Interfacing the TLC32040
Family to the TMS320 Family

SLAUO001A
July 1995

J@ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or
to discontinue any semiconductor product or service without notice, and
advises its customers to obtain the latest version of relevant information to
verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software
to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are utilized to
the extent Tl deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential
risks of death, personal injury, or severe property or environmental damage
(“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN
LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk
of the customer. Use of Tl products in such applications requires the written
approval of an appropriate TI officer. Questions concerning potential risk
applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications,
adequate design and operating safeguards should be provided by the
customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described
herein. Nor does TI warrant or represent that any license, either express or
implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might
be or are used.

Copyright [0 1994, Texas Instruments Incorporated

Contents

Section Title Page
T o o (0T 1o T o P 1
TLC32040 Interface to the TMS32010/ELS.ttt e e 3
2.1 HarOWareo 3
2.0, Parts LiSt. ..o 3
2.1.2 Hardware DesCriPtONottt 4
2.2 SOIWAIE. . . i e 4
2.2.1 Initializing the Digital Signal Processar. 4
2.2.2 Communicating withthe TLC3204Qttt e 4
2.2.3 TLC32040 Secondary COmMmMUNICALION.ottt e 5
TLC32040 Interface to the TMS32020/C25.ttt e i 7
3.1 Hardware DeSCriptiON. . ..ottt e e e 7
3.2 SO AN, . . i e 7
3.2.1 Initializing the TMS32020/C25.o\ttt e e e 8
3.2.2 Communicating with the TLC3204Qot e 8
3.2.3 Secondary Communications — Special Considerations. 8
TLC32040 Interface to the TMS320C L7,ottt e e e e e i 11
4.1 Hardware DeSCHPLON oottt et e e e e e 11
4.2 SO WA, . oot 12
4.2.1 Initializing the TMS320C 7. . ..ottt e e e e e 12
4.2.2 AIC Communications and Interrupt Management. oo, 12
4.2.3 Secondary COmMMUNICALIONS.ottt et e e e 13
SUMMIATY .« . oottt e e e e e e e e e e e e e 14
Appendices
Title Page
TLC32040 and TMS32010 Flowcharts and Communication Program. 17
TLC32040 and TMS32020 Flowcharts and Communication Program 23
TLC32040 and TMS320C17 Flowcharts and Communication Program. 35

1

Introduction

The TLC32040 and TLC32041 analog interface circuits are designed to provide a high level of system
integration and performance. The analog interface circuits combine high resolution A/D and D/A converters,
programmable filters, digital control and timing circuits as well as programmable input amplifiers and
multiplexers. Emphasis is placed on making the interface to digital signal processors (the TMS320 family) and
most microprocessors as simple as possible. This application report describes the software and circuits
necessary to interface to numerous members of the TMS320 family. It presents three circuits for interfacing
the TLC32040 Analog Interface Circuit to the TMS320 family of digital signal processors. Details of the
hardware and software necessary for these interfaces are provided.

To facilitate the discussion of the software the following definitions and naming conventions are used:

1.
2.
3.
4. Application program (application routine) — the user’s application dependent software (e.g., digital

>nnnn — a number represented in hexadecimal.
Interrupt service routine — a subroutine called in direct response to a processor interrupt.
Interrupt subroutine — any routine called by the interrupt service routine.

filtering routines, signal generation routines, etc.)

TLC32040 Interface to the TMS32010/E15

2.1 Hardware
Because the TLC32040 (Analog Interface Circuit) is a serial-1/0 device, the interface to the TMS32010, which
has no serial port, requires a small amount of glue-logic. The circuit shown in Figure 1 accomplishes the
serial-to-parallel conversion for the AIC operating in synchronous mode.
2.1.1 Parts List
The interface circuit for the TMS32010 uses the following standard logic circuits:
1. One SN74LS138 3-to-8-line address decoder
2. One SN74LS02 Quad NOR-Gate
3. One SN74LS00 Quad NAND-Gate
4. One SN74LS04 Hex Inverter
5. One SN74LS74 Dual D-Flip-Flop
6. Two SN74LS299 8-bit Shift Registers
7415299 TLC32040
TMS32010/C15
— s1 * s1
DEN ® 2 oW > G2
—lc1 YO ‘ >
Y1 . ;32 T
A o SHIFT
U1 e SR CLK
AO/PAO A z L6
A1/PAL B
A2/PA2 c
7415299
|_ —
L G2 QM
D
[S1 u3
° 16 8 h V
s [« | e <
4 SR Q Dl R
DO a U3
L3 74LS74
" DaD:
CLKQUT r MSTRCLK
INT EODX

Figure 1. AIC Interface to TMS32010/E15

2.1.2

2.2

2.2.1

2.2.2

Hardware Description

The SN74LS138 is used to decode the addresses of the ports to which the TLC32040 and the interface logic
have been mapped. If no other ports are needed in the development system, this device may be eliminated and
the address lines of the TMS32010 used directly in place @ndlYO(see Figure 1).

Since the interface circuits are only addressed when the TMS32010 executes an IN or an OUT instruction, gates
L1,L2,L3,L4,andL5arerequired to enable reading and writing to the shift registers only on these instructions.
The TBLW instruction is prohibited because it has the same timing as the OUT instruction. Flip-flop U4 ensures
that the setup and hold times of SN74LS299 shift registers are met.

Although not shown in the circuit diagram, it is recommended that the fidRof the SN74L.S299 shift
registers as well as the RESRiN of the AIC be tied to the power-up reset circuit shown in the AIC data sheet.

This ensures that the registers are clear when the AIC begins to transfer data and decrease the possibility that
the AIC will shift in bad data which could cause the AIC to shut down or behave in an unexpected manner.

Software

The flowcharts for the communication program along with the TMS32010 program listing are presented in
Appendix A. If this software is to be used, and application program that moves data into and out of the transmit
and receive registers must be supplied.

Initializing the Digital Signal Processor

As shown in the flowcharts in Appendix A, the program begins with an initialization routine which clears both
the transmit/receive-end flag and the secondary communication flag, and stores the addresses of the interrupt
subroutines. The program uses the MPYK...PAC instruction sequence to load data memory locations with the
12-bit address of the subroutines. This sequence is only necessary if the subroutines are to reside in program
memory locations larger than >00FF. Otherwise, the instructions LACK and SACL may be used to initialize
the subroutine-address storage locations.

Communicating with the TLC32040

After the storage registers and status register have been initialized, the interrupt is enabled and control is passed
to the user’s application routine (i.e., the system-dependent software that processes received data and prepares
data for transmission). The program ignores the first interrupt that occurs after interrupts are enabled (page 22,
line 207, IGINT routine), allowing the AIC to stabilize after a reset. The application routine should not write

to the shift registers while data is moving into (and out of) them. In addition, it should ensure that no primary
data is written to the shift registers between a primary and secondary data-communication pair. The first
objecive can be accomplished by writing to the SN74LS299 shift registers as quickly as possible after the
receive interrupt. The number of instruction cycles between the data transfers can be calculated from the
conversion frequency. By counting instruction cycles in the application program, it is possible to determine
whether the data transfer will conflict with the OUT instruction to the shift register. The second objective can

be accomplished by monitoring SNDFLG in the application program. If SNDFLG is true (>00FF), secondary
communication has not been completed.

When the processors receives an interrupt, the program counter is pushed onto the hardware stack and then the
program counter is set to >0002, the location of the interrupt service routine, INTSVC (page 19, line 46). The
interrupt service routine then saves the contents of the accumulator and the status register and calls the interrupt
subroutine to which XVECT points. If secondary communication is to follow the upcoming primary
communication, XVECT, is set by the application program to refer to SINT1, otherwise, XVECT defaults to
NINT (i.e., the normal interrupt routine).

2.2.3

Because the interrupt subroutine makes one subroutine call and uses two levels of the hardware stack, the
application program can only use two levels of nesting (i.e., if stack extension is not used). This means that any
subroutine called by the application program can only call subroutines containing no instructions that use the
hardware stack (e.g., TBLW) and that make no other subroutine calls. In addition, if the application program
and communication program are being implemented on an XDS series emulator, the emulator consumes one
level of the hardware stack and allows the application program only one level of nesting (i.e., one level of
subroutine calls).

As shown in the flowcharts in Appendix A, the normal interrupt routine reads the A/D data from the shift
registers and then sets the receive/transmit end-flag (RXEFLG). The application program must write the
outgoing D/A data word to the shift registers at a time convenient to the application routine. It should have the
restriction that the data be written before the next data transfer.

