

ADS9217, ADS9218, ADS9219 SBASA74B – JANUARY 2023 – REVISED MAY 2024

ADS921x Dual, Simultaneous-Sampling, 18-Bit, 20MSPS SAR ADC With Fully Differential ADC Input Driver

1 Features

Texas

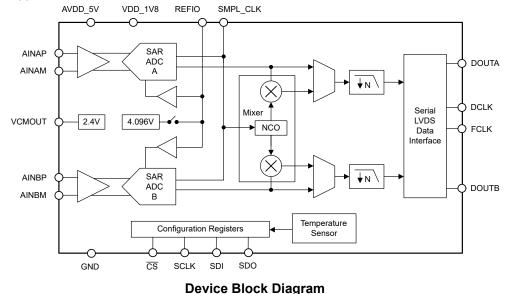
INSTRUMENTS

- High-speed and low-power:
 - ADS9219: 20MSPS/ch, 187mW/ch
 - ADS9218: 10MSPS/ch, 146mW/ch
 - ADS9217: 5MSPS/ch, 95mW/ch
- 2-channel, simultaneous sampling
- Feature integration:
 - Integrated ADC driver
 - Integrated precision reference
 - Common-mode voltage output buffer
- High performance:
 - 18-bit no-missing-codes
 - INL: ±1LSB, DNL: ±0.75LSB
 - SNR: 95.5dB and 104.5dB SNR with OSR = 16
- Wide input bandwidth:
 - ADS9219: 135MHz (-3dB)
 - ADS9218: 90MHz (–3dB)
 - ADS9217: 45MHz (–3dB)
- Serial LVDS interface:
 - SDR and DDR output modes
 - Synchronous clock and data output
- Extended operating range: –40°C to +125°C

2 Applications

- Power analyzers
- Source measurement units (SMU)
- Marine equipment
- Servo drive position feedback
- DC power supplies, AC sources, electronic loads

3 Description


The ADS921x is a family of 18-bit, high-speed, dualchannel, simultaneous-sampling, analog-to-digital converters (ADCs) with an integrated driver for the ADC inputs. The integrated ADC driver simplifies the signal chain, reduces power consumption for precision applications, and supports high-frequency signals beyond 1MHz. By not requiring an external decoupling capacitor, the integrated ADC reference buffer is optimized for wide bandwidth applications.

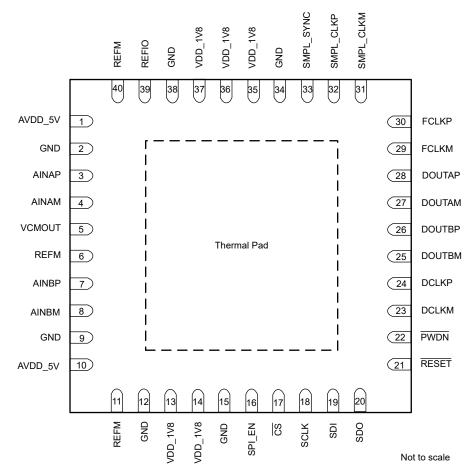
The ADS921x uses a serial LVDS (SLVDS) data interface that enables high-speed digital communication while minimizing digital switching noise. Read the dual-channel ADC data using separate SLVDS outputs per ADC channel or one SLVDS output for both ADC channels.

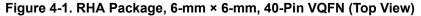
Package Information

· ······							
PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾					
ADS9218	RHA (VQFN, 40)	6mm × 6mm					
ADS9219 ⁽³⁾	RHA (VQFN, 40)	6mm × 6mm					
ADS9217 (4)	RHA (VQFN, 40)	6mm × 6mm					

- (1) For more information, see the *Mechanical*, *Packaging*, and *Orderable Information*.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- (3) Advance Information device (not Production Data).
- (4) Preview device (not Production Data).

53


Table of Contents


1 Featu	Jres	1
2 Appli	ications	1
3 Desc	ription	1
4 Pin C	Configuration and Functions	3
	ifications	
5.1 A	bsolute Maximum Ratings	<mark>5</mark>
5.2 E	SD Ratings	<mark>5</mark>
	hermal Information	
5.4 R	Recommended Operating Conditions	<mark>6</mark>
5.5 E	Electrical Characteristics	7
5.6 T	ïming Requirements	9
5.7 S	Switching Characteristics	10
5.8 T	ïming Diagrams	11
5.9 T	ypical Characteristics: All Devices	14
	Typical Characteristics: ADS9219	
5.11	Typical Characteristics: ADS9218	17
	Typical Characteristics: ADS9217	
6 Detai	iled Description	19
6.1 C)verview	19
6.2 F	unctional Block Diagram	19
6.3 F	eature Description	20
6.4 D	Device Functional Modes	29

	6.5 Programming	. 31
7	Register Map	
	7.1 Register Bank 0	. 35
	7.2 Register Bank 1	
	7.3 Register Bank 2	. 53
8	Application and Implementation	
	8.1 Application Information	
	8.2 Typical Applications	
	8.3 Power Supply Recommendations	
	8.4 Layout	. 62
9	Device and Documentation Support	.63
	9.1 Documentation Support.	. 63
	9.2 Receiving Notification of Documentation Updates	.63
	9.3 Support Resources	. 63
	9.4 Trademarks	
	9.5 Electrostatic Discharge Caution	.63
	9.6 Glossary	.63
1	0 Revision History	. 63
1	1 Mechanical, Packaging, and Orderable	
	Information	. 64
	11.1 Mechanical Data	65

4 Pin Configuration and Functions

Pin Functions

PIN			DESCRIPTION		
NAME	NO.		DESCRIPTION		
AINAM	4	I	Negative analog input for ADC A.		
AINAP	3	I	Positive analog input for ADC A.		
AINBM	8	1	Negative analog input for ADC B.		
AINBP	7	I	Positive analog input for ADC B.		
AVDD_5V	1, 10	Р	5V analog power-supply pin.		
CS	17	I	Chip-select input pin for the configuration interface; active low.		
DCLKM	23	0	Negative differential data clock output. Connect a 100Ω resistor between DCLKP and DCLKM close to the receiver.		
DCLKP	24	0	Positive differential data clock output. Connect a 100Ω resistor between DCLKP and DCLKM close to the receiver.		
DOUTAM	27	0	Negative differential data output. Connect a 100Ω resistor between DOUTAP and DOUTAM close to the receiver. Transmits ADC A data in 2-lane mode. Transmits ADC A and ADC B data in 1-lane mode.		
DOUTAP	28	0	Positive differential data output corresponding to ADC A. Connect a 100Ω resist between DOUTAP and DOUTAM close to the receiver. Transmits ADC A data in 2-lane mode. Transmits ADC A and ADC B data in 1-lane mode.		

Copyright © 2024 Texas Instruments Incorporated

_

Pin Functions (continued)

PIN		TYPE ⁽¹⁾	DESCRIPTION		
NAME	NO.	ITPE("	DESCRIPTION		
DOUTBM	25	0	Negative differential data output corresponding to ADC B in 2-lane mode. Connect a 100Ω resistor between DOUTBP and DOUTBM close to the receiver. Unused in 1-lane mode.		
DOUTBP	26	0	Positive differential data output corresponding to ADC B in 2-lane mode. Connect a 100Ω resistor between DOUTBP and DOUTBM close to the receiver. Unused in 1-lane mode.		
FCLKM	29	0	Negative differential data frame clock output. Connect a 100Ω resistor between FCLKP and FCLKM close to the receiver.		
FCLKP	30	0	Positive differential data frame clock output. Connect a 100Ω resistor between FCLKP and FCLKM close to the receiver.		
GND	2, 9, 12, 15, 34, 38	Р	Ground.		
PWDN	22	I	Power-down control; active low. Connect to VDD_1V8 if unused.		
REFIO	39	I/O	Internal reference voltage output. External reference voltage input. Connect a 10µF decoupling capacitor to REFM.		
REFM	6, 11, 40	Р	Reference ground. Connect to GND.		
RESET	21	I	Reset input; active low. Connect to VDD_1V8 if unused.		
SCLK	18	Ι	Serial clock input for the configuration interface.		
SDI / EXTREF	19	I	SDI is a multifunction logic input; pin function is determined by the SPI_EN pin. SDI has an internal 100k Ω pulldown resistor to GND. SPI_EN = 0b: SDI is the logic input to select between the internal or external reference. Connect SDI to GND for the external reference. Connect SDI to VDD_1V8 for the internal reference. SPI_EN = 1b: Serial data input for the configuration interface		
SDO	20	0	Serial data output for the configuration interface.		
SMPL_CLKM	31	I	ADC sampling clock input. Negative differential input for the LVDS sampling clock. Connect this pin to GND for the CMOS sampling clock.		
SMPL_CLKP	32	Ι	ADC sampling clock input. Positive differential input for the LVDS sampling clock. Clock input for the CMOS sampling clock.		
SMPL_SYNC	33	Ι	Synchronization input for internal averaging filter. Connect to GND if unused. See the <i>Synchronizing Multiple ADCs</i> section on how to use the SMPL_SYNC pin.		
SPI_EN	16	I	Control to enable configuration of the SPI interface; active high. Connect a pullup resistor to VDD_1V8 to keep the configuration interface enabled. Connect to GND if SPI configuration is unused. When SPI_EN = 0, select the reference voltage with the SDI/EXTREF pin.		
Thermal Pad	_	Р	Exposed thermal pad. Connect to GND.		
VCMOUT	5	0	Common-mode voltage output. Use VCMOUT to set the common-mode voltage at the ADC inputs. Connect a $1\mu F$ decoupling capacitor to GND.		
VDD_1V8	13, 14, 35, 36, 37	Р	1.8V power-supply. Connect 1µF and 0.1µF decoupling capacitors to GND.		

