

� POPBOTH (Pop Accumulator or Extended Auxiliary Register Content
from Stack Pointers)

� PSH (Push to Top of Stack)

 Software Reset RESET

5-373Instruction Set DescriptionsSPRU374G

Software ResetRESET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RESET No 2 ? D

Opcode 1001 0100 xxxx xxxx

Operands none

Description This instruction performs a nonmaskable software reset that can be used any
time to put the device in a known state.

The reset instruction affects ST0_55, ST1_55, ST2_55, IFR0, IFR1, and T2
(Table 5–6 and Figure 5–3); status register ST3_55 and interrupt vectors
pointer registers (IVPD and IVPH) are not affected. When the reset instruction
is acknowledged, the INTM is set to 1 to disable maskable interrupts. All
pending interrupts in IFR0 and IFR1 are cleared. The initialization of the
system control register, the interrupt vectors pointer, and the peripheral
registers is different from the initialization performed by a hardware reset.

Status Bits Affected by none

Affects IFR0, IFR1, ST0_55, ST1_55, ST2_55

Repeat This instruction cannot be repeated.

RESET Software Reset

Instruction Set Descriptions5-374 SPRU374G

Table 5–6. Effects of a Software Reset on DSP Registers

Register Bit
Reset
Value Comment

T2 All 0 All bits are cleared. To ensure TMS320C54x DSP compatibility,
instructions affected by ASM bit will use a shift count of 0 (no shift).

IFR0 All 0 All pending interrupt flags are cleared.

IFR1 All 0 All pending interrupt flags are cleared.

ST0_55 ACOV2 0 AC2 overflow flag is cleared.

ACOV3 0 AC3 overflow flag is cleared.

TC1 1 Test control flag 1 is cleared.

TC2 1 Test control flag 2 is cleared.

CARRY 1 CARRY bit is cleared.

ACOV0 0 AC0 overflow flag is cleared.

ACOV1 0 AC1 overflow flag is cleared.

DP 0 All bits are cleared, data page 0 is selected.

ST1_55 BRAF 0 This flag is cleared.

CPL 0 The DP (rather than SP) direct addressing mode is selected. Direct ac-
cesses to data space are made relative to the data page register (DP).

XF 1 External flag is set.

HM 0 When an active HOLD signal forces the DSP to place its external interface
in the high-impedance state, the DSP continues executing code from
internal memory.

INTM 1 Maskable interrupts are globally disabled.

M40 0 32-bit (rather than 40-bit) computation mode is selected for the D unit.

SATD 0 CPU will not saturate overflow results in the D unit.

SXMD 1 Sign-extension mode is on.

C16 0 Dual 16-bit mode is off. For an instruction that is affected by C16, the D-
unit ALU performs one 32-bit operation rather than two parallel 16-bit op-
erations.

FRCT 0 Results of multiply operations are not shifted.

C54CM 1 TMS320C54x-compatibility mode is on.

ASM 0 Instructions affected by ASM will use a shift count of 0 (no shift).

 Software Reset RESET

5-375Instruction Set DescriptionsSPRU374G

Table 5–6. Effects of a Software Reset on DSP Registers (Continued)

Register Comment
Reset
ValueBit

ST2_55 ARMS 0 When you use the AR indirect addressing mode, the DSP mode (rather
than control mode) operands are available.

DBGM 1 Debug events are disabled.

EALLOW 0 A program cannot write to the non-CPU emulation registers.

RDM 0 When an instruction specifies that an operand should be rounded, the
CPU uses rounding to the infinite (rather than rounding to the nearest).

CDPLC 0 CDP is used for linear addressing (rather than circular addressing).

AR7LC 0 AR7 is used for linear addressing.

AR6LC 0 AR6 is used for linear addressing.

AR5LC 0 AR5 is used for linear addressing.

AR4LC 0 AR4 is used for linear addressing.

AR3LC 0 AR3 is used for linear addressing.

AR2LC 0 AR2 is used for linear addressing.

AR1LC 0 AR1 is used for linear addressing.

AR0LC 0 AR0 is used for linear addressing.

RESET Software Reset

Instruction Set Descriptions5-376 SPRU374G

Figure 5–3. Effects of a Software Reset on Status Registers

ST0_55

15 14 13 12 11 10 9

ACOV2 ACOV3 TC1 TC2 CARRY ACOV0 ACOV1

0 0 1 1 1 0 0

8 0

DP

0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40 SATD SXMD

0 0 1 0 1 0 0 1

7 6 5 4 0

C16 FRCT C54CM ASM

0 0 1 0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

0 1 0 0 0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

0 0 0 0 0 0 0 0

 Return Unconditionally RET

5-377Instruction Set DescriptionsSPRU374G

Return UnconditionallyRET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RET Yes 2 5 D

Opcode 0100 100E xxxx x100

Operands none

Description This instruction passes control back to the calling subroutine.

After returning from a called subroutine, the CPU restores the value of two
internal registers: the program counter (PC) and a loop context register. The
CPU uses these values to re-establish the context of the program sequence.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are restored from the stacks (in memory). When the CPU
returns from a subroutine, the speed at which these values are restored is
dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are restored from the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. For fast-
return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

� The loop context bits concatenated with the 8 MSBs of the return address
are popped from the top of the system stack pointer (SSP). The SSP is
incremented by 1 word in the address phase of the pipeline.

� The 16 LSBs of the return address are popped from the top of the data
stack pointer (SP). The SP is incremented by 1 word in the address phase
of the pipeline.

System Stack (SSP) Data Stack (SP)

Before
Return

→ SSP = x (Loop bits):PC(23–16) Before
Return

→ SP = y PC(15–0)

After
R

→ SSP = x + 1 Previously stored data After
R

→ SP = y + 1 Previously stored data
Return Return

RET Return Unconditionally

Instruction Set Descriptions5-378 SPRU374G

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� CALL (Call Unconditionally)

� CALLCC (Call Conditionally)

� RETCC (Return Conditionally)

� RETI (Return from Interrupt)

Example

Syntax Description

RET The program counter is loaded with the return address of the calling subroutine.

 Return Conditionally RETCC

5-379Instruction Set DescriptionsSPRU374G

Return ConditionallyRETCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] RETCC cond Yes 3 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0000 001E xCCC CCCC xxxx xxxx

Operands cond

Description This instructions evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a return occurs to the return
address of the calling subroutine. There is a 1-cycle latency on the condition
setting. A single condition can be tested as determined by the cond field of the
instruction. See Table 1–3 for a list of conditions.

After returning from a called subroutine, the CPU restores the value of two
internal registers: the program counter (PC) and a loop context register. The
CPU uses these values to re-establish the context of the program sequence.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are restored from the stacks (in memory). When the CPU
returns from a subroutine, the speed at which these values are restored is
dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are restored from the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. For fast-
return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

When a return from a subroutine occurs:

� The loop context bits concatenated with the 8 MSBs of the return address
are popped from the top of the system stack pointer (SSP). The SSP is
incremented by 1 word in the read phase of the pipeline.

� The 16 LSBs of the return address are popped from the top of the data
stack pointer (SP). The SP is incremented by 1 word in the read phase of
the pipeline.

RETCC Return Conditionally

Instruction Set Descriptions5-380 SPRU374G

System Stack (SSP) Data Stack (SP)

Before
Return

→ SSP = x (Loop bits):PC(23–16) Before
Return

→ SP = y PC(15–0)

After
R t

→ SSP = x + 1 Previously stored data After
R t

→ SP = y + 1 Previously stored data
Return Return

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� CALL (Call Unconditionally)

� CALLCC (Call Conditionally)

� RET (Return Unconditionally)

� RETI (Return from Interrupt)

Example

Syntax Description

RETCC ACOV0 = #0 The AC0 overflow bit is equal to 0, the program counter (PC) is loaded with the
return address of the calling subroutine.

Before After

ACOV0 0 ACOV0 0

PC PC (return address)

SP SP

 Return from Interrupt RETI

5-381Instruction Set DescriptionsSPRU374G

Return from InterruptRETI

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RETI Yes 2 5 D

Opcode 0100 100E xxxx x101

Operands none

Description This instruction passes control back to the interrupted task.

After returning from an interrupt service routine (ISR), the CPU automatically
restores the value of some CPU registers and two internal registers: the
program counter (PC) and a loop context register. The CPU uses these values
to re-establish the context of the program sequence.

In the slow-return process (default), the return address (from the PC), the loop
context bits, and some CPU registers are restored from the stacks (in
memory). When the CPU returns from an ISR, the speed at which these values
are restored is dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are restored from the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. Some CPU
registers are restored from the stacks (in memory). For fast-return mode
operation, see the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The loop context bits concatenated with the 8 MSBs of the return address
are popped from the top of the system stack pointer (SSP). The SSP is
incremented by 1 word in the address phase of the pipeline.

� The 16 LSBs of the return address are popped from the top of the data
stack pointer (SP). The SP is incremented by 1 word in the address phase
of the pipeline.

� The debug status register (DBSTAT) content is popped from the top of
SSP. The SSP is incremented by 1 word in the access phase of the
pipeline.

� The status register 1 (ST1_55) content is popped from the top of SP. The
SP is incremented by 1 word in the access phase of the pipeline.

� The 7 higher bits of status register 0 (ST0_55) concatenated with 9 zeroes
are popped from the top of SSP. The SSP is incremented by 1 word in the
read phase of the pipeline.

RETI Return from Interrupt

Instruction Set Descriptions5-382 SPRU374G

� The status register 2 (ST2_55) content is popped from the top of SP. The
SP is incremented by 1 word in the read phase of the pipeline.

System Stack (SSP) Data Stack (SP)

Before
R t

→ SSP = x (Loop bits):PC(23–16) Before
R t

→ SP = y PC(15–0)
Return SSP = x + 1 DBSTAT Return SP = y + 1 ST1_55

SSP = x + 2 ST0_55(15–9) SP = y + 2 ST2_55

After
R

→ SSP = x + 3 Previously stored data After
R

→ SP = y + 3 Previously stored data
Return Return

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� INTR (Software Interrupt)

� RET (Return Unconditionally)

� RETCC (Return Conditionally)

� TRAP (Software Trap)

Example

Syntax Description

RETI The program counter (PC) is loaded with the return address of the interrupted task.

 Rotate Left Accumulator, Auxiliary, or Temporary Register Content ROL

5-383Instruction Set DescriptionsSPRU374G

Rotate Left Accumulator, Auxiliary, or Temporary Register ContentROL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

ROL BitOut, src, BitIn, dst

[1] ROL TC2, src, TC2, dst Yes 3 1 X

[2] ROL TC2, src, CARRY, dst Yes 3 1 X

[3] ROL CARRY, src, TC2, dst Yes 3 1 X

[4] ROL CARRY, src, CARRY, dst Yes 3 1 X

Opcode 0001 001E FSSS xx11 FDDD 0xvv

Operands dst, src

Description This instruction performs a bitwise rotation to the MSBs. Both TC2 and
CARRY can be used to shift in one bit (BitIn) or to store the shifted out bit
(BitOut). The one bit in BitIn is shifted into the source (src) operand and the
shifted out bit is stored to BitOut.

� When the destination (dst) operand is an accumulator:

� if an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the register are zero extended to 40 bits

� the operation is performed on 40 bits in the D-unit shifter

� BitIn is inserted at bit position 0

� BitOut is extracted at a bit position according to M40

� When the destination (dst) operand is an auxiliary or temporary register:

� if an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation

� the operation is performed on 16 bits in the A-unit ALU

� BitIn is inserted at bit position 0

� BitOut is extracted at bit position 15

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, TC2

Affects CARRY, TC2

ROL Rotate Left Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-384 SPRU374G

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ROR (Rotate Right Accumulator, Auxiliary, or Temporary Register
Content)

Example

Syntax Description

ROL CARRY, AC1, TC2, AC1 The value of TC2 (1) before the execution of the instruction is shifted into
the LSB of AC1 and bit 31 shifted out from AC1 is stored in the CARRY
status bit. The rotated value is stored in AC1. Because M40 = 0, the
guard bits (39–32) are cleared.

Before After

AC1 0F E340 5678 AC1 00 C680 ACF1

TC2 1 TC2 1

CARRY 1 CARRY 1

M40 0 M40 0

 Rotate Right Accumulator, Auxiliary, or Temporary Register Content ROR

5-385Instruction Set DescriptionsSPRU374G

Rotate Right Accumulator, Auxiliary, or Temporary Register ContentROR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

ROR BitIn, src, BitOut, dst

[1] ROR TC2, src, TC2, dst Yes 3 1 X

[2] ROR TC2, src, CARRY, dst Yes 3 1 X

[3] ROR CARRY, src, TC2, dst Yes 3 1 X

[4] ROR CARRY, src, CARRY, dst Yes 3 1 X

Opcode 0001 001E FSSS xx11 FDDD 1xvv

Operands dst, src

Description This instruction performs a bitwise rotation to the LSBs. Both TC2 and CARRY
can be used to shift in one bit (BitIn) or to store the shifted out bit (BitOut). The
one bit in BitIn is shifted into the source (src) operand and the shifted out bit
is stored to BitOut.

� When the destination (dst) operand is an accumulator:

� if an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the register are zero extended to 40 bits

� the operation is performed on 40 bits in the D-unit shifter

� BitIn is inserted at a bit position according to M40

� BitOut is extracted at bit position 0

� When the destination (dst) operand is an auxiliary or temporary register:

� if an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation

� the operation is performed on 16 bits in the A-unit ALU

� BitIn is inserted at bit position 15

� BitOut is extracted at bit position 0

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, TC2

Affects CARRY, TC2

ROR Rotate Right Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-386 SPRU374G

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ROL (Rotate Left Accumulator, Auxiliary, or Temporary Register Content)

Example

Syntax Description

ROR TC2, AC0, TC2, AC1 The value of TC2 (1) before the execution of the instruction is shifted
into bit 31 of AC0 and the LSB shifted out from AC0 is stored in TC2. The
rotated value is stored in AC1. Because M40 = 0, the guard bits (39–32) are
cleared.

Before After

AC0 5F B000 1234 AC0 5F B000 1234

AC1 00 C680 ACF1 AC1 00 D800 091A

TC2 1 TC2 0

M40 0 M40 0

 Round Accumulator Content ROUND

5-387Instruction Set DescriptionsSPRU374G

Round Accumulator ContentROUND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ROUND [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 101%

Operands ACx, ACy

Description This instruction performs a rounding of the source accumulator ACx in the
D-unit:

ACy = rnd(ACx)

� The rounding operation depends on RDM:

� When RDM = 0, the biased rounding to the infinite is performed.
8000h (215) is added to the 40-bit source accumulator ACx.

� When RDM = 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit source accumulator
ACx, 8000h (215) is added:

if(8000h < bit(15–0) < 10000h)

add 8000h to the 40-bit source accumulator ACx

else if(bit(15–0) == 8000h)

if(bit(16) == 1)

add 8000h to the 40-bit source accumulator ACx

If a rounding has been performed, the 16 lowest bits of the result are
cleared to 0.

� Addition overflow detection depends on M40.

� No addition carry report is stored in CARRY status bit.

� If an overflow is detected, the destination accumulator overflow status bit
(ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the rounding is performed without clearing the LSBs of
accumulator ACx.

ROUND Round Accumulator Content

Instruction Set Descriptions5-388 SPRU374G

Status Bits Affected by C54CM, M40, RDM, SATD

Affects ACOVy

Repeat This instruction cannot be repeated.

Example

Syntax Description

ROUND AC0, AC1 The content of AC0 is added to 8000h, the 16 LSBs are cleared to 0, and the
result is stored in AC1. M40 is cleared to 0, so overflow is detected at bit 31;
SATD is cleared to 0, so AC1 is not saturated.

Before After

AC0 EF 0FF0 8023 AC0 EF 0FF0 8023

AC1 00 0000 0000 AC1 EF 0FF1 0000

RDM 1 RDM 1

M40 0 M40 0

SATD 0 SATD 0

ACOV1 0 ACOV1 1

 Repeat Single Instruction Unconditionally RPT

5-389Instruction Set DescriptionsSPRU374G

Repeat Single Instruction UnconditionallyRPT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPT k8 Yes 2 1 AD

[2] RPT k16 Yes 3 1 AD

[3] RPT CSR Yes 2 1 AD

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1 or an immediate value, kx + 1. This value is
loaded into the repeat counter register (RPTC). The maximum number of
executions of a given instruction or paralleled instructions is 216 –1 (65535).

The repeat single mechanism triggered by these instructions is interruptible.

These instructions cannot be repeated.

These instructions cannot be used as the last instruction in a repeat loop
structure.

Two paralleled instructions can be repeated when following the parallelism
general rules.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� RPTADD (Repeat Single Instruction Unconditionally and Increment CSR)

� RPTB (Repeat Block of Instructions Unconditionally)

� RPTCC (Repeat Single Instruction Conditionally)

� RPTSUB (Repeat Single Instruction Unconditionally and Decrement CSR)

RPT Repeat Single Instruction Unconditionally

Instruction Set Descriptions5-390 SPRU374G

Repeat Single Instruction Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPT k8 Yes 2 1 AD

[2] RPT k16 Yes 3 1 AD

Opcode k8 0100 110E kkkk kkkk

k16 0000 110E kkkk kkkk kkkk kkkk

Operands kx

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by an immediate value, kx + 1. The
repeat counter register (RPTC):

� Is loaded with the immediate value in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

 Repeat Single Instruction Unconditionally RPT

5-391Instruction Set DescriptionsSPRU374G

Example 1

Syntax Description

RPT #3

MACM *AR3+, *AR4+, AC1

The single instruction following the repeat instruction is repeated four times.

Before After

AC1 00 0000 0000 AC1 00 3376 AD10

AR3 0200 AR3 0204

AR4 0400 AR4 0404

200 AC03 200 AC03

201 3468 201 3468

202 FE00 202 FE00

203 23DC 203 23DC

400 D768 400 D768

401 6987 401 6987

402 3400 402 3400

403 7900 403 7900

Example 2

Syntax Description

RPT #513 A single instruction is repeated as defined by the unsigned 16-bit value + 1
(513 + 1).

RPT Repeat Single Instruction Unconditionally

Instruction Set Descriptions5-392 SPRU374G

Repeat Single Instruction Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] RPT CSR Yes 2 1 AD

Opcode 0100 100E xxxx x000

Operands none

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

 Repeat Single Instruction Unconditionally RPT

5-393Instruction Set DescriptionsSPRU374G

Example

Syntax Description

RPT CSR

MACM *AR3+, *AR4+, AC1

The single instruction following the repeat instruction is repeated as defined
by the content of CSR + 1.

Before After

AC1 00 0000 0000 AC1 00 3376 AD10

CSR 0003 CSR 0003

AR3 0200 AR3 0204

AR4 0400 AR4 0404

200 AC03 200 AC03

201 3468 201 3468

202 FE00 202 FE00

203 23DC 203 23DC

400 D768 400 D768

401 6987 401 6987

402 3400 402 3400

403 7900 403 7900

RPTADD Repeat Single Instruction Unconditionally and Increment CSR

Instruction Set Descriptions5-394 SPRU374G

Repeat Single Instruction Unconditionally and Increment CSRRPTADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPTADD CSR, TAx Yes 2 1 X

[2] RPTADD CSR, k4 Yes 2 1 X

Description These instructions repeat the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. This value is loaded into the repeat counter
register (RPTC). The maximum number of executions of a given instruction or
paralleled instructions is 216 –1 (65535).

With the A-unit ALU, these instructions allow the content of CSR to be
incremented. The CSR modification is performed in the execute phase of the
pipeline; there is a 3-cycle latency between the CSR modification and its usage
in the address phase.

The repeat single mechanism triggered by these instructions is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

These instructions cannot be repeated.

These instructions cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� RPT (Repeat Single Instruction Unconditionally)

� RPTB (Repeat Block of Instructions Unconditionally)

� RPTCC (Repeat Single Instruction Conditionally)

� RPTSUB (Repeat Single Instruction Unconditionally and Decrement CSR)

 Repeat Single Instruction Unconditionally and Increment CSR RPTADD

5-395Instruction Set DescriptionsSPRU374G

Repeat Single Instruction Unconditionally and Increment CSR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPTADD CSR, TAx Yes 2 1 X

Opcode 0100 100E FSSS x001

Operands TAx

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism.

With the A-unit ALU, this instruction allows the content of CSR to be
incremented by the content of TAx. The CSR modification is performed in the
execute phase of the pipeline; there is a 3-cycle latency between the CSR
modification and its usage in the address phase.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

RPTADD CSR, T1 A single instruction is repeated as defined by the content of CSR + 1. The content
of CSR is incremented by the content of temporary register T1.

RPTADD Repeat Single Instruction Unconditionally and Increment CSR

Instruction Set Descriptions5-396 SPRU374G

Repeat Single Instruction Unconditionally and Increment CSR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] RPTADD CSR, k4 Yes 2 1 X

Opcode 0100 100E kkkk x010

Operands k4

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism.

With the A-unit ALU, this instruction allows the content of CSR to be
incremented by k4. The CSR modification is performed in the execute phase
of the pipeline; there is a 3-cycle latency between the CSR modification and
its usage in the address phase.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

RPTADD CSR, #2 A single instruction is repeated as defined by the content of CSR + 1. The content
of CSR is incremented by the unsigned 4-bit value (2).

 Repeat Block of Instructions Unconditionally RPTB

5-397Instruction Set DescriptionsSPRU374G

Repeat Block of Instructions UnconditionallyRPTB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPTBLOCAL pmad Yes 2 1 AD

[2] RPTB pmad Yes 3 1 AD

Description These instructions repeat a block of instructions the number of times specified by:

� the content of BRC0 + 1, if no loop has already been detected.
� the content of BRS1 + 1, if one level of the loop has already been detected.

Loop structures defined by these instructions must have the following
characteristics:

� The minimum number of instructions executed within one loop iteration is 2.

� The minimum number of cycles executed within one loop iteration is 2.

� The maximum loop size is 64K bytes.

� The block-repeat counter registers (BRCx) must be read 3 full cycles
before the end of the loops in order to extract the correct loop iteration
number from these registers without any pipeline stall.

� The block-repeat operation can only be cleared by branching to a
destination address outside the active block-repeat loop.

� C54CM bit in ST1_55 cannot be modified within a block-repeat loop.

These instructions cannot be repeated.

See section 1.5 for a list of instructions that cannot be used in a repeat block
mechanism.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� RPT (Repeat Single Instruction Unconditionally)

� RPTADD (Repeat Single Instruction Unconditionally and Increment CSR)

� RPTCC (Repeat Single Instruction Conditionally)

� RPTSUB (Repeat Single Instruction Unconditionally and Decrement CSR)

RPTB Repeat Block of Instructions Unconditionally

Instruction Set Descriptions5-398 SPRU374G

Repeat Block of Instructions Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPTBLOCAL pmad Yes 2 1 AD

Opcode 0100 101E 1lll llll

Operands pmad

Description This instruction repeats a block of instructions the number of times specified by:

� the content of BRC0 + 1, if no loop has already been detected. In this case:

� In the address phase of the pipeline, RSA0 is loaded with the program
address of the first instruction of the loop.

� The program address (pmad) of the last instruction of the loop (that
may be two parallel instructions) is computed in the address phase of
the pipeline and stored in REA0.

� BRC0 is decremented at the address phase of the last instruction of
the loop when its content is not equal to 0.

� BRC0 contains 0 after the block-repeat operation has ended.

� the content of BRS1 + 1, if one level of the loop has already been detected.
In this case:

� BRC1 is loaded with the content of BRS1 in the address phase of the
repeat block instruction.

� In the address phase of the pipeline, RSA1 is loaded with the program
address of the first instruction of the loop.

� The program address of the last instruction of the loop (that may be
two parallel instructions) is computed in the address phase of the
pipeline and stored in REA1.

� BRC1 is decremented at the address phase of the last instruction of
the loop when its content is not equal to 0.

� BRC1 contains 0 after the block-repeat operation has ended.

� BRS1 content is not impacted by the block-repeat operation.

 Repeat Block of Instructions Unconditionally RPTB

5-399Instruction Set DescriptionsSPRU374G

Loop structures defined by this instruction must have the following
characteristics:

� The minimum number of instructions executed within one loop iteration is 2.

� The minimum number of cycles executed within one loop iteration is 2.

� The maximum loop size is 64K bytes.

� The block-repeat operation can only be cleared by branching to a
destination address outside the active block-repeat loop.

� The block-repeat counter registers (BRCx) must be read 3 full cycles
before the end of the loops in order to extract the correct loop iteration
number from these registers without any pipeline stall.

� C54CM bit in ST1_55 cannot be modified within a block-repeat loop.

� The following instructions cannot be used as the last instruction in the loop
structure:

RPT RPTCC RPTADD

RPTSUB XCC

A local loop is defined as when all the code of the loop is repeatedly executed
from within the instruction buffer queue (IBQ):

� All the code of the local loop must fit within the 64-byte, 4-byte-aligned IBQ;
therefore, local repeat blocks are limited to 64 bytes minus the 0 to 3 bytes
of first-instruction misalignment. The 64th byte of the IBQ can only occur
in a paralleled instruction. See Figure 5–4 for legal uses of the
RPTBLOCAL instruction.

� The following instructions cannot be used as the last instruction in the local
loop:

RPT RPTCC RPTADD

RPTSUB XCC

� Nested local repeat block (RPTBLOCAL) instructions are allowed.

� See section 1.5 for a list of instructions that cannot be used in the local loop
code.

� The only branch instructions allowed in a RPTBLOCAL structure are the
branch instructions with a target branch address pointing to an instruction
included within the loop code and being at a higher address than the
branching instruction. In this case, the branch conditionally (BCC)
instruction is executed in 3 cycles and the condition is evaluated in the
address phase of the pipeline (there is a 3-cycle latency on the condition
setting).

RPTB Repeat Block of Instructions Unconditionally

Instruction Set Descriptions5-400 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

� This instruction only uses block-repeat level 0; block-repeat level 1 is
disabled.

� The block-repeat active flag (BRAF) is set to 1. BRAF is cleared to 0 at the
end of the block-repeat operation when BRC0 contains 0.

� You can stop an active block-repeat operation by clearing BRAF to 0.

� Block-repeat control registers for level 1 are not used. Nested
block-repeat operations are supported using the C54x convention with
context save/restore and BRAF. The control-flow context register (CFCT)
values are not used.

� BRAF is automatically cleared to 0 when a far branch (FB) or far call (FCALL)
instruction is executed.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

RPTBLOCAL A block of instructions is repeated as defined by the content of BRC0 + 1.

Address BRC0 RSA0 REA0 BRS1

MOV #3, BRC0 0003 0000 0000 0000

RPTBLOCAL { 004003 ?* 4005 400D ?

… … 004005 ? ? ? ?

… … 00400D DTZ** ? ? ?

 } 0000 4005 400D 0000

*?: Unchanged
**DTZ: Decrease till zero

 Repeat Block of Instructions Unconditionally RPTB

5-401Instruction Set DescriptionsSPRU374G

Figure 5–4. Legal Uses of Repeat Block of Instructions Unconditionally (RPTBLOCAL)
Instruction

(a) 60-Byte Unaligned Loop—Legal Use

… … ; no alignment directive

RPTBLOCAL {

1st instruction

… … } 60-byte loop body

Last instruction

 }

next instruction

… …

The entire local repeat block and the next instruction reside in the IBQ, this
code is accepted by the assembler.

(b) 61-Byte Unaligned Loop with Single Instruction at End of Loop—Illegal Use

… … ; no alignment directive

RPTBLOCAL {

1st instruction

… … } 61-byte loop body

Last instruction
(nonparalleled = single)

 }

next instruction

… …

The RPTBLOCAL instruction is not aligned; the next instruction may not be
fetched in the IBQ. Because the last instruction of the local repeat block is a
nonparalleled (single) instruction, the CPU must confirm that the next
instruction does not have a parallel enable bit; therefore, this code is rejected
by the assembler.

RPTB Repeat Block of Instructions Unconditionally

Instruction Set Descriptions5-402 SPRU374G

Figure 5–4. Legal Uses of Repeat Block of Instructions Unconditionally (RPTBLOCAL)
Instruction (Continued)

(c) 61-Byte Unaligned Loop with Paralleled Instruction at End of Loop—Legal Use

… … ; no alignment directive

RPTBLOCAL {

1st instruction

… … } 61-byte loop body

Last instruction (paralleled)

 }

next instruction

… …

The RPTBLOCAL instruction is not aligned; the next instruction may not be
fetched in the IBQ. Because the last instruction of the local repeat block is a
paralleled instruction, the CPU does not need to confirm that the next
instruction does not have a parallel enable bit; therefore, this code is accepted
by the assembler.

(d) 61-Byte Aligned Loop with Single Instruction at End of Loop—Legal Use

align 4 ; alignment directive

RPTBLOCAL {

1st instruction

… … } 61-byte loop body

Last instruction
(nonparalleled = single)

 }

next instruction

… …

The RPTBLOCAL instruction is aligned, so the entire local repeat block and
the next instruction reside in the IBQ. Because the next instruction is in the
IBQ, the CPU can confirm that the next instruction does not have a parallel
enable bit; therefore, this code is accepted by the assembler.

