
SPNA097 – JUNE 2006
Submit Documentation Feedback

UART Implementation Using the High-End Timer 1

Application Report
SPNA097 – JUNE 2006

UART Implementation Using the High-End Timer
Andreas Dannenberg

ABSTRACT
This application report describes how the TMS470 high-end timer (HET) peripheral can
be used to implement multiple additional full-duplex high-speed universal asynchronous
receiver transmitter (UART) interfaces with interrupt capability and zero ARM7 CPU
overhead. The solution is provided for both TMS470R1A256 and TMS470R1B1M
devices, but the information applies to other TMS470 family members as well. The
sample code described in this application report can be downloaded from
http://www.ti.com/lit/zip/SPNA097.

1 Overview

The TMS470 HET peripheral is a complex high-performance RISC coprocessor that operates
independently from the main ARM7 CPU and can be used to implement complex timed I/O operations
running in the background. More information on the HET can be found in the TMS470R1x High-End Timer
(HET) Reference Guide.[1]
In this application report, the HET is used to implement multiple UART interfaces. The goal is to provide
hardware UART-module-like functionality with independent background transmission/reception, indications
that a character was received or sent, and interrupts, allowing for an event-oriented application program
flow. Figure 1 shows a conceptual overview of the interaction among the different components.

RS-232
Connector

Figure 1. TMS470 HET UART Implementation Overview

All trademarks are the property of their respective owners.

Data RX / TX
Interrupts

H

H

TMS470R1xxx MCU

Single / Dual

UART Program

HET Co-Processor

Main Application

Program

ARM7 CPU

ETx
MAX3232 E

RS-232 Line

Driver / Receiver

ETx

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/lit/zip/SPNA097

2 UART Implementation Using the High-End Timer SPNA097 – JUNE 2006
Submit Documentation Feedback

www.ti.com

Theory of Operation

The HET program runs in the background, independent of the main ARM7 CPU, and performs all the
tasks associated with an asynchronous UART communication. The incoming UART data stream delivered
to an HET device I/O pin is decoded. Upon the reception of a full character, the ARM7 program is notified,
and it then can directly fetch the entire received data byte from the HET internal RAM. For outgoing data
streams, the ARM7 just passes the data it wishes to transmit to the HET program and initiates the
transmission. After this, the entire transmission is handled by the HET program, and a UART data stream
is output to an HET device I/O pin. During this process, the ARM7 CPU is free for application-related tasks
and does not perform any critical low-level UART-related timings.

2 Theory of Operation

In this UART implementation, the HET program processes the incoming and outgoing data streams bit by
bit. For this, conditional HET program flow is used, which means that only one bit can be processed for
each UART channel within one HET program loop. The HET UART program must adhere to the general
rule that the entire HET program must be processed within one loop resolution (LR) clock period, while
leaving enough time slots for the ARM7 to access the HET RAM. The HET UART code presented in this
application report consists of independent entities that implement transmission and reception. These
building blocks can be combined to create any number of transmission or reception channels as required
by the main application, as long as the HET requirements are met. See the TMS470R1x High-End Timer
(HET) Reference Guide for more details regarding HET operation.[1]
For the transmission process, the LR clock period must be equal to or less than the target bit time. A
transmission can be started any time, due to the asynchronous nature of the UART protocol. Changes to
the signal line are required only at the end of every bit period. Figure 2 shows a UART transmission of
one start bit, eight data bits, no parity bit, and one stop bit. Each output signal transition is preloaded into
the HET pin logic in advance and becomes active at the beginning of the next LR cycle. For this example,
a total of ten transitions is needed and preloaded. Note that the falling edge for the start bit is generated in
the next LR cycle directly after transmission start.