(1) I = input, O = output, I/O = input or output, G = ground, P = power.

5 Specifications

5.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
VDD_1V8 to GND	-0.3	2.1	V
AVDD_5V to GND	-0.3	5.5	V
AINAP, AINAM, AINBP, and AINBM to GND	GND – 0.3	AVDD_5V + 0.3	V
REFIO to REFM	REFM – 0.3	AVDD_5V + 0.3	V
Digital inputs to GND	GND – 0.3	VDD_1V8 + 0.3	V
REFM to GND	-0.3	0.3	V
Input current to any pin except supply pins ⁽²⁾	-10	10	mA
Junction temperature, T _J	-40	150	°C
Storage temperature, T _{stg}	-60	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Pin current must be limited to 10 mA or less.

5.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, analog input pins AINAP, AINAM, AINBP, and AINBM ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all other pins ⁽¹⁾	±1000	V
		Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±500	

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Thermal Information

		ADS921x	
	THERMAL METRIC ⁽¹⁾	RHA (VQFN)	UNIT
		40 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	25.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	13.3	°C/W
R _{θJB}	Junction-to-board thermal resistance	7.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	7.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	1.1	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SI	JPPLY					
AVDD_5V	Power supply	AVDD_5V to GND	4.75	5	5.25	V
VDD_1V8	Power supply	VDD_1V8 to GND	1.75	1.8	1.85	V
REFERENC	CE VOLTAGE	<u> </u>				
V _{REF}	Reference voltage to the ADC	External reference	4.076	4.096	4.116	V
ANALOG II	NPUTS					
V _{IN}	Absolute input voltage	AINx ⁽¹⁾ to GND	V _{CM} – 1.6		V _{CM} + 1.6	V
FSR	Full-scale input range	(AINAP – AINAM) and (AINBP – AINBM)	-3.2		3.2	V
V _{CM}	Common-mode input range ⁽²⁾	(AINAP + AINAM) / 2 and (AINBP + AINBM) / 2	V _{CMOUT} – 0.05		V _{CMOUT} + 0.05	V
TEMPERA	TURE RANGE	· · · · ·				
T _A	Ambient temperature		-40	25	125	°C

(1) AINx refers to analog inputs AINAP, AINAM, AINBP, and AINBM.

(2) ADC channel is powered down if the input common-mode voltage exceeds specifications.

Copyright © 2024 Texas Instruments Incorporated

5.5 Electrical Characteristics

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}$ C to +125°C; typical values at $T_A = 25^{\circ}$ C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ANALOG	INPUTS						
I _B	Input bias current			0.5		μA	
	Input bias current thermal drift			1		nA/°C	
DC PERF	ORMANCE		•				
	Resolution	No missing codes		18		Bits	
DNL	Differential nonlinearity		-0.9	±0.4	0.9	LSB	
		T _A = 0°C to 70°C, ADS9217 and	-1.5	±0.8	1.5	LSB	
		ADS9218	-5.7	±3	5.7	ppm	
		$T_{A} = -40^{\circ}$ C to 125°C, ADS9217 and	-2	±0.8	2	LSB	
INL		ADS9218	-7.6	±3	7.6	ppm	
	Integral nonlinearity		TBD	±1	TBD	LSB	
		ADS9219 at 20MSPS	TBD	±3.8	TBD	ppm	
			TBD	±0.8	TBD	LSB	
		ADS9219 up to 16MSPS	TBD	±3.8	TBD	ppm	
V _(OS)	Input offset error ⁽¹⁾			±40		LSB	
dV _{OS} /dT	Input offset error thermal drift ⁽¹⁾			0.5	1.5	ppm/°C	
GE	Gain error ⁽¹⁾		-0.05	±0.01	0.05	%FSR	
dG _{E/} dT	Gain error thermal drift ⁽¹⁾			1	2.5	ppm/°C	
	FORMANCE						
		f _{IN} = 2kHz	93	95.4			
SINAD	Signal-to-noise + distortion ratio	f _{IN} = 1MHz		94.3		dB	
		f _{IN} = 2kHz	93.3	93.3 95.5			
SNR	Signal-to-noise ratio	f _{IN} = 1MHz		94.9		dBFS	
		f _{IN} = 2kHz, ADS9217 and ADS9218		-120			
		f _{IN} = 2kHz, ADS9219 at 20MSPS		-110			
THD	Total harmonic distortion	f _{IN} = 2kHz, ADS9219 up to 16MSPS		-120		dB	
		f _{IN} = 1MHz, all devices		-104			
		f _{IN} = 2kHz		120			
SFDR	Spurious-free dynamic range	f _{IN} = 1MHz		104		dB	
	Isolation crosstalk	f _{IN} = 2kHz		120		dB	
	Aperture jitter	SIngle-ended CMOS clock on SMPL_CLKP		0.3		ps _{RMS}	
	· + - · · ·· · J · · · ·	Differential LVDS sampling clock		0.8		F-RMO	
		ADS9219		135			
BW	Input Bandwidth (–3dB)	ADS9218		90		MHz	
		ADS9217		45			
соммо	N-MODE OUTPUT BUFFER	1	1				
		ADS9219	2.2	2.460	2.65		
V _{CMOUT}	Common-mode output voltage	ADS9218	2.2	2.410	2.65	V	
		ADS9217	2.2	2.385	2.65		
	Output current drive		0		5	μA	

5.5 Electrical Characteristics (continued)

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}$ C to +125°C; typical values at $T_A = 25^{\circ}$ C

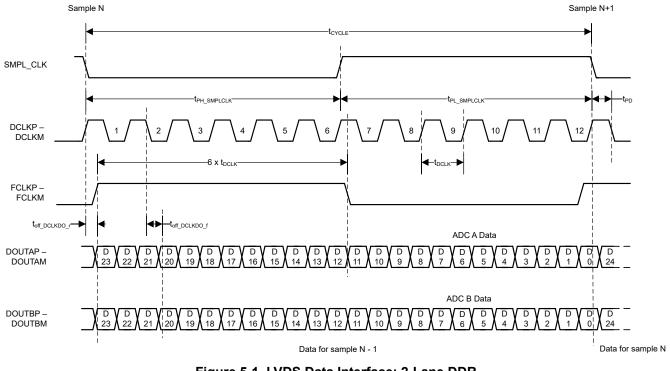
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVDS RE	CEIVER (SMPL_CLK)		1			
	Llink laval innut valtare (D. M.)	AC coupled	100			
V _{TH}	High-level input voltage (P – M)	DC coupled	300			mV
	Level availing the set (D M)	AC coupled			-100	
V _{TL}	Low-level input voltage (P – M)	DC coupled			-300	mV
V _{ICM}	Input common-mode voltage		0.5	1.2	1.4	V
LVDS OL	ITPUT (CLKOUT, DOUTA, and DO	DUTB)	1			
V _{ODIFF}	Differential output voltage	R _L = 100Ω	200	350	500	mV
V _{OCM}	Output common-mode voltage	R _L = 100Ω	0.88	1.1	1.32	V
CMOS IN	PUTS (CS, SCLK, and SDI)		•			
V _{IL}	Input low logic level		-0.1		0.5	V
V _{IH}	Input high logic level		1.3		VDD_1V8	V
CMOS O	UTPUT (SDO)		•			
V _{OL}	Output low logic level	I _{OL} = 200μA sink	0		0.4	V
V _{OH}	Output high logic level	I _{OH} = 200µA source	1.4		VDD_1V8	V
POWER	SUPPLY					
		At 20MSPS throughput (ADS9219)		41	50	
	Supply current from AVDD_5V	At 10MSPS throughput (ADS9218)		33	40	mA
AVDD_5V	Supply current from AVDD_5V	At 5MSPS throughput (ADS9217)		20	24	ШA
		Power-down			2	
		At 20MSPS throughput (ADS9219)		94	97	
	Supply current from VDD_1V8	At 10MSPS throughput (ADS9218)		70.5	89	mA
IVDD_1V8		At 5MSPS throughput (ADS9217)		50	66	ШA
		Power-down			2	

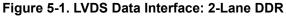
(1) These specifications include full temperature range variation but not the error contribution from internal reference.