 Repeat Block of Instructions Unconditionally RPTB

5-403Instruction Set DescriptionsSPRU374G

Figure 5–4. Legal Uses of Repeat Block of Instructions Unconditionally (RPTBLOCAL)
Instruction (Continued)

(e) 62-Byte Unaligned Loop—Illegal Use

… … ; no alignment directive

RPTBLOCAL {

1st instruction

… … } 62-byte loop body

Last instruction

 }

next instruction

… …

The RPTBLOCAL instruction is not aligned; the entire local repeat block may
not reside in the IBQ. Because the last instruction of the local repeat block may
not reside in the IBQ, this code is rejected by the assembler.

(f) 62-Byte Aligned Loop with Single Instruction at End of Loop—Legal Use

align 4 ; alignment directive

NOP_16||NOP ; 3-byte instruction

RPTBLOCAL {

1st instruction

… … } 62-byte loop body

Last instruction
(nonparalleled = single)

 }

next instruction

… …

The NOP instructions are aligned so the RPTBLOCAL instruction, the entire
local repeat block, and the next instruction reside in the IBQ. Because the next
instruction is in the IBQ, the CPU can confirm that the next instruction does not
have a parallel enable bit; therefore, this code is accepted by the assembler.

RPTB Repeat Block of Instructions Unconditionally

Instruction Set Descriptions5-404 SPRU374G

Figure 5–4. Legal Uses of Repeat Block of Instructions Unconditionally (RPTBLOCAL)
Instruction (Continued)

(g) 64-Byte Aligned Loop with Paralleled Instruction at End of Loop—Legal Use

align 4 ; alignment directive

NOP_16 ; 2-byte instruction

RPTBLOCAL {

1st instruction

… … } 64-byte loop body

Last instruction (paralleled)

 }

next instruction

… …

The NOP instruction is aligned, so the RPTBLOCAL instruction and the entire
local repeat block reside in the IBQ; the next instruction is not fetched in the
IBQ. Because the last instruction of the local repeat block is a paralleled
instruction, the CPU does not need to confirm that the next instruction does
not have a parallel enable bit; therefore, this code is accepted by the
assembler.

 Repeat Block of Instructions Unconditionally RPTB

5-405Instruction Set DescriptionsSPRU374G

Repeat Block of Instructions Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] RPTB pmad Yes 3 1 AD

Opcode 0000 111E llll llll llll llll

Operands pmad

Description This instruction repeats a block of instructions the number of times specified by:

� the content of BRC0 + 1, if no loop has already been detected. In this case:

� In the address phase of the pipeline, RSA0 is loaded with the program
address of the first instruction of the loop.

� The program address (pmad) of the last instruction of the loop (that
may be two parallel instructions) is computed in the address phase of
the pipeline and stored in REA0.

� BRC0 is decremented at the address phase of the last instruction of
the loop when its content is not equal to 0.

� BRC0 contains 0 after the block-repeat operation has ended.

� the content of BRS1 + 1, if one level of the loop has already been detected.
In this case:

� BRC1 is loaded with the content of BRS1 in the address phase of the
repeat block instruction.

� In the address phase of the pipeline, RSA1 is loaded with the program
address of the first instruction of the loop.

� The program address of the last instruction of the loop (that may be
two parallel instructions) is computed in the address phase of the
pipeline and stored in REA1.

� BRC1 is decremented at the address phase of the last instruction of
the loop when its content is not equal to 0.

� BRC1 contains 0 after the block-repeat operation has ended.

� BRS1 content is not impacted by the block-repeat operation.

RPTB Repeat Block of Instructions Unconditionally

Instruction Set Descriptions5-406 SPRU374G

Loop structures defined by these instructions must have the following
characteristics:

� The minimum number of instructions executed within one loop iteration is 2.

� The minimum number of cycles executed within one loop iteration is 2.

� The maximum loop size is 64K bytes.

� The block-repeat operation can only be cleared by branching to a
destination address outside the active block-repeat loop.

� The block-repeat counter registers (BRCx) must be read 3 full cycles
before the end of the loops in order to extract the correct loop iteration
number from these registers without any pipeline stall.

� C54CM bit in ST1_55 cannot be modified within a block-repeat loop.

� The following instructions cannot be used as the last instruction in the loop
structure:

RPT RPTCC RPTADD

RPTSUB XCC

� See section 1.5 for a list of instructions that cannot be used in the
block-repeat loop code.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

� This instruction only uses block-repeat level 0; block-repeat level 1 is
disabled.

� The block-repeat active flag (BRAF) is set to 1. BRAF is cleared to 0 at the
end of the block-repeat operation when BRC0 contains 0.

� You can stop an active block-repeat operation by clearing BRAF to 0.

� Block-repeat control registers for level 1 are not used. Nested
block-repeat operations are supported using the C54x convention with
context save/restore and BRAF. The control-flow context register (CFCT)
values are not used.

� BRAF is automatically cleared to 0 when a far branch (FB) or far call
(FCALL) instruction is executed.

 Repeat Block of Instructions Unconditionally RPTB

5-407Instruction Set DescriptionsSPRU374G

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

RPTB A block of instructions is repeated as defined by the content of BRC0 + 1. A second loop of
instructions is repeated as defined by the content of BRS1 + 1 (BRC1 is loaded with the
content of BRS1).

Address BRC0 RSA0 REA0 BRS1 BRC1 RSA1 REA1

MOV #3, BRC0 0003 0000 0000 0000 0000 0000 0000

MOV #1, BRC1 ?* ? ? 0001 0001 ? ?

RPTB { 004006 ? 4009 4017 ? ? ? ?

… … 004009 ? ? ? ? ? ? ?

RPTBLOCAL { 00400B ? ? ? ? (BRS1) 400D 4015

… … 00400D ? ? ? ? ? ? ?

… … 004015 ? ? ? ? DTZ** ? ?

 }

… … 004017 DTZ** ? ? ? ? ? ?

 } 0000 4009 4017 0001 0000 400D 4015
*?: Unchanged
**DTZ: Decrease till zero

RPTCC Repeat Single Instruction Conditionally

Instruction Set Descriptions5-408 SPRU374G

Repeat Single Instruction ConditionallyRPTCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPTCC k8, cond Yes 3 1 AD

Opcode 0000 000E xCCC CCCC kkkk kkkk

Operands cond, k8

Description This instruction evaluates a single condition defined by the cond field and as
long as the condition is true, the next instruction or the next two paralleled
instructions is repeated the number of times specified by an 8-bit immediate
value, k8 + 1. The maximum number of executions of a given instruction or
paralleled instructions is 28 –1 (255). See Table 1–3 for a list of conditions.

The 8 LSBs of the repeat counter register (RPTC):

� Are loaded with the immediate value at the address phase of the pipeline.

� Are decremented by 1 in the decode phase of the repeated instruction.

The 8 MSBs of RPTC:

� Are loaded with the cond code at the address phase of the pipeline.

� Are untouched during the instruction execution.

At each step of the iteration, the condition defined by the cond field is tested
in the execute phase of the pipeline. When the condition becomes false, the
instruction repetition stops.

� If the condition becomes false at any execution of the repeated instruction,
the 8 LSBs of RPTC are corrected to indicate exactly how many iterations
were not performed.

� Since the condition is evaluated in the execute phase of the repeated
instruction, when the condition is tested false, some of the succeeding
iterations of that repeated instruction may have gone through the address,
access, and read phases of the pipeline. Therefore, they may have
modified the pointer registers used in the DAGEN units to generate data
memory operands addresses in the address phase.

When the instruction structure is exited, reading the computed
single-repeat register (CSR) content enables you to determine how many
instructions have gone through the address phase of the pipeline. You
may then use the Repeat Single Instruction Unconditionally instruction [3]
to rewind the pointer registers. Note that this must only be performed when
a false condition has been met inside the instruction structure.

 Repeat Single Instruction Conditionally RPTCC

5-409Instruction Set DescriptionsSPRU374G

� The following table provides the 8 LSBs of RPTC and CSR once the
instruction structure is exited.

If the condition is met
RPTC[7:0] content
after exiting loop

CSR content
after exiting loop

At 1st iteration RPTCinit + 1 4

At 2nd iteration RPTCinit 4

At 3rd iteration RPTC – 1 4

… … …
At RPTCinit – 2 iteration 4 3

At RPTCinit – 1 iteration 3 2

At RPTCinit iteration 2 1

At RPTCinit + 1 iteration 1 0

Never 0 0

RPTCinit is the number of requested iterations minus 1.

The repeat single mechanism triggered by this instruction is interruptible.
Saving and restoring the RPTC content in ISRs enables you to preserve the
instruction structure context.

When the instruction structure contains any form of a store-to-memory
instruction, the store-to-memory instruction is only disabled one cycle after the
condition is evaluated to be false. Therefore, the store-to-memory instruction
is executed once more than other processing instructions updating CPU
registers. This enables you to store the last values obtained in these registers
when the condition was met.

Instead of programming a number of iterations (minus 1) equal to 0, it is
recommended that you use the conditional execute() structure.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

RPTCC Repeat Single Instruction Conditionally

Instruction Set Descriptions5-410 SPRU374G

See Also See the following other related instructions:

� RPT (Repeat Single Instruction Unconditionally)

� RPTADD (Repeat Single Instruction Unconditionally and Increment CSR)

� RPTB (Repeat Block of Instructions Unconditionally)

� RPTSUB (Repeat Single Instruction Unconditionally and Decrement CSR)

Example

Syntax Description

RPTCC #7, AC1 > #0 As long as the content of AC1 is greater than 0 and the repeat counter is not
equal to 0, the next single instruction is repeated as defined by the unsigned 8-bit
value (7) + 1. At the address phase of the pipeline, RPTC is automatically
initialized to 4107h and then is immediately decreased to 4106h.

RPTCC #7, AC1 > #0 address: 004004

004008

… … 00400B

Before After

AC1 00 2359 0340 AC1 00 1FC2 7B40

T0 0340 T0 0340

*AR1 2354 *AR1 2354

RPTC 4106∗ RPTC 0000

* At the address phase of the pipeline, RPTC is automatically initialized to 4107h and then is immediately decreased to 4106h.

 Repeat Single Instruction Unconditionally and Decrement CSR RPTSUB

5-411Instruction Set DescriptionsSPRU374G

Repeat Single Instruction Unconditionally and Decrement CSRRPTSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] RPTSUB CSR, k4 Yes 2 1 X

Opcode 0100 100E kkkk x011

Operands k4

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism.

With the A-unit ALU, this instruction allows the content of CSR to be
decremented by k4. The CSR modification is performed in the execute phase
of the pipeline; there is a 3-cycle latency between the CSR modification and
its usage in the address phase.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

RPTSUB Repeat Single Instruction Unconditionally and Decrement CSR

Instruction Set Descriptions5-412 SPRU374G

See Also See the following other related instructions:

� RPT (Repeat Single Instruction Unconditionally)

� RPTADD (Repeat Single Instruction Unconditionally and Increment CSR)

� RPTB (Repeat Block of Instructions Unconditionally)

� RPTCC (Repeat Single Instruction Conditionally)

Example

Syntax Description

RPTSUB CSR, #2 A single instruction is repeated as defined by the content of CSR + 1. The content
of CSR is decremented by the unsigned 4-bit value (2).

 Saturate Accumulator Content SAT

5-413Instruction Set DescriptionsSPRU374G

Saturate Accumulator ContentSAT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SAT[R] [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 110%

Operands ACx, ACy

Description This instruction performs a saturation of the source accumulator ACx to the
32-bit width frame in the D-unit ALU.

� A rounding is performed if the optional R keyword is applied to the
instruction. The rounding operation depends on RDM:

� When RDM = 0, the biased rounding to the infinite is performed.
8000h (215) is added to the 40-bit source accumulator ACx.

� When RDM = 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit source
accumulator ACx, 8000h (215) is added:

if(8000h < bit(15–0) < 10000h)

add 8000h to the 40-bit source accumulator ACx

else if(bit(15–0) == 8000h)

if(bit(16) == 1)

add 8000h to the 40-bit source accumulator ACx

If a rounding has been performed, the 16 lowest bits of the result are
cleared to 0.

� An overflow is detected at bit position 31.

� No addition carry report is stored in CARRY status bit.

� If an overflow is detected, the destination accumulator overflow status bit
(ACOVy) is set.

� When an overflow is detected, the destination register is saturated.
Saturation values are 00 7FFF FFFFh (positive overflow) or
FF 8000 0000h (negative overflow).

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the rounding is performed without clearing the LSBs of
accumulator ACx.

SAT Saturate Accumulator Content

Instruction Set Descriptions5-414 SPRU374G

Status Bits Affected by C54CM, RDM

Affects ACOVy

Repeat This instruction can be repeated.

Example 1

Syntax Description

SAT AC0, AC1 The 32-bit width content of AC0 is saturated and the saturated value,
FF 8000 0000, is stored in AC1.

Before After

AC0 EF 0FF0 8023 AC0 EF 0FF0 8023

AC1 00 0000 0000 AC1 FF 8000 0000

ACOV1 0 ACOV1 1

Example 2

Syntax Description

SATR AC0, AC1 The 32-bit width content of AC0 is saturated. The saturated value,
00 7FFF FFFFh, is rounded, 16 LSBs are cleared, and stored in AC1.

Before After

AC0 00 7FFF 8000 AC0 00 7FFF 8000

AC1 00 0000 0000 AC1 00 7FFF 0000

RDM 0 RDM 0

ACOV1 0 ACOV1 1

 Shift Accumulator Content Conditionally SFTCC

5-415Instruction Set DescriptionsSPRU374G

Shift Accumulator Content ConditionallySFTCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTCC ACx, TC1 Yes 2 1 X

[2] SFTCC ACx, TC2 Yes 2 1 X

Opcode TC1 0101 101E DDxx xx10

TC2 0101 101E DDxx xx11

Operands ACx, TCx

Description If the source accumulator ACx(39–0) is equal to 0, this instruction sets the TCx
status bit to 1.

If the source accumulator ACx(31–0) has two sign bits:

� this instruction shifts left the 32-bit accumulator ACx by 1 bit

� the TCx status bit is cleared to 0

If the source accumulator ACx(31–0) does not have two sign bits, this
instruction sets the TCx status bit to 1.

The sign bits are extracted at bit positions 31 and 30.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SFTL (Shift Accumulator Content Logically)

� SFTL (Shift Accumulator, Auxiliary, or Temporary Register Content Logically)

� SFTS (Signed Shift of Accumulator Content)

� SFTS (Signed Shift of Accumulator, Auxiliary, or Temporary Register
Content)

SFTCC Shift Accumulator Content Conditionally

Instruction Set Descriptions5-416 SPRU374G

Example 1

Syntax Description

SFTCC AC0, TC1 Because AC0(31) XORed with AC0(30) equals 1, the content of AC0 is not shifted
left and TC1 is set to 1.

Before After

AC0 FF 8765 0055 AC0 FF 8765 0055

TC1 0 TC1 1

Example 2

Syntax Description

SFTCC AC0, TC2 Because AC0(31) XORed with AC0(30) equals 0, the content of AC0 is shifted left
by 1 bit and TC2 is cleared to 0.

Before After

AC0 00 1234 0000 AC0 00 2468 0000

TC2 0 TC2 0

 Shift Accumulator Content Logically SFTL

5-417Instruction Set DescriptionsSPRU374G

Shift Accumulator Content LogicallySFTL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTL ACx, Tx[, ACy] Yes 2 1 X

[2] SFTL ACx, #SHIFTW[, ACy] Yes 3 1 X

Description These instructions perform an unsigned shift by an immediate value, SHIFTW,
or the content of a temporary register (Tx) in the D-unit shifter.

Status Bits Affected by C54CM, M40

Affects CARRY

See Also See the following other related instructions:

� SFTCC (Shift Accumulator Content Conditionally)

� SFTL (Shift Accumulator, Auxiliary, or Temporary Register Content Logically)

� SFTS (Signed Shift of Accumulator Content)

� SFTS (Signed Shift of Accumulator, Auxiliary, or Temporary Register
Content)

SFTL Shift Accumulator Content Logically

Instruction Set Descriptions5-418 SPRU374G

Shift Accumulator Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTL ACx, Tx[, ACy] Yes 2 1 X

Opcode 0101 110E DDSS ss00

Operands ACx, ACy, Tx

Description This instruction shifts by the temporary register (Tx) content the accumulator
(ACx) content and stores the shifted-out bit in the CARRY status bit. If the
16-bit value contained in Tx is out of the –32 to +31 range, the shift is saturated
to –32 or +31 and the shift operation is performed with this value. However, no
overflow is reported when such saturation occurs.

� The operation is performed on 40 bits in the D-unit shifter.

� The shift operation is performed according to M40.

� The CARRY status bit contains the shifted-out bit. When the shift count is
zero, Tx = 0, the CARRY status bit is cleared to 0.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the 6 LSBs of Tx define the shift quantity within –32 to +31. When
the value is between –32 to –17, a modulo 16 operation transforms the shift
quantity to within –16 to –1.

Status Bits Affected by C54CM, M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SFTL AC0, T0, AC1 The content of AC0 is logically shifted right by the content of T0 and the result is
stored in AC1. There is a right shift because the content of T0 is negative (–6).
Because M40 = 0, the guard bits (39–32) are cleared.

Before After

AC0 5F B000 1234 AC0 5F B000 1234

AC1 00 C680 ACF0 AC1 00 02C0 0048

T0 FFFA T0 FFFA

M40 0 M40 0

 Shift Accumulator Content Logically SFTL

5-419Instruction Set DescriptionsSPRU374G

Shift Accumulator Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SFTL ACx, #SHIFTW[, ACy] Yes 3 1 X

Opcode 0001 000E DDSS 0111 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction shifts by a 6-bit value, SHIFTW, the accumulator (ACx) content
and stores the shifted-out bit in the CARRY status bit.

� The operation is performed on 40 bits in the D-unit shifter.

� The shift operation is performed according to M40.

� The CARRY status bit contains the shifted-out bit. When the shift count is
zero, SHIFTW = 0, the CARRY status bit is cleared to 0.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SFTL AC1, #31, AC0 The content of AC1 is logically shifted left by 31 bits and the result is stored in AC0.

SFTL Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Instruction Set Descriptions5-420 SPRU374G

Shift Accumulator, Auxiliary, or Temporary Register Content LogicallySFTL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTL dst, #1 Yes 2 1 X

[2] SFTL dst, #–1 Yes 2 1 X

Description These instructions perform an unsigned shift by 1 bit:

� In the D-unit shifter, if the destination operand is an accumulator (ACx).

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register (TAx).

Status Bits Affected by C54CM, M40

Affects CARRY

See Also See the following other related instructions:

� SFTCC (Shift Accumulator Content Conditionally)

� SFTL (Shift Accumulator Content Logically)

� SFTS (Signed Shift of Accumulator Content)

� SFTS (Signed Shift of Accumulator, Auxiliary, or Temporary Register
Content)

 Shift Accumulator, Auxiliary, or Temporary Register Content Logically SFTL

5-421Instruction Set DescriptionsSPRU374G

Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTL dst, #1 Yes 2 1 X

Opcode 0101 000E FDDD x000

Operands dst

Description This instruction shifts left by 1 bit the input operand (dst). The CARRY status
bit contains the shifted-out bit.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted at a bit position according to M40.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted at bit position 15 and stored in the
CARRY status bit.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SFTL AC1, #1 The content of AC1 is logically shifted left by 1 bit and the result is stored in AC1.
Because M40 = 0, the CARRY status bit is extracted at bit 31 and the guard bits
(39–32) are cleared.

Before After

AC1 8F E340 5678 AC1 00 C680 ACF0

CARRY 0 CARRY 1

M40 0 M40 0

SFTL Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Instruction Set Descriptions5-422 SPRU374G

Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SFTL dst, #–1 Yes 2 1 X

Opcode 0101 000E FDDD x001

Operands dst

Description This instruction shifts right by 1 bit the input operand (dst). The CARRY status
bit contains the shifted-out bit.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� 0 is inserted at a bit position according to M40.

� The shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� 0 is inserted at bit position 15.

� The shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SFTL AC0, #–1 The content of AC0 is logically shifted right by 1 bit and the result is stored in AC0.

 Signed Shift of Accumulator Content SFTS

5-423Instruction Set DescriptionsSPRU374G

Signed Shift of Accumulator ContentSFTS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTS ACx, Tx[, ACy] Yes 2 1 X

[2] SFTSC ACx, Tx[, ACy] Yes 2 1 X

[3] SFTS ACx, #SHIFTW[, ACy] Yes 3 1 X

[4] SFTSC ACx, #SHIFTW[, ACy] Yes 3 1 X

Description These instructions perform a signed shift by an immediate value, SHIFTW, or
by the content of a temporary register (Tx) in the D-unit shifter.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� SFTCC (Shift Accumulator Content Conditionally)

� SFTL (Shift Accumulator Content Logically)

� SFTL (Shift Accumulator, Auxiliary, or Temporary Register Content Logically)

� SFTS (Signed Shift of Accumulator, Auxiliary, or Temporary Register
Content)

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-424 SPRU374G

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTS ACx, Tx[, ACy] Yes 2 1 X

Opcode 0101 110E DDSS ss01

Operands ACx, ACy, Tx

Description This instruction shifts by the temporary register (Tx) content the accumulator
(ACx) content. If the 16-bit value contained in Tx is out of the –32 to +31 range,
the shift is saturated to –32 or +31 and the shift operation is performed with this
value; a destination accumulator overflow is reported when such saturation
occurs.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the Tx content:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 = 0, comparison is performed versus bit 31

� if M40 = 1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-425Instruction Set DescriptionsSPRU374G

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

� These instructions are executed as if M40 status bit was locally set to 1.

� There is no overflow detection, overflow report, and saturation performed
by the D-unit shifter.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

SFTS AC1, T0, AC0 The content of AC1 is shifted by the content of T0 and the result is stored in AC0.

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-426 SPRU374G

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SFTSC ACx, Tx[, ACy] Yes 2 1 X

Opcode 0101 110E DDSS ss10

Operands ACx, ACy, Tx

Description This instruction shifts by the temporary register (Tx) content the accumulator
(ACx) content and stores the shifted-out bit in the CARRY status bit. If the
16-bit value contained in Tx is out of the –32 to +31 range, the shift is saturated
to –32 or +31 and the shift operation is performed with this value; a destination
accumulator overflow is reported when such saturation occurs.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the Tx content:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 = 0, comparison is performed versus bit 31

� if M40 = 1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40 and stored in the CARRY
status bit. When the shift count is zero, Tx = 0, the CARRY status bit is
cleared to 0.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-427Instruction Set DescriptionsSPRU374G

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

� These instructions are executed as if M40 status bit was locally set to 1.

� There is no overflow detection, overflow report, and saturation performed
by the D-unit shifter.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SFTSC AC2, T1 The content of AC2 is shifted left by the content of T1 and the saturated result is
stored in AC2. The shifted out bit is stored in the CARRY status bit. Since
SATD = 1 and M40 = 0, AC2 = FF 8000 0000 (saturation).

Before After

AC2 80 AA00 1234 AC2 FF 8000 0000

T1 0005 T1 0005

CARRY 0 CARRY 1

M40 0 M40 0

ACOV2 0 ACOV2 1

SXMD 1 SXMD 1

SATD 1 SATD 1

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-428 SPRU374G

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] SFTS ACx, #SHIFTW[, ACy] Yes 3 1 X

Opcode 0001 000E DDSS 0101 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction shifts by a 6-bit value, SHIFTW, the accumulator (ACx)
content.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the 6-bit value, SHIFTW:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 = 0, comparison is performed versus bit 31

� if M40 = 1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-429Instruction Set DescriptionsSPRU374G

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example 1

Syntax Description

SFTS AC1, #31, AC0 The content of AC1 is shifted left by 31 bits and the result is stored in AC0.

Example 2

Syntax Description

SFTS AC1, #–32 The content of AC1 is shifted right by 32 bits and the result is stored in AC1.

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-430 SPRU374G

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] SFTSC ACx, #SHIFTW[, ACy] Yes 3 1 X

Opcode 0001 000E DDSS 0110 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction shifts by a 6-bit value, SHIFTW, the accumulator (ACx) content
and stores the shifted-out bit in the CARRY status bit.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the 6-bit value, SHIFTW:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 = 0, comparison is performed versus bit 31

� if M40 = 1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40 and stored in the CARRY
status bit. When the shift count is zero, SHIFTW = 0, the CARRY status
bit is cleared to 0.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-431Instruction Set DescriptionsSPRU374G

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SFTSC AC0, #–5, AC1 The content of AC0 is shifted right by 5 bits and the result is stored in AC1. The
shifted out bit is stored in the CARRY status bit.

Before After

AC0 FF 8765 0055 AC0 FF 8765 0055

AC1 00 4321 1234 AC1 FF FC3B 2802

CARRY 0 CARRY 1

SXMD 1 SXMD 1

SFTS Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-432 SPRU374G

Signed Shift of Accumulator, Auxiliary, or Temporary Register ContentSFTS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTS dst, #–1 Yes 2 1 X

[2] SFTS dst, #1 Yes 2 1 X

Description These instructions perform a shift of 1 bit:

� In the D-unit shifter, if the destination operand is an accumulator (ACx).

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register (TAx).

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� SFTCC (Shift Accumulator Content Conditionally)

� SFTL (Shift Accumulator Content Logically)

� SFTL (Shift Accumulator, Auxiliary, or Temporary Register Content Logically)

� SFTS (Signed Shift of Accumulator Content)

 Signed Shift of Accumulator, Auxiliary, or Temporary Register Content SFTS

5-433Instruction Set DescriptionsSPRU374G

Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SFTS dst, #–1 Yes 2 1 X

Opcode 0100 010E 01x0 FDDD

Operands dst

Description This instruction shifts right by 1 bit the content of the destination register (dst).

If the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted right by 1 bit:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the shifter

� Bit 39 is extended according to SXMD

� The shifted-out bit is extracted at bit position 0.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

SFTS Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-434 SPRU374G

If the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� Bit 15 is sign extended.

� After shifting, unless otherwise noted:

� overflow is detected at bit position 15

� if SATA = 1, when an overflow is detected, the destination register
saturation values are 7FFFh (positive overflow) or 8000h (negative
overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

SFTS AC0, #–1 The content of AC0 is shifted right by 1 bit and the result is stored in AC0.

 Signed Shift of Accumulator, Auxiliary, or Temporary Register Content SFTS

5-435Instruction Set DescriptionsSPRU374G

Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SFTS dst, #1 Yes 2 1 X

Opcode 0100 010E 01x1 FDDD

Operands dst

Description This instruction shifts left by 1 bit the content of the destination register (dst).

If the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted left by 1 bit:

� if SXMD = 0, 0 is substituted for the guard bits (39–32) as the input,
instead of ACx(39–32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39–32) as the input, instead of ACx(39–32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 = 0, comparison is performed versus bit 31

� if M40 = 1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

SFTS Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-436 SPRU374G

If the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� 0 is inserted at bit position 0.

� After shifting, unless otherwise noted:

� overflow is detected at bit position 15 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATA = 1, when an overflow is detected, the destination register
saturation values are 7FFFh (positive overflow) or 8000h (negative
overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

SFTS T2, #1 The content of T2 is shifted left by 1 bit and the result is stored in T2.

Before After

T2 EF27 T2 DE4E

SATA 1 SATA 1

 Square and Accumulate SQA

5-437Instruction Set DescriptionsSPRU374G

Square and AccumulateSQA

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQA[R] [ACx,] ACy Yes 2 1 X

[2] SQAM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are:

� ACx(32–16)
� the content of a memory (Smem) location, sign extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� MAC (Multiply and Accumulate)

� SQDST (Square Distance)

� SQR (Square)

� SQS (Square and Subtract)

SQA Square and Accumulate

Instruction Set Descriptions5-438 SPRU374G

Square and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQA[R] [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 001%

Operands ACx, ACy

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32–16):

ACy = ACy + (ACx * ACx)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

SQA AC1, AC0 The content of AC1 squared is added to the content of AC0 and the result is stored in AC0.

 Square and Accumulate SQA

5-439Instruction Set DescriptionsSPRU374G

Square and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SQAM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 10SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits:

ACy = ACx + (Smem * Smem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

SQAM *AR3, AC1, AC0 The content addressed by AR3 squared is added to the content of AC1 and the
result is stored in AC0.

SQDST Square Distance

Instruction Set Descriptions5-440 SPRU374G

Square DistanceSQDST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQDST Xmem, Ymem, ACx, ACy No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 1110 xxn%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs two parallel operations: multiply and accumulate
(MAC), and subtract:

ACy = ACy + (ACx * ACx)
:: ACx = (Xmem << #16) – (Ymem << #16)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32–16).