START D0 D1 D2 D3 D4 D5 D6 D7 STOP

H

L
Output
Load

TLR

TBit

TBit

TBit

Figure 2. HET UART Transmission Operating Principle

For the reception process, the operational principle is that the HET UART polls the receive signal line with
a frequency higher than the Baud rate until a zero logic level (start bit) is detected. This is necessary, as
the incoming data is asynchronous to the HET timing. The value of the first data bit is then determined
1.5 bit periods after the start bit was detected, which is in the middle its bit period. Then, all other bits are
read one bit period, TBit, apart from each other. For this process to work, a rather fine time resolution is
needed to minimize errors due to the start-bit detection principle. For example, with an LR clock frequency
used for start-bit detection that is eight times the target Baud rate, the maximum possible offset error
introduced by this method is 12.5%. This means that the sample points for the actual data bits are off
center by a maximum of 12.5% of a bit time. Figure 3 shows the timing diagram of a UART reception with
one start bit, eight data bits, no parity, and one stop bit. In this case, a total of nine samples are taken
after the start-bit high-to-low transition is detected.

t

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

SPNA097 – JUNE 2006
Submit Documentation Feedback

UART Implementation Using the High-End Timer 3

www.ti.com

Software Description

START D0 D1 D2 D3 D4 D5 D6 D7 STOP

H

L

1.5 x TBit TBit TBit TBit

Figure 3. HET UART Reception Operating Principle

3 Software Description

3.1 Overview

The software package is provided for two different TMS470 devices, each implementing two different
UART configurations. Both interrupt- and polling-driven program flow also are demonstrated. Note that all
of the HET and ARM7 codes almost are identical and only differ in terms of TMS470 and UART timing
configuration. Table 1 provides an overview of the provided source code files and their respective
functions. In order to build and run the example code, a new project in IAR Embedded Workbench™ using
one of the TI-provided TMS470-specific project templates must be created. This ensures that the HET
assembler and the associated custom build steps are executed properly. Then, the HET source code file
(*.het) together with either the interrupt- or polling-driven C application file that is based on the same
configuration must be added. For example, to build a project that implements a dual high-speed
115,200-baud UART on a TMS470R1A256 device, the following two files must be added to the project:
• A256_HET_UART_2X115200_H.het
• A256_HET_UART_2X115200_Int.c
To fulfill the requirements that an HET program must meet regarding available number of time slots while
minimizing bit-timing errors, different HET clock configurations have been selected, depending on the
operating case (Table 2). In most cases, the default crystal oscillator that is populated on the respective TI
development kit is utilized.[2][3] However, in the case of the TMS470R1A256 implementing two
115,200-baud high-speed UARTs, a special 11.0592-MHz crystal was selected to achieve the lowest
possible bit-timing errors.

Sample Points

t

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

4 UART Implementation Using the High-End Timer SPNA097 – JUNE 2006
Submit Documentation Feedback

www.ti.com

Software Description

Table 1. Software Overview

FUNCTION

TMS470R1xxx,
CRYSTAL

FREQUENCY

SOURCE FILE NAME

DESCRIPTION

Single
full-duplex
UART,
9600 baud

A256, 12 MHz

A256_HET_UART_9600_H.het HET source code implementing a single full-duplex
9600-baud UART

A256_HET_UART_9600_H.c Output file created by HET assembler
A256_HET_UART_9600_H.h Output file created by HET assembler

A256_HET_UART_9600_Int.c TMS470 program demonstrating the use of the HET
code by implementing an interrupt-driven UART echo

A256_HET_UART_9600_Polling.c TMS470 program demonstrating the use of the HET
code by implementing a UART echo in polling mode

B1M, 7.5 MHz

B1M_HET_UART_9600_H.het HET source code implementing a single full-duplex
9600-baud UART

B1M_HET_UART_9600_H.c Output file created by HET assembler
B1M_HET_UART_9600_H.h Output file created by HET assembler

B1M_HET_UART_9600_Int.c TMS470 program demonstrating the use of the HET
code by implementing an interrupt-driven UART echo

B1M_HET_UART_9600_Polling.c TMS470 program demonstrating the use of the HET
code by implementing a UART echo in polling mode

Dual full-duplex
UART,
115,200 baud

A256,
11.0592 MHz

A256_HET_UART_2X115200_H.het HET source code implementing two full-duplex
115,200-baud UARTs

A256_HET_UART_2X115200_H.c Output file created by HET assembler
A256_HET_UART_2X115200_H.h Output file created by HET assembler

A256_HET_UART_2X115200_Int.c

TMS470 program demonstrating the use of the HET
code by implementing two interrupt-driven UART
echos

B1M, 7.5 MHz

B1M_HET_UART_2X115200_H.het HET source code implementing two full-duplex
115,200-baud UARTs

B1M _HET_UART_2X115200_H.c Output file created by HET assembler
B1M _HET_UART_2X115200_H.h Output file created by HET assembler