TLC32040 Secondary Communication

If it is necessary to write to the control register of the AIC or configure any of the AIC internal counters, the
application program must initiate a primary/secondary communication pair. This can be accomplished by
placing a data word in which bits 0 and 1 are both high into DXMT, placing the secondary control word (see
program listing page 19) in D2ND, and placing the address of the secondary communication subroutine,
SINT1, in XVECT. When the next interrupt occurs, the interrupt subroutine will call routine SINT1. SINT1
reads the A/D information from the shift registers and writes the secondary communication word to the shift
registers.

3.1

3.2

DX >< D15 >I< D14 >I< D13 >I< D12

TLC32040 Interface to the TMS32020/C25

Hardware Description

Because the TLC32040 is designed specifically to interface with the serial port of the TMS32020/C25, the
interface requires no external hardware. Except for CLKR and CLKX, there is a one-to-one correspondence
between the serial port control and data pins of TMS32020 and TLC32040. CLKR and CLKX are tied together
since both the transmit and the receive operations are synchronized with SHIFT CLK of the TLC32040. The
interface circuit, along with the communication program (page 26), allows the AIC to communicate with the
TMS32020/C25 in both synchronous and asynchronous modes. See Figures 2, 3, and 4.

Software

The program listed in Appendix B allows the AIC to communicate with the TMS32020 in synchronous or
asynchronous mode. Although originally written for the TMS32020, it will work just as well for the
TMS320C25.

5V
TLC32020/C25 TLC32040
WORD/BYTE
CLKOUT MSTR CLK
FSX
FSX
DX
DX ==
FSR FSR
DR DR
CLKX SHIFT CLK
CLKR

Figure 2. AIC Interface to TMS32020/C25

ST __/__/__/__/__/__/__/__/__/__
FSR, FSX \

DR D15

” /

)

D(oz X o1 X o0 Y—

[[[!	
>K D14 >K D13 >K piz2 X b X D2 \ DI DO
| | |
| | |
D11
(

EODR, EODX

The seguence of operation is:

1. The FSX or FSR pin is brought low.

2. One 16-bit word is transmitted or one 16-bit byte is received.
3. The ESX or FSR pin is brought high.

4. The EODX or EODR pin emits a low-going pulse as shown.

Figure 3. Operating Sequence for AIC-TMC32020/C25 Interface

FSX

FSR

3.2.1

3.2.2

3.2.3

Figure 4. Asynchronous Communication AIC-TMS32020/C25 Interface

Initializing the TMS32020/C25

This program starts by calling the initialization routine. The working storage registers for the communication
program and the transmit and receive registers of the DSP are cleared, and the status registers and interrupt
mask register of the TMS32020/C25 are set (see program flow charts in Appendix B). The addresses of the
transmit and receive interrupt subroutines are placed in their storage locations, and the addresses of the routines
which ignore the first transmit and receive interrupts are placed in the transmit and receive subroutine pointers
(XVECT and RVECT). The TMS32020/C25 serial port is configured to allow transmission of 16-bit data
words (FO), the serial port format bit of the TMS32020/C25 must be set to zero) with an externally generated
frame synchronization (FSXnd FXRare inputs, TXM bit is set to 0).

Communicating with the TLC32040

After the TMS32020/C25 has been initialized, interrupts are enabled and the program calls subroutine IGR.
The processor is instructed to wait for the first transmit and receive interrupts (XINT and RINT) and ignore
them. After the TMS32020 has received both a receive and a transmit interrupt, the IGR routine will transfer
control back to the main program and IGR will not be called again.

If the transmit interrupt is enabled, the processor branches to location 28 in program memory at the end of a
serial transmission. This is the location of the transmit interrupt service routine. The program context is saved
by storing the status registers and the contents of the accumulator. Then the interrupt service routine calls the
interrupt subroutine whose address is stored in the transmit interrupt pointer (XVECT).

A similar procedure occurs on completion of a serial receive. If the receive interrupt is enabled, the processor
branches to location 26 in program memory. As with the transmit interrupt service routine (XINT, page 30, line
226), the receive interrupt service routine (page 30, line 194) saves context and then calls the interrupt
subroutine whose address is stored in the receive interrupt pointer (RVECT). It is important that during the
execution of either the receive or transmit interrupt service routines, all interrupts are disabled and must be
re-enabled when the interrupt service routine ends.

The main program is the application program. Procedures such as digital filtering, tone-generation and
detection, and secondary communication judgment can be placed in the application program. In the program
listing shown in Appendix B, a subroutine (C2ND) is provided which will prepare for secondary
communication. If secondary communication is required, the user must first write the data with the secondary
code to the DXMT register. This data word should have the two least significant bits set high (e.g., >0003). The
first 14 bits transmitted will go to the D/A converter and the last two bits indicate to the AIC that secondary
communication will follow. After writing to the SXMT register, the secondary communication word should

be written to the D2ND register.

This data may be used to program the AIC internal counters or to reconfigure the AIC (e.g., to change from
synchronous to asynchronous mode or to bypass the bandpass filter). After both data words are stored in their
respective registers, the application program can then call the subroutine C2ND which will prepare the
TMS32020 to transmit the secondary communication word immediately after primary communication.

Secondary Communicating — Special Considerations

This communication program disables the receive interrupt (RINT) when secondary communication is
requested. Because of the critical timing between the primary and secondary communication words and
because RINT carries a higher priority than the transmit interrupt, the receive interrupt cannot be allowed to
interrupt the processor before the secondary data word can be written to the data-transmit register. If this
situation were to occur, the AIC would not receive the correct secondary control word and the AIC could be
shut down.

In many applications, the AIC internal registers need only be set at the beginning of operation, (i.e., just after
initialization). Thereafter, the DSP only communicates with the AIC using primary communication. In cases
such as these, the communication program can be greatly simplified.

10

4.1

TMS32040 Interface to the TMS320C17

Hardware Description

As shown in Figure 5, the TMS320C17 interfaces directly with the TLC32040. However, because the
TMS320C17 responds more slowly to interrupts than the TMS32010/E15 or the TMS32020/C25, additional
circuit connections are necessary to ensure that the TMS320C17 can respond to the interrupt, accomplish the
context-switching that is required when an interrupt is serviced, and proceed with the interrupt vector. This
must all be accomplished within the strict timing requirements imposed by the TLC32040. To meet these
requirements, FSXf the TLC32040 is connected to the EXINIh of the TMS320C17. This allows the
TMS320C17 to recognize the transmit interrupt before the transmission is complete. This allows the interrupt
service routine to complete its context-switching while the data is being transferred. The interrupt service
routine branches to the interrupt subroutines only after the FSX flag bit has been set. This signals the end of
data transmission.

The other hardware modification involves connecting the EQIof the TLC32040 to the BIPin of the
TMS320C17. Because the TMS320C17 serial port accepts data in 8-bit bytes (see Figure 6) and the TLC32040
controls the byte sequence (i.e., which byte is transmitted first, the high-order byte or the low-order byte) it is
important that the TMS320C17 be able to distinguish between the two transmitted bytes. Theig@DX

is asserted only once during each transmission pair, making it useful for marking the end of a transmission pair
and synchronizing the TMS320C17 with the AIC byte sequence. After synchronization has been established,
the BIOline is no longer needed by the interface program and may be used elsewhere.

Because the TMS320C17 serial port operates only in byte mode, 16-bit transmit data should be separated into
two 8-bit bytes and stored in separate registers before a transmit interrupt is acknowledged. Alternatively, the
data can be prepared inside the interrupt service routine before the interrupt subroutine is called. From the time
that the interrupt is recognized to the end of the data transmission is equivalent to 28 TMS320C17 instruction
cycles.

TLC320C17 TLC32040
_ [WORD/BYTE
EXINT 1
FSX l - =N
CLKOUT MSTR CLK
DXO0 DX
FSR =
DRO bR
SCLK SHIFT CLK

Figure 5. AIC Interface to TMS320C17

11

| ! - !
|
DR Di].5)k D14 * D13:>< Do X' D8 ”)k D7 * pe X p2 \ DI DO
I)]
| | |
ox —(o1s X o Koz X os X os y——s—— o7 Koo X (o2 X o1 X o0)—
EODR, EODX ’ N\ .) /

The seguence of operation is:

1. The FSX or FSR pin is brought low.

. One 8-bit word is transmitted or one 8-bit byte is received.

. The EODX or EODR pins are brought low.

. The FSX or FSR emit a positive frame-sync pulse that is four shift clock cycles wide.
. One 8-bit byte is transmitted and one 8-bit byte is received.

. The EODX and EODR pins are brought high.

. The FSX and FSR pins are brought high.