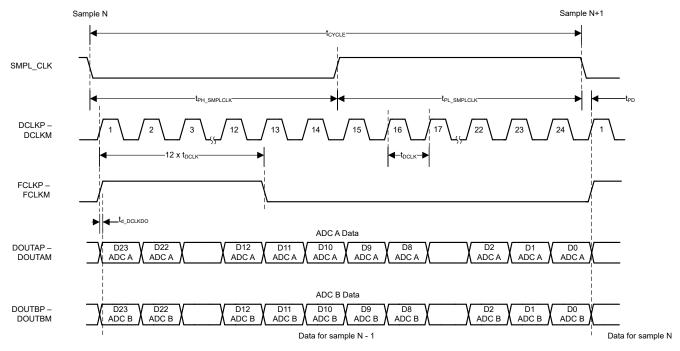
5.6 Timing Requirements

at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted); minimum and maximum values at T_A = -40°C to +125°C; typical values at T_A = 25°C

			MIN	MAX	UNIT
CONVERSIO	DN CYCLE			I	
		ADS9219	3.9	20	
f _{CYCLE}	Sampling frequency	ADS9218	3.9	10	MHz
		ADS9217	3.9	5	
t _{CYCLE}	ADC cycle time period	L. L	1 / f _{CYCLE}		s
t _{PL_SMPLCLK}	Sample clock low time		0.45	0.55	t _{CYCLE}
t _{PH_SMPLCLK}	Sample clock high time		0.45	0.55	t _{CYCLE}
f _{CLK}	Maximum SCLK frequency			10	MHz
t _{CLK}	Minimum SCLK time period		100		ns
SPI TIMING	5				
t _{hi_CSZ}	Pulse duration: CS high		220		ns
t _{PH_CK}	SCLK high time		0.48	0.52	t _{CLK}
t _{PL_CK}	SCLK low time		0.48	0.52	t _{CLK}
t _{d_CSCK}	Setup time: \overline{CS} falling to the first SCLK rising edge	9	20		ns
t _{su_CKDI}	Setup time: SDI data valid to the corresponding S	CLK rising edge	10		ns
t _{ht_CKDI}	Hold time: SCLK rising edge to corresponding dat	a valid on SDI	5		ns
t _{d_CKCS}	Delay time: last SCLK falling edge to \overline{CS} rising		5		ns


5.7 Switching Characteristics


at AVDD_5V = 4.75V to 5.25V, VDD_1V8 = 1.75V to 1.85V, internal V_{REF} = 4.096V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}$ C to +125°C; typical values at $T_A = 25^{\circ}$ C


	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
RESET					
t _{PU}	Power-up time for device			25	ms
LVDS DATA I	NTERFACE				
t _{RT}	Rise time Fall time	With 50Ω transmission line of length = 20mm, differential R _L = 100Ω , and C _L = 1pF		600 600	ps ps
		ADS9219	50		
t _{CYCLE}	Sampling clock period	ADS9218	100		ns
		ADS9217	200		
t _{DCLK}	Clock output		4.167		ns
	Clock duty cycle		45	55	%
t _{d_DCLKDO}	Time delay: DCLKP rising to corresponding data valid	SDR mode	-0.35	0.35	ns
t _{off_DCLKDO_r}	Time offset: DCLKP rising to corresponding data valid	DDR mode	t _{DCLK} / 4 – 0.35	t _{DCLK} / 4 + 0.35	ns
t _{off_DCLKDO_f}	Time offset: DCLKP falling to corresponding data valid	DDR mode	t _{DCLK} / 4 – 0.35	t _{DCLK} / 4 + 0.35	ns
t _{PD}	Time delay: SMPL_CLK falling to DCLKP rising			t _{DCLK}	ns
t _{PU_SMPL_CLK}	Time delay: Free-running clock connected to SMPL_CLK to ADC data valid			100	μs
SPI TIMINGS					
t _{den_CKDO}	Time delay: 8 th SCLK rising edge to SDO enable			30	ns
t _{dz_CKDO}	Time delay: 24 th SCLK rising edge to SDO going Hi-Z			30	ns
t _{d_СКDO}	Time delay: SCLK launch edge to corresponding data valid on SDO			30	ns
t _{ht_CKDO}	Hold time: SCLK launch edge to previous data valid on SDO		2		ns

5.8 Timing Diagrams

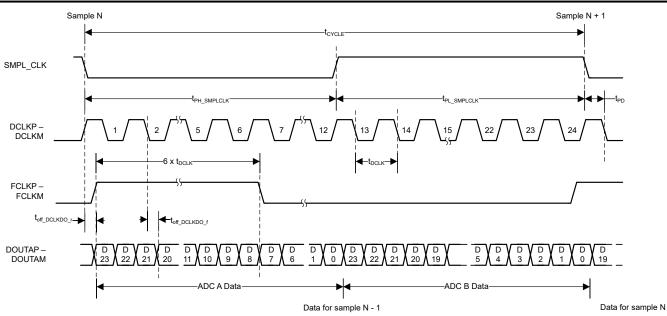
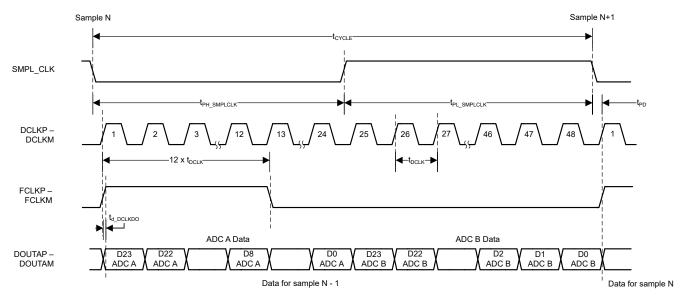
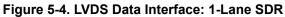