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

The second operation subtracts the content of data memory operand Ymem,
shifted left 16 bits, from the content of data memory operand Xmem, shifted
left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

 Square Distance SQDST

5-441Instruction Set DescriptionsSPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, during the subtraction an intermediary shift operation is
performed as if M40 is locally set to 1 and no overflow detection, report, and
saturation is done after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ABDST (Absolute Distance)

� SQA (Square and Accumulate)

� SQR (Square)

� SQS (Square and Subtract)

Example

Syntax Description

SQDST *AR0, *AR1, AC0, AC1 The content of AC0 squared is added to the content of AC1 and the
result is stored in AC1. The content addressed by AR1 shifted left by
16 bits is subtracted from the content addressed by AR0 shifted left by
16 bits and the result is stored in AC0.

Before After

AC0 FF ABCD 0000 AC0 FF FFAB 0000

AC1 00 0000 0000 AC1 00 1BB1 8229

*AR0 0055 *AR0 0055

*AR1 00AA *AR1 00AA

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

SQR Square

Instruction Set Descriptions5-442 SPRU374G

SquareSQR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQR[R] [ACx,] ACy Yes 2 1 X

[2] SQRM[R] [T3 =]Smem, ACx No 3 1 X

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are:

� ACx(32–16)
� the content of a memory (Smem) location, sign extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� MPY (Multiply)

� SQA (Square and Accumulate)

� SQDST (Square Distance)

� SQS (Square and Subtract)

 Square SQR

5-443Instruction Set DescriptionsSPRU374G

Square

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQR[R] [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 100%

Operands ACx, ACy

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32–16):

ACy = ACx * ACx

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

SQR AC1, AC0 The content of AC1 is squared and the result is stored in AC0.

SQR Square

Instruction Set Descriptions5-444 SPRU374G

Square

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SQRM[R] [T3 =]Smem, ACx No 3 1 X

Opcode 1101 0011 AAAA AAAI U%DD 10xx

Operands ACx, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of a memory (Smem) location, sign
extended to 17 bits:

ACx = Smem * Smem

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

SQRM *AR3, AC0 The content addressed by AR3 is squared and the result is stored in AC0.

 Square and Subtract SQS

5-445Instruction Set DescriptionsSPRU374G

Square and SubtractSQS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQS[R] [ACx,] ACy Yes 2 1 X

[2] SQSM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are:

� ACx(32–16)
� the content of a memory (Smem) location, sign extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� MAS (Multiply and Subtract)

� SQA (Square and Accumulate)

� SQDST (Square Distance)

� SQR (Square)

SQS Square and Subtract

Instruction Set Descriptions5-446 SPRU374G

Square and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SQS[R] [ACx,] ACy Yes 2 1 X

Opcode 0101 010E DDSS 010%

Operands ACx, ACy

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are ACx(32–16):

ACy = ACy – (ACx * ACx)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

SQS AC0, AC1 The content of AC0 squared is subtracted from the content of AC1 and the result
is stored in AC1.

 Square and Subtract SQS

5-447Instruction Set DescriptionsSPRU374G

Square and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SQSM[R] [T3 =]Smem, [ACx,] ACy No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 11SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits:

ACy = ACx – (Smem * Smem)

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional R keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

SQSM *AR3, AC1, AC0 The content addressed by AR3 squared is subtracted from the content of AC1
and the result is stored in AC0.

SUB Dual 16–Bit Subtractions

Instruction Set Descriptions5-448 SPRU374G

Dual 16-Bit SubtractionsSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUB dual(Lmem), [ACy,] ACy No 3 1 X

[2] SUB ACx, dual(Lmem), ACy No 3 1 X

[3] SUB dual(Lmem), Tx, ACx No 3 1 X

[4] SUB Tx, dual(Lmem), ACx No 3 1 X

Description These instructions perform two paralleled subtraction operations in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� ADDSUB (Dual 16-Bit Addition and Subtraction)

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

� SUB (Subtraction)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

� SUBADD (Dual 16-Bit Subtraction and Addition)

� SUBC (Subtract Conditionally)

 Dual 16–Bit Subtractions SUB

5-449Instruction Set DescriptionsSPRU374G

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUB dual(Lmem), [ACy,] ACy No 3 1 X

Opcode 1110 1110 AAAA AAAI SSDD 001x

Operands ACx, ACy, Lmem

Description This instruction performs two paralleled subtraction operations in one cycle:

HI(ACy) = HI(ACx) – HI(Lmem)
:: LO(ACy) = LO(ACx) – LO(Lmem)

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit data path).

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVy) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

SUB Dual 16–Bit Subtractions

Instruction Set Descriptions5-450 SPRU374G

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB dual(*AR3), AC1, AC0 Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content addressed by AR3 (sign extended to
24 bits) is subtracted from the content of AC1(39–16) and the result is
stored in AC0(39–16). The content addressed by AR3 + 1 is subtracted
from the content of AC1(15–0) and the result is stored in AC0(15–0).

 Dual 16–Bit Subtractions SUB

5-451Instruction Set DescriptionsSPRU374G

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SUB ACx, dual(Lmem), ACy No 3 1 X

Opcode 1110 1110 AAAA AAAI SSDD 010x

Operands ACx, ACy, Lmem

Description This instruction performs two paralleled subtraction operations in one cycle:

HI(ACy) = HI(Lmem) – HI(ACx)
:: LO(ACy) = LO(Lmem) – LO(ACx)

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVy) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

SUB Dual 16–Bit Subtractions

Instruction Set Descriptions5-452 SPRU374G

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1, dual(*AR3), AC0 Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of AC1(39–16) is subtracted from the
content addressed by AR3 and the result is stored in AC0(39–16). The
content of AC1(15–0) is subtracted from the content addressed by AR3 + 1
and the result is stored in AC0(15–0).

 Dual 16–Bit Subtractions SUB

5-453Instruction Set DescriptionsSPRU374G

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] SUB dual(Lmem), Tx, ACx No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 011x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled subtraction operations in one cycle:

HI(ACx) = Tx – HI(Lmem)
:: LO(ACx) = Tx – LO(Lmem)

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

SUB Dual 16–Bit Subtractions

Instruction Set Descriptions5-454 SPRU374G

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB dual(*AR3), T0, AC0 Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content addressed by AR3 is subtracted from the
content of T0 and the result is stored in AC0(39–16). The content
addressed by AR3 + 1 is subtracted from the duplicated content of T0 and
the result is stored in AC0(15–0).

 Dual 16–Bit Subtractions SUB

5-455Instruction Set DescriptionsSPRU374G

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] SUB Tx, dual(Lmem), ACx No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 101x

Operands ACx, Tx, Lmem

Description This instruction performs two paralleled subtraction operations in one cycle:

HI(ACx) = HI(Lmem) – Tx
:: LO(ACx) = LO(Lmem) – Tx

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

SUB Dual 16–Bit Subtractions

Instruction Set Descriptions5-456 SPRU374G

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB T0, dual(*AR3), AC0 Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of T0 is subtracted from the content
addressed by AR3 and the result is stored in AC0(39–16). The duplicated
content of T0 is subtracted from the content addressed by AR3 + 1 and the
result is stored in AC0(15–0).

 Subtraction SUB

5-457Instruction Set DescriptionsSPRU374G

SubtractionSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUB [src,] dst Yes 2 1 X

[2] SUB k4, dst Yes 2 1 X

[3] SUB K16, [src,] dst No 4 1 X

[4] SUB Smem, [src,] dst No 3 1 X

[5] SUB src, Smem, dst No 3 1 X

[6] SUB ACx << Tx, ACy Yes 2 1 X

[7] SUB ACx << #SHIFTW, ACy Yes 3 1 X

[8] SUB K16 << #16, [ACx,] ACy No 4 1 X

[9] SUB K16 << #SHFT, [ACx,] ACy No 4 1 X

[10] SUB Smem << Tx, [ACx,] ACy No 3 1 X

[11] SUB Smem << #16, [ACx,], ACy No 3 1 X

[12] SUB ACx, Smem << #16, ACy No 3 1 X

[13] SUB [uns(]Smem[)], BORROW, [ACx,] ACy No 3 1 X

[14] SUB [uns(]Smem[)], [ACx,] ACy No 3 1 X

[15] SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy No 4 1 X

[16] SUB dbl(Lmem), [ACx,] ACy No 3 1 X

[17] SUB ACx, dbl(Lmem), ACy No 3 1 X

[18] SUB Xmem, Ymem, ACx No 3 1 X

Description These instructions perform a subtraction operation.

Status Bits Affected by CARRY, C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

SUB Subtraction

Instruction Set Descriptions5-458 SPRU374G

See Also See the following other related instructions:

� ADD (Addition)

� ADDSUB (Dual 16-Bit Addition and Subtraction)

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

� SUB (Dual 16-Bit Subtractions)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

� SUBADD (Dual 16-Bit Subtraction and Addition)

� SUBC (Subtract Conditionally)

 Subtraction SUB

5-459Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUB [src,] dst Yes 2 1 X

Opcode 0010 011E FSSS FDDD

Operands dst, src

Description This instruction performs a subtraction operation between two registers:

dst = dst – src

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

SUB Subtraction

Instruction Set Descriptions5-460 SPRU374G

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1, AC0 The content of AC1 is subtracted from the content of AC0 and the result is stored in AC0.

 Subtraction SUB

5-461Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SUB k4, dst Yes 2 1 X

Opcode 0100 011E kkkk FDDD

Operands dst, k4

Description This instruction subtracts a 4-bit unsigned constant, k4, from a register:

dst = dst – k4

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB #15, AC0 An unsigned 4-bit value (15) is subtracted from the content of AC0 and the result
is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-462 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] SUB K16, [src,] dst No 4 1 X

Opcode 0111 1100 KKKK KKKK KKKK KKKK FDDD FSSS

Operands dst, K16, src

Description This instruction subtracts a 16-bit signed constant, K16, from a register:

dst = src – K16

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The 16-bit constant, K16, is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Subtraction SUB

5-463Instruction Set DescriptionsSPRU374G

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB #FFFFh, AC1, AC0 A signed 16-bit value (FFFFh) is subtracted from the content of AC1 and the
result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-464 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] SUB Smem, [src,] dst No 3 1 X

Opcode 1101 0111 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction subtracts the content of a memory (Smem) location from a
register:

dst = src – Smem

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Subtraction SUB

5-465Instruction Set DescriptionsSPRU374G

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB *AR3, AC1, AC0 The content addressed by AR3 is subtracted from the content of AC1 and the
result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-466 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] SUB src, Smem, dst No 3 1 X

Opcode 1101 1000 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction subtracts a register content from the content of a memory
(Smem) location:

dst = Smem – src

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Subtraction SUB

5-467Instruction Set DescriptionsSPRU374G

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1, *AR3, AC0 The content of AC1 is subtracted from the content addressed by AR3 and the
result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-468 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] SUB ACx << Tx, ACy Yes 2 1 X

Opcode 0101 101E DDSS ss01

Operands ACx, ACy, Tx

Description This instruction subtracts an accumulator content ACx shifted by the content
of Tx from an accumulator content ACy:

ACy = ACy – (ACx << Tx)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1 << T0, AC0 The content of AC1 shifted by the content of T0 is subtracted from the content of
AC0 and the result is stored in AC0.

 Subtraction SUB

5-469Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] SUB ACx << #SHIFTW, ACy Yes 3 1 X

Opcode 0001 000E DDSS 0100 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction subtracts an accumulator content ACx shifted by the 6-bit
value, SHIFTW, from an accumulator content ACy:

ACy = ACy – (ACx << #SHIFTW)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1 << #31, AC0 The content of AC1 shifted left by 31 bits is subtracted from the content of AC0
and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-470 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] SUB K16 << #16, [ACx,] ACy No 4 1 X

Opcode 0111 1010 KKKK KKKK KKKK KKKK SSDD 001x

Operands ACx, ACy, K16

Description This instruction subtracts the 16-bit signed constant, K16, shifted left by 16 bits
from an accumulator content ACx:

ACy = ACx – (K16 << #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB #FFFFh << #16, AC1, AC0 A signed 16-bit value (FFFFh) shifted left by 16 bits is subtracted from
the content of AC1 and the result is stored in AC0.

 Subtraction SUB

5-471Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] SUB K16 << #SHFT, [ACx,] ACy No 4 1 X

Opcode 0111 0001 KKKK KKKK KKKK KKKK SSDD SHFT

Operands ACx, ACy, K16, SHFT

Description This instruction subtracts the 16-bit signed constant, K16, shifted left by the
4-bit value, SHFT, from an accumulator content ACx:

ACy = ACx – (K16 << #SHFT)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB #9800h << #5, AC0, AC1 A signed 16-bit value (9800h) shifted left by 5 bits is subtracted from the
content of AC0 and the result is stored in AC1.

SUB Subtraction

Instruction Set Descriptions5-472 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] SUB Smem << Tx, [ACx,] ACy No 3 1 X

Opcode 1101 1101 AAAA AAAI SSDD ss01

Operands ACx, ACy, Smem, Tx

Description This instruction subtracts the content of a memory (Smem) location shifted by
the content of Tx from an accumulator content ACx:

ACy = ACx – (Smem << Tx)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB *AR3 << T0, AC1, AC0 The content addressed by AR3 shifted by the content of T0 is subtracted
from the content of AC1 and the result is stored in AC0.

 Subtraction SUB

5-473Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] SUB Smem << #16, [ACx,], ACy No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0101

Operands ACx, ACy, Smem

Description This instruction subtracts the content of a memory (Smem) location shifted left
by 16 bits from an accumulator content ACx:

ACy = ACx – (Smem << #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. If the result
of the subtraction generates a borrow, the CARRY status bit is cleared;
otherwise, the CARRY status bit is not affected.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB *AR3 << #16, AC1, AC0 The content addressed by AR3 shifted left by 16 bits is subtracted from the
content of AC1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-474 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] SUB ACx, Smem << #16, ACy No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0110

Operands ACx, ACy, Smem

Description This instruction subtracts an accumulator content ACx from the content of a
memory (Smem) location shifted left by 16 bits:

ACy = (Smem << #16) – ACx

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1, *AR3 << #16, AC0 The content of AC1 is subtracted from the content addressed by AR3
shifted left by 16 bits and the result is stored in AC0.

 Subtraction SUB

5-475Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[13] SUB [uns(]Smem[)], BORROW, [ACx,] ACy No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 101u

Operands ACx, ACy, Smem

Description This instruction subtracts the logical complement of the CARRY status bit
(borrow) and the content of a memory (Smem) location from an accumulator
content ACx:

ACy = ACx – Smem – BORROW

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

SUB Subtraction

Instruction Set Descriptions5-476 SPRU374G

Example

Syntax Description

SUB uns(*AR1), BORROW, AC0, AC1 The complement of the CARRY bit (1) and the unsigned content
addressed by AR1 (F000h) are subtracted from the content of AC0
and the result is stored in AC1.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC1 00 0000 0000 AC1 00 EBFF 0FFF

AR1 0302 AR1 0302

302 F000 302 F000

CARRY 0 CARRY 1

 Subtraction SUB

5-477Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[14] SUB [uns(]Smem[)], [ACx,] ACy No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 111u

Operands ACx, ACy, Smem

Description This instruction subtracts the content of a memory (Smem) location from an
accumulator content ACx:

ACy = ACx – Smem

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB uns(*AR3), AC1, AC0 The unsigned content addressed by AR3 is subtracted from the content of AC1
and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-478 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[15] SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy No 4 1 X

Opcode 1111 1001 AAAA AAAI uxSH IFTW SSDD 01xx

Operands ACx, ACy, SHIFTW, Smem

Description This instruction subtracts the content of a memory (Smem) location shifted by
the 6-bit value, SHIFTW, from an accumulator content ACx:

ACy = ACx – (Smem << #SHIFTW)

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

 Subtraction SUB

5-479Instruction Set DescriptionsSPRU374G

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

SUB uns(*AR3) << #31, AC1, AC0 The unsigned content addressed by AR3 shifted left by 31 bits is
subtracted from the content of AC1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-480 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[16] SUB dbl(Lmem), [ACx,] ACy No 3 1 X

Opcode 1110 1101 AAAA AAAI SSDD 001n

Operands ACx, ACy, Lmem

Description This instruction subtracts the content of data memory operand dbl(Lmem)
from an accumulator content ACx:

ACy = ACx – dbl(Lmem)

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB dbl(*AR3+), AC1, AC0 The content (long word) addressed by AR3 and AR3 + 1 is subtracted from the
content of AC1 and the result is stored in AC0. Because this instruction is a
long-operand instruction, AR3 is incremented by 2 after the execution.

 Subtraction SUB

5-481Instruction Set DescriptionsSPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[17] SUB ACx, dbl(Lmem), ACy No 3 1 X

Opcode 1110 1101 AAAA AAAI SSDD 010x

Operands ACx, ACy, Lmem

Description This instruction subtracts an accumulator content ACx from the content of data
memory operand dbl(Lmem):

ACy = dbl(Lmem) – ACx

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB AC1, dbl(*AR3), AC0 The content of AC1 is subtracted from the content (long word) addressed by
AR3 and AR3 + 1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-482 SPRU374G

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[18] SUB Xmem, Ymem, ACx No 3 1 X

Opcode 1000 0001 XXXM MMYY YMMM 01DD

Operands ACx, Xmem, Ymem

Description This instruction subtracts the content of data memory operand Ymem, shifted
left 16 bits, from the content of data memory operand Xmem, shifted left
16 bits:

ACx = (Xmem << #16) – (Ymem << #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUB *AR3, *AR4, AC0 The content addressed by AR4 shifted left by 16 bits is subtracted from the
content addressed by AR3 shifted left by 16 bits and the result is stored in AC0.

 Subtraction with Parallel Store Accumulator Content to Memory SUB::MOV

5-483Instruction Set DescriptionsSPRU374G

Subtraction with Parallel Store Accumulator Content to MemorySUB::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUB Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 101x xxxx

Operands ACx, ACy, T2, Xmem, Ymem

Description This instruction performs two operations in parallel: subtraction and store:

ACy = (Xmem << #16) – ACx
:: Ymem = HI(ACy << T2)

The first operation subtracts an accumulator content from the content of data
memory operand Xmem shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit. When C54CM = 1, an
intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� When an overflow is detected, the accumulator is saturated according to
SATD.

The second operation shifts the accumulator ACy by the content of T2 and
stores ACy(31–16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACy(31–16), is stored to
the memory location.

SUB::MOV Subtraction with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-484 SPRU374G

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADDSUB (Dual 16-Bit Addition and Subtraction)

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

� SUB (Dual 16-Bit Subtractions)

� SUB (Subtraction)

� SUBADD (Dual 16-Bit Subtraction and Addition)

� SUBC (Subtract Conditionally)

Example

Syntax Description

SUB *AR3 << #16, AC1, AC0
:: MOV HI(AC0 << T2), *AR4

Both instructions are performed in parallel. The content of AC1 is
subtracted from the content addressed by AR3 shifted left by 16 bits and
the result is stored in AC0. The content of AC0 is shifted by the content
of T2, and AC0(31–16) is stored at the address of AR4.

 Subtraction SUBADD

5-485Instruction Set DescriptionsSPRU374G

Dual 16-Bit Subtraction and AdditionSUBADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUBADD Tx, Smem, ACx No 3 1 X

[2] SUBADD Tx, dual(Lmem), ACx No 3 1 X

Description These instructions perform two paralleled subtraction and addition operations
in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� ADD (Addition)

� ADD (Dual 16-Bit Additions)

� ADDSUB (Dual 16-Bit Addition and Subtraction)

� SUB (Dual 16-Bit Subtractions)

� SUB (Subtraction)

SUBADD Dual 16–Bit Subtraction and Addition

Instruction Set Descriptions5-486 SPRU374G

Dual 16-Bit Subtraction and Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUBADD Tx, Smem, ACx No 3 1 X

Opcode 1101 1110 AAAA AAAI ssDD 1001

Operands ACx, Smem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle,
a subtraction and addition:

HI(ACx) = Smem – Tx
:: LO(ACx) = Smem + Tx

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The data memory operand Smem:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

 Dual 16–Bit Subtraction and Addition SUBADD

5-487Instruction Set DescriptionsSPRU374G

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUBADD T0, *AR3, AC0 Both instructions are performed in parallel. The content of T0 is subtracted from
the content addressed by AR3 and the result is stored in AC0(39–16). The
duplicated content of T0 is added to the duplicated content addressed by AR3
and the result is stored in AC0(15–0).

SUBADD Dual 16–Bit Subtraction and Addition

Instruction Set Descriptions5-488 SPRU374G

Dual 16-Bit Subtraction and Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] SUBADD Tx, dual(Lmem), ACx No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 111x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle,
a subtraction and addition:

HI(ACx) = HI(Lmem) – Tx
:: LO(ACx) = LO(Lmem) + Tx

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem – 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

 Dual 16–Bit Subtraction and Addition SUBADD

5-489Instruction Set DescriptionsSPRU374G

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

SUBADD T0, dual(*AR3), AC0 Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of T0 is subtracted from the content
addressed by AR3 and the result is stored in AC0(39–16). The duplicated
content of T0 is added to the content addressed by AR3 + 1 and the result
is stored in AC0(15–0).

SUBC Subtract Conditionally

Instruction Set Descriptions5-490 SPRU374G

Subtract ConditionallySUBC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SUBC Smem, [ACx,] ACy No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0011

Operands ACx, ACy, Smem

Description This instruction performs a conditional subtraction in the D-unit ALU. The
D-unit shifter is not used to perform the memory operand shift.

� The 16-bit data memory operand Smem is sign extended to 40 bits
according to SXMD, shifted left by 15 bits, and subtracted from the content
of the source accumulator ACx.

� The shift operation is equivalent to the signed shift instruction.

� Overflow and CARRY bit is always detected at bit position 31. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� If an overflow is detected and reported in accumulator overflow bit
ACOVy, no saturation is performed on the result of the operation.

� If the result of the subtraction is greater than 0 (bit 39 = 0), the result is
shifted left by 1 bit, added to 1, and stored in the destination accumulator
ACy.

� If the result of the subtraction is less than 0 (bit 39 = 1), the source
accumulator ACx is shifted left by 1 bit and stored in the destination
accumulator ACy.

if ((ACx – (Smem << #15)) >= 0)

ACy = (ACx – (Smem << #15)) << #1 + 1

else

ACy = ACx << #1

This instruction is used to make a 16 step 16-bit by 16-bit division. The divisor
and the dividend are both assumed to be positive in this instruction. SXMD
affects this operation:

� If SXMD = 1, the divisor must have a 0 value in the most significant bit

� If SXMD = 0, any 16-bit divisor value produces the expected result

The dividend, which is in the source accumulator ACx, must be positive
(bit 31 = 0) during the computation.

 Subtract Conditionally SUBC

5-491Instruction Set DescriptionsSPRU374G

Status Bits Affected by SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� ADDSUBCC (Addition or Subtraction Conditionally)

� ADDSUBCC (Addition, Subtraction, or Move Accumulator Content
Conditionally)

� ADDSUB2CC (Addition or Subtraction Conditionally with Shift)

� SUB (Subtraction)

� SUB::MOV (Subtraction with Parallel Store Accumulator Content to
Memory)

� SUBADD (Dual 16-Bit Subtraction and Addition)

Example 1

Syntax Description

SUBC *AR1, AC0, AC1 The content addressed by AR1 shifted left by 15 bits is subtracted from the
content of AC0. The result is greater than 0; therefore, the result is shifted left by
1 bit, added to 1, and the new result stored in AC1. The result generated an
overflow and a carry.

Before After

AC0 23 4300 0000 AC0 23 4300 0000

AC1 00 0000 0000 AC1 46 8400 0001

AR1 300 AR1 300

300 200 300 200

SXMD 0 SXMD 0

ACOV1 0 ACOV1 1

CARRY 0 CARRY 1

SUBC Subtract Conditionally

Instruction Set Descriptions5-492 SPRU374G

Example 2

Syntax Description

repeat (CSR)

SUBC *AR1, AC1

The content addressed by AR1 shifted left by 15 bits is subtracted from the
content of AC1. The result is greater than 0; therefore, the result is shifted left by
1 bit, added to 1, and the new result stored in AC1. The content addressed by
AR1 shifted left by 15 bits is subtracted from the content of AC1. The result is
greater than 0; therefore, the result is shifted left by 1 bit, added to 1, and the new
result stored in AC1. The result generated a carry.

Before After

AC1 00 0746 0000 AC1 00 1A18 0007

AR1 200 AR1 200

200 0100 200 0100

CSR 1 CSR 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 1

 Swap Accumulator Content SWAP

5-493Instruction Set DescriptionsSPRU374G

Swap Accumulator ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

SWAP ACx, ACy

[1] SWAP AC0, AC2 Yes 2 1 X

[2] SWAP AC1, AC3 Yes 2 1 X

Opcode SWAP AC0, AC2 0101 111E 0000 0000

SWAP AC1, AC3 0101 111E 0000 0001

Operands ACx, ACy

Description This instruction performs parallel moves between two accumulators. These
operations are performed in a dedicated datapath independent of the D-unit
operators.

This instruction moves the content of the first accumulator (ACx) to the second
accumulator (ACy), and reciprocally moves the content of the second
accumulator to the first accumulator.

Accumulator swapping is performed in the execute phase of the pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Auxiliary Register Content)

� SWAP (Swap Auxiliary and Temporary Register Content)

� SWAP (Swap Temporary Register Content)

� SWAPP (Swap Accumulator Pair Content)

Example

Syntax Description

SWAP AC0, AC2 The content of AC0 is moved to AC2 and the content of AC2 is moved to AC0.

Before After

AC0 01 E500 0030 AC0 00 2800 0200

AC2 00 2800 0200 AC2 01 E500 0030

SWAP Swap Auxiliary Register Content

Instruction Set Descriptions5-494 SPRU374G

Swap Auxiliary Register ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

SWAP ARx, ARy

[1] SWAP AR0, AR1 Yes 2 1 AD

[2] SWAP AR0, AR2 Yes 2 1 AD

[3] SWAP AR1, AR3 Yes 2 1 AD

Opcode SWAP AR0, AR1 0101 111E 0011 1000

SWAP AR0, AR2 0101 111E 0000 1000

SWAP AR1, AR3 0101 111E 0000 1001

Operands ARx, ARy

Description This instruction performs parallel moves between two auxiliary registers.
These operations are performed in a dedicated datapath independent of the
A-unit operators.

This instruction moves the content of the first auxiliary register (ARx) to the
second auxiliary register (ARy), and reciprocally moves the content of the
second auxiliary register to the first auxiliary register.

Auxiliary register swapping is performed in the address phase of the pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Accumulator Content)

� SWAP (Swap Auxiliary and Temporary Register Content)

� SWAP (Swap Temporary Register Content)

� SWAPP (Swap Auxiliary Register Pair Content)

Example

Syntax Description

SWAP AR0, AR2 The content of AR0 is moved to AR2 and the content of AR2 is moved to AR0.

Before After

AR0 6500 AR0 0300

AR2 0300 AR2 6500

 Swap Auxiliary and Temporary Register Content SWAP

5-495Instruction Set DescriptionsSPRU374G

Swap Auxiliary and Temporary Register ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

SWAP ARx, Tx

[1] SWAP AR4, T0 Yes 2 1 AD

[2] SWAP AR5, T1 Yes 2 1 AD

[3] SWAP AR6, T2 Yes 2 1 AD

[4] SWAP AR7, T3 Yes 2 1 AD

Opcode SWAP AR4, T0 0101 111E 0000 1100

SWAP AR5, T1 0101 111E 0000 1101

SWAP AR6, T2 0101 111E 0000 1110

SWAP AR7, T3 0101 111E 0000 1111

Operands ARx, Tx

Description This instruction performs parallel moves between auxiliary registers and
temporary registers. These operations are performed in a dedicated datapath
independent of the A-unit operators.

This instruction moves the content of the auxiliary register (ARx) to the
temporary register (Tx), and reciprocally moves the content of the temporary
register to the auxiliary register.

Auxiliary and temporary register swapping is performed in the address phase
of the pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Accumulator Content)

� SWAP (Swap Auxiliary Register Content)

� SWAP (Swap Temporary Register Content)

� SWAPP (Swap Auxiliary and Temporary Register Pair Content)

� SWAP4 (Swap Auxiliary and Temporary Register Pairs Content)

SWAP Swap Auxiliary and Temporary Register Content

Instruction Set Descriptions5-496 SPRU374G

Example

Syntax Description

SWAP AR4, T0 The content of AR4 is moved to T0 and the content of T0 is moved to AR4.

Before After

T0 6500 T0 0300

AR4 0300 AR4 6500

 Swap Temporary Register Content SWAP

5-497Instruction Set DescriptionsSPRU374G

Swap Temporary Register ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

SWAP Tx, Ty

[1] SWAP T0, T2 Yes 2 1 AD

[2] SWAP T1, T3 Yes 2 1 AD

Opcode SWAP T0, T2 0101 111E 0000 0100

SWAP T1, T3 0101 111E 0000 0101

Operands Tx, Ty

Description This instruction performs parallel moves between two temporary registers.
These operations are performed in a dedicated datapath independent of the
A-unit operators.