~NoobhwN

Figure 6. Operating Sequence for AIC-TMS320C17

4.2 Software

The software listed in Appendix C only allows the AIC to communicate with the TMS320C17 in synchronous
mode. This communication program is supplied with an application routine, DLB (Appendix C, program
listing line 253), which returns the most recently received data word back to the AIC (digital loopback).

4.2.1 Initializing the TMS320C17

The program begins with an initialization routine (INIT, page 40, line 120). Interrupts are disabled and all the
working storage registers used by the communication program are cleared. Both transmit registers are cleared,
the constants used by the program are initialized and the addresses of the subroutines called by the program
are placed in data memory. This enables the interrupt service routine to call subroutines located in
program-memory addresses higher than 255. After the initialization is complete, the TMS320C17 monitors
the FSXinterrupt flag in the control register to establish synchronization with the AIC.

4.2.2 AIC Communications and Interrupt Management

Because the AIC FSX¥in is tied to the EXINTine of the TMS320C17 and the delay through the interrupt
multiplexer, the interrupt service routine is called four instruction cycles after the falling edge .offSX
interrupt service routine (INTSVC, Appendix C, program listing, line 90) completes its context switching and
then monitors the lower control register, polling the FSX flag bit that indicates the end of the 8-bit serial data
transfer. If the FSXlag bit is set, the transfer is complete. After this bit is set, control is transferred to the
interrupt subroutine whose address is stored in VECT. The serial communication must be complete before data
is read from the data receive register.

When no secondary communication is to follow, the interrupt subroutines, NINT1 and NINT2, are called. If
data has been stored in DXMT2 (the low-order eight bits of the transmit data word), which does not indicate
that secondary communication is to follow, the interrupt service routine calls NINT1 when the first 8-bit serial
transfer is complete. NINT1 immediately writes the second byte of transmit data, (i.e., the contents of DXMT2)
to transmit data register 0 (TRO). It then moves the first byte of the received data (i.e., the high-order byte of
the A/D conversion result) into DRCV1. NINT1 then stores in VECT the address of NINT2. NINT2 is called
at the end of the next 8-bit data transfer and resets thénf&»upt flag bit by writing a logic high to it. The

next interrupt (a falling edge of EXINDccurs before the interrupt service routine returns control to the main

12

4.2.3

program. This is an acceptable situation since the TMS320C17, on leaving the interrupt service routine,
recognizes that an interrupt has occurred and immediately responds by servicing the interrupt.

The interrupt subroutine NINT2 is similar in operation to NINT1. It stores the low-order byte of receive data
(bits 7 through 0 of the A/D conversion result) and stores the address of the next interrupt subroutine in VECT.
NINT2 does not write to the transmit data register, TRO. This task has been left to the application program. After
the transmit data has been prepared by the main program and the data has been stored in DXMT1 and DXMT2,
the main program stores the first byte of the transmit data in transmit data register 0 (TRO).

Secondary Communications

The interrupt subroutines SINT1 through SINT4 are called when secondary communication is required. For
secondary communication, DXMT1 and DXMT2 will hold the primary communication word. DXMT3 and
DXMT4 will hold the secondary communication word. VECT, the subroutine pointer should then be initialized
to the address of SINT1. As with the normal (primary communication only) interrupt subroutines (i.e., NINT1
and NINT2), the secondary communication routines will change VECT to point to the succeeding routine (e.g.,
SINT1 will point to SINT2, SINT2 will point to SINT3, etc.).

13

14

Summary

The TLC32040 is an excellent choice for many digital signal processing applications such as speech
recognition/storage systems and industrial process control. The different serial modes of the AIC
(synchronous, asynchronous, 8- and 16-bit) allow it to interface easily with all of the serial port members of
the TMS320 family as well as other processors.

15

16

A TLC32040 and TMS32010 Flowcharts and
Communication Program

A.1 Flowcharts

(Begin ’

Initialize

(NINT)*

Receive Data
Read Shift Register

Modify Interrupt
Location

Set Secondary
Flag

c. SECONDARY DATA COMMUNICATIONS 1

‘ NINT ’
Write Transmit

Data ok
to Shift Register

Enable Interrupt

»
>

*%

No Data
Transfer

End?

Secondary
Communication?

Modify Interrupt -
Location

Set Receive and
Transmit End Flag

A

User Area

a. MAIN |
Clear Secondary

(niNT) Flag
.
Receive Data

Read Shift Register

d. SECONDARY DATA COMMUNICATIONS 2

Set Receive and
Transmit End Flag

* Set, if need secondary.
** Modify to call SINT2.
*** Modify to call NINT.
b. PRIMARY INTERRUPT ROUTINE *+++ Must execute before transfer beginning.

17

A.2 Communication Program List

18

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043

0002
0003
0004
0005
0006
0007
0008
0009
000A
000C
000D
000E
000F

OOFF
0001

0000
0000 F900
0001 000D

kkkkkkkkkkkkkhkkkkkkkkkkkkkhhkkhkkkkkkkhkkkhhkkhkkkkkkhkhkkkhhkkx

L S .

When using this program, the circuit in the TLC32040 *
data sheet or its equivalent circuit must be fused *
port 1 are reserved for data receiving and data *
transmitting. The TBLW command is prohibited because
it has the same timing as the OUT command. TLC32040 is *
used only in synchronous mode.

kkkkkkkkkkkkkkkkkkkkkkkkkkhhkkhkkkkkhkkkkhhkkhkkkkkkhkkkkhkkkx

*

RXEFLG EQU >02 receive and xmit end flag.
SNDFLG EQU >03 secondary communication flag.
DRCV EQU >04 receive data storage.
DXMT EQU >05 xmit data storage.
D2ND EQU >06 secondary data storage.
XVECT EQU >07 interrupt address storage.
ACHSTK EQU >08 ACCH stack.
ACLSTK EQU >09 ACCL stack.
SSTSTK EQU >0A Status stack.
ANINT EQU >0C interrupt address 1
ASINT1 EQU >0D interrupt address 2
ASINT2 EQU >0E interrupt address 3
TMPO EQU OF temporary register.
*
SET EQU >FF
ONE EQU >01
*
* Reset vector.

AORG >0000 program start address.

B EPIL jump to initialization.
*
* Interrupt vector.
*
* When secondary communication, modify the content of
* XVECT to the address of secondary communication and
* store secondary data in D2ND.
*oex.
* LAC ASINT1,0 modify XVECT
* SACL XVECT,0
*
. I

LAC

D2ND,0

store secondary data.

kkkkkkkkkkhhhhhhkkkkkkkhkhkhkhhhhhhhhhhrkkkkkrkhkhkhhhhhhrhrrix

*

*

*

0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097

0002
0002
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C

000D
000D
000D
000E
000E
000F
0010
0011
0012
0013
0014
0014
0015
0016
0017
0017
0018
0019
001A
001A
001B
001C
001D
001D
001E
001F
001F

7COA
6E01
5808
5009
2007
7F8C
6508
7A09
7BOA
7F82
7F8D

6E01

7TEO1
500F
6A0F
802C
7TF8E
500C

8030
7TF8E
500D

8037
7F8E
500E

803A
7TF8E
5007

7F89
5002

5003

AORG >0002

INTSVC SST SSTSTK

LDPK ONE

SACH ACHSTK

SACL ACLSTK

LAC XVECT,0
CALA

ZALH ACHSTK
OR ACLSTK
LST SSTSTK

interrupt vector.

push status register.

set data pointer one.

push ACCH.

push ACCL.
load interruput address.
branch to interruupt routine.
pop ACCH

pop ACCL.

pop stack register.

EINT enable interrupt.
RET return from interrupt routine.
*kkkkkkkkkkhkkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkkhkkkhkhhkhkkhhhhhhhhhhhhkhhhkhhhiix
*
* Initialization after reset. *
*
*
* Data RAM locations 82H(130) through 8FH(143), *
* 12 words of page 1, are reserved for this *
* program. The user must set the status register *
* by adding the SST command at the end of the *
* the initialization routine. *
*
*
*
AORG $ initial program.
EPIL LDPK ONE set data page pointer one.
LACK ONE save normal communication
SACL TMPO address to its storage.
LT TMPO
MPYK NINT
PAC
SACI ANINT
MPYK SINT1 save secondary communication
PAC addressl to its storage.

SACL ASINT1

MPYK SINT2
PAC
SACL ASINT2

MPYK IGINT
PAC

SACL XVECT
ZAC

SACL RXFLG,0

SACL SNDFLG,0

save secondary communication
address? to its storage.

ignore interrupt once after
master reset.

clear flags.