Figure 5-3. LVDS Data Interface: 1-Lane DDR

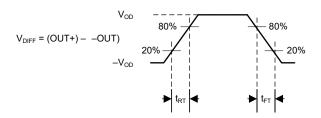


Figure 5-5. LVDS Output Transition Times

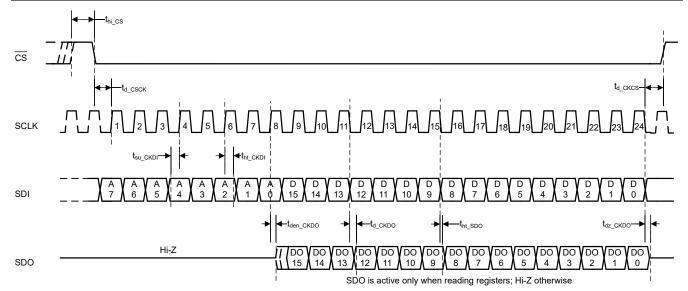


Figure 5-6. Configuration SPI

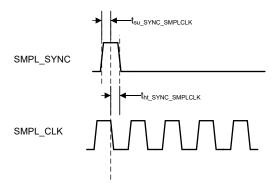
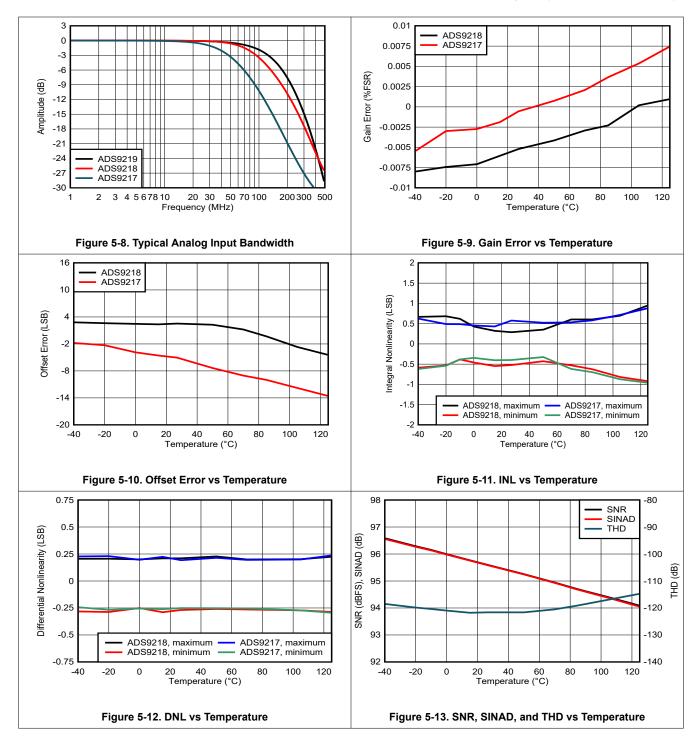
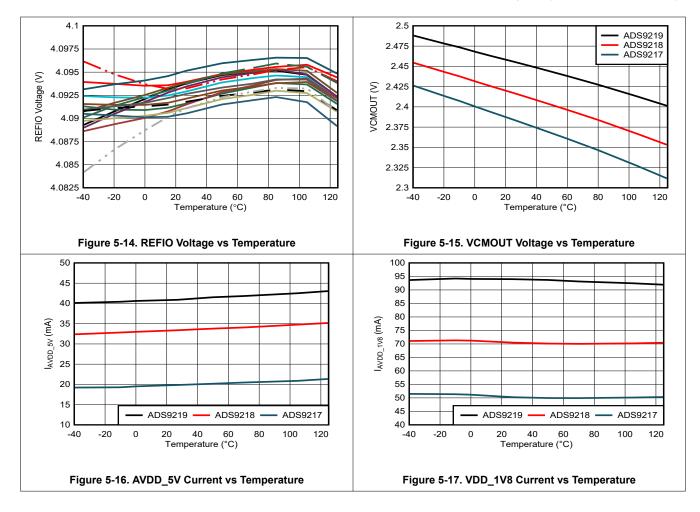
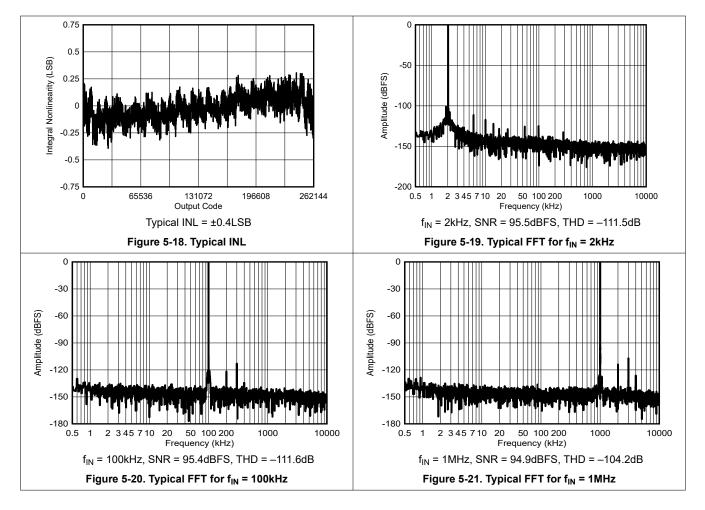



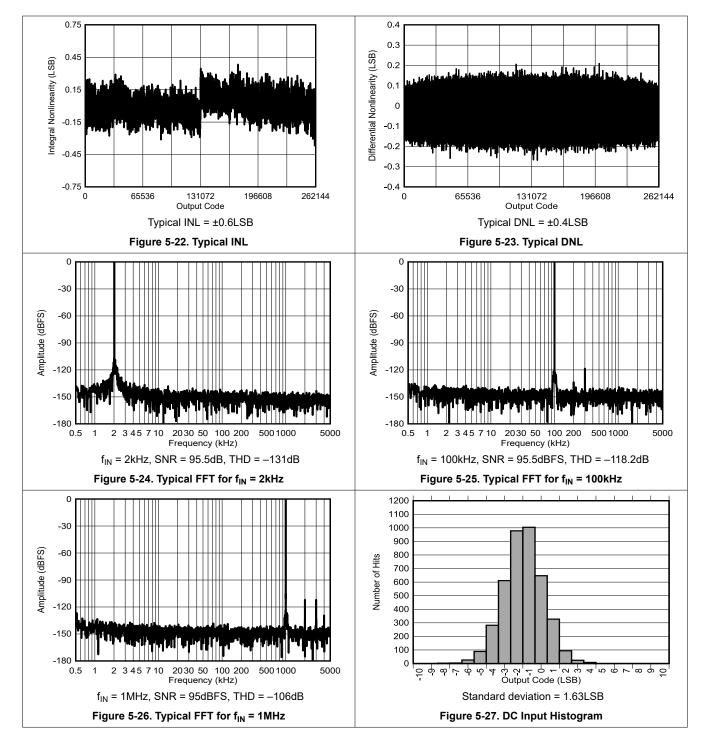
Figure 5-7. SMPL_SYNC Timing



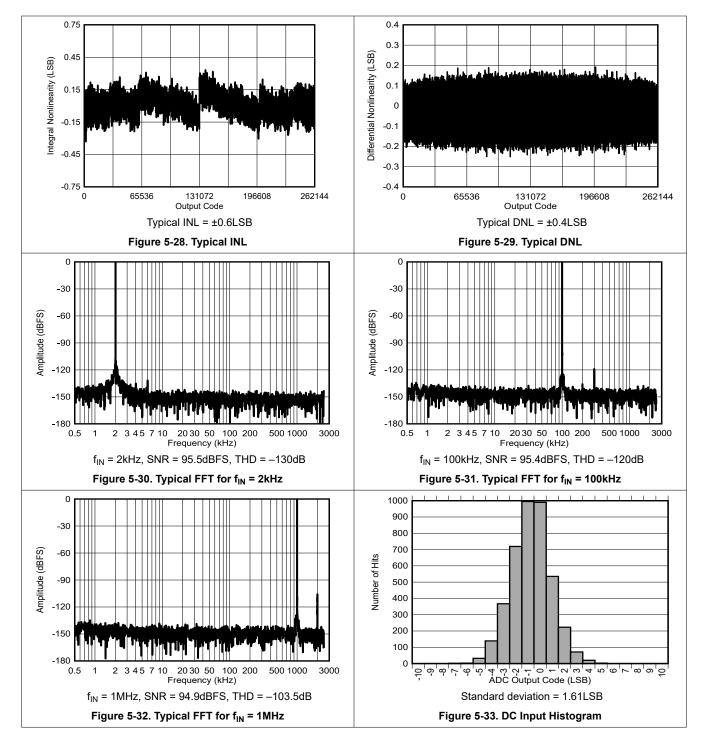
5.9 Typical Characteristics: All Devices



5.9 Typical Characteristics: All Devices (continued)



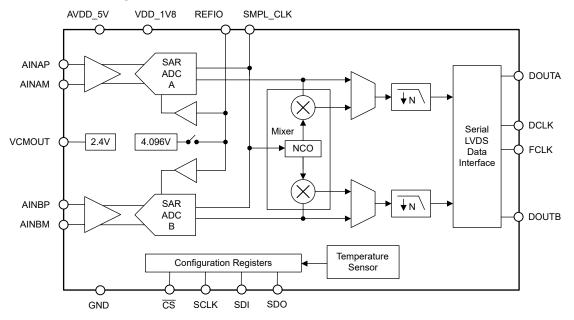
5.10 Typical Characteristics: ADS9219



5.11 Typical Characteristics: ADS9218

5.12 Typical Characteristics: ADS9217

6 Detailed Description


6.1 Overview

The ADS921x is an 18-bit, 20MSPS/ch, dual-channel, simultaneous-sampling, analog-to-digital converter (ADC). The ADS921x integrates a high-impedance buffer at the ADC inputs, voltage reference, reference buffer, and common-mode voltage output buffer. The ADS9219 supports unipolar differential analog input signals. The buffer at the ADC inputs is optimized for low-distortion and low-power operation.

For DC level shifting of the analog input signals, the device has a common-mode voltage output buffer. The common-mode voltage is derived from the output of the integrated reference buffer. When a conversion is initiated, the differential input between the (AINAP – AINAM) and (AINBP – AINBM) pins is sampled. The ADS921x uses a clock input on the SMPL CLKP pin to initiate conversions.

The ADS921x consumes only 187mW/ch of power when operating at 20MSPS/ch, which includes the buffer power dissipation at the ADC inputs. The serial LVDS (SLVDS) digital interface simplifies board layout, timing, firmware, and supports full throughput at lower clock speeds.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Analog Inputs

The ADS921x supports both AC-coupled and DC-coupled differential analog inputs. Make sure the input common-mode voltage of the analog inputs matches the voltage level on the VCMOUT pin. Figure 6-1 shows the equivalent input network diagram of the device.

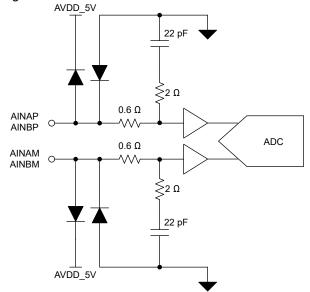


Figure 6-1. Equivalent Input Network

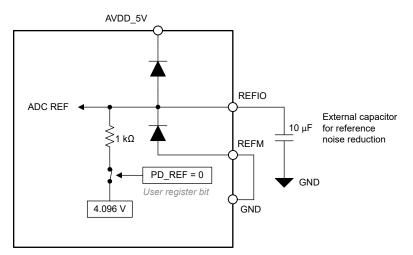
6.3.2 Analog Input Bandwidth

Figure 5-8 illustrates the analog full-power input bandwidth of the ADS921x device family. The –3dB bandwidth is 135MHz, 90MHz, and 45MHz for the ADS9219, ADS9218, and ADS9217, respectively.