This instruction moves the content of the first temporary register (Tx) to the
second temporary register (Ty), and reciprocally moves the content of the
second temporary register to the first temporary register.

Temporary register swapping is performed in the address phase of the
pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Accumulator Content)

� SWAP (Swap Auxiliary Register Content)

� SWAP (Swap Auxiliary and Temporary Register Content)

� SWAPP (Swap Temporary Register Pair Content)

Example

Syntax Description

SWAP T0, T2 The content of T0 is moved to T2 and the content of T2 is moved to T0.

Before After

T0 6500 T0 0300

T2 0300 T2 6500

SWAPP Swap Accumulator Pair Content

Instruction Set Descriptions5-498 SPRU374G

Swap Accumulator Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SWAPP AC0, AC2 Yes 2 1 X

Opcode 0101 111E 0001 0000

Operands AC0, AC2

Description This instruction performs two parallel moves between four accumulators (AC0
and AC2, AC1 and AC3) in one cycle. These operations are performed in a
dedicated datapath independent of the D-unit operators. Accumulator
swapping is performed in the execute phase of the pipeline.

This instruction performs two parallel moves:

� the content of AC0 to AC2, and reciprocally the content of AC2 to AC0

� the content of AC1 to AC3, and reciprocally the content of AC3 to AC1

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Accumulator Content)

� SWAPP (Swap Auxiliary Register Pair Content)

� SWAPP (Swap Auxiliary and Temporary Register Pair Content)

� SWAPP (Swap Temporary Register Pair Content)

Example

Syntax Description

SWAPP AC0, AC2 The following two swap instructions are performed in parallel: the content of AC0
is moved to AC2 and the content of AC2 is moved to AC0, and the content of AC1
is moved to AC3 and the content of AC3 is moved to AC1.

Before After

AC0 01 E500 0030 AC0 00 2800 0200

AC1 00 FFFF 0000 AC1 00 8800 0800

AC2 00 2800 0200 AC2 01 E500 0030

AC3 00 8800 0800 AC3 00 FFFF 0000

 Swap Auxiliary Register Pair Content SWAPP

5-499Instruction Set DescriptionsSPRU374G

Swap Auxiliary Register Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SWAPP AR0, AR2 Yes 2 1 AD

Opcode 0101 111E 0001 1000

Operands AR0, AR2

Description This instruction performs two parallel moves between four auxiliary registers
(AR0 and AR2, AR1 and AR3) in one cycle. These operations are performed
in a dedicated datapath independent of the A-unit operators. Auxiliary register
swapping is performed in the address phase of the pipeline.

This instruction performs two parallel moves:

� the content of AR0 to AR2, and reciprocally the content of AR2 to AR0

� the content of AR1 to AR3, and reciprocally the content of AR3 to AR1

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Auxiliary Register Content)

� SWAPP (Swap Accumulator Pair Content)

� SWAPP (Swap Auxiliary and Temporary Register Pair Content)

� SWAPP (Swap Temporary Register Pair Content)

Example

Syntax Description

SWAPP AR0, AR2 The following two swap instructions are performed in parallel: the content of AR0
is moved to AR2 and the content of AR2 is moved to AR0, and the content of AR1
is moved to AR3 and the content of AR3 is moved to AR1.

Before After

AR0 0200 AR0 6788

AR1 0300 AR1 0200

AR2 6788 AR2 0200

AR3 0200 AR3 0300

SWAPP Swap Auxiliary and Temporary Register Pair Content

Instruction Set Descriptions5-500 SPRU374G

Swap Auxiliary and Temporary Register Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

SWAPP ARx, Tx

[1] SWAPP AR4, T0 Yes 2 1 AD

[2] SWAPP AR6, T2 Yes 2 1 AD

Opcode SWAPP AR4, T0 0101 111E 0001 1100

SWAPP AR6, T2 0101 111E 0001 1110

Operands ARx, Tx

Description This instruction performs two parallel moves between two auxiliary registers
and two temporary registers in one cycle. These operations are performed in
a dedicated datapath independent of the A-unit operators. Auxiliary and
temporary register swapping is performed in the address phase of the pipeline.

Instruction [1] performs two parallel moves:

� the content of AR4 to T0, and reciprocally the content of T0 to AR4

� the content of AR5 to T1, and reciprocally the content of T1 to AR5

Instruction [2] performs two parallel moves:

� the content of AR6 to T2, and reciprocally the content of T2 to AR6

� the content of AR7 to T3, and reciprocally the content of T3 to AR7

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Auxiliary and Temporary Register Content)

� SWAPP (Swap Accumulator Pair Content)

� SWAPP (Swap Auxiliary Register Pair Content)

� SWAPP (Swap Temporary Register Pair Content)

� SWAP4 (Swap Auxiliary and Temporary Register Pairs Content)

 Swap Auxiliary and Temporary Register Pair Content SWAPP

5-501Instruction Set DescriptionsSPRU374G

Example

Syntax Description

SWAPP AR4, T0 The following two swap instructions are performed in parallel: the content of AR4
is moved to T0 and the content of T0 is moved to AR4, and the content of AR5 is
moved to T1 and the content of T1 is moved to AR5.

Before After

AR4 0200 AR4 6788

AR5 0300 AR5 0200

T0 6788 T0 0200

T1 0200 T1 0300

SWAPP Swap Temporary Register Pair Content

Instruction Set Descriptions5-502 SPRU374G

Swap Temporary Register Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SWAPP T0, T2 Yes 2 1 AD

Opcode 0101 111E 0001 0100

Operands T0, T2

Description This instruction performs two parallel moves between four temporary registers
(T0 and T2, T1 and T3) in one cycle. These operations are performed in a
dedicated datapath independent of the A-unit operators. Temporary register
swapping is performed in the address phase of the pipeline.

This instruction performs two parallel moves:

� the content of T0 to T2, and reciprocally the content of T2 to T0

� the content of T1 to T3, and reciprocally the content of T3 to T1

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Temporary Register Content)

� SWAPP (Swap Accumulator Pair Content)

� SWAPP (Swap Auxiliary Register Pair Content)

� SWAPP (Swap Auxiliary and Temporary Register Pair Content)

Example

Syntax Description

SWAPP T0, T2 The following two swap instructions are performed in parallel: the content of T0 is
moved to T2 and the content of T2 is moved to T0, and the content of T1 is
moved to T3 and the content of T3 is moved to T1.

Before After

T0 0200 T0 6788

T1 0300 T1 0200

T2 6788 T2 0200

T3 0200 T3 0300

 Swap Auxiliary and Temporary Register Pairs Content SWAP4

5-503Instruction Set DescriptionsSPRU374G

Swap Auxiliary and Temporary Register Pairs ContentSWAP4

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SWAP4 AR4, T0 Yes 2 1 AD

Opcode 0101 111E 0010 1100

Operands AR4, T0

Description This instruction performs four parallel moves between four auxiliary registers
(AR4, AR5, AR6, and AR7) and four temporary registers (T0, T1, T2, and T3)
in one cycle. These operations are performed in a dedicated datapath
independent of the A-unit operators. Auxiliary and temporary register
swapping is performed in the address phase of the pipeline.

This instruction performs four parallel moves:

� the content of AR4 to T0, and reciprocally the content of T0 to AR4

� the content of AR5 to T1, and reciprocally the content of T1 to AR5

� the content of AR6 to T2, and reciprocally the content of T2 to AR6

� the content of AR7 to T3, and reciprocally the content of T3 to AR7

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� SWAP (Swap Auxiliary and Temporary Register Content)

� SWAPP (Swap Auxiliary and Temporary Register Pair Content)

SWAP4 Swap Auxiliary and Temporary Register Pairs Content

Instruction Set Descriptions5-504 SPRU374G

Example

Syntax Description

SWAP4 AR4, T0 The following four swap instructions are performed in parallel: the content of AR4
is moved to T0 and the content of T0 is moved to AR4, the content of AR5 is
moved to T1 and the content of T1 is moved to AR5, the content of AR6 is moved
to T2 and the content of T2 is moved to AR6, and the content of AR7 is moved to
T3 and the content of T3 is moved to AR7.

Before After

AR4 0200 AR4 0030

AR5 0300 AR5 0200

AR6 0240 AR6 3400

AR7 0400 AR7 0FD3

T0 0030 T0 0200

T1 0200 T1 0300

T2 3400 T2 0240

T3 0FD3 T3 0400

 Software Trap TRAP

5-505Instruction Set DescriptionsSPRU374G

Software TrapTRAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TRAP k5 No 2 ? D

Opcode 1001 0101 1xxk kkkk

Operands k5

Description This instruction passes control to a specified interrupt service routine (ISR)
and this instruction does not affect INTM bit in ST1_55. The ISR address is
stored at the interrupt vector address defined by the content of an interrupt
vector pointer (IVPD or IVPH) combined with the 5-bit constant, k5. This
instruction is executed regardless of the value of INTM bit . This instruction is
not maskable.

Note:

DBSTAT (the debug status register) holds debug context information used
during emulation. Make sure the ISR does not modify the value that will be
returned to DBSTAT.

Before beginning an ISR, the CPU automatically saves the value of some CPU
registers and two internal registers: the program counter (PC) and a loop
context register. The CPU can use these values to re-establish the context of
the interrupted program sequence when the ISR is done.

In the slow-return process (default), the return address (from the PC), the loop
context bits, and some CPU registers are stored to the stacks (in memory).
When the CPU returns from an ISR, the speed at which these values are
restored is dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. Some CPU
registers are saved to the stacks (in memory). For fast-return mode operation,
see the TMS320C55x DSP CPU Reference Guide (SPRU371).

When control is passed to the ISR:

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The status register 2 (ST2_55) content is pushed
to the top of SP.

TRAP Software Trap

Instruction Set Descriptions5-506 SPRU374G

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The 7 higher bits of status register 0 (ST0_55)
concatenated with 9 zeroes are pushed to the top of SSP.

� The SP is decremented by 1 word in the access phase of the pipeline. The
status register 1 (ST1_55) content is pushed to the top of SP.

� The SSP is decremented by 1 word in the access phase of the pipeline.
The debug status register (DBSTAT) content is pushed to the top of SSP.

� The SP is decremented by 1 word in the read phase of the pipeline. The
16 LSBs of the return address, from the program counter (PC), of the
called subroutine are pushed to the top of SP.

� The SSP is decremented by 1 word in the read phase of the pipeline. The
loop context bits concatenated with the 8 MSBs of the return address are
pushed to the top of SSP.

� The PC is loaded with the ISR program address. The active control flow
execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
S

→ SSP = x – 3 (Loop bits):PC(23–16) After
S

→ SP = y – 3 PC(15–0)
Save SSP = x – 2 DBSTAT Save SP = y – 2 ST1_55

SSP = x – 1 ST0_55(15–9) SP = y – 1 ST2_55

Before
S

→ SSP = x Previously saved data Before
S

→ SP = y Previously saved data
Save Save

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� INTR (Software Interrupt)

� RETI (Return from Interrupt)

Example

Syntax Description

TRAP #5 Program control is passed to the specified interrupt service routine. The interrupt vector
address is defined by the content of an interrupt vector pointer (IVPD) combined with
the unsigned 5-bit value (5).

 Execute Conditionally XCC

5-507Instruction Set DescriptionsSPRU374G

Execute ConditionallyXCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XCC [label,]cond No 2 1 AD

[2] XCCPART [label,]cond No 2 1 X

Description These instructions evaluate a single condition defined by the cond field and
allow you to control execution of all operations implied by the instruction or part
of the instruction. See Table 1–3 for a list of conditions.

Instruction [1] allows you to control the entire execution flow from the address
phase to the execute phase of the pipeline. Instruction [2] allows you to only
control the execution flow from the execute phase of the pipeline. The use of
a label, where control of the execute conditionally instruction ends, is optional.

� These instructions may be executed alone.

� These instructions may be executed with two paralleled instructions.

� These instructions may be executed with the instruction with which it is
paralleled.

� These instructions may be executed with the previous instruction.

� These instructions may be executed with the previous instruction and two
paralleled instructions.

� These instructions cannot be repeated.

� These instructions cannot be used as the last instruction in a repeat loop
structure.

� These instructions cannot control the execution of the following program
control instructions:

B (branch) BCC IDLE INTR XCC

CALL CALLCC RPT RPTCC XCCPART

RET RETCC RETI RPTB RPTBLOCAL

RESET TRAP

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

XCC Execute Conditionally

Instruction Set Descriptions5-508 SPRU374G

Execute Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XCC [label,]cond No 2 1 AD

Opcode 1001 0110 0CCC CCCC

1001 1110 0CCC CCCC

1001 1111 0CCC CCCC

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands cond

Description This instruction evaluates a single condition defined by the cond field and
allows you to control the execution flow of an instruction, or instructions, from
the address phase to the execute phase of the pipeline. See Table 1–3 for a
list of conditions.

When this instruction moves into the address phase of the pipeline, the
condition specified in the cond field is evaluated. If the tested condition is true,
the conditional instruction(s) is read and executed; if the tested condition is
false, the conditional instruction(s) is not read and program control is passed
to the instruction following the conditional instruction(s) or to the program
address defined by label. There is a 3-cycle latency for the condition testing.

� This instruction may be executed alone:

XCC [label,]cond
instruction_executes_conditionally

[label:]

� This instruction may be executed with two paralleled instructions:

XCC [label,]cond
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

[label:]

� This instruction may be executed with the instruction with which it is
paralleled:

XCC [label,]cond
|| instruction_executes_conditionally

[label:]

 Execute Conditionally XCC

5-509Instruction Set DescriptionsSPRU374G

� This instruction may be executed with a previous instruction:

previous_instruction
|| XCC [label,]cond
instruction_executes_conditionally

[label:]

� This instruction may be executed with a previous instruction and two
paralleled instructions:

previous_instruction
|| XCC [label,]cond
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

[label:]

This instruction cannot be used as the last instruction in a repeat loop
structure.

This instruction cannot control the execution of the following program control
instructions:

B (branch) BCC IDLE INTR XCC

CALL CALLCC RPT RPTCC XCCPART

RET RETCC RETI RPTB RPTBLOCAL

RESET TRAP

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example 1

Syntax Description

XCC branch, AR0 != #0

ADD *AR2+, AC0

The content of AR0 is not equal to 0, the next (ADD) instruction is executed. The
content of AC0 is added to the content addressed by AR2 and the result is stored
in AC0. AR2 is incremented by 1.

Before After

AR0 3000 AR0 3000

AR2 0405 AR2 0406

405 EF00 405 EF00

AC0 00 0000 000C AC0 00 0000 EF0C

XCC Execute Conditionally

Instruction Set Descriptions5-510 SPRU374G

Example 2

Syntax Description

XCC AR0 != #0

ADD *AR2+, AC0

The content of AR0 is equal to 0, the next (ADD) instruction is not executed and
control is passed to the instruction following the conditionally executed (ADD)
instruction.

Before After

AR0 0000 AR0 0000

AR2 0405 AR2 0405

405 EF00 405 EF00

AC0 00 0000 000C AC0 00 0000 000C

 Execute Conditionally XCC

5-511Instruction Set DescriptionsSPRU374G

Execute Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] XCCPART [label,]cond No 2 1 X

Opcode 1001 0110 1CCC CCCC

1001 1110 1CCC CCCC

1001 1111 1CCC CCCC

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands cond

Description This instruction evaluates a single condition defined by the cond field and
allows you to control the execution flow of an instruction, or instructions, from
the execute phase of the pipeline. This instruction differs from instruction [1]
because in this instruction operations performed in the address phase are
always executed. See Table 1–3 for a list of conditions.

When this instruction moves into the execute phase of the pipeline, the
condition specified in the cond field is evaluated. If the tested condition is true,
the conditional instruction(s) is read and executed; if the tested condition is
false, the conditional instruction(s) is not read and program control is passed
to the instruction following the conditional instruction(s) or to the program
address defined by label. There is a 0-cycle latency for the condition testing.

� This instruction may be executed alone:

XCCPART [label,]cond
instruction_executes_conditionally

[label:]

� This instruction may be executed with two paralleled instructions:

XCCPART [label,]cond
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

[label:]

� This instruction may be executed with the instruction with which it is
paralleled. When this instruction syntax is used and the instruction to be
executed conditionally is a store-to-memory instruction, there is a 1-cycle
latency for the condition setting.

XCCPART [label,]cond
|| instruction_executes_conditionally

[label:]

XCC Execute Conditionally

Instruction Set Descriptions5-512 SPRU374G

� This instruction may be executed with a previous instruction:

previous_instruction
|| XCCPART [label,]cond
instruction_executes_conditionally

[label:]

� This instruction may be executed with a previous instruction and two
paralleled instructions:

previous_instruction
|| XCCPART [label,]cond
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

[label:]

This instruction cannot be used as the last instruction in a repeat loop
structure.

This instruction cannot control the execution of the following program control
instructions:

B (branch) BCC IDLE INTR XCC

CALL CALLCC RPT RPTCC XCCPART

RET RETCC RETI RPTB RPTBLOCAL

RESET TRAP

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example 1

Syntax Description

XCCPART branch, AR0 != #0

ADD *AR2+, AC0

The content of AR0 is not equal to 0, the next (ADD) instruction is executed.
The content of AC0 is added to the content addressed by AR2 and the
result is stored in AC0. AR2 is incremented by 1.

Before After

AR0 3000 AR0 3000

AR2 0405 AR2 0406

405 EF00 405 EF00

AC0 00 0000 000C AC0 00 0000 EF0C

 Execute Conditionally XCC

5-513Instruction Set DescriptionsSPRU374G

Example 2

Syntax Description

XCCPART AR0 != #0

ADD *AR2+, AC0

The content of AR0 is equal to 0, the next (ADD) instruction is not executed and
control is passed to the instruction following the conditionally executed (ADD)
instruction; however, since the next (ADD) instruction includes a pointer
modification, AR2 is incremented by 1 in the address phase.

Before After

AR0 0000 AR0 0000

AR2 0405 AR2 0406

405 EF00 405 EF00

AC0 00 0000 000C AC0 00 0000 000C

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-514 SPRU374G

Bitwise Exclusive OR (XOR)XOR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XOR src, dst Yes 2 1 X

[2] XOR k8, src, dst Yes 3 1 X

[3] XOR k16, src, dst No 4 1 X

[4] XOR Smem, src, dst No 3 1 X

[5] XOR ACx << #SHIFTW[, ACy] Yes 3 1 X

[6] XOR k16 << #16, [ACx,] ACy No 4 1 X

[7] XOR k16 << #SHFT, [ACx,] ACy No 4 1 X

[8] XOR k16, Smem No 4 1 X

Description These instructions perform a bitwise exclusive-OR (XOR) operation:

� In the D-unit, if the destination operand is an accumulator.

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register.

� In the A-unit ALU, if the destination operand is the memory.

Status Bits Affected by C54CM

Affects none

See Also See the following other related instructions:

� AND (Bitwise AND)

� OR (Bitwise OR)

 Bitwise Exclusive OR (XOR) XOR

5-515Instruction Set DescriptionsSPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XOR src, dst Yes 2 1 X

Opcode 0010 110E FSSS FDDD

Operands dst, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between
two registers:

dst = dst ^ src

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR AC0, AC1 The content of AC0 is XORed with the content of AC1 and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 0F E340 5678 AC1 71 C015 19B8

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-516 SPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] XOR k8, src, dst Yes 3 1 X

Opcode 0001 110E kkkk kkkk FDDD FSSS

Operands dst, k8, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
source (src) register content and an 8-bit value, k8:

dst = src ^ k8

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR #FFh, AC1, AC0 The content of AC1 is XORed with the unsigned 8-bit value (FFh) and the result is
stored in AC0.

 Bitwise Exclusive OR (XOR) XOR

5-517Instruction Set DescriptionsSPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] XOR k16, src, dst No 4 1 X

Opcode 0111 1111 kkkk kkkk kkkk kkkk FDDD FSSS

Operands dst, k16, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
source (src) register content and a 16-bit unsigned constant, k16:

dst = src ^ k16

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR #FFFFh, AC1, AC0 The content of AC1 is XORed with the unsigned 16-bit value (FFFFh) and the
result is stored in AC0.

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-518 SPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] XOR Smem, src, dst No 3 1 X

Opcode 1101 1011 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
source (src) register content and a memory (Smem) location:

dst = src ^ Smem

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR *AR3, AC1, AC0 The content of AC1 is XORed with the content addressed by AR3 and the result is
stored in AC0.

 Bitwise Exclusive OR (XOR) XOR

5-519Instruction Set DescriptionsSPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] XOR ACx << #SHIFTW[, ACy] Yes 3 1 X

Opcode 0001 000E DDSS 0010 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs a bitwise exclusive-OR (XOR) operation between an
accumulator (ACy) content and an accumulator (ACx) content shifted by the
6-bit value, SHIFTW:

ACy = ACy ^ (ACx <<< #SHIFTW)

� The shift and XOR operations are performed in one cycle in the D-unit
shifter.

� Input operands are zero extended to 40 bits.

� The input operand (ACx) is shifted by a 6-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the intermediary logical shift is performed as if M40 is
locally set to 1. The 8 upper bits of the 40-bit intermediary result are not
cleared.

Status Bits Affected by C54CM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR AC1 << #30, AC0 The content of AC0 is XORed with the content of AC1 logically shifted left by
30 bits and the result is stored in AC0.

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-520 SPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] XOR k16 << #16, [ACx,] ACy No 4 1 X

Opcode 0111 1010 kkkk kkkk kkkk kkkk SSDD 100x

Operands ACx, ACy, k16

Description This instruction performs a bitwise exclusive-OR (XOR) operation between an
accumulator (ACx) content and a 16-bit unsigned constant, k16, shifted left by
16 bits:

ACy = ACx ^ (k16 <<< #16)

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted 16 bits to the MSBs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR #FFFFh << #16, AC1, AC0 The content of AC1 is XORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 16 bits and the result is stored in AC0.

 Bitwise Exclusive OR (XOR) XOR

5-521Instruction Set DescriptionsSPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] XOR k16 << #SHFT, [ACx,] ACy No 4 1 X

Opcode 0111 0100 kkkk kkkk kkkk kkkk SSDD SHFT

Operands ACx, ACy, k16, SHFT

Description This instruction performs a bitwise exclusive-OR (XOR) operation between an
accumulator (ACx) content and a 16-bit unsigned constant, k16, shifted left by
the 4-bit value, SHFT:

ACy = ACx ^ (k16 <<< #SHFT)

� The shift and XOR operations are performed in one cycle in the D-unit
shifter.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted by a 4-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XOR #FFFFh << #15, AC1, AC0 The content of AC1 is XORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 15 bits and the result is stored in AC0.

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-522 SPRU374G

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] XOR k16, Smem No 4 1 X

Opcode 1111 0110 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
memory (Smem) location and a 16-bit unsigned constant, k16:

Smem = Smem ^ k16

� The operation is performed on 16 bits in the A-unit ALU.

� The result is stored in memory.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated when using the *(#k23) absolute address-
ing mode to access the memory operand (Smem); when using other address-
ing modes, this instruction can be repeated.

Example

Syntax Description

XOR #FFFFh, *AR3 The content addressed by AR3 is XORed with the unsigned 16-bit value (FFFFh)
and the result is stored in the location addressed by AR3.

6-1

Instruction Opcodes in Sequential Order

This chapter provides the opcode in sequential order for each
TMS320C55x DSP instruction syntax.

Topic Page

6.1 Instruction Set Opcodes 6-2.

6.2 Instruction Set Opcode Symbols and Abbreviations 6-15.

Chapter 6

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-2 SPRU374G

6.1 Instruction Set Opcodes

Table 6–1 lists the opcodes of the instruction set. See Table 6–2 (page 6-15)
for a list of the symbols and abbreviations used in the instruction set opcode.
See Table 1–1 (page 1-2) and Table 1–2 (page 1-6) for a list of the terms,
symbols, and abbreviations used in the mnemonic syntax.

Table 6–1. Instruction Set Opcodes

Opcode Mnemonic syntax

0000000E xCCCCCCC kkkkkkkk RPTCC k8, cond

0000001E xCCCCCCC xxxxxxxx RETCC cond

0000010E xCCCCCCC LLLLLLLL BCC L8, cond

0000011E LLLLLLLL LLLLLLLL B L16

0000100E LLLLLLLL LLLLLLLL CALL L16

0000110E kkkkkkkk kkkkkkkk RPT k16

0000111E llllllll llllllll RPTB pmad

0001000E DDSS0000 xxSHIFTW AND ACx << #SHIFTW[, ACy]

0001000E DDSS0001 xxSHIFTW OR ACx << #SHIFTW[, ACy]

0001000E DDSS0010 xxSHIFTW XOR ACx << #SHIFTW[, ACy]

0001000E DDSS0011 xxSHIFTW ADD ACx << #SHIFTW, ACy

0001000E DDSS0100 xxSHIFTW SUB ACx << #SHIFTW, ACy

0001000E DDSS0101 xxSHIFTW SFTS ACx, #SHIFTW[, ACy]

0001000E DDSS0110 xxSHIFTW SFTSC ACx, #SHIFTW[, ACy]

0001000E DDSS0111 xxSHIFTW SFTL ACx, #SHIFTW[, ACy]

0001000E xxSS1000 xxddxxxx EXP ACx, Tx

0001000E DDSS1001 xxddxxxx MANT ACx, ACy
:: NEXP ACx, Tx

0001000E xxSS1010 SSddxxxt BCNT ACx, ACy,TCx, Tx

0001000E DDSS1100 SSDDnnnn MAXDIFF ACx, ACy, ACz, ACw

0001000E DDSS1101 SSDDxxxr DMAXDIFF ACx, ACy, ACz, ACw, TRNx

0001000E DDSS1110 SSDDxxxx MINDIFF ACx, ACy, ACz, ACw

0001000E DDSS1111 SSDDxxxr DMINDIFF ACx, ACy, ACz, ACw, TRNx

0001001E FSSScc00 FDDDxuxt CMP[U] src RELOP dst, TCx

0001001E FSSScc01 FDDD0utt CMPAND[U] src RELOP dst, TCy, TCx

0001001E FSSScc01 FDDD1utt CMPAND[U] src RELOP dst, !TCy, TCx

0001001E FSSScc10 FDDD0utt CMPOR[U] src RELOP dst, TCy, TCx

0001001E FSSScc10 FDDD1utt CMPOR[U] src RELOP dst, !TCy, TCx

Instruction Set Opcodes

6-3Instruction Opcodes in Sequential OrderSPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

0001001E FSSSxx11 FDDD0xvv ROL BitOut, src, BitIn, dst

0001001E FSSSxx11 FDDD1xvv ROR BitIn, src, BitOut, dst

0001010E FSSSxxxx FDDD0000 AADD TAx, TAy

0001010E FSSSxxxx FDDD0001 AMOV TAx, TAy

0001010E FSSSxxxx FDDD0010 ASUB TAx, TAy

0001010E PPPPPPPP FDDD0100 AADD P8, TAx

0001010E PPPPPPPP FDDD0101 AMOV P8, TAx

0001010E PPPPPPPP FDDD0110 ASUB P8, TAx

0001010E FSSSxxxx FDDD1000 AADD TAx, TAy

0001010E FSSSxxxx FDDD1001 AMOV TAx, TAy

0001010E FSSSxxxx FDDD1010 ASUB TAx, TAy

0001010E PPPPPPPP FDDD1100 AADD P8, TAx

0001010E PPPPPPPP FDDD1101 AMOV P8, TAx

0001010E PPPPPPPP FDDD1110 ASUB P8, TAx

0001011E xxxxxkkk kkkk0000 MOV k7, DPH

0001011E xxxkkkkk kkkk0011 MOV k9, PDP

0001011E kkkkkkkk kkkk0100 MOV k12, BK03

0001011E kkkkkkkk kkkk0101 MOV k12, BK47

0001011E kkkkkkkk kkkk0110 MOV k12, BKC

0001011E kkkkkkkk kkkk1000 MOV k12, CSR

0001011E kkkkkkkk kkkk1001 MOV k12, BRC0

0001011E kkkkkkkk kkkk1010 MOV k12, BRC1

0001100E kkkkkkkk FDDDFSSS AND k8, src, dst

0001101E kkkkkkkk FDDDFSSS OR k8, src, dst

0001110E kkkkkkkk FDDDFSSS XOR k8, src, dst

0001111E KKKKKKKK SSDDxx0% MPYK[R] K8, [ACx,] ACy

0001111E KKKKKKKK SSDDss1% MACK[R] Tx, K8, [ACx,] ACy

0010000E NOP

0010001E FSSSFDDD MOV src, dst

0010010E FSSSFDDD ADD [src,] dst

0010011E FSSSFDDD SUB [src,] dst

0010100E FSSSFDDD AND src, dst

0010101E FSSSFDDD OR src, dst

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-4 SPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

0010110E FSSSFDDD XOR src, dst

0010111E FSSSFDDD MAX [src,] dst

0011000E FSSSFDDD MIN [src,] dst

0011001E FSSSFDDD ABS [src,] dst

0011010E FSSSFDDD NEG [src,] dst

0011011E FSSSFDDD NOT [src,] dst

0011100E FSSSFDDD
(Note: FSSS = src1, FDDD = src2)