19

0098 0020

0099 0020
0100 0020
0101 0020 7F82 EINT enable interrupt.
0102 *
0103
0104 *
0105 * Main program.
0106 *
0107 *
0108 * This program allows the user two levels of nesting *
0109 * since one level is used as stack for the interrupt. *
0110 * When the RXEFLG flag is false then no data transfer *
0111 * has ocurred, if it is true then data transfer has *
0112 * finished. User rountines such as digital filter, *
0113 * secondary-data-communication judgement etc., must be *
0114 * placed in this location. Depending on the sampling *
0115 * rate (conversion rate), these user routines must *
0116 * write the xmit data to the shift registers within *
0117 * approximately 500 instruction cycles. If the user *
0118 * requires secondary communication, it will be *
0119 * necessary to delay the OUT instruction until the *
0120 * secondary data transfer has finished.
0121 0021 ko koo koo
0122 0021 2002 MAIN LAC RXEFLG,0 wait for interrupt.
0123 0022 FFOO Bz MAIN
0023 0021
0124 0024
0125 0024 2003 LAC SNDFLG,0 skip OUT instruction during
0126 0025 FEOO BNZ MAIN1 secondary communication.
0026 0028
0127 0027
0128 0027 4905 OUT DXMT,PA1 write xmit data to shift register.
0129 0028
0130 0028 7F89 MAIN1 ZAC clear flags.
0131 0029 5002 SACL RXEFLG
0132 002A
0133 002A F900 B MAIN loop.
002B 0021
0134 *
0 13 5 R e e R e S s e e R R S e T e e e e e e e e
0136 *
0137 * Normal interrupt rountine.
0138 *
0139 * destroy ACC, DP.
0140 *
0141 * Write the contents of DXMT to the 'LS299s, receive *
0142 * DAC data in DRCV, and set RXEFLG flag.
0143 kkkkkkkkhkkkkkkkkkkhkhkkkkkhkkkhkhkkkhkhkkkhkkkkkhkkkkkhkkkkkkkkkkk
0144 002C

0145 002C 4004 NINT IN DRCV,PAO receive data from shift register.
0146 002D

0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195

002D
002E
002F
002F

0030
0030
0031
0031

0032
0033
0034
0034
0035
0036
0036
0037

0037
0037
0038
0039
0039
003A
003B
003B
003C
003D
003D
003E

TEFF
5002

7F8D

4004

4906

200E
5007

TEFF
5003

7F8D

200C
5007

TEFF

LACK SET set receive and xmit ended flag.
SACL RXEFLG
RET return.
*
Secondary communication interrupt routine 1. *

destroy ACC,DP

Write the contents of D2ND to the 'LS299s, receive *

L T S R I

communication interrupt.

khkkkkkkkkkkhhkhhhhkhkkkkkkkkhhkhhhhhhhhhhhkrkixikxxkx *kkkkkkk

SINT1 IN DRCV,PAQ receive data from shift register.

OUT D2ND,PAL1 write secondary data to shift

* register.
LAC ASINT2,0 modify interrupt location.
SACL XVECT secondary communication 2
LACK SET set secondary communication flag.

SACL SNDFLG,0

data in DRCV, and modify XVECT for secondary *

RET return.
R e e R S e R S PSS T e e e e e T e
*
* Secondary communication interrupt routine 2. *
*
* destroy ACC,DP
*
* Modify XVECT for normal communication, and set *
* RXEFLG flag.
SINT2 LAC ANINT modify interrupt location
SACL XVECT normal communication.
LACK SET set receive and xmit ended flag.

SACL RXEFLG

7F89
5003

7F8D

ZAC clear secondary communication flag.

SACL SNDFLG,0

RET return.

21

22

0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212

003E
003E
003F
0040
0040
0041

200C
5007

7F8D

*hkkkkkkkkkkkkkkkkkkhhhhhhhhhkkkkkkkkhhkhhhhhhhhhhrrrkrxxx

Ignoring the first interrupt after reset. *

destroy ACC,DP.

Ignore the first interrupt after reset. the TLC32040 *
receives zero as DAC data but no ADC data in DRCV.

E R S T T R

kkkkkkkkkkkkkhkkkkkkhkkkkkkhhkkhkkkkkkkkkkhhkkkhkkkkkkhkkkkhkkkx

IGINT LAC ANINT modify interrupt location

SACL XVECT normal communication.
RET return.
END

NO ERRORS, NO WARNINGS

*

B TLC32040 and TMS32020 Flowcharts and

Communication Program

B.1 Flowcharts

Set STO Status Register 1
Set ST1 Status Register 2
Clear B2 Internal Register 3

Mask IMR Masking Register 4

Set Content of Each Vector 5

a. INITIALIZATION

Save Receive Data as AIC Code

Set Receive Flag

c. RECEIVE SUBROUTINE

1 — Alterable AR pointer and OVM.
2 — Alterable CNF, SXM and XF.
3 — Must clear at least 108 through 127, 19 of internal RAM.

4 —If IMR is changed by user program. INST must be changed.

5 — Their contents will be changed by their routine locations.
6 — IGNRR is executed only once after reset.

‘ RINT ’

Push ACC, STO

Load RINT Vector Address

Call RCV or IGNRR 6

Pop ACC, STO

Enable Interrupt

b. RECEIVED INTERRUPT SERVICE ROUTINE

Set FRE Flag

d. IGNORE INTERRUPT

23

(XNIT)

Push ACC, STO NRM
Load XINT Vector Address Write Transmit Data to DXR
Call NRM, S1, S2, IGNRX 7 Set Transmit Flag

Pop ACC, STO

| f. PRIMARY TRANSMISSION ROUTINE

Enable Interrupt
S2
—
Clear DXR Register

e. TRANSMIT INTERRUPT SERVICE ROUTINE

(s1) Clear Secondary Flag

Write Secondary Data to DXR Modify XINT Vector Address
Modify XINT Vector Address 8 Modify IMR Interrupt Masking Register
g. PRIMARY-SECONDARY COMMUNICATIONS 1 h. PRIMARY-SECONDARY COMMUNICATIONS 2

7 — IGNRX is executed only once after reset.
8 — Modify to S2 address.
9 — Modify to NRM address.

24

Is Transmit Data
Secondary Code

(IGNRX)

Set FXE Flag Set Secondary Flag

Disable Other Interrupt
Modify XINT Vector Address 10 Isaj r rrup

Modify XINT Vector Address 1

I. IGNORE TRANSMIT INTERRUPT

<
{ Return)
10 — Modify to NRM address.
11 — Modify to S1 address. j. SECONDARY COMMUNICATION JUDGEMENT
IGR
d
-

Finish First
RINT?

Return

k. IGNORE FIRST INTERRUPTS

25

B.2 Communication Program List

000 1 kkkkkkkkkkkkkkkhkkkkhkkhkkkhkkhkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkhkhkhkhkkkkkkxk

0002 *

0003 * TLC32040 & TMS32020 communication program.

0004 *

0005 * by H.Okubo & W.Rowand

0006 * version 1.1 7/22/88.

0007 *

0008 * This is a TMS32020 — TLC32040 communication program

0009 * that can be used in many systems. To use this program *

0010 * the TMS32020 and the TLC32040 (AIC) must be connected

0011 * as shown in the publication: Linear and Interface *

0012 * Circuit Applications, Volume 3. The program reserves *

0013 * TMS32020 internal data memory 108 through 127 (B2) as

0014 * flags and storage. When secondary communication is

0015 * needed, every maskable interrupt except XINT is

0016 * disabled until that communication finishes. *

0017 *

0018 * If you have any questions, please let us know. *

0019 Rk eekkkkkkokdkdok

0020 *

0021 *

0022 *

0023 * Memory mapped register.

0024 *

0025 *

0026 0000 DRR EQUO * data receive register address.

0027 0001 DXR EQU 1 * data xmit register address.

0028 0004 IMR EQU 4 * interrupt mask register address.

0029 *

0030 *

0031 * Reserved onchip RAM as flags and storages.

0032 * (block B2 108 through 127.)

0033 *

0034 *

0035 006C FXE EQU 108 *ignore first XINT flag.

0036 006D FRE EQU 109 *ignore first RINT flag.

0037 O0O06F TMPO EQU 111 * temporary register.

0038 0070 ACCHST EQU 12 * stack for ACCH.

0039 0071 CCLST EQU 113 * stack for ACCL.

0040 0072 SSTST EQU 114 * stack for STO register.

0041 0073 INTST EQU 115 * stack for IMR register.

0042 0074 RVECT EQU 116 *vector for RINT.

0043 0075 XVECT EQU 117 *vector for XINT.

0044 0076 VRCV EQU 118 * RINT vector storage.

0045 0077 VNRM EQU 119 * XINT vector storage.

0046 0078 VS1 EQU 120 * secondary vector storagel.