6.3.3 ADC Transfer Function

The ADS921x supports a $\pm 3.2V$ differential input range. The device outputs 18-bit conversion data in either straight-binary or binary two's-complement formats. As shown in Table 6-1, the format for the output codes is the same across all analog channels. Configure the format for the output codes with the DATA_FORMAT field in register address 0x0D. The least significant bit (LSB) for the ADC is given by 1LSB = $6.4V / 2^{18}$.

INPUT VOLTAGE	DESCRIPTION	ADC OUTPUT IN 2's- COMPLEMENT FORMAT	ADC OUTPUT IN STRAIGHT- BINARY FORMAT						
≤ –3.2V + 1LSB	Negative full-scale code	0x80000	0x00000						
0V + 1LSB	Mid-code	0x00000	0x1FFFF						
≥ 3.2V – 1LSB	Positive full-scale code	0x1FFFF	0x3FFFF						


Table 6-7	1 Transfer	[•] Characteristics
	1. 114115161	Characteristics

6.3.4 Reference Voltage

The ADS921x has a precision, low-drift voltage reference internal to the device. For best performance, the internal reference noise is filtered (as shown in Figure 6-2) by connecting a 10μ F ceramic bypass capacitor to the REFIO pin. As shown in Figure 6-3, an external reference is also connected at the REFIO pin. When using an external reference, disable the internal reference voltage by either of the following two options:

- Configure the SPI (SPI EN pin = logic 1). Write PD REF = 1b in address 0xC1 of register bank 1.
- Use the SDI/EXTREF pin (SPI_EN pin = logic 0). Set the SDI/EXTREF pin to logic 0 using a pulldown resistor.

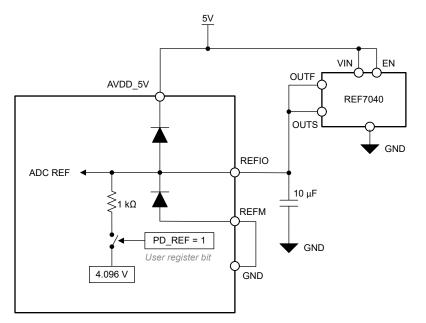


Figure 6-3. External Reference Voltage

(1)

6.3.5 Temperature Sensor

The ADS921x features a 10-bit temperature sensor for measuring temperature inside the device. Follow the sequence listed in Table 6-2 to read the temperature sensor output with the SPI. Read the temperature sensor data at anytime independent of the ADC data interface.

The transfer function for the temperature sensor is given by Equation 1:

Temperature = $-85.0172 + (10 \text{ bit output } \times 0.24918) \,^{\circ}\text{C}$

Table 6-2. Sequence to Read Temperature Sensor Output

REGISTER ADDRESS REGISTER BANK		VALUE	COMMENT							
0x90	1	0x4000	Write register to load temperature sensor output in address 0x91							
0x91	1	10 bit temperature sensor data	Read register for temperature sensor output							
0x90	1	0x0000	Write register							

6.3.6 Data Averaging

The ADS921x features a built-in decimation filter that averages the conversion results from the ADC. The output data rate is reduced with higher data averaging. Table 6-3 shows the register settings corresponding to oversampling ratios.

Table 6-3	. Register Map	Settings for OSR
-----------	----------------	------------------

	Table 6-3. Register Map Settings for USR									
		INTERFAC	E MODES ⁽¹⁾							
DECIMATION	REGISTER	2-LANE SDR AND DDR ⁽²⁾	1-LANE SDR AND DDR ⁽³⁾							
	CLK3 (0xC5[9])	1								
	OSR_INIT1 (0xC0[11:10])	0 for DATA_LANES = 5 or 7 1 for DATA_LANES = 0 or 2	0 for OSR = 2 1 for OSR = 4, 8, and 16							
OSR initialization	OSR_INIT2 (0xC4[5:4])	2	0 for OSR = 2 2 for OSR = 4, 8, and 16							
	OSR_INIT3 (0xC4[1])	1	0 for OSR = 2 1 for OSR = 4, 8, and 16							
	OSR_EN (0x0D[6])	1	1							
2	OSR (0x0D[5:2])	0	0							
2	OSR_CLK (0xC0[9:7])	0	0							
4	OSR (0x0D[5:2])	1	1							
4	OSR_CLK (0xC0[9:7])	4	0							
8	OSR (0x0D[5:2])	2	2							
o	OSR_CLK (0xC0[9:7])	5	4							
16	OSR (0x0D[5:2])	3	3							
10	OSR_CLK (0xC0[9:7])	6	5							

(1) See *Table* 6-6 and *Table* 6-7 for DATA_LANES configuration.

(2) The ADS9217 functions with all data interface modes.

(3) Not applicable for the ADS9217.

As shown in Figure 6-4, a pulse on the SMPL_SYNC pin resets the decimation filter. A pulse on SMPL_SYNC synchronizes multiple ADS921x devices when using the decimation filter.

SMPL_SYNC	\int										
SMPL_CLK	ſſ		S4 S5		\$8 \$9						
ADC Data for Decimation by 2	N	invalid data	(S1 + S2) / 2	(S3 + S4) / 2	(S5 + S6) / 2	(S7 + S8) / 2	(S9 + S10) / 2	(S11 + S12) / 2	(S13 + S14) / 2	(S15 + S16) / 2	(S17 + S18) / 2
ADC Data for Decimation by 4	N	invalid data		(S1 + S2 + S	S3 + S4) / 2	(S5 + S6 +	S7 + S8) / 4	(S9 + S10 + S	611 + S12) / 4	(S13 + S14 +	+ S7 + S8) / 4
ADC Data for Decimation by 8	N	invalid data				(S1 + S2 + + S8) / 8				(S9 + S10 + + S16) / 8	
ADC Data for Decimation by 16	N			inv	valid data					(S1 + S2 +	+ S16) / 16

Figure 6-4. Data Output With Decimation

6.3.7 Digital Down Converter

The ADS921x includes an optional on-chip digital down conversion (DDC) that is configured by register addresses FBh through FEh. As shown in Figure 6-5, the DDC includes a digital mixer and a 24-bit, numerically controlled oscillator (NCO). The digital mixer generates 24-bit I and Q outputs that represent complex mixing of ADC output data with the NCO output frequency. Each channel of the ADC generates a 48-bit output corresponding to the 24-bit I and Q outputs, respectively, from the digital mixer.

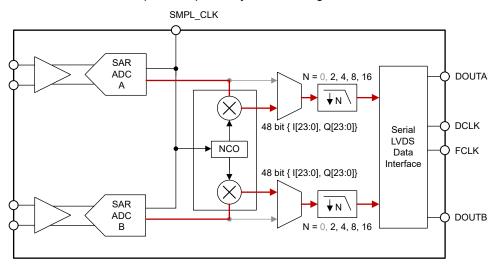


Figure 6-5. Data Path When Using a Digital Down Converter

The NCO is common for both ADC A and ADC B. The output frequency of the NCO, given by Equation 2, is configured using the NCO_FREQUENCY register (address 0xFD and 0xFE).

$$f_{\rm NCO} = \frac{f_{\rm SMPL_CLK}}{2^{24}} \times (\rm NCO_FREQUENCY[23:0] \& 0xFFFFF0) Hz$$
(2)

The output phase of the NCO is reset by applying a pulse on the SMPL_SYNC pin, see Figure 5-7. As shown in Equation 3 and Table 6-4, the initial phase of the NCO output is configured using the NCO_PHASE register (address 0xFC and 0xFD).

NCO_PHASE[23:0] =
$$\left(\frac{\text{Initial phase}}{2\pi} \times 2^{24}\right)$$
 & 0xFFFFF0

Table 6-4. Initial NCO Phase

NCO_PHASE[23:0]	INITIAL PHASE
0x000000	0
0x7FFF0	Π
0xFFFF0	2π

(3)

Use a decimation factor of either 2, 4, 8, or 16 with the DDC. Table 6-5 shows the register configuration for decimating the DDC output.

DECIMATION	REGISTER	VALUE
	OSR_EN (0x0D[6])	1
2	OSR (0x0D[5:2]	0
-	OSR_CLK (0xC0[9:7])	0
	CLK3 (0xC5[9])	1
	OSR_INIT1 (0xC0[11:10])	1
Common settings for decimation factors 4, 8, and 16	OSR_INIT2 (0xC4[5:4])	2
	OSR_INIT3 (0xC4[1])	1
	OSR_EN (0x0D[6])	1
4	OSR (0x0D[5:2]	1
-	OSR_CLK (0xC0[9:7])	0
8	OSR (0x0D[5:2]	2
-	OSR_CLK (0xC0[9:7])	4
16	OSR (0x0D[5:2]	3
	OSR_CLK (0xC0[9:7])	5

Table 6-5. Decimation Settings for the DDC

6.3.8 Data Interface

The ADS921x features a high-speed, serial LVDS data interface with 2-lane and 1-lane options for data output. The host configures the output data frame width to 20 bits or 24 bits with the single-data rate (SDR) and double-data rate (DDR) modes. Table 6-6 and Table 6-7 configuration.