PSH src1, src2

0011101E FSSSFDDD
(Note: FSSS = dst1, FDDD = dst2)

POP dst1, dst2

0011110E kkkkFDDD MOV k4, dst

0011111E kkkkFDDD MOV –k4, dst

0100000E kkkkFDDD ADD k4, dst

0100001E kkkkFDDD SUB k4, dst

0100010E 00SSFDDD MOV HI(ACx), TAx

0100010E 01x0FDDD SFTS dst, #–1

0100010E 01x1FDDD SFTS dst, #1

0100010E 1000FDDD MOV SP, TAx

0100010E 1001FDDD MOV SSP, TAx

0100010E 1010FDDD MOV CDP, TAx

0100010E 1100FDDD MOV BRC0, TAx

0100010E 1101FDDD MOV BRC1, TAx

0100010E 1110FDDD MOV RPTC, TAx

0100011E kkkk0000 BCLR k4, ST0_55

0100011E kkkk0001 BSET k4, ST0_55

0100011E kkkk0010 BCLR k4, ST1_55

0100011E kkkk0011 BSET k4, ST1_55

0100011E kkkk0100 BCLR k4, ST2_55

0100011E kkkk0101 BSET k4, ST2_55

0100011E kkkk0110 BCLR k4, ST3_55

0100011E kkkk0111 BSET k4, ST3_55

0100100E xxxxx000 RPT CSR

0100100E FSSSx001 RPTADD CSR, TAx

Instruction Set Opcodes

6-5Instruction Opcodes in Sequential OrderSPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

0100100E kkkkx010 RPTADD CSR, k4

0100100E kkkkx011 RPTSUB CSR, k4

0100100E xxxxx100 RET

0100100E xxxxx101 RETI

0100101E 0LLLLLLL B L7

0100101E 1lllllll RPTBLOCAL pmad

0100110E kkkkkkkk RPT k8

0100111E KKKKKKKK AADD K8,SP

0101000E FDDDx000 SFTL dst, #1

0101000E FDDDx001 SFTL dst, #–1

0101000E FDDDx010 POP dst

0101000E xxDDx011 POP dbl(ACx)

0101000E FSSSx110 PSH src

0101000E xxSSx111 PSH dbl(ACx)

0101000E XDDD0100 POPBOTH xdst

0101000E XSSS0101 PSHBOTH xsrc

0101001E FSSS00DD MOV TAx, HI(ACx)

0101001E FSSS1000 MOV TAx, SP

0101001E FSSS1001 MOV TAx, SSP

0101001E FSSS1010 MOV TAx, CDP

0101001E FSSS1100 MOV TAx, CSR

0101001E FSSS1101 MOV TAx, BRC1

0101001E FSSS1110 MOV TAx, BRC0

0101010E DDSS000% ADD[R]V [ACx,] ACy

0101010E DDSS001% SQA[R] [ACx,] ACy

0101010E DDSS010% SQS[R] [ACx,] ACy

0101010E DDSS011% MPY[R] [ACx,] ACy

0101010E DDSS100% SQR[R] [ACx,] ACy

0101010E DDSS101% ROUND [ACx,] ACy

0101010E DDSS110% SAT[R] [ACx,] ACy

0101011E DDSSss0% MAC[R] ACx, Tx, ACy[, ACy]

0101011E DDSSss1% MAS[R] Tx, [ACx,] ACy

0101100E DDSSss0% MPY[R] Tx, [ACx,] ACy

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-6 SPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

0101100E DDSSss1% MAC[R] ACy, Tx, ACx, ACy

0101101E DDSSss00 ADD ACx << Tx, ACy

0101101E DDSSss01 SUB ACx << Tx, ACy

0101101E DDxxxx1t SFTCC ACx, TCx

0101110E DDSSss00 SFTL ACx, Tx[, ACy]

0101110E DDSSss01 SFTS ACx, Tx[, ACy]

0101110E DDSSss10 SFTSC ACx, Tx[, ACy]

0101111E 00kkkkkk SWAP ()

01100lll lCCCCCCC BCC l4, cond

01101000 xCCCCCCC PPPPPPPP PPPPPPPP
PPPPPPPP

BCC P24, cond

01101001 xCCCCCCC PPPPPPPP PPPPPPPP
PPPPPPPP

CALLCC P24, cond

01101010 PPPPPPPP PPPPPPPP PPPPPPPP B P24

01101100 PPPPPPPP PPPPPPPP PPPPPPPP CALL P24

01101101 xCCCCCCC LLLLLLLL LLLLLLLL BCC L16, cond

01101110 xCCCCCCC LLLLLLLL LLLLLLLL CALLCC L16, cond

01101111 FSSSccxu KKKKKKKK LLLLLLLL BCC[U] L8, src RELOP K8

01110000 KKKKKKKK KKKKKKKK SSDDSHFT ADD K16 << #SHFT, [ACx,] ACy

01110001 KKKKKKKK KKKKKKKK SSDDSHFT SUB K16 << #SHFT, [ACx,] ACy

01110010 kkkkkkkk kkkkkkkk SSDDSHFT AND k16 << #SHFT, [ACx,] ACy

01110011 kkkkkkkk kkkkkkkk SSDDSHFT OR k16 << #SHFT, [ACx,] ACy

01110100 kkkkkkkk kkkkkkkk SSDDSHFT XOR k16 << #SHFT, [ACx,] ACy

01110101 KKKKKKKK KKKKKKKK xxDDSHFT MOV K16 << #SHFT, ACx

01110110 kkkkkkkk kkkkkkkk FDDD00SS BFXTR k16, ACx, dst

01110110 kkkkkkkk kkkkkkkk FDDD01SS BFXPA k16, ACx, dst

01110110 KKKKKKKK KKKKKKKK FDDD10xx MOV K16, dst

01110111 DDDDDDDD DDDDDDDD FDDDxxxx AMOV D16, TAx

01111000 kkkkkkkk kkkkkkkk xxx0000x MOV k16, DP

01111000 kkkkkkkk kkkkkkkk xxx0001x MOV k16, SSP

01111000 kkkkkkkk kkkkkkkk xxx0010x MOV k16, CDP

01111000 kkkkkkkk kkkkkkkk xxx0011x MOV k16, BSA01

01111000 kkkkkkkk kkkkkkkk xxx0100x MOV k16, BSA23

Instruction Set Opcodes

6-7Instruction Opcodes in Sequential OrderSPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

01111000 kkkkkkkk kkkkkkkk xxx0101x MOV k16, BSA45

01111000 kkkkkkkk kkkkkkkk xxx0110x MOV k16, BSA67

01111000 kkkkkkkk kkkkkkkk xxx0111x MOV k16, BSAC

01111000 kkkkkkkk kkkkkkkk xxx1000x MOV k16, SP

01111001 KKKKKKKK KKKKKKKK SSDDxx0% MPYK[R] K16, [ACx,] ACy

01111001 KKKKKKKK KKKKKKKK SSDDss1% MACK[R] Tx, K16, [ACx,] ACy

01111010 KKKKKKKK KKKKKKKK SSDD000x ADD K16 << #16, [ACx,] ACy

01111010 KKKKKKKK KKKKKKKK SSDD001x SUB K16 << #16, [ACx,] ACy

01111010 kkkkkkkk kkkkkkkk SSDD010x AND k16 << #16, [ACx,] ACy

01111010 kkkkkkkk kkkkkkkk SSDD011x OR k16 << #16, [ACx,] ACy

01111010 kkkkkkkk kkkkkkkk SSDD100x XOR k16 << #16, [ACx,] ACy

01111010 KKKKKKKK KKKKKKKK xxDD101x MOV K16 << #16, ACx

01111010 xxxxxxxx xxxxxxxx xxxx110x IDLE

01111011 KKKKKKKK KKKKKKKK FDDDFSSS ADD K16, [src,] dst

01111100 KKKKKKKK KKKKKKKK FDDDFSSS SUB K16, [src,] dst

01111101 kkkkkkkk kkkkkkkk FDDDFSSS AND k16, src, dst

01111110 kkkkkkkk kkkkkkkk FDDDFSSS OR k16, src, dst

01111111 kkkkkkkk kkkkkkkk FDDDFSSS XOR k16, src, dst

10000000 XXXMMMYY YMMM00xx MOV dbl(Xmem), dbl(Ymem)

10000000 XXXMMMYY YMMM01xx MOV Xmem, Ymem

10000000 XXXMMMYY YMMM10SS MOV ACx, Xmem, Ymem

10000001 XXXMMMYY YMMM00DD ADD Xmem, Ymem, ACx

10000001 XXXMMMYY YMMM01DD SUB Xmem, Ymem, ACx

10000001 XXXMMMYY YMMM10DD MOV Xmem, Ymem, ACx

10000010 XXXMMMYY YMMM00mm uuDDDDg% MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

10000010 XXXMMMYY YMMM01mm uuDDDDg% MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

10000010 XXXMMMYY YMMM10mm uuDDDDg% MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

10000010 XXXMMMYY YMMM11mm uuxxDDg% AMAR Xmem
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

10000011 XXXMMMYY YMMM00mm uuDDDDg% MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-8 SPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

10000011 XXXMMMYY YMMM01mm uuDDDDg% MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

10000011 XXXMMMYY YMMM10mm uuDDDDg% MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

10000011 XXXMMMYY YMMM11mm uuxxDDg% AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

10000100 XXXMMMYY YMMM00mm uuDDDDg% MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

10000100 XXXMMMYY YMMM01mm uuxxDDg% AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx >> #16

10000100 XXXMMMYY YMMM10mm uuDDDDg% MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

10000100 XXXMMMYY YMMM11mm uuDDDDg% MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

10000101 XXXMMMYY YMMM00mm uuxxDDg% AMAR Xmem
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

10000101 XXXMMMYY YMMM01mm uuDDDDg% MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

10000101 XXXMMMYY YMMM10mm xxxxxxxx AMAR Xmem, Ymem, Cmem

10000101 XXXMMMYY YMMM11mm DDx0DDU% FIRSADD Xmem, Ymem, Cmem, ACx, ACy

10000101 XXXMMMYY YMMM11mm DDx1DDU% FIRSSUB Xmem, Ymem, Cmem, ACx, ACy

10000110 XXXMMMYY YMMMxxDD 000guuU% MPYM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx

10000110 XXXMMMYY YMMMSSDD 001guuU% MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)],
[ACx,] ACy

10000110 XXXMMMYY YMMMSSDD 010guuU% MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)],
ACx >> #16[, ACy]

10000110 XXXMMMYY YMMMSSDD 011guuU% MASM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)],
[ACx,] ACy

10000110 XXXMMMYY YMMMDDDD 100xssU% MASM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

10000110 XXXMMMYY YMMMDDDD 101xssU% MACM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

10000110 XXXMMMYY YMMMDDDD 110xxxx% LMS Xmem, Ymem, ACx, ACy

10000110 XXXMMMYY YMMMDDDD 1110xxn% SQDST Xmem, Ymem, ACx, ACy

10000110 XXXMMMYY YMMMDDDD 1111xxn% ABDST Xmem, Ymem, ACx, ACy

10000111 XXXMMMYY YMMMSSDD 000xssU% MPYM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

Instruction Set Opcodes

6-9Instruction Opcodes in Sequential OrderSPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

10000111 XXXMMMYY YMMMSSDD 001xssU% MACM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

10000111 XXXMMMYY YMMMSSDD 010xssU% MASM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

10000111 XXXMMMYY YMMMSSDD 100xxxxx ADD Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

10000111 XXXMMMYY YMMMSSDD 101xxxxx SUB Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

10000111 XXXMMMYY YMMMSSDD 110xxxxx MOV Xmem << #16, ACy
:: MOV HI(ACx << T2), Ymem

10010000 XSSSXDDD MOV xsrc, xdst

10010001 xxxxxxSS B ACx

10010010 xxxxxxSS CALL ACx

10010100 xxxxxxxx RESET

10010101 0xxkkkkk INTR k5

10010101 1xxkkkkk TRAP k5

10010110 0CCCCCCC XCC [label,]cond

10010110 1CCCCCCC XCCPART [label,]cond

10011000 mmap

10011001 port(Smem)

10011010 port(Smem)

10011100 <instruction>.LR

10011101 <instruction>.CR

10011110 0CCCCCCC XCC [label,]cond

10011110 1CCCCCCC XCCPART [label,]cond

10011111 0CCCCCCC XCC [label,]cond

10011111 1CCCCCCC XCCPART [label,]cond

1010FDDD AAAAAAAI MOV Smem, dst

101100DD AAAAAAAI MOV Smem << #16, ACx

10110100 AAAAAAAI AMAR Smem

10110101 AAAAAAAI PSH Smem

10110110 AAAAAAAI DELAY Smem

10110111 AAAAAAAI PSH dbl(Lmem)

10111000 AAAAAAAI POP dbl(Lmem)

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-10 SPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

10111011 AAAAAAAI POP Smem

101111SS AAAAAAAI MOV HI(ACx), Smem

1100FSSS AAAAAAAI MOV src, Smem

11010000 AAAAAAAI U%DDxxmm MACM[R]Z [T3 =]Smem, Cmem, ACx

11010001 AAAAAAAI U%DD00mm MPYM[R] [T3 =]Smem, Cmem, ACx

11010001 AAAAAAAI U%DD01mm MACM[R] [T3 =]Smem, Cmem, ACx

11010001 AAAAAAAI U%DD10mm MASM[R] [T3 =]Smem, Cmem, ACx

11010010 AAAAAAAI U%DD00SS MACM[R] [T3 =]Smem, [ACx,] ACy

11010010 AAAAAAAI U%DD01SS MASM[R] [T3 =]Smem, [ACx,] ACy

11010010 AAAAAAAI U%DD10SS SQAM[R] [T3 =]Smem, [ACx,] ACy

11010010 AAAAAAAI U%DD11SS SQSM[R] [T3 =]Smem, [ACx,] ACy

11010011 AAAAAAAI U%DD00SS MPYM[R] [T3 =]Smem, [ACx,] ACy

11010011 AAAAAAAI U%DD10xx SQRM[R] [T3 =]Smem, ACx

11010011 AAAAAAAI U%DDu1ss MPYM[R][U] [T3 =]Smem, Tx, ACx

11010100 AAAAAAAI U%DDssSS MACM[R] [T3 =]Smem, Tx, [ACx,] ACy

11010101 AAAAAAAI U%DDssSS MASM[R] [T3 =]Smem, Tx, [ACx,] ACy

11010110 AAAAAAAI FDDDFSSS ADD Smem, [src,] dst

11010111 AAAAAAAI FDDDFSSS SUB Smem, [src,] dst

11011000 AAAAAAAI FDDDFSSS SUB src, Smem, dst

11011001 AAAAAAAI FDDDFSSS AND Smem, src, dst

11011010 AAAAAAAI FDDDFSSS OR Smem, src, dst

11011011 AAAAAAAI FDDDFSSS XOR Smem, src, dst

11011100 AAAAAAAI kkkkxx00 BTST k4, Smem, TC1

11011100 AAAAAAAI kkkkxx01 BTST k4, Smem, TC2

11011100 AAAAAAAI 0000xx10 MOV Smem, DP

11011100 AAAAAAAI 0001xx10 MOV Smem, CDP

11011100 AAAAAAAI 0010xx10 MOV Smem, BSA01

11011100 AAAAAAAI 0011xx10 MOV Smem, BSA23

11011100 AAAAAAAI 0100xx10 MOV Smem, BSA45

11011100 AAAAAAAI 0101xx10 MOV Smem, BSA67

11011100 AAAAAAAI 0110xx10 MOV Smem, BSAC

11011100 AAAAAAAI 0111xx10 MOV Smem, SP

11011100 AAAAAAAI 1000xx10 MOV Smem, SSP

Instruction Set Opcodes

6-11Instruction Opcodes in Sequential OrderSPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

11011100 AAAAAAAI 1001xx10 MOV Smem, BK03

11011100 AAAAAAAI 1010xx10 MOV Smem, BK47

11011100 AAAAAAAI 1011xx10 MOV Smem, BKC

11011100 AAAAAAAI 1100xx10 MOV Smem, DPH

11011100 AAAAAAAI 1111xx10 MOV Smem, PDP

11011100 AAAAAAAI x000xx11 MOV Smem, CSR

11011100 AAAAAAAI x001xx11 MOV Smem, BRC0

11011100 AAAAAAAI x010xx11 MOV Smem, BRC1

11011100 AAAAAAAI x011xx11 MOV Smem, TRN0

11011100 AAAAAAAI x100xx11 MOV Smem, TRN1

11011101 AAAAAAAI SSDDss00 ADD Smem << Tx, [ACx,] ACy

11011101 AAAAAAAI SSDDss01 SUB Smem << Tx, [ACx,] ACy

11011101 AAAAAAAI SSDDss10 ADDSUB2CC Smem, ACx, Tx, TC1, TC2, ACy

11011101 AAAAAAAI x%DDss11 MOV [rnd(]Smem << Tx[)], ACx

11011110 AAAAAAAI SSDD0000 ADDSUBCC Smem, ACx, TC1, ACy

11011110 AAAAAAAI SSDD0001 ADDSUBCC Smem, ACx, TC2, ACy

11011110 AAAAAAAI SSDD0010 ADDSUBCC Smem, ACx, TC1, TC2, ACy

11011110 AAAAAAAI SSDD0011 SUBC Smem, [ACx,] ACy

11011110 AAAAAAAI SSDD0100 ADD Smem << #16, [ACx,] ACy

11011110 AAAAAAAI SSDD0101 SUB Smem << #16, [ACx,] ACy

11011110 AAAAAAAI SSDD0110 SUB ACx, Smem << #16, ACy

11011110 AAAAAAAI ssDD1000 ADDSUB Tx, Smem, ACx

11011110 AAAAAAAI ssDD1001 SUBADD Tx, Smem, ACx

11011111 AAAAAAAI FDDD000u MOV [uns(]high_byte(Smem)[)], dst

11011111 AAAAAAAI FDDD001u MOV [uns(]low_byte(Smem)[)], dst

11011111 AAAAAAAI xxDD010u MOV [uns(]Smem[)], ACx

11011111 AAAAAAAI SSDD100u ADD [uns(]Smem[)], CARRY, [ACx,] ACy

11011111 AAAAAAAI SSDD101u SUB [uns(]Smem[)], BORROW, [ACx,] ACy

11011111 AAAAAAAI SSDD110u ADD [uns(]Smem[)], [ACx,] ACy

11011111 AAAAAAAI SSDD111u SUB [uns(]Smem[)], [ACx,] ACy

11100000 AAAAAAAI FSSSxxxt BTST src, Smem, TCx

11100001 AAAAAAAI DDSHIFTW MOV low_byte(Smem) << #SHIFTW, ACx

11100010 AAAAAAAI DDSHIFTW MOV high_byte(Smem) << #SHIFTW, ACx

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-12 SPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

11100011 AAAAAAAI kkkk000x BTSTSET k4, Smem, TC1

11100011 AAAAAAAI kkkk001x BTSTSET k4, Smem, TC2

11100011 AAAAAAAI kkkk010x BTSTCLR k4, Smem, TC1

11100011 AAAAAAAI kkkk011x BTSTCLR k4, Smem, TC2

11100011 AAAAAAAI kkkk100x BTSTNOT k4, Smem, TC1

11100011 AAAAAAAI kkkk101x BTSTNOT k4, Smem, TC2

11100011 AAAAAAAI FSSS1100 BSET src, Smem

11100011 AAAAAAAI FSSS1101 BCLR src, Smem

11100011 AAAAAAAI FSSS111x BNOT src, Smem

11100100 AAAAAAAI FSSSx0xx PSH src,Smem

11100100 AAAAAAAI FDDDx1xx POP dst, Smem

11100101 AAAAAAAI FSSS01x0 MOV src, high_byte(Smem)

11100101 AAAAAAAI FSSS01x1 MOV src, low_byte(Smem)

11100101 AAAAAAAI 000010xx MOV DP, Smem

11100101 AAAAAAAI 000110xx MOV CDP, Smem

11100101 AAAAAAAI 001010xx MOV BSA01, Smem

11100101 AAAAAAAI 001110xx MOV BSA23, Smem

11100101 AAAAAAAI 010010xx MOV BSA45, Smem

11100101 AAAAAAAI 010110xx MOV BSA67, Smem

11100101 AAAAAAAI 011010xx MOV BSAC, Smem

11100101 AAAAAAAI 011110xx MOV SP, Smem

11100101 AAAAAAAI 100010xx MOV SSP, Smem

11100101 AAAAAAAI 100110xx MOV BK03, Smem

11100101 AAAAAAAI 101010xx MOV BK47, Smem

11100101 AAAAAAAI 101110xx MOV BKC, Smem

11100101 AAAAAAAI 110010xx MOV DPH, Smem

11100101 AAAAAAAI 111110xx MOV PDP, Smem

11100101 AAAAAAAI x00011xx MOV CSR, Smem

11100101 AAAAAAAI x00111xx MOV BRC0, Smem

11100101 AAAAAAAI x01011xx MOV BRC1, Smem

11100101 AAAAAAAI x01111xx MOV TRN0, Smem

11100101 AAAAAAAI x10011xx MOV TRN1, Smem

11100110 AAAAAAAI KKKKKKKK MOV K8, Smem

Instruction Set Opcodes

6-13Instruction Opcodes in Sequential OrderSPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

11100111 AAAAAAAI SSss00xx MOV ACx << Tx, Smem

11100111 AAAAAAAI SSss10x% MOV [rnd(]HI(ACx << Tx)[)], Smem

11100111 AAAAAAAI SSss11u% MOV [uns(] [rnd(]HI[(saturate](ACx << Tx)[)))], Smem

11101000 AAAAAAAI SSxxx0x% MOV [rnd(]HI(ACx)[)], Smem

11101000 AAAAAAAI SSxxx1u% MOV [uns(] [rnd(]HI[(saturate](ACx)[)))], Smem

11101001 AAAAAAAI SSSHIFTW MOV ACx << #SHIFTW, Smem

11101010 AAAAAAAI SSSHIFTW MOV HI(ACx << #SHIFTW), Smem

11101011 AAAAAAAI xxxx01xx MOV RETA, dbl(Lmem)

11101011 AAAAAAAI xxSS10x0 MOV ACx, dbl(Lmem)

11101011 AAAAAAAI xxSS10u1 MOV [uns(]saturate(ACx)[)], dbl(Lmem)

11101011 AAAAAAAI FSSS1100 MOV pair(TAx), dbl(Lmem)

11101011 AAAAAAAI xxSS1101 MOV ACx >> #1, dual(Lmem)

11101011 AAAAAAAI xxSS1110 MOV pair(HI(ACx)), dbl(Lmem)

11101011 AAAAAAAI xxSS1111 MOV pair(LO(ACx)), dbl(Lmem)

11101100 AAAAAAAI FSSS000x BSET Baddr, src

11101100 AAAAAAAI FSSS001x BCLR Baddr, src

11101100 AAAAAAAI FSSS010x BTSTP Baddr, src

11101100 AAAAAAAI FSSS011x BNOT Baddr, src

11101100 AAAAAAAI FSSS100t BTST Baddr, src, TCx

11101100 AAAAAAAI XDDD1110 AMAR Smem, XAdst

11101101 AAAAAAAI SSDD000n ADD dbl(Lmem), [ACx,] ACy

11101101 AAAAAAAI SSDD001n SUB dbl(Lmem), [ACx,] ACy

11101101 AAAAAAAI SSDD010x SUB ACx, dbl(Lmem), ACy

11101101 AAAAAAAI xxxx011x MOV dbl(Lmem), RETA

11101101 AAAAAAAI xxDD100g MOV[40] dbl(Lmem), ACx

11101101 AAAAAAAI xxDD101x MOV dbl(Lmem), pair(HI(ACx))

11101101 AAAAAAAI xxDD110x MOV dbl(Lmem), pair(LO(ACx))

11101101 AAAAAAAI FDDD111x MOV dbl(Lmem), pair(TAx)

11101101 AAAAAAAI XDDD1111 MOV dbl(Lmem), XAdst

11101101 AAAAAAAI XSSS0101 MOV XAsrc, dbl(Lmem)

11101110 AAAAAAAI SSDD000x ADD dual(Lmem), [ACx,] ACy

11101110 AAAAAAAI SSDD001x SUB dual(Lmem), [ACx,] ACy

11101110 AAAAAAAI SSDD010x SUB ACx, dual(Lmem), ACy

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-14 SPRU374G

Table 6–1. Instruction Set Opcodes (Continued)

Opcode Mnemonic syntax

11101110 AAAAAAAI ssDD011x SUB dual(Lmem), Tx, ACx

11101110 AAAAAAAI ssDD100x ADD dual(Lmem), Tx, ACx

11101110 AAAAAAAI ssDD101x SUB Tx, dual(Lmem), ACx

11101110 AAAAAAAI ssDD110x ADDSUB Tx, dual(Lmem), ACx

11101110 AAAAAAAI ssDD111x SUBADD Tx, dual(Lmem), ACx

11101111 AAAAAAAI xxxx00mm MOV Cmem, Smem

11101111 AAAAAAAI xxxx01mm MOV Smem, Cmem

11101111 AAAAAAAI xxxx10mm MOV Cmem,dbl(Lmem)

11101111 AAAAAAAI xxxx11mm MOV dbl(Lmem), Cmem

11110000 AAAAAAAI KKKKKKKK KKKKKKKK CMP Smem == K16, TC1

11110001 AAAAAAAI KKKKKKKK KKKKKKKK CMP Smem == K16, TC2

11110010 AAAAAAAI kkkkkkkk kkkkkkkk BAND Smem, k16, TC1

11110011 AAAAAAAI kkkkkkkk kkkkkkkk BAND Smem, k16, TC2

11110100 AAAAAAAI kkkkkkkk kkkkkkkk AND k16, Smem

11110101 AAAAAAAI kkkkkkkk kkkkkkkk OR k16, Smem

11110110 AAAAAAAI kkkkkkkk kkkkkkkk XOR k16, Smem

11110111 AAAAAAAI KKKKKKKK KKKKKKKK ADD K16, Smem

11111000 AAAAAAAI KKKKKKKK xxDDx0U% MPYMK[R] [T3 =]Smem, K8, ACx

11111000 AAAAAAAI KKKKKKKK SSDDx1U% MACMK[R] [T3 =]Smem, K8, [ACx,] ACy

11111001 AAAAAAAI uxSHIFTW SSDD00xx ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy

11111001 AAAAAAAI uxSHIFTW SSDD01xx SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy

11111001 AAAAAAAI uxSHIFTW xxDD10xx MOV [uns(]Smem[)] << #SHIFTW, ACx

11111010 AAAAAAAI xxSHIFTW SSxxx0x% MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem

11111010 AAAAAAAI uxSHIFTW SSxxx1x% MOV [uns(] [rnd(]HI[(saturate](ACx << #SHIFTW)[)))],
Smem

11111011 AAAAAAAI KKKKKKKK KKKKKKKK MOV K16, Smem

11111100 AAAAAAAI LLLLLLLL LLLLLLLL BCC L16, ARn_mod ! = #0

Instruction Set Opcode Symbols and Abbreviations

6-15Instruction Opcodes in Sequential OrderSPRU374G

6.2 Instruction Set Opcode Symbols and Abbreviations

Table 6–2 lists the symbols and abbreviations used in the instruction set
opcode.