0047 0079 VS2 EQU 121 * secondary vector storage?2.

0048 007A DRCV EQU 122 *receive data storage.

0049 007B DXMT EQU 123 * xmit data storage.

0050 007C D2ND EQU 124 * secondary data storage.

0051 007D FRCV EQU 125 *receive flag.

0052 007E FXMT EQU 126 *xmit flag.

0053 007F F2ND EQU 127 * secondary communication flag.
*

0054

26

0055
0056
0057
0058
0059

0060
0061
0062
0063
0064
0065
0066

0067
0068
0069
0070
0071
0072
0073

0074
0075
0076
0077
0078
0079
0080
0081
0082
0083

0084
0085

0086

0000
0000
0001

001A
001A
001B

oDIC
001C
001D

0020

0020
0021
0022
0023
0024

FF80
0020

FF80
004A

FF80
005A

FE80
0025
CEOO
FE80
008D

*hkkkkkkkkkkkkkkkkkhkhhhhhhhhhhhrkkkkkhkhhhhhhhhhhrrrixx

* Processor starts at this address after reset. *
*

AORG 0 * program start address.

B STRT *jump to initialization routine. *

kkkkkkkkkkkkkkkkhkkkkkkkhkkkhhkkkhkkkkkkhkhkkkhkkkkkkkkkkhkhkkkk
*

kkkkkkkkkkkkkkkkkkkhkkkkkkhhkkkhkkkkkkhkkkkhkkkkkkkkkkhkkkkk

* Receive interrupt location.

*

AORG 26 * Rint vector.
B RINT * jump to receive interrupt
* routine.

*% *% * *% *% * *% *kkkkk *% *kkkk

*hkkkkkkkkkkkkkkkkkkhhhhhhhhhhkhkrkkkkkkhkhhkhhhhhhhhhrrrixx

* Transmit interrupt location.
*

AORG 28 * Xint vector.
B XINT *jump to xmit interrupt routine. *

kkkkkkkkkkkkkkkkhkkkhkkkkkkhhkkhkkkkkkhhkkhhkkkkkkkkkhkhkkkk

*

AORG 32 *start initial program.

*

*hkkkkkkkkkkkkkkkkkkhhhhhhhhhhkrkkkkkhkhhkhhhhhhhhhrrrixx

* User must initialize DSP with the routine INIT. *

* The user may modify this routine to suit his *

* requirements as he likes.

*kkkk *kkkkkkkkkk *kkkkkkkkkk *kkkkk *% *kkkk

STRT CALL INIT *

EINT * enable interrupt.
CALL IGR

*

27

28

0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125

0126
0127
0128
0129
0130
0131
0132
0133
0134
0135

0136
0137
0138

0025
0026
0027
0028
0029

002A
002B
002C
002D
002E

kkkkkkkkkkkkkkkkkkkkhhkhhhhhhhhrhkkkkhkhkhhkhhhhhhhrrrkrrxkkkrkrhhhis

*

* User area

*

* *

* This program allows the user two levels of nesting, *

* since two levels are used as stack for the interrupt. *

* When the FXMT flag is false no data has occurred

* When the FRCV flag is false, no data has been

* received. As those flags are not reset by any *
* routine in this program, the user must reset the *

* flags if he chooses to use them and note that >00ff *

* means true, >0000 means false. User routines such as

* digital filtering, FFTs etc. must be placed in this *

* location. Depending on the sampling rate (conver- *
* sion rate), these user routines must write the xmit *

* data to the DXMT registers within approximately 500 *
* instruction cycles. If the user requires secondary *

* communication, data with the secondary code (xxx

* xXxx XxxX xx11) should first be written to DXMT and *

* then secondary data should be written to D2ND. Next, *
* a call should be made to C2ND to set up SVECT and the

* F2ND flag to perform the secondary communication.

* Note that all maskable interrupts except XINT are *

* disabled until secondary communication has completed.
kkkkkkkkkkkkkkkkkkkkkkhhhhhhhhkkkkkkkkhkhrhhhhhhhhhkkkkkkkrrrhhixd

*
kkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhkkkkkkhkhhkhhhhhhhrrkkxkxkkkrkrhhhis

*x e e

* Initialization routine.

* e ——— e

* This routine initializes the status registers, flags, *

* vector storage contents and internal data locations *
* 96 through 107. Note that the user can modify these *
* registers (i.e., STO ST1 IMR), as long as the contents *
*do not conflict with the operation of the AIC. *
C800 INIT LDPK O * set statusO register.

D00l LALK >OE00,0 * 0000 1110 0000 DOOOB

OEO00

606F SACL TMPO,0 * ARP=0 AR pointer 0

506F LST TMPO * QV =0 (Overflow reg—clear)

* * OVM=1 (Overflow mode set to 1)
* 2 =1 Not affected.

* INTM=1 Not affected

* DP 000000000 page 0

* %k X *

* set statusl register.
*

D00l LALK >03F0
03F0

606F SACL TMPO,0 * APB=0

516F LST1 TMPO * CNF=0 (Set BO data memory)

* (0000 0011 1111 0000B

0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165

0166
0167
0168

0169
0170
0171

0172
0173
0174

0175
0176
0177

0178
0179
0180

0181
0182
0183

002E
002F
0030
0031
0032
0033

0034
0035
0036

0037
0038
0039

003A
003B
003C

003D
003E
003F

0040
0041
0042

0043
0044
0045

0046
0047
0048
0049
004A

CA00
6001
6000
C060
CBIF
60A0

CA30
6004
6073

D001
0067
6077

D001
006C
6078

D001
0071
6079

D001
0055
6076

D001
0094
6074

D001
0099
6075

CE26

E R S

* %

*TC =0

* SXM=1 (enable sign extend mode.)
* D9-D5=111111 not affected.

* F=1 (XF pin status.)

* FO=0 (16-bit data transfer mode.)
* TXM=0 (FSX input)

ZAC * clear registers
SACL DXR,0 *
SACL DRR,0 *
LARK ARO0,96 *clear Block B2.
RPTK 31 *
SACL +,0 *

Interrupt masking

LACK
SACL
SACL

LALK

SACL

LALK

SACL

LALK

SACL

LALK

SACL

LALK

SACL

LALK

SACL
RET

>30 * 0000 0000 0011 0000B
IMR,0 *INT I
INTST,0 * RINT LI
* TINT, Il
* INT2 Il
*INT1 I
* INTO |

NRM,0 * normal xint routine address.

VNRM,0 *

SI,0 * secondary xint routine address 1.
VS1,0 *

S2,0 * secondary xint routine address 2.
vsS2,0 ¢

RCV,0 *rint routine address.
VRCV,0

IGNRR,0 * set ignore first rint address.
RVECT,0

IGNRX,0 * set ignore first xint address.

XVECT,0
* return.

29

30

0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238

004A
004B
004C
004D
004E
004F
0050
0051
0052
0053
0054

0055
0056
0057
0058
0059

005A
005B
005C
005D
005E
005F
0060
0061
0062
0063
0064
0065
0066

7872
C800
6071
6870
2074
CE24
4171
4870
5072
CEOO
CE26

2000 RCV LAC DRR,0

607A
CAFF
607D
CE26

7872
C800
6071
6870
207C
6001
2075
CE24
4171
4870
5072
CEOO
CE26

*
khkkkkkkkkkkkkkkkkkkhhhhhhhhkkkkkkkkhhhkhhhhhhhhhhrxkxkkkkrrikx
*

* Receive interrupt routine.

*

* This routine stores receive data in its storage DRCV *
* (112 page0) and sets the receive flag FRCV (125 pageO)*
* As two levels of nesting are used, this routine
* allows the user two levels, without stack extension . *
kkkkkkkkkhkkkkhkkhkhkkhkkhkkkhkkkhkkhkkhkkhkhkhkhkhkhhkhkkhkkkhkhkkhkkkhkkhkkkhkkhkkkx
RINT SST SSTST * push STO register.

LDPK O * data pointer page 0.

SACL ACCLST,0 * push ACCL.

SACH ACCHST,0 * push ACCH.

LAC RVECT,0 * load ACC vector address.

CALA

ZALS ACCLST * pop ACC
ADDH ACCHST

LST SSTST * pop ST register.
EINT * enable interrupts.
RET * return.

*

* load data from DRR.

SACL DRCV,0 * save it to its storage.
LACK >FF * set receive flag.
SACL FRCV *
RET * return.

*

kkkkkkkkkkkkkkkkkkkkkkhkhhhhhkkkkkkkkkhkhhhhhhhhhkkkkkkkxrhikx

*

* Xmit interrupt routine.