DATA FRAME WIDTH (Bits)	DATA RATE	OUTPUT LANES	DATA_LA NES 0x12[2:0]	DATA_RA TE 0xC1[8]	CLK1 0xC0[12]	CLK2 0xC1[0]	CLK3 0xC5[9]	CLK4 0xC5[3:2]	CLK5 0xFB[1]	CLK6 0x1C[7:6]
20	SDR	1	5	1	1	1	1	3	0	3
20	SDR	2	0	1	0	1	0	3	0	3
20	DDR	1	5	0	1	1	1	3	0	3
20	DDR	2	0	0	0	1	0	3	0	3
24	SDR	1	7	1	1	0	1	3	0	3
24	SDR	2	2	1	0	0	0	0	0	0
24	DDR	1	7	0	1	0	1	3	0	3
24	DDR	2	2	0	0	0	0	0	0	0

Table 6-6. Register Map Settings for Output Data Interface for the ADS9217

DATA FRAME WIDTH (Bits)	DATA RATE	OUTPUT LANES	DATA_LA NES 0x12[2:0]	DATA_RA TE 0xC1[8]	CLK1 0xC0[12]	CLK2 0xC1[0]	CLK3 0xC5[9]	CLK4 0xC5[3:2]	CLK5 0xFB[1]	CLK6 0x1C[7:6]
20	SDR	1	-	-	-	-	-	-	-	-
20	SDR	2	-	-	-	-	-	-	-	-
20	DDR	1	-	-	-	-	-	-	-	-
20	DDR	2	-	-	-	-	-	-	-	-
24	SDR	1	2	1	0	0	0	0	1	0
24	SDR	2	2	1	0	0	0	0	0	0
24	DDR	1	2	0	0	0	0	0	1	0
24	DDR	2	2	0	0	0	0	0	0	0

The ADS921x generates a data clock DCLK that is a multiple of the ADC sampling clock SMPL_CLK. The data clock frequency depends on the number of data output lanes (1 or 2), data frame width, and data rate. The data frame width is 20 or 24 bits and the data rate is SDR or DDR. Equation 4 calculates the DCLK speed. Table 6-8 lists the possible values for the output data clock frequency.

DCLK speed = $\frac{2 \text{ ADC channels} \times \text{Data Frame Width (24 bit or 20 bit)}}{\text{Data Lanes (1 or 2)} \times \text{Data Rate(SDR = 1, DDR = 2)}} \times \text{SMPL_CLK}$

(4)

Table 6-6. Data Clock (DCLK) Speed									
ADC CHANNELS	DATA FRAME WIDTH (Bits)	DATA RATE (1 = SDR, 2 = DDR)	OUTPUT LANES ⁽¹⁾	SMPL_CLK MULTIPLIER	DCLK (SMPL_CLK = 5MHz)	DCLK (SMPL_CLK = 10MHz)	DCLK (SMPL_CLK = 20MHz)		
		1	1	48	240MHz	—	—		
	24	I	2	24	120MHz	(2)	(2)		
	24	2	1	24	120MHz	240MHz	480MHz		
2		2	2	12	60MHz	120MHz	240MHz		
2		1	1	40	200MHz	(3)	(3)		
	20	I	2	20	100MHz	(3)	(3)		
	20	2	1	20	100MHz	(3)	(3)		
		Z	2	10	50MHz	(3)	(3)		

Table 6-8. Data Clock (DCLK) Speed

(1) The LVDS output data and clock are specified up to 600MHz. Faster speeds are not supported.

(2) For the ADS9219 and ADS9218, 1-lane data output is supported only when data averaging is enabled. See the *Data Averaging* section.

(3) A 20-bit data frame width is not supported for the ADS9219 or ADS9218.

Copyright © 2024 Texas Instruments Incorporated

6.3.8.1 Data Frame Width

As shown in Figure 6-6, the ADS921x supports 24-bit and 20-bit data frame width options. Configure the DATA_WIDTH field in address 0x12 to select the data frame width. The default output data frame width is 24 bits. The ADC resolution is 18 bits, represented by 20 bits. The two extra lower bits in the 20-bit data are ignored.

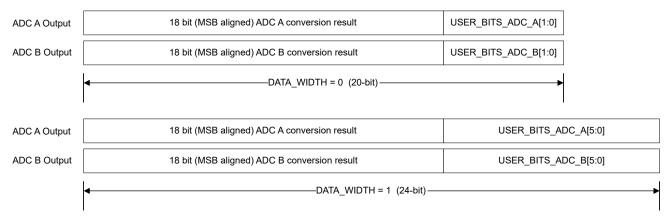
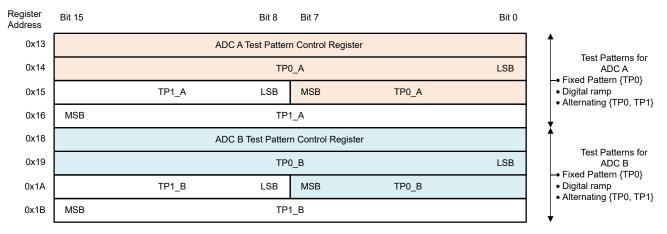


Figure 6-6. Data Frame Width Composition

6.3.8.2 Synchronizing Multiple ADCs

Drive the SMPL_CLK pins of the respective ADS921x devices with a common sampling clock. Match the timing delay on the clock path external to the ADCs by using identical PCB trace lengths for SMPL_CLK for the respective ADCs.


Use the SMPL_SYNC pin to synchronize multiple ADCs when using the internal decimation filter. The SMPL_SYNC pin is latched by the falling edge of the sampling clock. A pulse on SMPL_SYNC resets the internal decimation filter.

6.3.8.3 Test Patterns for Data Interface

The ADS921x features test patterns (Figure 6-7) used by the host for debugging and verifying the data interface. The test patterns replace the ADC output data with predefined digital data. Enable the test patterns by configuring the corresponding register addresses 0x13 through 0x1B in bank 1.

Table 6-9 lists the test patterns supported by the ADS921x.

Figure 6-7. Register Bank for Test Patterns

Table 6-9. Test Pattern Configurations

ADC OUTPUT	TP_EN_CHA TP_EN_CHB	TP_MODE_CHA TP_MODE_CHB	SECTION	RESULT#none#
ADC conversion result	0			
Fixed pattern	1	0 or 1	Fixed Pattern	ADC A = TP0_A ADC B = TP0_B
Digital ramp	1	2	Digital Ramp	ADC A = Digital ramp ADC B = Digital ramp
Alternating test patterns	1	3	Alternating Test Pattern	ADC A = TP0_A, TP1_A ADC B = TP0_B, TP1_B

Note

1. Configure the test patterns for two separate channel groups ADC A and ADC B.

6.3.8.3.1 Fixed Pattern

The ADC outputs fixed patterns defined in the TP0_A and TP0_B registers in place of the ADC A and ADC B data, respectively.

- Configure the test patterns in TP0_A and TP0_B
- Set TP_EN_A = 1, TP_MODE_A = 0 (address = 0x13), TP_EN_B = 1, and TP_MODE_B = 0 (address = 0x18)

6.3.8.3.2 Alternating Test Pattern

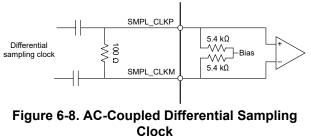
The ADC outputs alternating test patterns defined in the TP0_A, TP1_A and TP0_B, TP1_B registers in place of ADC A and ADC B data, respectively.

- Configure the test patterns in TP0_A, TP1_A, TP0_B, and TP1_B
- Set TP_EN_A = 1, TP_MODE_A = 3 (address = 0x13), TP_EN_B = 1, and TP_MODE_B = 3 (address = 0x18)

6.3.8.3.3 Digital Ramp

The ADC outputs digital ramp values with increments specified in the RAMP_INC_A and RAMP_INC_B registers in place of ADC A and ADC B data, respectively.

- Configure the increment value between two successive steps of the digital ramp in the RAMP_INC_A (address = 0x13) and RAMP_INC_B (address = 0x18) registers, respectively. The digital ramp increments by N + 1, where N is the value configured in these registers.
- Set TP_EN_A = 1, TP_MODE_A = 2 (address = 0x13), TP_EN_B = 1, and TP_MODE_B = 2 (address = 0x18)


6.3.9 ADC Sampling Clock Input

Use a low-jitter external clock with a high slew rate to maximize SNR performance. Operate the ADS921x with a differential or single-ended clock input. Clock amplitude impacts the ADC aperture jitter and, consequently, the SNR. For maximum SNR performance, provide a clock signal with fast slew rates that maximizes swing between IOVDD and GND levels.