Table 6–2. Instruction Set Opcode Symbols and Abbreviations

Bit Field
Name

Bit Field
Value Bit Field Description

% 0 Rounding is disabled

1 Rounding is enabled

AAAA AAAI Smem addressing mode:

AAAA AAA0 @dma, direct memory address (dma) direct access

AAAA AAA1 Smem indirect memory access:

0001 0001 ABS16(#k16)

0011 0001 *(#k23)

0101 0001 port(#k16)

0111 0001 *CDP

1001 0001 *CDP+

1011 0001 *CDP–

1101 0001 *CDP(#K16)

1111 0001 *+CDP(#K16)

PPP0 0001 *ARn

PPP0 0011 *ARn+

PPP0 0101 *ARn–

PPP0 0111 *(ARn + T0), when C54CM = 0
*(ARn + T0), when C54CM = 1

PPP0 1001 *(ARn – T0), when C54CM = 0
*(ARn – T0), when C54CM = 1

PPP0 1011 *ARn(T0), when C54CM = 0
*ARn(T0), when C54CM = 1

PPP0 1101 *ARn(#K16)

PPP0 1111 *+ARn(#K16)

PPP1 0011 *(ARn + T1), when ARMS = 0
*ARn(short(#1)), when ARMS = 1

PPP1 0101 *(ARn – T1), when ARMS = 0
*ARn(short(#2)), when ARMS = 1

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-16 SPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

PPP1 0111 *ARn(T1), when ARMS = 0
*ARn(short(#3)), when ARMS = 1

PPP1 1001 *+ARn, when ARMS = 0
*ARn(short(#4)), when ARMS = 1

PPP1 1011 *–ARn, when ARMS = 0
*ARn(short(#5)), when ARMS = 1

PPP1 1101 *(ARn + T0B), when ARMS = 0
*ARn(short(#6)), when ARMS = 1

PPP1 1111 *(ARn – T0B), when ARMS = 0
*ARn(short(#7)), when ARMS = 1

PPP encodes an auxiliary register (ARn) as for XXX and YYY.

cc Relational operators (RELOP):

00 == (equal to)

01 < (less than)

10 >= (greater than or equal to)

11 != (not equal to)

CCC CCCC Conditional field (cond) on source accumulator, auxiliary, or temporary
register; TCx; and CARRY:

000 FSSS src == 0 (source is equal to 0)

001 FSSS src != 0 (source is not equal to 0)

010 FSSS src < 0 (source is less than 0)

011 FSSS src <= 0 (source is less than or equal to 0)

100 FSSS src > 0 (source is greater than 0)

101 FSSS src >= 0 (source is greater than or equal to 0)

110 00SS overflow(ACx) (source accumulator overflow status bit (ACOVx) is tested
against 1)

110 0100 TC1 (status bit is tested against 1)

110 0101 TC2 (status bit is tested against 1)

110 0110 CARRY (status bit is tested against 1)

110 0111 Reserved

Instruction Set Opcode Symbols and Abbreviations

6-17Instruction Opcodes in Sequential OrderSPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

110 1000 TC1 & TC2

110 1001 TC1 & !TC2

110 1010 !TC1 & TC2

110 1011 !TC1 & !TC2

110 11xx Reserved

111 00SS !overflow(ACx)(source accumulator overflow status bit (ACOVx) is tested
against 0)

111 0100 !TC1 (status bit is tested against 0)

111 0101 !TC2 (status bit is tested against 0)

111 0110 !CARRY (status bit is tested against 0)

111 0111 Reserved

111 1000 TC1 | TC2

111 1001 TC1 | !TC2

111 1010 !TC1 | TC2

111 1011 !TC1 | !TC2

111 1100 TC1 ^ TC2

111 1101 TC1 ^ !TC2

111 1110 !TC1 ^ TC2

111 1111 !TC1 ^ !TC2

dd Destination temporary register (Tx, Ty):

00 Temporary register 0 (T0)

01 Temporary register 1 (T1)

10 Temporary register 2 (T2)

11 Temporary register 3 (T3)

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-18 SPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

DD Destination accumulator register (ACw, ACx, ACy, ACz):

00 Accumulator 0 (AC0)

01 Accumulator 1 (AC1)

10 Accumulator 2 (AC2)

11 Accumulator 3 (AC3)

DDD . . . D Data address label coded on n bits (absolute address)

E 0 Parallel Enable bit is cleared to 0

1 Parallel Enable bit is set to 1

FDDD
FSSS

Destination or Source accumulator, auxiliary, or temporary register (dst, src,
TAx, TAy):

0000 Accumulator 0 (AC0)

0001 Accumulator 1 (AC1)

0010 Accumulator 2 (AC2)

0011 Accumulator 3 (AC3)

0100 Temporary register 0 (T0)

0101 Temporary register 1 (T1)

0110 Temporary register 2 (T2)

0111 Temporary register 3 (T3)

1000 Auxiliary register 0 (AR0)

1001 Auxiliary register 1 (AR1)

1010 Auxiliary register 2 (AR2)

1011 Auxiliary register 3 (AR3)

1100 Auxiliary register 4 (AR4)

1101 Auxiliary register 5 (AR5)

1110 Auxiliary register 6 (AR6)

1111 Auxiliary register 7 (AR7)

Instruction Set Opcode Symbols and Abbreviations

6-19Instruction Opcodes in Sequential OrderSPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

g 0 40 keyword is not applied

1 40 keyword is applied; M40 is locally set to 1

kk kkkk Swap code for Swap Register Content instruction:

00 0000 SWAP AC0, AC2

00 0001 SWAP AC1, AC3

00 0100 SWAP T0, T2

00 0101 SWAP T1, T3

00 1000 SWAP AR0, AR2

00 1001 SWAP AR1, AR3

00 1100 SWAP AR4, T0

00 1101 SWAP AR5, T1

00 1110 SWAP AR6, T2

00 1111 SWAP AR7, T3

01 0000 SWAPP AC0, AC2

01 0001 Reserved

01 0100 SWAPP T0, T2

01 0101 Reserved

01 1000 SWAPP AR0, AR2

01 1001 Reserved

01 1100 SWAPP AR4, T0

01 1101 Reserved

01 1110 SWAPP AR6, T2

01 1111 Reserved

10 1000 Reserved

10 1100 SWAP4 AR4, T0

11 1000 SWAP AR0, AR1

11 1100 Reserved

1x 0000 Reserved

1x 0001 Reserved

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-20 SPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

1x 0100 Reserved

1x 0101 Reserved

1x 1001 Reserved

1x 1101 Reserved

1x 1110 Reserved

1x 1111 Reserved

kkk . . . k Unsigned constant of n bits

KKK . . . K Signed constant of n bits

lll . . . l Program address label coded on n bits
(unsigned offset relative to program counter register)

LLL . . . L Program address label coded on n bits
(signed offset relative to program counter register)

mm Coefficient addressing mode (Cmem):

00 *CDP

01 *CDP+

10 *CDP–

11 *(CDP + T0)

MMM Modifier option for Xmem or Ymem addressing mode:

000 *ARn

001 *ARn+

010 *ARn–

011 *(ARn + T0), when C54CM = 0
*(ARn + AR0), when C54CM = 1

100 *(ARn + T1)

101 *(ARn – T0), when C54CM = 0
*(ARn – AR0), when C54CM = 1

Instruction Set Opcode Symbols and Abbreviations

6-21Instruction Opcodes in Sequential OrderSPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

110 *(ARn – T1)

111 *ARn(T0), when C54CM = 0
*ARn(AR0), when C54CM = 1

n Reserved bit

PPP . . . P Program or data address label coded on n bits (absolute address)

r 0 Select TRN0

1 Select TRN1

SHFT 4-bit immediate shift value, 0 to 15

SHIFTW 6-bit immediate shift value, –32 to +31

ss Source temporary register (Tx, Ty):

00 Temporary register 0 (T0)

01 Temporary register 1 (T1)

10 Temporary register 2 (T2)

11 Temporary register 3 (T3)

SS Source accumulator register (ACw, ACx, ACy, ACz):

00 Accumulator 0 (AC0)

01 Accumulator 1 (AC1)

10 Accumulator 2 (AC2)

11 Accumulator 3 (AC3)

tt 00 Bit 0: destination TCy bit of Compare Register Content instruction

01 Bit 1: source TCx bit of Compare Register Content instruction

10 When value = 0: TC1 is selected

11 When value = 1: TC2 is selected

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-22 SPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

u 0 U or uns keyword is not applied; operand is considered signed

1 U or uns keyword is applied; operand is considered unsigned

U 0 No update of T3 with Smem or Xmem content

1 T3 is updated with Smem or Xmem content

vv 00 Bit 0: shifted-out bit of Rotate instruction

01 Bit 1: shifted-in bit of Rotate instruction

10 When value = 0: CARRY is selected

11 When value = 1: TC2 is selected

x Reserved bit

XDDD
XSSS

Destination or Source accumulator or extended register. All 23 bits of stack
pointer (XSP), system stack pointer (XSSP), data page pointer (XDP),
coefficient data pointer (XCDP), and extended auxiliary register (XARx).

0000 Accumulator 0 (AC0)

0001 Accumulator 1 (AC1)

0010 Accumulator 2 (AC2)

0011 Accumulator 3 (AC3)

0100 Stack pointer (XSP)

0101 System stack pointer (XSSP)

0110 Data page pointer (XDP)

0111 Coefficient data pointer (XCDP)

1000 Auxiliary register 0 (XAR0)

1001 Auxiliary register 1 (XAR1)

1010 Auxiliary register 2 (XAR2)

1011 Auxiliary register 3 (XAR3)

1100 Auxiliary register 4 (XAR4)

1101 Auxiliary register 5 (XAR5)

1110 Auxiliary register 6 (XAR6)

Instruction Set Opcode Symbols and Abbreviations

6-23Instruction Opcodes in Sequential OrderSPRU374G

Table 6–2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

1111 Auxiliary register 7 (XAR7)

XXX
YYY

Auxiliary register designation for Xmem or Ymem addressing mode:

000 Auxiliary register 0 (AR0)

001 Auxiliary register 1 (AR1)

010 Auxiliary register 2 (AR2)

011 Auxiliary register 3 (AR3)

100 Auxiliary register 4 (AR4)

101 Auxiliary register 5 (AR5)

110 Auxiliary register 6 (AR6)

111 Auxiliary register 7 (AR7)

7-1

Cross-Reference of
Algebraic and Mnemonic Instruction Sets

This chapter provides a cross-reference between the TMS320C55x DSP
mnemonic instruction set and the algebraic instruction set (Table 7–1). For
more information on the algebraic instruction set, see TMS320C55x DSP
Algebraic Instruction Set Reference Guide, SPRU375.

Chapter 7

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-2
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets

Mnemonic Syntax Algebraic Syntax

AADD: Modify Auxiliary or Temporary Register Content by
Addition

Modify Auxiliary or Temporary Register Content by Addition

AADD TAx, TAy mar(TAy + TAx)

AADD P8, TAx mar(TAx + P8)

AADD: Modify Data Stack Pointer (SP) Modify Data Stack Pointer

AADD K8, SP SP = SP + K8

ABDST: Absolute Distance Absolute Distance

ABDST Xmem, Ymem, ACx, ACy abdst(Xmem, Ymem, ACx, ACy)

ABS: Absolute Value Absolute Value

ABS [src,] dst dst = |src|

ADD: Addition Addition

ADD [src,] dst dst = dst + src

ADD k4, dst dst = dst + k4

ADD K16, [src,] dst dst = src + K16

ADD Smem, [src,] dst dst = src + Smem

ADD ACx << Tx, ACy ACy = ACy + (ACx << Tx)

ADD ACx << #SHIFTW, ACy ACy = ACy + (ACx << #SHIFTW)

ADD K16 << #16, [ACx,] ACy ACy = ACx + (K16 << #16)

ADD K16 << #SHFT, [ACx,] ACy ACy = ACx + (K16 << #SHFT)

ADD Smem << Tx, [ACx,] ACy ACy = ACx + (Smem << Tx)

ADD Smem << #16, [ACx,] ACy ACy = ACx + (Smem << #16)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-3
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

ADD [uns(]Smem[)], CARRY, [ACx,] ACy ACy = ACx + uns(Smem) + CARRY

ADD [uns(]Smem[)], [ACx,] ACy ACy = ACx + uns(Smem)

ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy ACy = ACx + (uns(Smem) << #SHIFTW)

ADD dbl(Lmem), [ACx,] ACy ACy = ACx + dbl(Lmem)

ADD Xmem, Ymem, ACx ACx = (Xmem << #16) + (Ymem << #16)

ADD K16, Smem Smem = Smem + K16

ADD: Dual 16-Bit Additions Dual 16-Bit Additions

ADD dual(Lmem), [ACx,] ACy HI(ACy) = HI(Lmem) + HI(ACx),
LO(ACy) = LO(Lmem) + LO(ACx)

ADD dual(Lmem), Tx, ACx HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) + Tx

ADD::MOV: Addition with Parallel Store Accumulator Content
to Memory

Addition with Parallel Store Accumulator Content to Memory

ADD Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

ACy = ACx + (Xmem << #16),
Ymem = HI(ACy << T2)

ADDSUB: Dual 16-Bit Addition and Subtraction Dual 16-Bit Addition and Subtraction

ADDSUB Tx, Smem, ACx HI(ACx) = Smem + Tx,
LO(ACx) = Smem – Tx

ADDSUB Tx, dual(Lmem), ACx HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) – Tx

ADDSUBCC: Addition or Subtraction Conditionally Addition or Subtraction Conditionally

ADDSUBCC Smem, ACx, TCx, ACy ACy = adsc(Smem, ACx, TCx)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-4
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

ADDSUBCC: Addition, Subtraction, or Move Accumulator
Content Conditionally

Addition, Subtraction, or Move Accumulator Content
Conditionally

ADDSUBCC Smem, ACx, TC1, TC2, ACy ACy = adsc(Smem, ACx, TC1, TC2)

ADDSUB2CC: Addition or Subtraction Conditionally with Shift Addition or Subtraction Conditionally with Shift

ADDSUB2CC Smem, ACx, Tx, TC1, TC2, ACy ACy = ads2c(Smem, ACx, Tx, TC1, TC2)

ADDV: Addition with Absolute Value Addition with Absolute Value

ADD[R]V [ACx,] ACy ACy = rnd(ACy + |ACx|)

AMAR: Modify Auxiliary Register Content Modify Auxiliary Register Content

AMAR Smem mar(Smem)

AMAR: Modify Extended Auxiliary Register Content Modify Extended Auxiliary Register Content

AMAR Smem, XAdst XAdst = mar(Smem)

AMAR: Parallel Modify Auxiliary Register Contents Parallel Modify Auxiliary Register Contents

AMAR Xmem, Ymem, Cmem mar(Xmem), mar(Ymem), mar(coef(Cmem))

AMAR::MAC: Modify Auxiliary Register Content with Parallel
Multiply and Accumulate

Modify Auxiliary Register Content with Parallel Multiply and
Accumulate

AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

mar(Xmem),
ACx = M40(rnd(ACx + (uns(Ymem) * uns(coef(Cmem)))))

AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx >> #16

mar(Xmem),
ACx = M40(rnd((ACx >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-5
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

AMAR::MAS: Modify Auxiliary Register Content with Parallel
Multiply and Subtract

Modify Auxiliary Register Content with Parallel Multiply and
Subtract

AMAR Xmem
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

mar(Xmem),
ACx = M40(rnd(ACx – (uns(Ymem) * uns(coef(Cmem)))))

AMAR::MPY: Modify Auxiliary Register Content with Parallel
Multiply

Modify Auxiliary Register Content with Parallel Multiply

AMAR Xmem
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

mar(Xmem),
ACx = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

AMOV: Load Extended Auxiliary Register with Immediate
Value

Load Extended Auxiliary Register with Immediate Value

AMOV k23, XAdst XAdst = k23

AMOV: Modify Auxiliary or Temporary Register Content Modify Auxiliary or Temporary Register Content

AMOV TAx, TAy mar(TAy = TAx)

AMOV P8, TAx mar(TAx = P8)

AMOV D16, TAx mar(TAx = D16)

AND: Bitwise AND Bitwise AND

AND src, dst dst = dst & src

AND k8,src, dst dst = src & k8

AND k16, src, dst dst = src & k16

AND Smem, src, dst dst = src & Smem

AND ACx << #SHIFTW[, ACy] ACy = ACy & (ACx <<< #SHIFTW)

AND k16 << #16, [ACx,] ACy ACy = ACx & (k16 <<< #16)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-6
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

AND k16 << #SHFT, [ACx,] ACy ACy = ACx & (k16 <<< #SHFT)

AND k16, Smem Smem = Smem & k16

ASUB: Modify Auxiliary or Temporary Register Content by
Subtraction

Modify Auxiliary or Temporary Register Content by Subtraction

ASUB TAx, TAy mar(TAy – TAx)

ASUB P8, TAx mar(TAx – P8)

B: Branch Unconditionally Branch Unconditionally

B ACx goto ACx

B L7 goto L7

B L16 goto L16

B P24 goto P24

BAND: Bitwise AND Memory with Immediate Value and
Compare to Zero

Bitwise AND Memory with Immediate Value and Compare to
Zero

BAND Smem, k16, TCx TCx = Smem & k16

BCC: Branch Conditionally Branch Conditionally

BCC l4, cond if (cond) goto l4

BCC L8, cond if (cond) goto L8

BCC L16, cond if (cond) goto L16

BCC P24, cond if (cond) goto P24

BCC: Branch on Auxiliary Register Not Zero Branch on Auxiliary Register Not Zero

BCC L16, ARn_mod != #0 if (ARn_mod != #0) goto L16

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-7
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

BCC: Compare and Branch Compare and Branch

BCC[U] L8, src RELOP K8 compare (uns(src RELOP K8)) goto L8

BCLR: Clear Accumulator, Auxiliary, or Temporary Register Bit Clear Accumulator, Auxiliary, or Temporary Register Bit

BCLR Baddr, src bit(src, Baddr) = #0

BCLR: Clear Memory Bit Clear Memory Bit

BCLR src, Smem bit(Smem, src) = #0

BCLR: Clear Status Register Bit Clear Status Register Bit

BCLR k4, STx_55 bit(STx, k4) = #0

BCLR f–name

BCNT: Count Accumulator Bits Count Accumulator Bits

BCNT ACx, ACy, TCx, Tx Tx = count(ACx, ACy, TCx)

BFXPA: Expand Accumulator Bit Field Expand Accumulator Bit Field

BFXPA k16, ACx, dst dst = field_expand(ACx, k16)

BFXTR: Extract Accumulator Bit Field Extract Accumulator Bit Field

BFXTR k16, ACx, dst dst = field_extract(ACx, k16)

BNOT: Complement Accumulator, Auxiliary, or Temporary
Register Bit

Complement Accumulator, Auxiliary, or Temporary Register Bit

BNOT Baddr, src cbit(src, Baddr)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-8
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

BNOT: Complement Memory Bit Complement Memory Bit

BNOT src, Smem cbit(Smem, src)

BSET: Set Accumulator, Auxiliary, or Temporary Register Bit Set Accumulator, Auxiliary, or Temporary Register Bit

BSET Baddr, src bit(src, Baddr) = #1

BSET: Set Memory Bit Set Memory Bit

BSET src, Smem bit(Smem, src) = #1

BSET: Set Status Register Bit Set Status Register Bit

BSET k4, STx_55 bit(STx, k4) = #1

BSET f–name

BTST: Test Accumulator, Auxiliary, or Temporary Register Bit Test Accumulator, Auxiliary, or Temporary Register Bit

BTST Baddr, src, TCx TCx = bit(src, Baddr)

BTST: Test Memory Bit Test Memory Bit

BTST src, Smem, TCx TCx = bit(Smem, src)

BTST k4, Smem, TCx TCx = bit(Smem, k4)

BTSTCLR: Test and Clear Memory Bit Test and Clear Memory Bit

BTSTCLR k4, Smem, TCx TCx = bit(Smem, k4),
bit(Smem, k4) = #0

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-9
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

BTSTNOT: Test and Complement Memory Bit Test and Complement Memory Bit

BTSTNOT k4, Smem, TCx TCx = bit(Smem, k4),
cbit(Smem, k4)

BTSTP: Test Accumulator, Auxiliary, or Temporary Register Bit
Pair

Test Accumulator, Auxiliary, or Temporary Register Bit Pair

BTSTP Baddr, src bit(src, pair(Baddr))

BTSTSET: Test and Set Memory Bit Test and Set Memory Bit

BTSTSET k4, Smem, TCx TCx = bit(Smem, k4),
bit(Smem, k4) = #1

CALL: Call Unconditionally Call Unconditionally

CALL ACx call ACx

CALL L16 call L16

CALL P24 call P24

CALLCC: Call Conditionally Call Conditionally

CALLCC L16, cond if (cond) call L16

CALLCC P24, cond if (cond) call P24

CMP: Compare Memory with Immediate Value Compare Memory with Immediate Value

CMP Smem == K16, TCx TCx = (Smem == K16)

CMP: Compare Accumulator, Auxiliary, or Temporary Register
Content

Compare Accumulator, Auxiliary, or Temporary Register
Content

CMP[U] src RELOP dst, TCx TCx = uns(src RELOP dst)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-10
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

CMPAND: Compare Accumulator, Auxiliary, or Temporary
Register Content with AND

Compare Accumulator, Auxiliary, or Temporary Register
Content with AND

CMPAND[U] src RELOP dst, TCy, TCx TCx = TCy & uns(src RELOP dst)

CMPAND[U] src RELOP dst, !TCy, TCx TCx = !TCy & uns(src RELOP dst)

CMPOR: Compare Accumulator, Auxiliary, or Temporary
Register Content with OR

Compare Accumulator, Auxiliary, or Temporary Register
Content with OR

CMPOR[U] src RELOP dst, TCy, TCx TCx = TCy | uns(src RELOP dst)

CMPOR[U] src RELOP dst, !TCy, TCx TCx = !TCy | uns(src RELOP dst)

.CR: Circular Addressing Qualifier Circular Addressing Qualifier

<instruction>.CR circular()

DELAY: Memory Delay Memory Delay

DELAY Smem delay(Smem)

EXP: Compute Exponent of Accumulator Content Compute Exponent of Accumulator Content

EXP ACx, Tx Tx = exp(ACx)

FIRSADD: Finite Impulse Response Filter, Symmetrical Finite Impulse Response Filter, Symmetrical

FIRSADD Xmem, Ymem, Cmem, ACx, ACy firs(Xmem, Ymem, coef(Cmem), ACx, ACy)

FIRSSUB: Finite Impulse Response Filter, Antisymmetrical Finite Impulse Response Filter, Antisymmetrical

FIRSSUB Xmem, Ymem, Cmem, ACx, ACy firsn(Xmem, Ymem, coef(Cmem), ACx, ACy)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-11
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

IDLE Idle

IDLE idle

INTR: Software Interrupt Software Interrupt

INTR k5 intr(k5)

LMS: Least Mean Square Least Mean Square (LMS)

LMS Xmem, Ymem, ACx, ACy lms(Xmem, Ymem, ACx, ACy)

.LR: Linear Addressing Qualifier Linear Addressing Qualifier

<instruction>.LR linear()

MAC: Multiply and Accumulate Multiply and Accumulate (MAC)

MAC[R] ACx, Tx, ACy[, ACy] ACy = rnd(ACy + (ACx * Tx))

MAC[R] ACy, Tx, ACx, ACy ACy = rnd((ACy * Tx) + ACx)

MACK[R] Tx, K8, [ACx,] ACy ACy = rnd(ACx + (Tx * K8))

MACK[R] Tx, K16, [ACx,] ACy ACy = rnd(ACx + (Tx * K16))

MACM[R] [T3 =]Smem, Cmem, ACx ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem]

MACM[R] [T3 =]Smem, [ACx,] ACy ACy = rnd(ACy + (Smem * ACx))[, T3 = Smem]

MACM[R] [T3 =]Smem, Tx, [ACx,] ACy ACy = rnd(ACx + (Tx * Smem))[, T3 = Smem]

MACMK[R] [T3 =]Smem, K8, [ACx,] ACy ACy = rnd(ACx + (Smem * K8))[, T3 = Smem]

MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,] ACy ACy = M40(rnd(ACx + (uns(Xmem) * uns(Ymem))))[, T3 = Xmem]

MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx >> #16
[, ACy]

ACy = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-12
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MACMZ: Multiply and Accumulate with Parallel Delay Multiply and Accumulate with Parallel Delay

MACM[R]Z [T3 =]Smem, Cmem, ACx ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem],
delay(Smem)

MAC::MAC: Parallel Multiply and Accumulates Parallel Multiply and Accumulates

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M4(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

MAC::MPY: Multiply and Accumulate with Parallel Multiply Multiply and Accumulate with Parallel Multiply

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

MACM::MOV: Multiply and Accumulate with Parallel Load
Accumulator from Memory

Multiply and Accumulate with Parallel Load Accumulator from
Memory

MACM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

ACx = rnd(ACx + (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

MACM::MOV: Multiply and Accumulate with Parallel Store
Accumulator Content to Memory

Multiply and Accumulate with Parallel Store Accumulator
Content to Memory

MACM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-13
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MANT::NEXP: Compute Mantissa and Exponent of
Accumulator Content

Compute Mantissa and Exponent of Accumulator Content

MANT ACx, ACy
:: NEXP ACx, Tx

ACy = mant(ACx), Tx = –exp(ACx)

MAS: Multiply and Subtract Multiply and Subtract

MAS[R] Tx, [ACx,] ACy ACy = rnd(ACy – (ACx * Tx))

MASM[R] [T3 =]Smem, Cmem, ACx ACx = rnd(ACx – (Smem * coef(Cmem)))[, T3 = Smem]

MASM[R] [T3 =]Smem, [ACx,] ACy ACy = rnd(ACy – (Smem * ACx))[, T3 = Smem]

MASM[R] [T3 =]Smem, Tx, [ACx,] ACy ACy = rnd(ACx – (Tx * Smem))[, T3 = Smem]

MASM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,] ACy ACy = M40(rnd(ACx – (uns(Xmem) * uns(Ymem))))[, T3 = Xmem]

MAS::MAC: Multiply and Subtract with Parallel Multiply and
Accumulate

Multiply and Subtract with Parallel Multiply and Accumulate

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

MAS::MAS: Parallel Multiply and Subtracts Parallel Multiply and Subtracts

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy – (uns(Ymem) * uns(coef(Cmem)))))

MAS::MPY: Multiply and Subtract with Parallel Multiply Multiply and Subtract with Parallel Multiply

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-14
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MASM::MOV: Multiply and Subtract with Parallel Load
Accumulator from Memory

Multiply and Subtract with Parallel Load Accumulator from
Memory

MASM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

ACx = rnd(ACx – (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

MASM::MOV: Multiply and Subtract with Parallel Store
Accumulator Content to Memory

Multiply and Subtract with Parallel Store Accumulator Content
to Memory

MASM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

ACy = rnd(ACy – (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

MAX: Compare Accumulator, Auxiliary, or Temporary Register
Content Maximum

Compare Accumulator, Auxiliary, or Temporary Register
Content Maximum

MAX [src,] dst dst = max(src, dst)

MAXDIFF: Compare and Select Accumulator Content
Maximum

Compare and Select Accumulator Content Maximum

MAXDIFF ACx, ACy, ACz, ACw max_diff(ACx, ACy, ACz, ACw)

DMAXDIFF ACx, ACy, ACz, ACw, TRNx max_diff_dbl(ACx, ACy, ACz, ACw, TRNx)

MIN: Compare Accumulator, Auxiliary, or Temporary Register
Content Minimum

Compare Accumulator, Auxiliary, or Temporary Register
Content Minimum

MIN [src,] dst dst = min(src, dst)

MINDIFF: Compare and Select Accumulator Content Minimum Compare and Select Accumulator Content Minimum

MINDIFF ACx, ACy, ACz, ACw min_diff(ACx, ACy, ACz, ACw)

DMINDIFF ACx, ACy, ACz, ACw, TRNx min_diff_dbl(ACx, ACy, ACz, ACw, TRNx)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-15
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

mmap: Memory-Mapped Register Access Qualifier Memory-Mapped Register Access Qualifier

mmap mmap()

MOV: Load Accumulator from Memory Load Accumulator from Memory

MOV [rnd(]Smem << Tx[)], ACx ACx = rnd(Smem << Tx)

MOV low_byte(Smem) << #SHIFTW, ACx ACx = low_byte(Smem) << #SHIFTW

MOV high_byte(Smem) << #SHIFTW, ACx ACx = high_byte(Smem) << #SHIFTW

MOV Smem << #16, ACx ACx = Smem << #16

MOV [uns(]Smem[)], ACx ACx = uns(Smem)

MOV [uns(]Smem[)] << #SHIFTW, ACx ACx = uns(Smem) << #SHIFTW

MOV[40] dbl(Lmem), ACx ACx = M40(dbl(Lmem))

MOV Xmem, Ymem, ACx LO(ACx) = Xmem,
HI(ACx) = Ymem

MOV: Load Accumulator Pair from Memory Load Accumulator Pair from Memory

MOV dbl(Lmem), pair(HI(ACx)) pair(HI(ACx)) = Lmem

MOV dbl(Lmem), pair(LO(ACx)) pair(LO(ACx)) = Lmem

MOV: Load Accumulator with Immediate Value Load Accumulator with Immediate Value

MOV K16 << #16, ACx ACx = K16 << #16

MOV K16 << #SHFT, ACx ACx = K16 << #SHFT

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-16
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV: Load Accumulator, Auxiliary, or Temporary Register
from Memory

Load Accumulator, Auxiliary, or Temporary Register from
Memory

MOV Smem, dst dst = Smem

MOV [uns(]high_byte(Smem)[)], dst dst = uns(high_byte(Smem))

MOV [uns(]low_byte(Smem)[)], dst dst = uns(low_byte(Smem))

MOV: Load Accumulator, Auxiliary, or Temporary Register with
Immediate Value

Load Accumulator, Auxiliary, or Temporary Register with
Immediate Value

MOV k4, dst dst = k4

MOV –k4, dst dst = –k4

MOV K16, dst dst = K16

MOV: Load Auxiliary or Temporary Register Pair from Memory Load Auxiliary or Temporary Register Pair from Memory

MOV dbl(Lmem), pair(TAx) pair(TAx) = Lmem

MOV: Load CPU Register from Memory Load CPU Register from Memory

MOV Smem, BK03 BK03 = Smem

MOV Smem, BK47 BK47 = Smem

MOV Smem, BKC BKC = Smem

MOV Smem, BSA01 BSA01 = Smem

MOV Smem, BSA23 BSA23 = Smem

MOV Smem, BSA45 BSA45 = Smem

MOV Smem, BSA67 BSA67 = Smem

MOV Smem, BSAC BSAC = Smem

MOV Smem, BRC0 BRC0 = Smem

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-17
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV Smem, BRC1 BRC1 = Smem