*

* This routine writes xmit data C%the contents of DXMT *
* (123 page0)) to the DXR register according to the type*
* of communication, i.e. normal communication or secondary *
* communication. For normal communication, call the normal *
* communication routine (NRM). For secondary, call the *
* secondary communication routines (Sl and S2). Because *
* these routines use two levels of nesting, the user is *
* allowed two levels of nesting if stack extensionis *
* not used.
kkkkkkkkkkkkkkkkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkkhkx
XINT SST SSTST * push ST register.
LDPK O * data pointer page 0.
SACL ACCLST,0 * push ACCL.
SACH ACCHST,0 * push ACCH.

LAC D2ND,0 * preload dxr with secondary
SACL DXR,0 * communication data.

LAC XVECT,0 * load vector address.

CALA * call xmit routine.

ZALS ACCLST * POP ACC

ADDH ACCHST

LST SSTST * pop ST register.

EINT * enable interrupt.

RET * return.

0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288

0067
0068
0069
006A
006B

006C
006D
006E
006F
0070

0071
0072
0073
0074
0075
0076
0077
0078
0079
007A

* transmit flag (126 page0). *
kkkkkkkkkkkkkkkkkkkkkhkhhhhhhhkkkkkkkkhkhhhhhhhhhkkkkkkkxrrrx
*
207B NRM LAC DXMT,0 * write DXR data.
6001 SACL DXR,0
CAFF LACK >FF * set flag.
607E SACL FXMT
CE26 RET * return.
*
Secondary data write routine 1. *
*
* This routine is called when secondary communication — *
* occurs. It writes secondary data to DXR, and modifies *
* the content of XVECT(117 page0) for continuing secondary*
* communication.
kkkkkkkkkkkkkkkkkkkkhkhhhhhhhkkkkkkkhhhkhhhhhhhhhhkkkkkkxrrikx
207 sS1 LAC D2ND,0 * write DXR 2nd data.
6001 SACL DXR,0
2079 LAC VS2,0 * modify for next XINT.
6075 SACL XVECT,0
CE26 RET * return.
*
*
* Secondary data writing routine 2. *
*
*
* This routine is called when secondary communication *
* occurs. It writes dummy data to DXR to ensure that *
* secondary communication is not inadvertently *
* initiated on the next XINT. It also modifies the *
* content of XVECT for normal communication. *
CA00 S2 ZAC * clear data for protection.
6001 SACL DXR,0 * of double secondary communication.
607F SACL F2ND * clear secondary flag.
CAFF LACK >FF * set xmit end flag.
607E SACL FXMT,0
2077 LAC VNRM,0 * set normal communication vector.
6075 SACL XVECT,0
2073 LAC INTST,0 * enable all interrupts.
6004 SACL IMR,0
CE26 RET * return.

kkhkkkkkkkkkkkkkkkkkkhhhhhhhhhhkrkkkkhhhkhhhhhhhrrrrrkkkkriikx

*

* Normal data write routine. *
*

* This routine is called when normal communication occurs.*
* This routine writes xmit data to DXR, and sets the *

31

0289 *

0290 khkkkkkkkkkkkkkkkkkkkhhhhhkhkkkkkkkkkhhhhhhhhhhhhkkkkkkxrhikx
0291 *
0292 * Check secondary code. destroy DP pointer. *
0293 * = ACC.
0294 *
0295 * This routine checks whether the data in DXMT (123 pageo)*
0296 * has secondary code or not. If secondary code exists, *
0297 * then disable maskable interrupts except XINT, modify the*
0298 * contents of XVECT(117 pageO) for secondary communi- *
0299 * cation, and set secondary flag. Note that we recommend*
0300 * calling this routine to send control words to the AIC.*
030 1 khkkkkkkkkkkkkkkkkkkkhhhhhhhhkkkkkkkkhhkhhhhhhhhhhkkkkkkxrrikx
0302 007B C800 C2ND LDPK O * data page pointer 0.
0303 007C CAO03 LACK 03
0304 007D 606F SACL TMPO
0305 007E 207B LAC DXMT,0 * is this data secondary code
0306 O007F 4E6F AND TMPO
0307 0080 106F SUB TMPO,0
0308 0081 F680 Bz C2ND1 * if yes, then next.
0082 0084
0309 0083 CEZ26 RET * else return.
0310 *
0311 0084 CAFF C2NDI LACK >FF * set secondary flag.
0312 0085 607F SACL F2ND,0
0313 0086 CA20 LACK >20 * enable only XINT.
0314 0087 6004 SACL IMR,0
0315 0088 2078 LAC VSI,0 * modify vector address for secondary
0316 0089 6075 SACL XVECT,0 * communication.
0317 O0OOBA 207B LAC DXMT,0 * write primary data to DXR.
0318 008B 6001 SACL DXR,0
0319 00BC CEZ26 RET * return.
0320 *
032 1 kkkkkkkkkkkkkkkkkkkkkhkhhkhhkhhkkkkkkkkkhhkhhhhhhhhhkkkkkkkxrrix
0322 *
0323 *
0324 * Check first interrupt
0325 *
0326 *
0327 * This routine checks if both first interrupts have *
0328 * occurred. If this routine is called after reset, it *
0329 * waits for both interrupts then returns. *
0330 khkkkkkkkkkkkkkkkkkkkhkhhkhhhhkkkkkkkkkkkkhhhhhhhhkkkkkkkxriikx
0331 008D 206D IGR LAC FRE,O * check first interrupt after
0332 008E F680 BZ IGR * master reset.
008F 008D
0333 0090 206C LAC FXE,0
0334 0091 F680 BZ IGR
0092 008D
0335 0093 CE26 RET

0336 0094

0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361

0094
0095
0096
0097
0098

0099
009A
009B
009C
009D

*

kkkkkkkkkkkkkkhkkkkkkhkhkkkhkkkkkkhkkkkhhkkhkkkkkkhhkkhkkkkkkkkkk

*

*

*

Ignore interrupt routine.

* These routines are used so that the first RINT and *

* XINT after the %DSP reset can be ignored. They set *
* flags and modify each vector address to the normal *
* interrupt address but do not read or write to the *

* serial ports. Note that the first data that the AIC will*

* receive after the DSP reset is >0000.

kkkkkkkkkkkhkkkkhkkkkkkhhkkkhkkkkkkhkkkhkkkhkkkkkkhhkkkhkkkkkkkkkk

CAFF IGNRR
606D

2076

6074

CE26

CAFF IGNRX
606C

2077

6075

CE26

LACK >FF
SACL FRE,O
LAC VRCV,0
SACL RVECT,0
RET

LACK >FF
SACL FXE,O0
LAC VNRM,0
SACL XVECT,0
RET

END

NO ERRORS, NO WARNINGS

* set normal receive address.

*

* return.

* set normal xmit address.

*

* return.

33

34

C TLC32040 and TMS320C17 Flowcharts and

Communication Program

C.1 Flowcharts

{ Begin }

Initialize

Wait for First EODX Pulse

Enable Interrupt

4
-

Write Secondary Communication

Modify Interrupt Location. *SINT1

»
Ll

Data
Transfer
End?

More
Secondary
COM?

User Area

a. MAIN

Yes

{ Begin)

Push Status Register

Push Accumulator

Clear FSX Flag

A

Is Transfer
Complete?

Call Subroutine Referenced
by Vector

Pop Accumulator

Pop Status

b. INTERRUPT SERVICE ROUTINE

35

NINT1

Write Transmit Low Byte

NINT2

Get Receive High Byte

Get Receive Low Byte

Modify Interrupt Location. *NINT2

Modify Interrupt Location. *NINT1

Clear Transfer End Flag

Clear Transfer End Flag

c. PRIMARY COMMUNICATION 1

SINT1

d. PRIMARY COMMUNICATION 2

SINT2

Write Transmit Low Byte

Write Secondary Data High Byte

Get Receive High Byte

Get Receive Low Byte

Modify Interrupt Location. *SINT2

Modify Interrupt Location. *SINT3

Clear Transfer End Flag

e. PRIMARY-SECONDARY COMMUNICATION 1

36

f. PRIMARY-SECONDARY COMMUNICATION 2

SINT3 SINT4

Write Secondary Data Low Byte Modify Interrupt Location. *NINT1
Modify Interrupt Location. *SINT4 Clear Transmit Low Byte Storage Location
Clear Transfer End Flag Clear Transfer End Flag
g. PRIMARY-SECONDARY COMMUNICATION 3 h. PRIMARY-SECONDARY COMMUNICATION 4
DLB
a
al

Data
Transfer
Complete?