B1M _HET_UART_2X115200_Int.c

TMS470 program demonstrating the use of the HET
code by implementing two interrupt-driven UART
echos

Table 2. HET Clock Selection

TMS470R1xxx,
CRYSTAL FREQUENCY

fSYSCLK
(MHz)

fHR
(MHz)

fLR
(kHz)

TIME SLOTS
AVAILABLE

PER LR
UART SPEED

(BAUD)
LR CYCLES

PER
UART BIT

A256, 12 MHz 48 12 375 127 9600 39.06
B1M, 7.5 MHz 60 15 468.75 127 9600 48.83

A256, 11.0592 MHz 44.2368 14.7456 921.6 47 115,200 8
B1M, 7.5 MHz 60 30 937.5 63 115,200 8.14

Information regarding device-specific HET pin connections can be found in the respective TMS470 device
data sheets.[4][5]

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

SPNA097 – JUNE 2006
Submit Documentation Feedback

UART Implementation Using the High-End Timer 5

www.ti.com

Software Description

3.2 Data Reception
The following paragraphs discuss the HET and the ARM7 program flow of the UART implementation. Note
that when it is indicated that data is stored at or loaded from an HET program location, this always refers
to the data field that is embedded in the instruction.
The HET program constantly polls the receive signal line with a frequency higher than the baud rate. The
HET program implementation of the RX routine is shown in Figure 4. The data field of RX_Start is used to
determine if bits should be received (RX_Start != 1), or a start bit should get detected (RX_Start = 0). In
the case of start-bit detection, the logic level of the receive pin is checked. If it is high, the HET routine
exits. If the logic level is low, this indicates that a new start bit is detected. Upon start-bit detection, the
variables RX_PrdCtr, RX_BitCtr, and RX_Start, which are needed during reception, are initialized.
RX_PrdCtr is used to count the number of HET LR clock periods until the next action needs to take place
and is decremented on each receive program iteration. In order to capture the first data bit, it is loaded
with an LR count value equal to 1.5 UART bit times. When PrdCtr counts down to zero, the logic level
captured on the receive pin is shifted into RX_Shift and the receive bit counter (RX_BitCtr) is
decremented. Note that a shift-capable dummy pin is used to implement the bit-shift functionality. After
storing the current state of the RX signal, RX_PrdCtr is loaded with a count value equal to one UART bit
time to prepare for the capture of the next incoming data bit. This process continues until RX_BitCtr has
reached zero. Then, the received data is transferred from RX_Shift into RX_Buffer, and an ARM7 interrupt
is generated. This also implements a double-buffering scheme, effectively allowing the HET program to
receive a byte while one is waiting to be read out by the application program.
The main program reads out the received value directly from the data field of RX_Buffer. This is
demonstrated in the function HetUARTGetByte(). As an alternative, in case a polling-driven program flow
is desired, it is possible to access RX_Buffer directly to see if a new data byte was received. For this, the
ARM7 function HetUARTRxDataAvailable() is provided. It checks whether a valid stop bit has been
received, which itself indicates that a properly framed UART sequence was received. In this case, the
function returns a non-zero value.
The UART data reception function takes 15 words of HET program memory. A minimum of 2 and a
maximum of 11 (worst case) HET time slots (SYSCLK cycles) are consumed during execution. The eighth
HET instruction (as seen from the beginning of the code fragment) is generating the UART receive
interrupt. See the TMS470R1x High-End Timer (HET) Reference Guide for more information regarding the
HET interrupt handling.[1]

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

6 UART Implementation Using the High-End Timer SPNA097 – JUNE 2006
Submit Documentation Feedback

www.ti.com

Software Description

HET RX Start

RX_Start.data
== 0?

n

y

RX_PrdCtr.data
== 0?

y

n

RX_PIN ==
LOW?

y

RX_PIN ==
LOW?