MOV Smem, CDP CDP = Smem

MOV Smem, CSR CSR = Smem

MOV Smem, DP DP = Smem

MOV Smem, DPH DPH = Smem

MOV Smem, PDP PDP = Smem

MOV Smem, SP SP = Smem

MOV Smem, SSP SSP = Smem

MOV Smem, TRN0 TRN0 = Smem

MOV Smem, TRN1 TRN1 = Smem

MOV dbl(Lmem), RETA RETA = dbl(Lmem)

MOV: Load CPU Register with Immediate Value Load CPU Register with Immediate Value

MOV k12, BK03 BK03 = k12

MOV k12, BK47 BK47 = k12

MOV k12, BKC BKC = k12

MOV k12, BRC0 BRC0 = k12

MOV k12, BRC1 BRC1 = k12

MOV k12, CSR CSR = k12

MOV k7, DPH DPH = k7

MOV k9, PDP PDP = k9

MOV k16, BSA01 BSA01 = k16

MOV k16, BSA23 BSA23 = k16

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-18
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV k16, BSA45 BSA45 = k16

MOV k16, BSA67 BSA67 = k16

MOV k16, BSAC BSAC = k16

MOV k16, CDP CDP = k16

MOV k16, DP DP = k16

MOV k16, SP SP = k16

MOV k16, SSP SSP = k16

MOV: Load Extended Auxiliary Register from Memory Load Extended Auxiliary Register from Memory

MOV dbl(Lmem), XAdst XAdst = dbl(Lmem)

MOV: Load Memory with Immediate Value Load Memory with Immediate Value

MOV K8, Smem Smem = K8

MOV K16, Smem Smem = K16

MOV: Move Accumulator Content to Auxiliary or Temporary
Register

Move Accumulator Content to Auxiliary or Temporary Register

MOV HI(ACx), TAx TAx = HI(ACx)

MOV: Move Accumulator, Auxiliary, or Temporary Register
Content

Move Accumulator, Auxiliary, or Temporary Register Content

MOV src, dst dst = src

MOV: Move Auxiliary or Temporary Register Content to
Accumulator

Move Auxiliary or Temporary Register Content to Accumulator

MOV TAx, HI(ACx) HI(ACx) = TAx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-19
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV: Move Auxiliary or Temporary Register Content to
CPU Register

Move Auxiliary or Temporary Register Content to CPU Register

MOV TAx, BRC0 BRC0 = TAx

MOV TAx, BRC1 BRC1 = TAx

MOV TAx, CDP CDP = TAx

MOV TAx, CSR CSR = TAx

MOV TAx, SP SP = TAx

MOV TAx, SSP SSP = TAx

MOV: Move CPU Register Content to Auxiliary or Temporary
Register

Move CPU Register Content to Auxiliary or Temporary Register

MOV BRC0, TAx TAx = BRC0

MOV BRC1, TAx TAx = BRC1

MOV CDP, TAx TAx = CDP

MOV RPTC, TAx TAx = RPTC

MOV SP, TAx TAx = SP

MOV SSP, TAx TAx = SSP

MOV: Move Extended Auxiliary Register Content Move Extended Auxiliary Register Content

MOV xsrc, xdst xdst = xsrc

MOV: Move Memory to Memory Move Memory to Memory

MOV Cmem, Smem Smem = coef(Cmem)

MOV Smem, Cmem coef(Cmem) = Smem

MOV Cmem, dbl(Lmem) Lmem = dbl(coef(Cmem))

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-20
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV dbl(Lmem), Cmem dbl(coef(Cmem)) = Lmem

MOV dbl(Xmem), dbl(Ymem) dbl(Ymem) = dbl(Xmem)

MOV Xmem, Ymem Ymem = Xmem

MOV: Store Accumulator Content to Memory Store Accumulator Content to Memory

MOV HI(ACx), Smem Smem = HI(ACx)

MOV [rnd(]HI(ACx)[)], Smem Smem = HI(rnd(ACx))

MOV ACx << Tx, Smem Smem = LO(ACx << Tx)

MOV [rnd(]HI(ACx << Tx)[)], Smem Smem = HI(rnd(ACx << Tx))

MOV ACx << #SHIFTW, Smem Smem = LO(ACx << #SHIFTW)

MOV HI(ACx << #SHIFTW), Smem Smem = HI(ACx << #SHIFTW)

MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem Smem = HI(rnd(ACx << #SHIFTW))

MOV [uns(] [rnd(]HI[(saturate](ACx)[)))], Smem Smem = HI(saturate(uns(rnd(ACx))))

MOV [uns(] [rnd(]HI[(saturate](ACx << Tx)[)))], Smem Smem = HI(saturate(uns(rnd(ACx << Tx))))

MOV [uns(] [rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem Smem = HI(saturate(uns(rnd(ACx << #SHIFTW))))

MOV ACx, dbl(Lmem) dbl(Lmem) = ACx

MOV [uns(]saturate(ACx)[)], dbl(Lmem) dbl(Lmem) = saturate(uns(ACx))

MOV ACx >> #1, dual(Lmem) HI(Lmem) = HI(ACx) >> #1,
LO(Lmem) = LO(ACx) >> #1

MOV ACx, Xmem, Ymem Xmem = LO(ACx),
Ymem = HI(ACx)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-21
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV: Store Accumulator Pair Content to Memory Store Accumulator Pair Content to Memory

MOV pair(HI(ACx)), dbl(Lmem) Lmem = pair(HI(ACx))

MOV pair(LO(ACx)), dbl(Lmem) Lmem = pair(LO(ACx))

MOV: Store Accumulator, Auxiliary, or Temporary Register
Content to Memory

Store Accumulator, Auxiliary, or Temporary Register Content
to Memory

MOV src, Smem Smem = src

MOV src, high_byte(Smem) high_byte(Smem) = src

MOV src, low_byte(Smem) low_byte(Smem) = src

MOV: Store Auxiliary or Temporary Register Pair Content to
Memory

Store Auxiliary or Temporary Register Pair Content to Memory

MOV pair(TAx), dbl(Lmem) Lmem = pair(TAx)

MOV: Store CPU Register Content to Memory Store CPU Register Content to Memory

MOV BK03, Smem Smem = BK03

MOV BK47, Smem Smem = BK47

MOV BKC, Smem Smem = BKC

MOV BSA01, Smem Smem = BSA01

MOV BSA23, Smem Smem = BSA23

MOV BSA45, Smem Smem = BSA45

MOV BSA67, Smem Smem = BSA67

MOV BSAC, Smem Smem = BSAC

MOV BRC0, Smem Smem = BRC0

MOV BRC1, Smem Smem = BRC1

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-22
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MOV CDP, Smem Smem = CDP

MOV CSR, Smem Smem = CSR

MOV DP, Smem Smem = DP

MOV DPH, Smem Smem = DPH

MOV PDP, Smem Smem = PDP

MOV SP, Smem Smem = SP

MOV SSP, Smem Smem = SSP

MOV TRN0, Smem Smem = TRN0

MOV TRN1, Smem Smem = TRN1

MOV RETA, dbl(Lmem) dbl(Lmem) = RETA

MOV: Store Extended Auxiliary Register Content to Memory Store Extended Auxiliary Register Content to Memory

MOV XAsrc, dbl(Lmem) dbl(Lmem) = XAsrc

MOV::MOV: Load Accumulator from Memory with Parallel
Store Accumulator Content to Memory

Load Accumulator from Memory with Parallel Store Accumula-
tor Content to Memory

MOV Xmem << #16, ACy
:: MOV HI(ACx << T2), Ymem

ACy = Xmem << #16,
Ymem = HI(ACx << T2)

MPY: Multiply Multiply

MPY[R] [ACx,] ACy ACy = rnd(ACy * ACx)

MPY[R] Tx, [ACx,] ACy ACy = rnd(ACx * Tx)

MPYK[R] K8, [ACx,] ACy ACy = rnd(ACx * K8)

MPYK[R] K16, [ACx,] ACy ACy = rnd(ACx * K16)

MPYM[R] [T3 =]Smem, Cmem, ACx ACx = rnd(Smem * coef(Cmem))[, T3 = Smem]

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-23
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

MPYM[R] [T3 =]Smem, [ACx,] ACy ACy = rnd(Smem * ACx)[, T3 = Smem]

MPYMK[R] [T3 =]Smem, K8, ACx ACx = rnd(Smem * K8)[, T3 = Smem]

MPYM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx ACx = M40(rnd(uns(Xmem) * uns(Ymem)))[, T3 = Xmem]

MPYM[R][U] [T3 =]Smem, Tx, ACx ACx = rnd(uns(Tx * Smem))[, T3 = Smem]

MPY::MAC: Multiply with Parallel Multiply and Accumulate Multiply with Parallel Multiply and Accumulate

MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

MPY::MPY: Parallel Multiplies Parallel Multiplies

MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

MPYM::MOV: Multiply with Parallel Store Accumulator Content
to Memory

Multiply with Parallel Store Accumulator Content to Memory

MPYM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

ACy = rnd(Tx * Xmem),
Ymem = HI(ACx << T2) [,T3 = Xmem]

NEG: Negate Accumulator, Auxiliary, or Temporary Register
Content

Negate Accumulator, Auxiliary, or Temporary Register Content

NEG [src,] dst dst = –src

NOP: No Operation No Operation

NOP nop

NOP_16 nop_16

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-24
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

NOT: Complement Accumulator, Auxiliary, or Temporary
Register Content

Complement Accumulator, Auxiliary, or Temporary Register
Content

NOT [src,] dst dst = ~src

OR: Bitwise OR Bitwise OR

OR src, dst dst = dst | src

OR k8, src, dst dst = src | k8

OR k16, src, dst dst = src | k16

OR Smem, src, dst dst = src | Smem

OR ACx << #SHIFTW[, ACy] ACy = ACy | (ACx <<< #SHIFTW)

OR k16 << #16, [ACx,] ACy ACy = ACx | (k16 <<< #16)

OR k16 << #SHFT, [ACx,] ACy ACy = ACx | (k16 <<< #SHFT)

OR k16, Smem Smem = Smem | k16

POP: Pop Top of Stack Pop Top of Stack

POP dst1, dst2 dst1, dst2 = pop()

POP dst dst = pop()

POP dst, Smem dst, Smem = pop()

POP ACx ACx = dbl(pop())

POP Smem Smem = pop()

POP dbl(Lmem) dbl(Lmem) = pop()

POPBOTH: Pop Accumulator or Extended Auxiliary Register
Content from Stack Pointers

Pop Accumulator or Extended Auxiliary Register Content from
Stack Pointers

POPBOTH xdst xdst = popboth()

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-25
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

port: Peripheral Port Register Access Qualifiers Peripheral Port Register Access Qualifiers

port(Smem) readport()

port(Smem) writeport()

PSH: Push to Top of Stack Push to Top of Stack

PSH src1, src2 push(src1, src2)

PSH src push(src)

PSH src, Smem push(src, Smem)

PSH ACx dbl(push(ACx))

PSH Smem push(Smem)

PSH dbl(Lmem) push(dbl(Lmem))

PSHBOTH: Push Accumulator or Extended Auxiliary Register
Content to Stack Pointers

Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers

PSHBOTH xsrc pshboth(xsrc)

RESET: Software Reset Software Reset

RESET reset

RET: Return Unconditionally Return Unconditionally

RET return

RETCC: Return Conditionally Return Conditionally

RETCC cond if (cond) return

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-26
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

RETI: Return from Interrupt Return from Interrupt

RETI return_int

ROL: Rotate Left Accumulator, Auxiliary, or Temporary
Register Content

Rotate Left Accumulator, Auxiliary, or Temporary Register
Content

ROL BitOut, src, BitIn, dst dst = BitOut \\ src \\ BitIn

ROR: Rotate Right Accumulator, Auxiliary, or Temporary
Register Content

Rotate Right Accumulator, Auxiliary, or Temporary Register
Content

ROR BitIn, src, BitOut, dst dst = BitIn // src // BitOut

ROUND: Round Accumulator Content Round Accumulator Content

ROUND [ACx,] ACy ACy = rnd(ACx)

RPT: Repeat Single Instruction Unconditionally Repeat Single Instruction Unconditionally

RPT k8 repeat(k8)

RPT k16 repeat(k16)

RPT CSR repeat(CSR)

RPTB: Repeat Block of Instructions Unconditionally Repeat Block of Instructions Unconditionally

RPTBLOCAL pmad localrepeat{}

RPTB pmad blockrepeat{}

RPTCC: Repeat Single Instruction Conditionally Repeat Single Instruction Conditionally

RPTCC k8, cond while (cond && (RPTC < k8)) repeat

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-27
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

RPTADD: Repeat Single Instruction Unconditionally and
Increment CSR

Repeat Single Instruction Unconditionally and Increment CSR

RPTADD CSR, TAx repeat(CSR), CSR += TAx

RPTADD CSR, k4 repeat(CSR), CSR += k4

RPTSUB: Repeat Single Instruction Unconditionally and
Decrement CSR

Repeat Single Instruction Unconditionally and Decrement CSR

RPTSUB CSR, k4 repeat(CSR), CSR –= k4

SAT: Saturate Accumulator Content Saturate Accumulator Content

SAT[R] [ACx,] ACy ACy = saturate(rnd(ACx))

SFTCC: Shift Accumulator Content Conditionally Shift Accumulator Content Conditionally

SFTCC ACx, TCx ACx = sftc(ACx, TCx)

SFTL: Shift Accumulator Content Logically Shift Accumulator Content Logically

SFTL ACx, Tx[, ACy] ACy = ACx <<< Tx

SFTL ACx, #SHIFTW[, ACy] ACy = ACx <<< #SHIFTW

SFTL: Shift Accumulator, Auxiliary, or Temporary Register
Content Logically

Shift Accumulator, Auxiliary, or Temporary Register Content
Logically

SFTL dst, #1 dst = dst <<< #1

SFTL dst, #–1 dst = dst >>> #1

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-28
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

SFTS: Signed Shift of Accumulator Content Signed Shift of Accumulator Content

SFTS ACx, Tx[, ACy] ACy = ACx << Tx

SFTS ACx, #SHIFTW[, ACy] ACy = ACx << #SHIFTW

SFTSC ACx, Tx[, ACy] ACy = ACx <<C Tx

SFTSC ACx, #SHIFTW[, ACy] ACy = ACx <<C #SHIFTW

SFTS: Signed Shift of Accumulator, Auxiliary, or Temporary
Register Content

Signed Shift of Accumulator, Auxiliary, or Temporary Register
Content

SFTS dst, #–1 dst = dst >> #1

SFTS dst, #1 dst = dst << #1

SQA: Square and Accumulate Square and Accumulate

SQA[R] [ACx,] ACy ACy = rnd(ACy + (ACx * ACx))

SQAM[R] [T3 =]Smem, [ACx,] ACy ACy = rnd(ACx + (Smem * Smem))[, T3 = Smem]

SQDST: Square Distance Square Distance

SQDST Xmem, Ymem, ACx, ACy sqdst(Xmem, Ymem, ACx, ACy)

SQR: Square Square

SQR[R] [ACx,] ACy ACy = rnd(ACx * ACx)

SQRM[R] [T3 =]Smem, ACx ACx = rnd(Smem * Smem)[, T3 = Smem]

SQS: Square and Subtract Square and Subtract

SQS[R] [ACx,] ACy ACy = rnd(ACy – (ACx * ACx))

SQSM[R] [T3 =]Smem, [ACx,] ACy ACy = rnd(ACx – (Smem * Smem))[, T3 = Smem]

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-29
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

SUB: Dual 16-Bit Subtractions Dual 16-Bit Subtractions

SUB dual(Lmem), [ACx,] ACy HI(ACy) = HI(ACx) – HI(Lmem),
LO(ACy) = LO(ACx) – LO(Lmem)

SUB ACx, dual(Lmem), ACy HI(ACy) = HI(Lmem) – HI(ACx),
LO(ACy) = LO(Lmem) – LO(ACx)

SUB dual(Lmem), Tx, ACx HI(ACx) = Tx – HI(Lmem),
LO(ACx) = Tx – LO(Lmem)

SUB Tx, dual(Lmem), ACx HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) – Tx

SUB: Subtraction Subtraction

SUB [src,] dst dst = dst – src

SUB k4, dst dst = dst – k4

SUB K16, [src,] dst dst = src – K16

SUB Smem, [src,] dst dst = src – Smem

SUB src, Smem, dst dst = Smem – src

SUB ACx << Tx, ACy ACy = ACy – (ACx << Tx)

SUB ACx << #SHIFTW, ACy ACy = ACy – (ACx << #SHIFTW)

SUB K16 << #16, [ACx,] ACy ACy = ACx – (K16 << #16)

SUB K16 << #SHFT, [ACx,] ACy ACy = ACx – (K16 << #SHFT)

SUB Smem << Tx, [ACx,] ACy ACy = ACx – (Smem << Tx)

SUB Smem << #16, [ACx,] ACy ACy = ACx – (Smem << #16)

SUB ACx, Smem << #16, ACy ACy = (Smem << #16) – ACx

SUB [uns(]Smem[)], BORROW, [ACx,] ACy ACy = ACx – uns(Smem) – BORROW

SUB [uns(]Smem[)], [ACx,] ACy ACy = ACx – uns(Smem)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-30
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy ACy = ACx – (uns(Smem) << #SHIFTW)

SUB dbl(Lmem), [ACx,] ACy ACy = ACx – dbl(Lmem)

SUB ACx, dbl(Lmem), ACy ACy = dbl(Lmem) – ACx

SUB Xmem, Ymem, ACx ACx = (Xmem << #16) – (Ymem << #16)

SUB::MOV: Subtraction with Parallel Store Accumulator
Content to Memory

Subtraction with Parallel Store Accumulator Content to
Memory

SUB Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

ACy = (Xmem << #16) – ACx,
Ymem = HI(ACy << T2)

SUBADD: Dual 16-Bit Subtraction and Addition Dual 16-Bit Subtraction and Addition

SUBADD Tx, Smem, ACx HI(ACx) = Smem – Tx,
LO(ACx) = Smem + Tx

SUBADD Tx, dual(Lmem), ACx HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) + Tx

SUBC: Subtract Conditionally Subtract Conditionally

SUBC Smem, [ACx,] ACy subc(Smem, ACx, ACy)

SWAP: Swap Accumulator Content Swap Accumulator Content

SWAP ACx, ACy swap(ACx, ACy)

SWAP: Swap Auxiliary Register Content Swap Auxiliary Register Content

SWAP ARx, ARy swap(ARx, ARy)

SWAP: Swap Auxiliary and Temporary Register Content Swap Auxiliary and Temporary Register Content

SWAP ARx, Tx swap(ARx, Tx)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-31
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

SWAP: Swap Temporary Register Content Swap Temporary Register Content

SWAP Tx, Ty swap(Tx, Ty)

SWAPP: Swap Accumulator Pair Content Swap Accumulator Pair Content

SWAPP AC0, AC2 swap(pair(AC0), pair(AC2))

SWAPP: Swap Auxiliary Register Pair Content Swap Auxiliary Register Pair Content

SWAPP AR0, AR2 swap(pair(AR0), pair(AR2))

SWAPP: Swap Auxiliary and Temporary Register Pair Content Swap Auxiliary and Temporary Register Pair Content

SWAPP ARx, Tx swap(pair(ARx), pair(Tx))

SWAPP: Swap Temporary Register Pair Content Swap Temporary Register Pair Content

SWAPP T0, T2 swap(pair(T0), pair(T2))

SWAP4: Swap Auxiliary and Temporary Register Pairs Content Swap Auxiliary and Temporary Register Pairs Content

SWAP4 AR4, T0 swap(block(AR4), block(T0))

TRAP: Software Trap Software Trap

TRAP k5 trap(k5)

XCC: Execute Conditionally Execute Conditionally

XCC [label,]cond if (cond) execute(AD_Unit)

XCCPART [label,]cond if (cond) execute(D_Unit)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-32
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
P

R
U

374G

Table 7–1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Mnemonic Syntax Algebraic Syntax

XOR: Bitwise Exclusive OR (XOR) Bitwise Exclusive OR (XOR)

XOR src, dst dst = dst ^ src

XOR k8, src, dst dst = src ^ k8

XOR k16, src, dst dst = src ^ k16

XOR Smem, src, dst dst = src ^ Smem

XOR ACx << #SHIFTW[, ACy] ACy = ACy ^ (ACx <<< #SHIFTW)

XOR k16 << #16, [ACx,] ACy ACy = ACx ^ (k16 <<< #16)

XOR k16 << #SHFT, [ACx,] ACy ACy = ACx ^ (k16 <<< #SHFT)

XOR k16, Smem Smem = Smem ^ k16

Index

Index-1

Index

A
AADD 5-2, 5-6
ABDST 5-7
ABS 5-9
absolute addressing modes 3-3

I/O absolute 3-3
k16 absolute 3-3
k23 absolute 3-3

Absolute Distance (ABDST) 5-7
Absolute Value (ABS) 5-9
ADD 5-12, 5-33
ADD::MOV 5-38
Addition (ADD) 5-12
Addition or Subtraction Conditionally

(ADDSUBCC) 5-45
Addition or Subtraction Conditionally with Shift

(ADDSUB2CC) 5-49
Addition with Absolute Value (ADDV) 5-52
Addition with Parallel Store Accumulator Content to

Memory (ADD::MOV) 5-38
Addition, Subtraction, or Move Accumulator Content

Conditionally (ADDSUBCC) 5-47
addressing modes

absolute 3-3
direct 3-4
indirect 3-6
introduction 3-2

ADDSUB 5-40
ADDSUB2CC 5-49
ADDSUBCC 5-45, 5-47
ADDV 5-52
affect of status bits 1-9
algebraic instruction set cross-reference to

mnemonic instruction set 7-1
AMAR 5-54, 5-56, 5-57

AMAR::MAC 5-58
AMAR::MAS 5-63
AMAR::MPY 5-65
AMOV 5-67, 5-68
AND 5-72
Antisymmetrical Finite Impulse Response Filter

(FIRSSUB) 5-154
arithmetic

absolute distance 5-7
absolute value 5-9
addition 5-12
addition or subtraction conditionally 5-45, 5-47
addition or subtraction conditionally with shift 5-49
addition with absolute value 5-52
compare memory with immediate value 5-135
compute exponent of accumulator content 5-151
compute mantissa and exponent of accumulator

content 5-193
dual 16-bit addition and subtraction 5-40
dual 16-bit additions 5-33
dual 16-bit subtraction and addition 5-485
dual 16-bit subtractions 5-448
finite impulse response filter,

antisymmetrical 5-154
finite impulse response filter, symmetrical 5-152
least mean square 5-159
multiply 5-323
multiply and accumulate 5-162
multiply and subtract 5-195
negation 5-342
round accumulator content 5-387
saturate accumulator content 5-413
square 5-442
square and accumulate 5-437
square and subtract 5-445
square distance 5-440
subtract conditionally 5-490
subtraction 5-457

ASUB 5-81

Index

Index-2

B
B 5-85

BAND 5-89

BCC 5-90, 5-94, 5-97

BCLR 5-100, 5-101, 5-102

BCNT 5-105

BFXPA 5-106

BFXTR 5-107

bit field comparison 5-89

bit field counting 5-105

bit field expand 5-106

bit field extract 5-107

bit manipulation
bitwise AND memory with immediate value and

compare to zero 5-89
clear accumulator, auxiliary, or temporary register

bit 5-100
clear memory bit 5-101
clear status register bit 5-102
complement accumulator, auxiliary, or temporary

register bit 5-108
complement accumulator, auxiliary, or temporary

register content 5-345
complement memory bit 5-109
expand accumulator bit field 5-106
extract accumulator bit field 5-107
set accumulator, auxiliary, or temporary register

bit 5-110
set memory bit 5-111
set status register bit 5-112
test accumulator, auxiliary, or temporary register

bit 5-115
test accumulator, auxiliary, or temporary register

bit pair 5-122
test and clear memory bit 5-120
test and complement memory bit 5-121
test and set memory bit 5-124
test memory bit 5-117

Bitwise AND 5-72

Bitwise AND Memory with Immediate Value and
Compare to Zero (BAND) 5-89

bitwise complement 5-345

Bitwise Exclusive OR (XOR) 5-514

Bitwise OR 5-346

BNOT 5-108, 5-109

branch
conditionally 5-90
on auxiliary register not zero 5-94
unconditionally 5-85

Branch Conditionally (BCC) 5-90
Branch on Auxiliary Register Not Zero (BCC) 5-94
Branch Unconditionally (B) 5-85
BSET 5-110, 5-111, 5-112
BTST 5-115, 5-117
BTSTCLR 5-120
BTSTNOT 5-121
BTSTP 5-122
BTSTSET 5-124

C
.CR 5-149
CALL 5-125
call

conditionally 5-129
unconditionally 5-125

Call Conditionally (CALLCC) 5-129
Call Unconditionally (CALL) 5-125
CALLCC 5-129
circular addressing 3-20
Circular Addressing Qualifier (.CR) 5-149
clear

accumulator bit 5-100
auxiliary register bit 5-100
memory bit 5-101
status register bit 5-102
temporary register bit 5-100

Clear Accumulator Bit (BCLR) 5-100
Clear Auxiliary Register Bit (BCLR) 5-100
Clear Memory Bit (BCLR) 5-101
Clear Status Register Bit (BCLR) 5-102
Clear Temporary Register Bit (BCLR) 5-100
CMP 5-135, 5-137
CMPAND 5-139
CMPOR 5-144
compare

accumulator, auxiliary, or temporary register
content 5-137

accumulator, auxiliary, or temporary register
content maximum 5-219

accumulator, auxiliary, or temporary register
content minimum 5-228

Index

Index-3

compare (continued)
accumulator, auxiliary, or temporary register

content with AND 5-139
accumulator, auxiliary, or temporary register

content with OR 5-144
and branch 5-97
and select accumulator content

maximum 5-222
and select accumulator content minimum 5-231
memory with immediate value 5-135

Compare Accumulator Content (CMP) 5-137
Compare Accumulator Content Maximum

(MAX) 5-219
Compare Accumulator Content Minimum

(MIN) 5-228
Compare Accumulator Content with AND

(CMPAND) 5-139
Compare Accumulator Content with OR

(CMPOR) 5-144
Compare and Branch (BCC) 5-97
Compare and Select Accumulator Content

Maximum (MAXDIFF) 5-222
Compare and Select Accumulator Content Minimum

(MINDIFF) 5-231
Compare Auxiliary Register Content (CMP) 5-137
Compare Auxiliary Register Content Maximum

(MAX) 5-219
Compare Auxiliary Register Content Minimum

(MIN) 5-228
Compare Auxiliary Register Content with AND

(CMPAND) 5-139
Compare Auxiliary Register Content with OR

(CMPOR) 5-144
compare maximum 5-219
Compare Memory with Immediate Value

(CMP) 5-135
compare minimum 5-228
Compare Temporary Register Content

(CMP) 5-137
Compare Temporary Register Content Maximum

(MAX) 5-219
Compare Temporary Register Content Minimum

(MIN) 5-228
Compare Temporary Register Content with AND

(CMPAND) 5-139

Compare Temporary Register Content with OR
(CMPOR) 5-144

complement
accumulator bit 5-108
accumulator content 5-345
auxiliary register bit 5-108
auxiliary register content 5-345
memory bit 5-109
temporary register bit 5-108
temporary register content 5-345

Complement Accumulator Bit (BNOT) 5-108

Complement Accumulator Content (NOT) 5-345

Complement Auxiliary Register Bit (BNOT) 5-108

Complement Auxiliary Register Content
(NOT) 5-345

Complement Memory Bit (BNOT) 5-109

Complement Temporary Register Bit
(BNOT) 5-108

Complement Temporary Register Content
(NOT) 5-345

Compute Exponent of Accumulator Content
(EXP) 5-151

Compute Mantissa and Exponent of Accumulator
Content (MANT::NEXP) 5-193

cond field 1-7

conditional
addition or subtraction 5-45
addition or subtraction with shift 5-49
addition, subtraction, or move accumulator

content 5-47
branch 5-90
call 5-129
execute 5-507
repeat single instruction 5-408
return 5-379
shift 5-415
subtract 5-490

Count Accumulator Bits (BCNT) 5-105

Cross-Reference to Algebraic and Mnemonic
Instruction Sets 7-1

Index

Index-4

D
DELAY 5-150

direct addressing modes 3-4
DP direct 3-4
PDP direct 3-5
register-bit direct 3-5
SP direct 3-5

DMAXDIFF 5-222

DMINDIFF 5-231

Dual 16-Bit Addition and Subtraction
(ADDSUB) 5-40

Dual 16-Bit Additions (ADD) 5-33

dual 16-bit arithmetic
addition and subtraction 5-40
additions 5-33
subtraction and addition 5-485
subtractions 5-448