Make sure the sampling clock is a free-running continuous clock. The ADC generates a valid output data, data clock, and frame clock t_{PU_SMPL_CLK}, as specified in the *Switching Characteristics* after a free-running sampling clock is applied. When the sampling clock is stopped, the ADC is in power-down and the output data, data clock, and frame clock are invalid.

Figure 6-8 shows a diagram of the differential sampling clock input. For this configuration, connect the differential sampling clock input to the SMPL_CLKP and SMPL_CLKM pins. Figure 6-9 shows a diagram of the single-ended sampling clock input. In this configuration, connect the single-ended sampling clock to SMPL_CLKP and connect SMPL_CLKM to ground.

0\/

Figure 6-9. Single-Ended Sampling Clock

SMPL CLKP

SMPL_CLKM

ADS98XX

6.4 Device Functional Modes

6.4.1 Reset

Power down the ADS921x with a logic 0 on the RESET pin or write 1b to the RESET field (address 0x00, register bank 0). The device registers are initialized to the default values after reset. For the ADS9219 and ADS9217, initialize the device with a sequence of register write operations; see the *Initialization Sequence* section. Register write operations are not required for initializing the ADS9218.

6.4.2 Power-Down Options

Power down the ADS921x with a logic 0 on the PWDN pin or write 11b to the PD_CH field (address 0xC0, register bank 1). The device registers are initialized to the default values after power-up. For the ADS9219 and ADS9217, initialize the device with a sequence of register write operations; see the *Initialization Sequence* section. Register write operations are not required for initializing the ADS9218.

6.4.3 Normal Operation

In normal operating mode, the ADS921x is powered-up and digitizes the analog inputs at the falling edge of the sampling clock. The ADC outputs the data clock, frame clock, and MSB-aligned, 18-bit conversion result.

Copyright © 2024 Texas Instruments Incorporated

6.4.4 Initialization Sequence

The initialization sequence described in this section is not applicable for the ADS9218. As shown in Table 6-10, initialize the ADS9219 and ADS9217 with a sequence of register writes after device power-up or reset. Connect a free-running sampling clock to the ADC before executing the initialization sequence. The ADS9219 and ADS9217 registers are initialized with the default value after the initialization sequence is complete.

		REGISTER		
STEP NUMBER	BANK	ADDRESS	VALUE[15:0]	COMMENT
1	0	0x03	0x0002	Select register bank 1
2	1	0xF6	0x0002	INIT_2 = 1
3	0	0x04	0x000B	INIT_1 = 1011b
4	0	0x03	0x0010	Select register bank 2
5	2	0x12	0x0040	INIT_3 = 1
6	2	0x13	0x8000	INIT_4 = 1
7	2	0x0A	0x4000	INIT_5 = 1
8			Wait 10µs (min)	
9	2	0x0A	0x0000	INIT_5 = 0
10	0	0x03	0x0002	Select register bank 1
11	1	0xF6	0x0000	INIT_2 = 0
12	0	0x03	0x0010	Select register bank 2
13	2	0x13	0x0000	INIT_5 = 0
14	2	0x12	0x0000	INIT_4 = 0
15	0	0x04	0x0000	INIT_1 = 0
16	0	0x03	0x0002	Select register bank 1
17	1	0x33	0x0030	Write INIT_KEY
18	1	0xF4	0x0000	INIT = 0
19	1	0xF4	0x0002	INIT = 1
20			Wait 1ms (min)	
21	1	0xF4	0x0000	INIT = 0
22			Wait 1ms (min)	
23	1	0x33	0x0000	INIT_KEY = 0
24	1	0x0D	User defined	Enable gain error calibration and select ADC output data format
25	1	0x33	0x2040	Enable gain error calibration

Table 6-10. ADS921x Initialization Sequence

Copyright © 2024 Texas Instruments Incorporated

6.5 Programming

6.5.1 Register Write

Register write access is enabled by setting SPI_RD_EN = 0b. The 16-bit configuration registers are grouped in three register banks and are addressable with an 8-bit register address. Register bank 1 and register bank 2 are selected for read or write operation by configuring the REG_BANK_SEL bits. Registers in bank 0 are always accessible, irrespective of the REG_BANK_SEL bits. The register addresses in bank 0 are unique and are not used in register banks 1 and 2.

As shown in Figure 6-10, steps to write to a register are:

- 1. Frame 1: Write to register address 0x03 in register bank 0 to select either register bank 1 or bank 2 for a subsequent register write. This frame has no effect when writing to registers in bank 0.
- 2. Frame 2: Write to a register in the bank selected in frame 1. Repeat this step for writing to multiple registers in the same register bank.

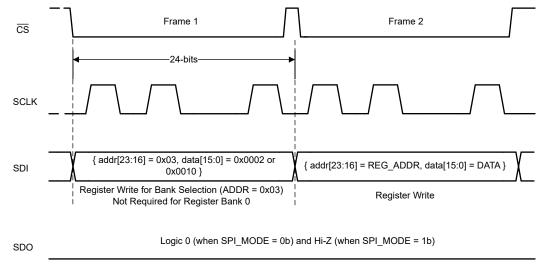


Figure 6-10. Register Write

6.5.2 Register Read

Select the desired register bank by writing to register address 0x03 in register bank 0. Register read access is enabled by setting SPI_RD_EN = 1b and SPI_MODE = 1b in register bank 0. As illustrated in Figure 6-11, registers are read using two 24-bit SPI frames after SPI_RD_EN and SPI_MODE are set. The first SPI frame selects the register bank. The ADC returns the 16-bit register value in the second SPI frame corresponding to the 8-bit register address.

As illustrated in Figure 6-11, steps to read a register are:

- 1. Frame 1: With SPI_RD_EN = 0b, write to register address 0x03 in register bank 0 to select the desired register bank for reading.
- 2. Frame 2: Set SPI_RD_EN = 1b and SPI_MODE = 1b in register address 0x00 in register bank 0.
- 3. Frame 3: Read any register in the selected bank using a 24-bit SPI frame containing the desired register address. Repeat this step with the address of any register in the selected bank to read the corresponding register.
- 4. Frame 4: Set SPI_RD_EN = 0 to disable register reads and re-enable register writes.
- 5. Repeat steps 1 through 4 to read registers in a different bank.

	2 17, ADS9218, ADS9219 4B – JANUARY 2023 – REVISED MA	Y 2024			IEAAS INSTRUMENTS www.ti.com
	Frame 1	Frame 2	1	Frame 3	Frame 4
	←24-bits►				
SCLK					
SDI	{ addr[23:16] = 0x03, data[15:0] = 0x0002 or 0x0010 }	{ addr[23:16] = 0x00, data[15:0] = 0x0006 }	{ addr[23:16] =	= REG_ADDR, data[15:0] = 0 }	{ addr[23:16] = 0x00, data[15:0] = 0x0004 }
	Register Write for Bank Selection (ADDR = 0x03) Not Required for Register Bank 0	Register Write for Read Enable (ADDR = 0x00)	Register Read: 8-	-bit address of register to be read	Register Write for Read Disable (ADDR = 0x00)
SDO	Lo	gic 0 (when SPI_MODE = 0b)	Γ	16-bit Register Data	Hi-Z (when SPI_MODE = 1b)

Figure 6-11. Register Read

6.5.3 Multiple Devices: Daisy-Chain Topology for SPI Configuration

Figure 6-12 shows a typical connection diagram with multiple devices in a daisy-chain topology.

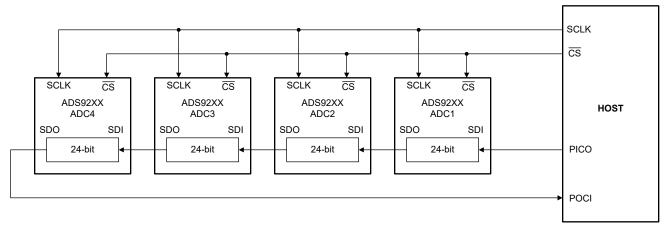
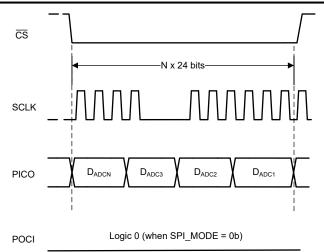


Figure 6-12. Daisy-Chain Connections for SPI Configuration

The \overline{CS} and SCLK inputs of all ADCs are connected together and controlled by a single \overline{CS} and SCLK pin of the controller, respectively. The SDI input pin of the first ADC in the chain (ADC1) is connected to the peripheral IN controller OUT (PICO) pin of the controller. The SDO output pin of ADC1 is connected to the SDI input pin of ADC2, and so on. The SDO output pin of the last ADC in the chain (ADC4) is connected to the peripheral OUT controller IN (POCI) pin of the controller. The data on the PICO pin passes through ADC1 with a 24-SCLK delay, as long as \overline{CS} is active.