Move Receive High-Byte to
Transmit High-Byte

Move Receive Low-Byte to
Transmit Low-Byte

Write Transmit High-Byte to
Transmit Register Buffer

i. DIGITAL LOOPBACK

C.2 Communication Program List

38

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
DOOA
000B
0ooC
000D
000E
000F

kkkkkkkkkkkkkkhkkkkkkhkhkkhkkkkkkkkkhhkkhkkkkkkhkhkkhkkkkkkhkkkk

version 1.2

revised 7/22/88

TLC32040 to TMS320C17 Communication Program

*

*

by Hironori Okubo and Woody Rowand *

Texas Instruments *
(214) 997-3460 *

*

E N I T T I T R T T 3

* This program uses the circuit published in the Volume *
* 3 of the Linear and Interface Circuit Applications *
* book with the following modification: *

*

*

* 1. INT- of the TMS320C17 must be connected to
* EODX- of the TLC32040.
*

*

* In this configuration, the program will allow the *

* TLC32040 to communicate with the TLC320C17 with the

* restriction that all interrupts except INT— are *

* prohibited and only synchronous communication can *
* occur. The program allows the user two levels of *

* nesting in the main program; the remaining two levels *

* are reserved for the interrupt vector and subroutines.*

*

* |f desired, this program may be used with the TMS32011*

* digital signal processor with the following change. *

* Since the TMS32011 has only sixteen words of data RAM *
* on data page 1, all of the registers used by this *

* program should be moved to data page 0, except for *
* SSTSTK (the temporary storage location for the status *

* register) which must remain on page %l (since the *

* SST instruction always addresses page 1).

*

kkkkkkkkkkkkkkhkkkkkkhkhkkkhkkkkkkkkkhhkkkhkkkkkkhhkkhkkkkkkhkkkk

SSTSTK
ACHSTK
ACLSTK
RXEFLG
DRCV1
DRCV2
DXMT1
DXMT2
DXMT3
DXMT4
VECT
ANINT1
ANINT2
ASINTI
ASINT2
ASINT3

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU

>00
>01
>02
>03
>04
>05
>06
>07
>08
>09
>0A
>0B
>0C
>0D
>0E
>0F

stack for status (SST) register.
stack for accumulator high (ACCH).
stack for accumulator low (ACCL).
xmit/receive in progress.
storage for high byte receive data.
storage for low byte receive data.
storage for high byte xmit data.
storage for low byte xmit data.
storage for high byte secndry data.
storage for low byte secndry data.
storage for interrupt vector addr.
storage for normal xmit/rcv vect 1.
storage for normal xmit/rcv vect 2.
storage for secndry xmit/rcv vect 1.
storage for secndry xmit/rcv vect 2.
storage for secndry xmit/rcv vect 3.

0055 0000

0056 0010

0057 0011

0058 0012

0059 0013

0060 0014

0061 0015

0062 OOFF

0063

0064

0065

0066 0000

0067 0000 F900
0001 0013

0068 00020069

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089 0002

0090 0002 6EOI

0091 0003 7CO00

0092 0004 5801

0093 0005 5002

0094 0006 4813

0095 0007 4011

0096 0008 2011

0097 0009 7912

0098 O000A FFO00
000B 0007

0099 000C

0100

0101 000C 200A

0102 000D 7F8C

0103 OO0OE 6501

0104 O0OOOF 7A02

0105 0010 7BOO

0106 0011 7F82

0107 0012 7F8D

ASINT4 EQU >10 storage for secndry xmit/rcv vect 4.
CNTREG EQU >11 storage for control register.
MXINT EQU >12 storage for xmit interrupt mask.
CLRX EQU >13 storage for xmit interrupt clear
CLRX1 EQU >14 storage for xmit intrpt clear/mask.
TEMP EQU >15 temporary register.
FLAG EQU >FF flag set.
*
* Branch to initialization routine.
*

AORG >0000

B INIT branch to initialization routine.

*
*
4
*
*

*

*kkkkk *k%

*kkkkk *kkkkkkkkhk *%k%k

* o+ 3

Interrupt service routine.

SACL

I
LAC HI
SACL
LAC H2
SACL

N T S I R e
)
«Q

AORG

INTSVC LDPK
SST
SACH
SACL
ouT
WAIT1 IN
LAC
AND
BZ

LAC

CALA

ZALH
OR
LST
EINT
RET

LAC ASINTI

To initiate secondary communication, change the *
contents of VECT to the address of the secondary *
communication subroutine and store the *
in DXMT3 and DXMT4.

modify VECT. *
VECT *
*
store high-byte of *
DXMT3 secondary information in *
DXMT4 store low-byte in DXMT4. *
DXMT4 *
*
B e R S R R R R P S e e e e e e e
>02
1
SSTSTK push status register.
ACHSTK push accumulator high.
ACLSTK push accumulator low.
CLRXPAO make sure FSX-flag is clear.
CNTREG,PAO read control register.
CNTREG,0 load accumulator with control
MXINT reg mask-off xmit interrupt
WAIT1 flag loop until xmit interrupt
flag is recognized.
VECT load acc with interrupt vector.
call appropriate xmit/rcv
routines
ACHSTK pop accumulator high.
ACLSTK pop accumulator low.
SSTSTK pop status register.
enable interrupts.
return to main program.

39

40

0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164

0013

0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B

6EQI
7F89
6880
7083
50A8
50A8
50A8
50A8
50A8
50A8
50A8
5088
4906
4906
TEO4
5012
7EQI
5015
6AI5
80A1
7TF8E
6713
80A2
7TF8E

00IC 6714

002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003C
003D
003E
003F

809D
7F8E
500A
8077
7F8E
500B
807D
7F8E
500C
8084
7F8E
500D
808A
7F8E
500E
8090
7FBE
600F
A095

khkkkkkkkhkkkkkkkkkkkhhhhhhhhhkkkkkkkhhhkhhhhhhhhhrrrkkkikrhikx

Initialization after reset.

EE DR R T N

*

Data RAM locations >80 through >92 are reserved *
by this program. The user must set the status *
register at the end of this program with the SST *
command or a combination of SOVM, LDPK etc. *

*

kkkkkkkkkkkkkkkkkkkkhhhhhhhhhhkkkkkkhhhkhhhhhhhhhkrrxkkkkriikx

7F81 INIT DINT

LDPK
ZAC
LARP
LARK
SACL
SACL
SACL
SACL
SACL
SACL
SACL
SACL
ouT
ouT
LACK
SACL
LACK
SACL
LT
MPYK
PAC
TBLR
MPYK
PAC
TBLR
MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK
PAC
SACL
MPYK

1

0
0,RXEFLG+>80
*
*4
*4
4
*4
*
*t
*
DXMT1,PA
DXMT1,PAI
200000100
MXINT
1
TEMP
TEMP
CLX1

CLRX
CLX2

CLRX1
IGN

VECT
NINT1

ANINT1
NINT2

ANINT2
SINTI

ASINT1
SINT2

ASINT2
SINT3

ASINT3
SINT4

disable interrupts.
set data page pointer one.
clear registers.

clear transmit registers.

initialize xmit—int mask.prepare
for serial port initialization
and initialization of registers
containing 16-bit constants.
initialize interrupt flag clear.

initialize interrupt flag clear
with interrupts disabled.

initialize interrupt vector.
save normal communication
address to its storage.

save normal communication
address 2 to its storage.

save secondary communication
address 1 to its storage.

save secondary communication
address 2 to its storage.

save secondary communication
address 3 to its storage.

save secondary communication

0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184

0185
0186
0187

0188

0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217

0040 CE14
0041 6010
0042

0042 EO14

PAC address 4 to its storage.
SACL ASINT4

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkkkkkhkkkkhkkkkkkkkkk

*

* Synchronize high/low byte transmission. *

*

*

* The time between FSX- interrupts is approximately *

* ten microseconds (50 cycles). Wait for first if *

* FSX—, this is the first interrupt, delay 60 cycles *

* (past the second interrupt). If it is the second *

* interrupt, no harm done. *

*kkkkkk *kkkkk *% *kkkkk *kkkkkkkkkk *kkkkkkkkk

OUT CLRX1,PAO clear interrupt flags,disableint.

0043 8011 IGNOR IN CNTREG,PAO read control register.

0044 2011
0045 4E12
0046 F680
0047 0043
0048

0048 C014

0049 5500 IGNOR1 NOP

004A FB90O
004B 0049
004C
004C EO013
004D

004D CEDO

004E CAO00
004F 6006
0050 CAO03
0051 5007
0052 7E24

LAC CNTREG wait
AND MXINT for
BZ IGNOR FSX- flag.

LARK 0,20 wait 60 cycles (20 x 3 cycles) in
case FSX- int. is first of the

pair.