Dual 16-Bit Subtraction and Addition
(SUBADD) 5-485

Dual 16-Bit Subtractions (SUB) 5-448

E
Execute Conditionally (XCC) 5-507

EXP 5-151

Expand Accumulator Bit Field (BFXPA) 5-106

extended auxiliary register (XAR)
load from memory 5-270
load with immediate value 5-67
modify content 5-56
move content 5-280
pop content from stack pointers 5-362
push content to stack pointers 5-372
store to memory 5-320

Extract Accumulator Bit Field (BFXTR) 5-107

F
finite impulse response (FIR) filter

antisymmetrical 5-154
symmetrical 5-152

FIRSADD 5-152

FIRSSUB 5-154

I
IDLE 5-156

indirect addressing modes 3-6
AR indirect 3-6
CDP indirect 3-16
coefficient indirect 3-18
dual AR indirect 3-14

initialize memory 5-271

instruction qualifier
circular addressing 5-149
linear addressing 5-161
memory-mapped register access 5-237

instruction set
abbreviations 1-2
affect of status bits 1-9
conditional fields 1-7
nonrepeatable instructions 1-21
notes 1-14
opcode symbols and abbreviations 6-15
opcodes 6-2
operators 1-6
rules 1-14
symbols 1-2
terms 1-2

instruction set conditional fields 1-7

instruction set notes and rules 1-14

instruction set opcode
abbreviations 6-15
symbols 6-15

instruction set opcodes 6-2

instruction set summary 4-1

instruction set terms, symbols, and
abbreviations 1-2

Interrupt (INTR) 5-157

INTR 5-157

L
.LR 5-161

Least Mean Square (LMS) 5-159

Linear Addressing Qualifier (.LR) 5-161

List of Mnemonic Instruction Opcodes 6-1

LMS 5-159

Index

Index-5

load
accumulator from memory 5-239
accumulator from memory with parallel store

accumulator content to memory 5-321
accumulator pair from memory 5-248
accumulator with immediate value 5-251
accumulator, auxiliary, or temporary register from

memory 5-254
accumulator, auxiliary, or temporary register with

immediate value 5-260
auxiliary or temporary register pair from

memory 5-264
CPU register from memory 5-265
CPU register with immediate value 5-268
extended auxiliary register (XAR) from

memory 5-270
extended auxiliary register (XAR) with immediate

value 5-67
memory with immediate value 5-271

Load Accumulator from Memory (MOV) 5-239,
5-254

Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory
(MOV::MOV) 5-321

Load Accumulator Pair from Memory (MOV) 5-248

Load Accumulator with Immediate Value
(MOV) 5-251, 5-260

Load Auxiliary Register from Memory (MOV) 5-254

Load Auxiliary Register Pair from Memory
(MOV) 5-264

Load Auxiliary Register with Immediate Value
(MOV) 5-260

Load CPU Register from Memory (MOV) 5-265

Load CPU Register with Immediate Value
(MOV) 5-268

Load Extended Auxiliary Register from Memory
(MOV) 5-270

Load Extended Auxiliary Register with Immediate
Value (AMOV) 5-67

Load Memory with Immediate Value (MOV) 5-271

Load Temporary Register from Memory
(MOV) 5-254

Load Temporary Register Pair from Memory
(MOV) 5-264

Load Temporary Register with Immediate Value
(MOV) 5-260

logical
bitwise AND 5-72
bitwise OR 5-346
bitwise XOR 5-514
count accumulator bits 5-105
shift accumulator content logically 5-417
shift accumulator, auxiliary, or temporary register

content logically 5-420

M
MAC 5-162

MAC::MAC 5-179

MAC::MPY 5-186

MACK 5-162

MACM 5-162

MACM::MOV 5-189, 5-191

MACMK 5-162

MACMZ 5-177

MANT::NEXP 5-193

MAS 5-195

MAS::MAC 5-204

MAS::MAS 5-209

MAS::MPY 5-212

MASM 5-195

MASM::MOV 5-215, 5-217

MAX 5-219

MAXDIFF 5-222

memory bit
clear 5-101
complement (not) 5-109
set 5-111
test 5-117
test and clear 5-120
test and complement 5-121
test and set 5-124

Memory Delay (DELAY) 5-150

Memory-Mapped Register Access Qualifier
(mmap) 5-237

MIN 5-228

MINDIFF 5-231

mmap 5-237

mnemonic instruction set cross-reference to
algebraic instruction set 7-1

Index

Index-6

modify
auxiliary or temporary register content 5-68
auxiliary or temporary register content by

addition 5-2
auxiliary or temporary register content by

subtraction 5-81
auxiliary register content 5-54
auxiliary register content with parallel

multiply 5-65
auxiliary register content with parallel multiply

and accumulate 5-58
auxiliary register content with parallel multiply

and subtract 5-63
data stack pointer 5-6
extended auxiliary register (XAR) content 5-56

Modify Auxiliary Register Content (AMOV) 5-68

Modify Auxiliary Register Content (AMAR) 5-54

Modify Auxiliary Register Content by Addition
(AADD) 5-2

Modify Auxiliary Register Content by Subtraction
(ASUB) 5-81

Modify Auxiliary Register Content with Parallel
Multiply (AMAR::MPY) 5-65

Modify Auxiliary Register Content with Parallel
Multiply and Accumulate (AMAR::MAC) 5-58

Modify Auxiliary Register Content with Parallel
Multiply and Subtract (AMAR::MAS) 5-63

Modify Data Stack Pointer (AADD) 5-6

Modify Extended Auxiliary Register Content
(AMAR) 5-56

Modify Temporary Register Content (AMOV) 5-68

Modify Temporary Register Content by Addition
(AADD) 5-2

Modify Temporary Register Content by Subtraction
(ASUB) 5-81

MOV 5-239, 5-248, 5-251, 5-254, 5-260, 5-264,
5-265, 5-268, 5-270, 5-271, 5-272, 5-273, 5-275,
5-276, 5-278, 5-280, 5-281, 5-288, 5-308, 5-311,
5-315, 5-316, 5-320

MOV::MOV 5-321

move
accumulator content to auxiliary or temporary

register 5-272
accumulator, auxiliary, or temporary register

content 5-273
auxiliary or temporary register content to

accumulator 5-275

auxiliary or temporary register content to CPU
register 5-276

CPU register content to auxiliary or temporary
register 5-278

extended auxiliary register content 5-280
memory delay 5-150
memory to memory 5-281
pop accumulator or extended auxiliary register

content from stack pointers 5-362
pop top of stack 5-355
push accumulator or extended auxiliary register

content to stack pointers 5-372
push to top of stack 5-365
swap accumulator content 5-493
swap accumulator pair content 5-498
swap auxiliary and temporary register

content 5-495
swap auxiliary and temporary register pair

content 5-500
swap auxiliary and temporary register pairs

content 5-503
swap auxiliary register content 5-494
swap auxiliary register pair content 5-499
swap temporary register content 5-497
swap temporary register pair content 5-502

Move Accumulator Content (MOV) 5-273
Move Accumulator Content to Auxiliary Register

(MOV) 5-272
Move Accumulator Content to Temporary Register

(MOV) 5-272
Move Auxiliary Register Content (MOV) 5-273
Move Auxiliary Register Content to Accumulator

(MOV) 5-275
Move Auxiliary Register Content to CPU Register

(MOV) 5-276
Move CPU Register Content to Auxiliary Register

(MOV) 5-278
Move CPU Register Content to Temporary Register

(MOV) 5-278
Move Extended Auxiliary Register Content

(MOV) 5-280
Move Memory to Memory (MOV) 5-281
Move Temporary Register Content (MOV) 5-273
Move Temporary Register Content to Accumulator

(MOV) 5-275
Move Temporary Register Content to CPU Register

(MOV) 5-276
MPY 5-323
MPY::MAC 5-336

Index

Index-7

MPY::MPY 5-338

MPYK 5-323

MPYM 5-323

MPYM::MOV 5-340

MPYMK 5-323

Multiply (MPY) 5-323

Multiply and Accumulate (MAC) 5-162

Multiply and Accumulate with Parallel Delay
(MACMZ) 5-177

Multiply and Accumulate with Parallel Load
Accumulator from Memory
(MACM::MOV) 5-189

Multiply and Accumulate with Parallel Multiply
(MAC::MPY) 5-186

Multiply and Accumulate with Parallel Store
Accumulator Content to Memory
(MACM::MOV) 5-191

Multiply and Subtract (MAS) 5-195

Multiply and Subtract with Parallel Load
Accumulator from Memory
(MASM::MOV) 5-215

Multiply and Subtract with Parallel Multiply
(MAS::MPY) 5-212

Multiply and Subtract with Parallel Multiply and
Accumulate (MAS::MAC) 5-204

Multiply and Subtract with Parallel Store
Accumulator Content to Memory
(MASM::MOV) 5-217

Multiply with Parallel Multiply and Accumulate
(MPY::MAC) 5-336

Multiply with Parallel Store Accumulator Content to
Memory (MPYM::MOV) 5-340

N
NEG 5-342

Negate Accumulator Content (NEG) 5-342

Negate Auxiliary Register Content (NEG) 5-342

Negate Temporary Register Content (NEG) 5-342

negation
accumulator content 5-342
auxiliary register content 5-342
temporary register content 5-342

No Operation (NOP) 5-344

nonrepeatable instructions 1-21

NOP 5-344
NOT 5-345

O
operand qualifier 5-363
OR 5-346

P
Parallel Modify Auxiliary Register Contents

(AMAR) 5-57
Parallel Multiplies (MPY::MPY) 5-338
Parallel Multiply and Accumulates

(MAC::MAC) 5-179
Parallel Multiply and Subtracts (MAS::MAS) 5-209
parallel operations

addition with parallel store accumulator content
to memory 5-38

load accumulator from memory with parallel store
accumulator content to memory 5-321

modify auxiliary register content with parallel
multiply 5-65

modify auxiliary register content with parallel
multiply and accumulate 5-58

modify auxiliary register content with parallel
multiply and subtract 5-63

modify auxiliary register contents 5-57
multiplies 5-338
multiply and accumulate with parallel

delay 5-177
multiply and accumulate with parallel load

accumulator from memory 5-189
multiply and accumulate with parallel

multiply 5-186
multiply and accumulate with parallel store

accumulator content to memory 5-191
multiply and accumulates 5-179
multiply and subtract with parallel load

accumulator from memory 5-215
multiply and subtract with parallel

multiply 5-212
multiply and subtract with parallel multiply and

accumulate 5-204
multiply and subtract with parallel store

accumulator content to memory 5-217
multiply and subtracts 5-209
multiply with parallel multiply and

accumulate 5-336

Index

Index-8

parallel operations (continued)
multiply with parallel store accumulator content to

memory 5-340
subtraction with parallel store accumulator

content to memory 5-483

parallelism basics 2-3
parallelism features 2-2

Peripheral Port Register Access Qualifiers
(port) 5-363

POP 5-355
Pop Accumulator Content from Stack Pointers

(POPBOTH) 5-362
Pop Extended Auxiliary Register Content from Stack

Pointers (POPBOTH) 5-362

Pop Top of Stack (POP) 5-355
POPBOTH 5-362

port 5-363

program control
branch conditionally 5-90
branch on auxiliary register not zero 5-94
branch unconditionally 5-85
call conditionally 5-129
call unconditionally 5-125
compare and branch 5-97
execute conditionally 5-507
idle 5-156
no operation 5-344
repeat block of instructions

unconditionally 5-397
repeat single instruction conditionally 5-408
repeat single instruction unconditionally 5-389
repeat single instruction unconditionally and

decrement CSR 5-411
repeat single instruction unconditionally and

increment CSR 5-394
return conditionally 5-379
return from interrupt 5-381
return unconditionally 5-377
software interrupt 5-157
software reset 5-373
software trap 5-505

PSH 5-365
PSHBOTH 5-372

Push Accumulator Content to Stack Pointers
(PSHBOTH) 5-372

Push Extended Auxiliary Register Content to Stack
Pointers (PSHBOTH) 5-372

Push to Top of Stack (PSH) 5-365

R
register bit

clear 5-100
complement (not) 5-108
set 5-110
test 5-115
test bit pair 5-122

Repeat Block of Instructions Unconditionally
(RPTB) 5-397

Repeat Single Instruction Conditionally
(RPTCC) 5-408

Repeat Single Instruction Unconditionally
(RPT) 5-389

Repeat Single Instruction Unconditionally and
Decrement CSR (RPTSUB) 5-411

Repeat Single Instruction Unconditionally and
Increment CSR (RPTADD) 5-394

RESET 5-373
resource conflicts in a parallel pair 2-4
RET 5-377
RETCC 5-379
RETI 5-381
Return Conditionally (RETCC) 5-379
Return from Interrupt (RETI) 5-381
Return Unconditionally (RET) 5-377
ROL 5-383
ROR 5-385
Rotate Left Accumulator Content (ROL) 5-383
Rotate Left Auxiliary Register Content

(ROL) 5-383
Rotate Left Temporary Register Content

(ROL) 5-383
Rotate Right Accumulator Content (ROR) 5-385
Rotate Right Auxiliary Register Content

(ROR) 5-385
Rotate Right Temporary Register Content

(ROR) 5-385
ROUND 5-387
Round Accumulator Content (ROUND) 5-387
RPT 5-389
RPTADD 5-394
RPTB 5-397
RPTBLOCAL 5-397
RPTCC 5-408
RPTSUB 5-411

Index

Index-9

S
SAT 5-413
Saturate Accumulator Content (SAT) 5-413
set

accumulator bit 5-110
auxiliary register bit 5-110
memory bit 5-111
status register bit 5-112
temporary register bit 5-110

Set Accumulator Bit (BSET) 5-110
Set Auxiliary Register Bit (BSET) 5-110
Set Memory Bit (BSET) 5-111
Set Status Register Bit (BSET) 5-112
Set Temporary Register Bit (BSET) 5-110
SFTCC 5-415
SFTL 5-417, 5-420
SFTS 5-423, 5-432
SFTSC 5-423
Shift Accumulator Content Conditionally

(SFTCC) 5-415
Shift Accumulator Content Logically (SFTL) 5-417,

5-420
Shift Auxiliary Register Content Logically

(SFTL) 5-420
shift conditionally 5-415
shift logically 5-417, 5-420
Shift Temporary Register Content Logically

(SFTL) 5-420
Signed Shift of Accumulator Content

(SFTS) 5-423, 5-432
Signed Shift of Auxiliary Register Content

(SFTS) 5-432
Signed Shift of Temporary Register Content

(SFTS) 5-432
soft-dual parallelism 2-5
Software Interrupt (INTR) 5-157
Software Reset (RESET) 5-373
Software Trap (TRAP) 5-505
SQA 5-437
SQAM 5-437
SQDST 5-440
SQR 5-442
SQRM 5-442
SQS 5-445

SQSM 5-445
Square (SQR) 5-442
Square and Accumulate (SQA) 5-437
Square and Subtract (SQS) 5-445
Square Distance (SQDST) 5-440
status register bit

clear 5-102
set 5-112

store
accumulator content to memory 5-288
accumulator pair content to memory 5-308
accumulator, auxiliary, or temporary register

content to memory 5-311
auxiliary or temporary register pair content to

memory 5-315
CPU register content to memory 5-316
extended auxiliary register (XAR) to

memory 5-320
Store Accumulator Content to Memory

(MOV) 5-288, 5-311
Store Accumulator Pair Content to Memory

(MOV) 5-308
Store Auxiliary Register Content to Memory

(MOV) 5-311
Store Auxiliary Register Pair Content to Memory

(MOV) 5-315
Store CPU Register Content to Memory

(MOV) 5-316
Store Extended Auxiliary Register Content to

Memory (MOV) 5-320
Store Temporary Register Content to Memory

(MOV) 5-311
Store Temporary Register Pair Content to Memory

(MOV) 5-315
SUB 5-448, 5-457
SUB::MOV 5-483
SUBADD 5-485
SUBC 5-490
Subtract Conditionally (SUBC) 5-490
Subtraction (SUB) 5-457
Subtraction with Parallel Store Accumulator Content

to Memory (SUB::MOV) 5-483
SWAP 5-493, 5-494, 5-495, 5-497
Swap Accumulator Content (SWAP) 5-493
Swap Accumulator Pair Content (SWAPP) 5-498
Swap Auxiliary and Temporary Register Content

(SWAP) 5-495

Index

Index-10

Swap Auxiliary and Temporary Register Pair
Content (SWAPP) 5-500

Swap Auxiliary and Temporary Register Pairs
Content (SWAP4) 5-503

Swap Auxiliary Register Content (SWAP) 5-494
Swap Auxiliary Register Pair Content (SWAPP) 5-499
Swap Temporary Register Content (SWAP) 5-497
Swap Temporary Register Pair Content

(SWAPP) 5-502
SWAP4 5-503
SWAPP 5-498, 5-499, 5-500, 5-502
Symmetrical Finite Impulse Response Filter

(FIRSADD) 5-152

T
test

accumulator bit 5-115
accumulator bit pair 5-122
auxiliary register bit 5-115
auxiliary register bit pair 5-122
memory bit 5-117
temporary register bit 5-115
temporary register bit pair 5-122

Test Accumulator Bit (BTST) 5-115
Test Accumulator Bit Pair (BTSTP) 5-122
Test and Clear Memory Bit (BTSTCLR) 5-120
Test and Complement Memory Bit

(BTSTNOT) 5-121

Test and Set Memory Bit (BTSTSET) 5-124

Test Auxiliary Register Bit (BTST) 5-115

Test Auxiliary Register Bit Pair (BTSTP) 5-122

Test Memory Bit (BTST) 5-117

Test Temporary Register Bit (BTST) 5-115

Test Temporary Register Bit Pair (BTSTP) 5-122

TRAP 5-505

U
unconditional

branch 5-85
call 5-125
repeat block of instructions 5-397
repeat single instruction 5-389
repeat single instruction and decrement

CSR 5-411
repeat single instruction and increment

CSR 5-394
return 5-377
return from interrupt 5-381

X
XCC 5-507

XCCPART 5-507

XOR 5-514

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Terms, Symbols, and Abbreviations
	Instruction Set Terms, Symbols, and Abbreviations
	Instruction Set Conditional (cond) Fields
	Affect of Status Bits
	Accumulator Overflow Status Bit (ACOVx)
	C54CM Status Bit
	CARRY Status Bit
	FRCT Status Bit
	INTM Status Bit
	M40 Status Bit
	M40 Status Bit When Sign Shifting
	M40 Status Bit When Logically Shifting

	RDM Status Bit
	SATA Status Bit
	SATD Status Bit
	SMUL Status Bit
	SXMD Status Bit
	Test Control Status Bit (TCx)

	Instruction Set Notes and Rules
	Notes
	Rules
	Reserved Words
	Mnemonic Syntax Roots
	Mnemonic Syntax Prefixes
	Mnemonic Syntax Suffixes
	Literal and Address Operands
	Rule 1
	Rule 2
	Rule 3

	Memory Operands
	Operand Modifiers

	Nonrepeatable Instructions

	Parallelism Features and Rules
	Parallelism Features
	Parallelism Basics
	Resource Conflicts
	Operators
	Address Generation Units
	Buses

	Soft-Dual Parallelism
	Soft-Dual Parallelism of MAR Instructions

	Execute Conditionally Instructions
	Other Exceptions

	Introduction to Addressing Modes
	Introduction to the Addressing Modes
	Absolute Addressing Modes
	k16 Absolute Addressing Mode
	k23 Absolute Addressing Mode
	I/O Absolute Addressing Mode

	Direct Addressing Modes
	DP Direct Addressing Mode
	SP Direct Addressing Mode
	Register-Bit Direct Addressing Mode
	PDP Direct Addressing Mode

	Indirect Addressing Modes
	AR Indirect Addressing Mode
	Dual AR Indirect Addressing Mode
	CDP Indirect Addressing Mode
	Coefficient Indirect Addressing Mode

	Circular Addressing

	Instruction Set Summary
	Instruction Set Descriptions
	AADD - Modify Auxiliary or Temporary Register Content by Addition
	AADD - Modify Data Stack Pointer
	ABDST - Absolute Distance
	ABS - Absolute Value
	ADD - Addition
	ADD - Dual 16-Bit Additions
	ADD::MOV - Addition with Parallel Store Accumulator Content to Memory
	ADDSUB - Dual 16-Bit Addition and Subtraction
	ADDSUBCC - Addition or Subtraction Conditionally
	ADDSUBCC - Addition, Subtraction, or Move Accumulator Content Conditiona\
lly
	ADDSUB2CC - Addition or Subtraction Conditionally with Shift
	ADDV - Addition with Absolute Value
	AMAR - Modify Auxiliary Register Content
	AMAR - Modify Extended Auxiliary Register Content
	AMAR - Parallel Modify Auxiliary Register Contents
	AMAR::MAC - Modify Auxiliary Register Content with Parallel Multiply and\
 Accumulate
	AMAR::MAS - Modify Auxiliary Register Content with Parallel Multiply and\
 Subtract
	AMAR::MPY - Modify Auxiliary Register Content with Parallel Multiply
	AMOV - Load Extended Auxiliary Register with Immediate Value
	AMOV - Modify Auxiliary or Temporary Register Content
	AND - Bitwise AND
	ASUB - Modify Auxiliary or Temporary Register Content by Subtraction
	B - Branch Unconditionally
	BAND - Bitwise AND Memory with Immediate Value and Compare to Zero
	BCC - Branch Conditionally
	BCC - Branch on Auxiliary Register Not Zero
	BCC - Compare and Branch
	BCLR - Clear Accumulator, Auxiliary, or Temporary Register Bit
	BCLR - Clear Memory Bit
	BCLR - Clear Status Register Bit
	BCNT - Count Accumulator Bits
	BFXPA - Expand Accumulator Bit Field
	BFXTR - Extract Accumulator Bit Field
	BNOT - Complement Accumulator, Auxiliary, or Temporary Register Bit
	BNOT - Complement Memory Bit
	BSET - Set Accumulator, Auxiliary, or Temporary Register Bit
	BSET - Set Memory Bit
	BSET - Set Status Register Bit
	BTST - Test Accumulator, Auxiliary, or Temporary Register Bit
	BTST - Test Memory Bit
	BTSTCLR - Test and Clear Memory Bit
	BTSTNOT - Test and Complement Memory Bit
	BTSTP - Test Accumulator, Auxiliary, or Temporary Register Bit Pair
	BTSTSET - Test and Set Memory Bit
	CALL - Call Unconditionally
	CALLCC - Call Conditionally
	CMP - Compare Memory with Immediate Value
	CMP - Compare Accumulator, Auxiliary, or Temporary Register Content
	CMPAND - Compare Accumulator, Auxiliary, or Temporary Register Content w\
ith AND
	CMPOR - Compare Accumulator, Auxiliary, or Temporary Register Content wi\
th OR
	.CR - Circular Addressing Qualifier
	DELAY - Memory Delay
	EXP - Compute Exponent of Accumulator Content
	FIRSADD - Symmetrical Finite Impulse Response Filter
	FIRSSUB - Antisymmetrical Finite Impulse Response Filter
	IDLE - Idle
	INTR - Software Interrupt
	LMS - Least Mean Square
	.LR - Linear Addressing Qualifier
	MAC - Multiply and Accumulate
	MACMZ - Multiply and Accumulate with Parallel Delay
	MAC::MAC - Parallel Multiply and Accumulates
	MAC::MPY - Multiply and Accumulate with Parallel Multiply
	MACM::MOV - Multiply and Accumulate with Parallel Load Accumulator from \
Memory
	MACM::MOV - Multiply and Accumulate with Parallel Store Accumulator Cont\
ent to Memory
	MANT::NEXP - Compute Mantissa and Exponent of Accumulator Content
	MAS - Multiply and Subtract
	MAS::MAC - Multiply and Subtract with Parallel Multiply and Accumulate
	MAS::MAS - Parallel Multiply and Subtracts
	MAS::MPY - Multiply and Subtract with Parallel Multiply
	MASM::MOV - Multiply and Subtract with Parallel Load Accumulator from Me\
mory
	MASM::MOV - Multiply and Subtract with Parallel Store Accumulator Conten\
t to Memory
	MAX - Compare Accumulator, Auxiliary, or Temporary Register Content Maxi\
mum
	MAXDIFF - Compare and Select Accumulator Content Maximum
	MIN - Compare Accumulator, Auxiliary, or Temporary Register Content Mini\
mum
	MINDIFF - Compare and Select Accumulator Content Minimum
	mmap - Memory-Mapped Register Access Qualifier
	MOV - Load Accumulator from Memory
	MOV - Load Accumulator Pair from Memory
	MOV - Load Accumulator with Immediate Value
	MOV - Load Accumulator, Auxiliary, or Temporary Register from Memory
	MOV - Load Accumulator, Auxiliary, or Temporary Register with Immediate \
Value
	MOV - Load Auxiliary or Temporary Register Pair from Memory
	MOV - Load CPU Register from Memory
	MOV - Load CPU Register with Immediate Value
	MOV - Load Extended Auxiliary Register from Memory
	MOV - Load Memory with Immediate Value
	MOV - Move Accumulator Content to Auxiliary or Temporary Register
	MOV - Move Accumulator, Auxiliary, or Temporary Register Content
	MOV - Move Auxiliary or Temporary Register Content to Accumulator
	MOV - Move Auxiliary or Temporary Register Content to CPU Register
	MOV - Move CPU Register Content to Auxiliary or Temporary Register
	MOV - Move Extended Auxiliary Register Content
	MOV - Move Memory to Memory
	MOV - Store Accumulator Content to Memory
	MOV - Store Accumulator Pair Content to Memory
	MOV - Store Accumulator, Auxiliary, or Temporary Register Content to Mem\
ory
	MOV - Store Auxiliary or Temporary Register Pair Content to Memory
	MOV - Store CPU Register Content to Memory
	MOV - Store Extended Auxiliary Register Content to Memory
	MOV::MOV - Load Accumulator from Memory with Parallel Store Accumulator \
Content to Memory
	MPY - Multiply
	MPY::MAC - Multiply with Parallel Multiply and Accumulate
	MPY::MPY - Parallel Multiplies
	MPYM::MOV - Multiply with Parallel Store Accumulator Content to Memory
	NEG - Negate Accumulator, Auxiliary, or Temporary Register Content
	NOP - No Operation
	NOT - Complement Accumulator, Auxiliary, or Temporary Register Content
	OR - Bitwise OR
	POP - Pop Top of Stack
	POPBOTH - Pop Accumulator or Extended Auxiliary Register Content from St\
ack Pointers
	port - Peripheral Port Register Access Qualifiers
	PSH - Push to Top of Stack
	PSHBOTH - Push Accumulator or Extended Auxiliary Register Content to Sta\
ck Pointers
	RESET - Software Reset
	RET - Return Unconditionally
	RETCC - Return Conditionally
	RETI - Return from Interrupt
	ROL - Rotate Left Accumulator, Auxiliary, or Temporary Register Content
	ROR - Rotate Right Accumulator, Auxiliary, or Temporary Register Content\

	ROUND - Round Accumulator Content
	RPT - Repeat Single Instruction Unconditionally
	RPTADD - Repeat Single Instruction Unconditionally and Increment CSR
	RPTB - Repeat Block of Instructions Unconditionally
	RPTCC - Repeat Single Instruction Conditionally
	RPTSUB - Repeat Single Instruction Unconditionally and Decrement CSR
	SAT - Saturate Accumulator Content
	SFTCC - Shift Accumulator Content Conditionally
	SFTL - Shift Accumulator Content Logically
	SFTL - Shift Accumulator, Auxiliary, or Temporary Register Content Logic\
ally
	SFTS - Signed Shift of Accumulator Content
	SFTS - Signed Shift of Accumulator, Auxiliary, or Temporary Register Con\
tent
	SQA - Square and Accumulate
	SQDST - Square Distance
	SQR - Square
	SQS - Square and Subtract
	SUB - Dual 16-Bit Subtractions
	SUB - Subtraction
	SUB::MOV - Subtraction with Parallel Store Accumulator Content to Memory\

	SUBADD - Dual 16-Bit Subtraction and Addition
	SUBC - Subtract Conditionally
	SWAP - Swap Accumulator Content
	SWAP - Swap Auxiliary Register Content
	SWAP - Swap Auxiliary and Temporary Register Content
	SWAP - Swap Temporary Register Content
	SWAPP - Swap Accumulator Pair Content
	SWAPP - Swap Auxiliary Register Pair Content
	SWAPP - Swap Auxiliary and Temporary Register Pair Content
	SWAPP - Swap Temporary Register Pair Content
	SWAP4 - Swap Auxiliary and Temporary Register Pairs Content
	TRAP - Software Trap
	XCC - Execute Conditionally
	XOR - Bitwise Exclusive OR (XOR)

	Instruction Opcodes in Sequential Order
	Instruction Set Opcodes
	Instruction Set Opcode Symbols and Abbreviations

	Cross-Reference of Algebraic and Mnemonic Instruction Sets
	Index