y n

n

n
RX_BitCtr.data

== 0

y

RX_PrdCtr.data =
BIT_PRD

HET RX End

Decrement
RX_BitCtr.data

Generate RX
Interrupt

RX_Buffer.data =
RX_Shift.data

Set MSB in
RX_Shift.data

RX_Shift.data >>= 1

Decrement
RX_Start.data

Decrement
RX_PrdCtr.data

RX_PrdCtr.data =
1.5 x BIT_PRD

RX_BitCtr.data =
BITS2RX

RX_Start.data = 1

Figure 4. HET Receive Program Flow

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

SPNA097 – JUNE 2006
Submit Documentation Feedback

UART Implementation Using the High-End Timer 7

www.ti.com

Software Description

3.3 Data Transmission
A UART transmission is initiated by the ARM7 program by calling the function HetUARTPutByte(). This
function first adds a zero start bit and a one stop bit to the data to be sent. This value then gets loaded
into the data field of the TX_Shift HET instruction, which serves as a transmit buffer. Then, the number of
bits to be transmitted is loaded into TX_Bit. In the case of the attached example, this is ten, as the
communication scheme used is one start bit, eight data bits, no parity bit, and one stop bit. The
parameters that are loaded can easily be adapted to custom requirements to accommodate different data
bit lengths or additional stop and parity bits. After the communication data is loaded, the actual
transmission which will be performed by the HET program is started by loading one into TX_Start. The
ARM7 function is left and the CPU can continue to process other tasks.
The HET data transmission routine is only active once a transmission has been initiated (see Figure 5).
TX_Start is used to determine if the TX routine should be executed (TX_Start != 0). Upon execution,
TX_PrdCtr is used to count LR cycles until the next transceiver bit is to be processed. When TX_PrdCtr
has reached zero, the transmit bit counter TX_BitCtr is checked. A non-zero value indicates that there are
still bits to process. If so, TX_BitCtr is decremented, and the LSB of TX_Shift is shifted into the HET
Z-flag. Depending on the Z-flag value, the HET UART transmit pin is either set (Z = 1) or reset (Z = 0).
This value is latched internally and appears on the output pin with the next HET LR cycle. After the output
bit is written, TX_PrdCtr is loaded with an LR count value equal to one UART bit time and used to trigger
the next transmit operation. As a last step, TX_Start is set to one so the transmit code is executed again
with the next HET LR cycle. In the case that all bits are processed, (TX_BitCtr = 0), an HET interrupt is
generated and the TX_Start is not loaded with one. The interrupt indicates to the ARM7 program that all
bits were transmitted and that new data can be loaded into the transmit buffer. If polling-mode operation is
desired, the data field of TX_BitCtr can be read out directly from the ARM7 program. If it is zero, it is safe
to initiate a new transmission. An ARM7 function called HetUARTTxBufferEmpty() is provided to facilitate
this.
One channel of UART data transmission functionality consumes ten words of HET program memory. A
minimum of one and a maximum of nine (worst case) HET time slots are used, depending on the program
flow. The transmit buffer ready interrupt is generated by the second instruction, as seen from the
beginning of the code fragment.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

8 UART Implementation Using the High-End Timer SPNA097 – JUNE 2006
Submit Documentation Feedback

www.ti.com

References

Figure 5. HET Transmit Program Flow

4 References
1. TMS470R1x High-End Timer (HET) Reference Guide (SPNU199)
2. TMS470R1A256 Kickstart Development Kit (TI Part Number: TMS-FET470A256)
3. TMS470R1B1M Kickstart Development Kit (TI Part Number: TMDS-FET470R1B1M)
4. TMS470R1A256 Microcontroller data sheet (SPNS100)
5. TMS470R1B1M Microcontroller data sheet (SPNS109)

TX_PrdCtr.data
== 0?

n

y

y TX_BitCtr.data
== 0?

n

TX_Start.data = 1

Generate TX Interrupt

Decrement
TX_PrdCtr.data

Decrement
TX_BitCtr.data

Decrement
TX_Start.data

HET TX Start

TX_Start.data
== 0?

n

y

HET TX End

n
Z-Flag == 0?

y

TX_Shift.data >>= 1,
LSB into Z-Flag

TX_PrdCtr.data =
BIT_PRD

TX_PIN = HIGH

TX_PIN = LOW

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA097
http://www.ti.com/

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Overview
	Figure 1. TMS470 HET UART Implementation Overview

	2 Theory of Operation
	Figure 2. HET UART Transmission Operating Principle
	Figure 3. HET UART Reception Operating Principle
	Table 1. Software Overview
	Figure 4. HET Receive Program Flow
	Figure 5. HET Transmit Program Flow