BANZ IGNOR1 if FSXI— int was the second, delay

OUT CLRX,PAO anyway.

EINT enable interrupt.

kkkkkkkkkkkkkkkkkkkkkhkhkkkhkkkkkkhkkkkhhkkhkkkkkkhkhkhkhkkkkkkhkkkk

* *

* Main program (user area) *

* *

*

* This program allows the user two levels of nesting, *

* since one level is used as stack for the interrupt and *

* the interrupt service routine makes one subroutine *

* call. User routines such as digital filtering, FFTS, *

* and secondary communication judgement may be placed *
* here. The number of instruction cycles between *

* interrupts varies with the sampling rate. In the *

* power-up condition this is approximately 500 cycles. *

*

* In the example below, the first two transmissions send *

* secondary information to the AIC. The first configures *

* the TB and RB registers. The second configures the *

* control register. *

*

khkkkkkkkkkkkkkkkkkkhhhhhhhhhhkkkkkkkhhhkhhhhhhhhhhrrxkkkkrikikx

MAIN ZAC prepare first control word.
SACL DXMTI
LACK >03
SACL DXMT2 should be xxxx xx11.
LACK >24

41

42

0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229

0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254

0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0076
0265

0053
0054
0055
0056
0057
0057
0058

0059
005A
005B
005C
005D
005E
005SE
005F
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A

006B
006C
006D
006E
006E
006F
0070
0071
0072

0073
0074
0075
006B
0077

5008 SACL DXMT3

7TE92 LACK >92

5009 SACL DXMT4

200D LAC ASINT1 set VECT for secondary

500A SACL VECT communications.

4906 ouT DXMTI,PAI store first transmit byte in
* transmit buffer.

7F89 ZAC

5003 SACL RXEFLG clear xmit/rcv end flag.

2003 MAIN1 LAC RXEFLG

FFOO BZ MAINI wait for data transfer to

005B complete.

7F89 ZAC prepare second control word.

5006 SACL DXMT1

7TEO3 LACK >03

5007 SACL DXMT2

7E00 LACK >00

5008 SACL DXMT3

TE67 LACK >67

5009 SACL DXMT4

200D LAC ASINTI

500A SACL VECT

4906 OUT DXMTI,PAL

7F89 ZAC

5003 SACL RXEFLG clear xmit/rcv end flag.
kkkkkkkkkkkkkkkkkkkkkhkhkhhkkkkkkkkkkhkhhhhhhhhhhhkkxkkkkirrkx
* *

Digital loop—back program *

This program serves as an example of whatcan *
be done in the user area. *

*
*
* *
*
*
* *

kkkkkkkkkkkkkkkhkkkkkkhhkkhkkkkkkhhkkkhkkkkhkkkkkkkhkkkhkkkkkkkkkk

2003 DLB LAC RXEFLG wait for data transfer to complete.
FFOO Bz DLB

006B

2004 LAC DRCV1 move receive data to transmit

5006 SACL DXMT1 registers.

2005 LAC DRCV2

5007 SACL DXMT2

4906 ouT DXMTI,PAL write first transmit byte to
* transmit buffer.

7F89 ZAC

5003 SACL RXEFLG clear rcv/xmit-end flag.

F900 B DLB

0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286

0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306

0307
0308
0309
0310
0311

0312
0313
0314
0315
0316
0317
0318

0077
0077
0078
0079
007A
007B
007C
007D

007E
007F
0080
0081
0082
0083

0084
0085

0086
0087
0088
0089
008A

008B
008C
008D
008E
008F
0090
0091

kkhkkkkkkkkkkkkkkkkkkhhhhhhhhhhkrkkkkhhhkhhhhhhhrrrrrkkkkriikx

Normal interrupt routines. *

These routines destroy the contents of the *
accumulator and the data page pointer, making it *
necessary to save these before the routines begin *

Write the contents of DXMT?2 to the transmit buffer *
and read the receive buffer into DRCV1. *

E I R S

4907 NINT1 OUT DXMT2,PAI write xmit-low to xmit register.

4104 IN DRCVI,PAI read rcv-data-high from rcv reg.

200C LAC ANINT2 prepare next interrupt vector.
500A SACL VECT
4813 OUT CLRX,PAO
7F8D RET

4105 NINT2 IN DRCV2,PAI read receive-data-low from rcv
reg.

prepare next interrupt vector.

clear xmit interrupt flag.

200B LAC ANINTI
500A SACL VECT

4813 OUT CLRX, PAO clear xmit interrupt flag.

TEFF LACK FLAG
5003 SACL RXEFLG set xmi%t/rcv end flag.
7F8D RET
*
* Secondary interrupt routines *
*
* These routines destroy the contents of the *
* accumulator and the data page pointer.
*
* The following routines write the low byte of *
* the primary data word and the high and low byte *
* of the secondary data word. They also read the *
* A/D information in the receive registers. *
kkhkkkkkkkkkkkkkkkkkkkhkhhhhkhhhkkkkkkkkhkhhkhhhhhhhhhhkkkkkkxrrix
4907 SINT1 OUT DXMT2,PAI write xmit-data-low to xmit reg.
4104 IN DRCVI,PAL read receive-data-high from rcv
reg
200E LAC ASINT2 prepare next interrupt vector.
500A SACL VECT
4813 ouT CLRX,PAO clear xmit interrupt flag.
7F8D RET
4908 SINT2 OUT DXMT3,PAI write secondary-data-high to
Xmit.
4105 IN DRCV2,PAI read receive-data-low from rcv.
200F LAC ASINT3 prepare next interrupt vector.
500A SACL VECT
4813 ouT CLRX,PAO clear xmit interrupt flag.
7F8D RET
4909 SINT3 OUT DXMT4,PAI write secondary-data-low to xmit
2010 LAC ASINT4 prepare next interrupt vector.

43

0320 0093 4813 ouT CLRX,PAO clear xmit interrupt flag.

0321 0094 7F8D RET

0322 0095 200B SINT4 LAC ANINT1 prepare next interrupt vector.

0323 0096 500A SACL VECT

0324 0097 4813 ouT CLRX,PAO clear xmit interrupt flag.

0325 0098 7F89 ZAC

0326 0099 5007 SACL DXMT2 clear DXMT2 immediately to
eliminate

0327 O009A 7EFF LACK FLAG unnexpected secondary
communications

0328 009B 5003 SACL RXEFLG set xmit/rcv end flag.

0329 009C 7FBD RET

0330 *kkkkkkkkhkkhkkhkkhkkhhkhhkkhkkhkhkhkkkhkhkhhhhkhhhhhhkhhkhhhhhhhkhhhkkhkhihx

0331 *

0332 * Ignore first interrupt. *

0333 *

0334 * This routine is used to ignore the first data *

0335 * transmission and also to synchronize the AIC *

0336 * with the processor.

0337 ket koo ke ek

0338 009D 200B IGN LAC ANINT1

0339 009E 500A SACL VECT

0340 O009F 4813 ouT CLRX,0

0341 00AO 7F8D RET

0343 *

0344 * CONTROL REGISTER INFORMATION

0345 *

0346 * SERIAL-PORT CONFIG. INT. MASK INT. FLAG

0347 * [10001110| |00010100] *

0348 * 1514 131211109876543210 *

0349 * | [| | |___INT *

0350 * | _XF status [1| FSR *

0351 * |

0352 * |

0353 *

0354 * (write I'sto clear) *

0355 ket ek

0356 O0OAl 8EIF CLXI DATA >8EIF

0357 00A2 8EOF CLX2 DATA >8EOF

0358 END

44

0319

0092 500A SACL VECT

NO ERRORS, NO WARNINGS

_FSX
_FR

0317 009D 200B IGN LAC ANINT1

0318 009E 500A SACL VECT

0319 O009F 4813 ouT CLRX,0

0320 00AO 7F8D RET

0322 *

0323 * CONTROL REGISTER INFORMATION

0324 *

0325 * SERIAL-PORT CONFIG. INT. MASK INT. FLAG
0326 * [10001110| |00010100] *
0327 * 1514131211109876543210

0328 * | []] |___INT
0329 * | _XF status [1] FSR
0330 * |

0331 * |

0332 *

0333 * (write I's to clear)
0334 *kkkkkkkkkkhkkhkkhkkhkkkhkhkkhkkkhhkkhkkkhkkhkkhkhkhkhkhkhhkhkhkkkhkhkkhkkhkkhkkkhkkhkkkx

0335 O0O0AIl 8EIF CLXI DATA >8EIF

0336 00A2 8EOF CLX2 DATA >8EOF

0337 END
NO ERRORS, NO WARNINGS

*

*

*

_FSX
_FR

45

46