Enable daisy-chain mode after power-up or after the device is reset. Set the daisy-chain length in the DAISY_CHAIN_LEN register to enable daisy-chain mode. The daisy-chain length is the number of ADCs in the chain, excluding ADC1. In Figure 6-12, the DAISY_CHAIN_LEN is 3.

6.5.3.1 Register Write With Daisy-Chain

Writing to registers in daisy-chain configuration requires N × 24 SCLKs in one SPI frame. Register writes in a daisy-chain configuration containing four ADCs, as illustrated in Figure 6-12, requires 96 SCLKs.

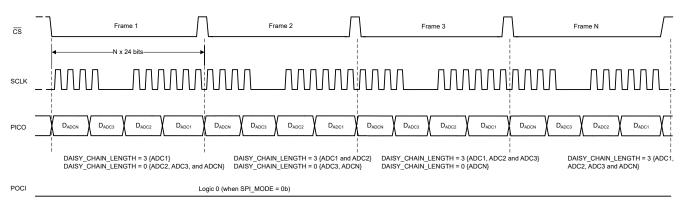

The daisy-chain mode is enabled on power-up or after device reset. Configure the DAISY_CHAIN_LEN field to enable daisy-chain mode. Repeat the waveform in Figure 6-13 N times, where N is the number of ADCs in the daisy chain. Figure 6-14 provides the SPI waveform, containing N SPI frames, for enabling daisy-chain mode for N ADCs.

Figure 6-13. Register Write With Daisy-Chain

 $\mathsf{D}_{\mathsf{ADC1}}[23:0] = \mathsf{D}_{\mathsf{ADC2}}[23:0] = \mathsf{D}_{\mathsf{ADC3}}[23:0] = \mathsf{D}_{\mathsf{ADCN}}[23:0] = \{ \ 0000 \ 0001, \ 0000 \ 00000, \ \mathsf{N-1}, \ 00 \}$

Figure 6-14. Register Write to Configure Daisy-Chain Length

6.5.3.2 Register Read With Daisy-Chain

Figure 6-15 illustrates an SPI waveform for reading registers in daisy-chain configuration. Steps for reading registers from N ADCs connected in daisy-chain are:

- 1. Register read is enabled by writing to the following registers:
 - a. Write to REG_BANK_SEL to select the desired register bank
 - b. Enable register reads by writing SPI_RD_EN = 0b (default on power-up)
- 2. With the register bank selected and SPI_RD_EN = 0b, the controller reads register data by:
 - a. N × 24-bit SPI frame containing the 8-bit register address to be read: N times (0xFE, 0x00, 8-bit register address)
 - b. N × 24-bit SPI frame to read out register data: N times (0xFF, 0xFF, 0xFF)

The 0xFE in step 2a configures the ADC for register read from the specified 8-bit address. At the end of step 2a, the output shift register in the ADC is loaded with register data. The ADC returns the 8-bit register address and corresponding 16-bit register data in step 2b.

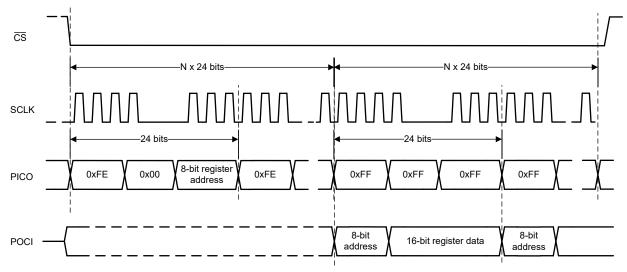


Figure 6-15. Register Read With Daisy-Chain Configuration

7 Register Map

7.1 Register Bank 0

	Figure 7-1. Register Bank 0 Map															
ADD	D15	D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1										D0				
00h		RESERVED SPLM DE										SPI_MO DE	SPI_RD _EN	RESET		
01h				F	RESERVED)					DAIS	SY_CHAIN_	LEN		RESE	RVED
03h				RESE	RVED							REG_BA	NK_SEL			
04h		RESERVED INIT_1														
06h							F	REG_00H_I	READBAC	ĸ						

Table 7-1. Register Section/Block Access Type Codes

Access Type	Code	Description
R	R	Read
W	W	Write
R/W	R/W	Read or write
Reset or Default Value		
-n		Value after reset or the default value

7.1.2 Register 00h (offset = 0h) [reset = 0h]

Figure 7-2. Register 00h 15 14 13 12 11 10 9 8 RESERVED W-0h 0 7 6 5 4 3 2 1 RESERVED SPI_MODE SPI_RD_EN RESET W-0h W-0h W-0h W-0h

Figure 7-3. Register 00h Field Descriptions

Bit	Field	Туре	Reset	Description
15-3	RESERVED	W	0h	Reserved. Do not change from the default reset value.
2	SPI_MODE	W	0h	Select between legacy SPI mode and daisy-chain SPI mode for the configuration interface for register access. 0 : Daisy-chain SPI mode 1 : Legacy SPI mode
1	SPI_RD_EN	W	0h	Enable register read access in legacy SPI mode. This bit has no effect in daisy-chain SPI mode. 0 : Register read disabled 1 : Register read enabled
0	RESET	W	0h	ADC reset control. 0 : Normal device operation 1 : Reset all registers

7.1.3 Register 01h (offset = 1h) [reset = 0h]

	Figure 7-4. Register 01h									
15	14	13	12	11	10	9	8			
	-		RESE	RVED			•			
		R/W-0h								
7	6	5	4	3	2	1	0			
RESERVED			RESE	RVED						
R/W-0h	R/W-0h R/W-0h									

Figure 7-5. Register 01h Field Descriptions

Bit	Field	Туре	Reset	Description
15-7	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
6-2	DAISY_CHAIN_L EN	R/W	0h	Configure the number of ADCs connected in daisy-chain for the SPI configuration. 0 : 1 ADC 1 : 2 ADCs 31 : 32 ADCs
1-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.1.4 Register 03h (offset = 3h) [reset = 2h]

	Figure 7-6. Register 03h									
15	14									
			RESE	RVED						
	R/W-0h									
7	6	5	4	3	2	1	0			
	REG_BANK_SEL									
			R/W	/-2h						

Figure 7-7. Register 03h Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
7-0	REG_BANK_SEL	R/W	2h	Register bank selection for read and write operations. 0 : Select register bank 0 2 : Select register bank 1 16 : Select register bank 2

7.1.5 Register 04h (offset = 4h) [reset = 0h]

Figure 7-9. Register 04h Field Descriptions

Bit	Field	Туре	Reset	Description
3-0	INIT_1	R/W	()h	INIT_1 field for device initialization. Write 1011b during the initialization sequence. Write 0000b for normal operation.

7.1.6 Register 06h (offset = 6h) [reset = 2h]

Figure 7-10. Register 06h									
15	14	13	12	11	10	9	8		
REG_00H_READBACK									
	R-0h								
7	6	5	4	3	2	1	0		
REG_00H_READBACK									
			R-	5h					

Figure 7-11. Register 06h Field Descriptions

· · · · · · · · · · · · · · · · · · ·									
Bit	Field	Type Reset D		Description					
15-0	REG_00H_READ BACK	R	2h	This register is a copy of the register address 0x00 for readback. The register address 0x00 is write-only. The default readback value is 2h because SPI_RD_EN in address 0x00 must be set to 1 for register reads.					

7.2 Register Bank 1

						igure	/-12. г	vegisie		k i ivia	P					
ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0Dh	RESE	RVED	DATA_F ORMAT		1	RESERVE)		GE_CAL _EN1	OSR_EN		0	SR		RESERVED	
12h						RESE	RVED						XOR_EN	C	ATA_LANE	S
13h				RESE	RVED					RAMP_	INC_A		TP_MOI	DE_CHA	TP_EN_ CHA	RESERV ED
14h								TP	0_A							
15h	TP1_A							TP0_A								
16h	1						TP	1_A								
18h	RESERVED							RAMP_	INC_B		TP_MOI	DE_CHB	TP_EN_ CHB	RESERV ED		
19h								TP	0_В							
1Ah	TP1_B							ТРО_В								
1Bh						TP	1_B	 I_B								
1Ch	RESERVED USER_BITS_ADC_B					RESE	ERVED			USER_BIT	rs_adc_a					
33h	RESERVED GE_CAL RESERVED						GE_CAL _EN2	N2								
90h	RESERV ED	TS_LD							RESE	RVED						
91h			RESE	RVED						TE	MPERATU	JRE_SENS	OR			
C0h	F	RESERVE	C	CLK1	OSR_	INIT1		OSR_CLK		RESERVED				PD_CH		
C1h		RESE	RVED		PD_REF	RESE	RVED	DATA_R ATE	RESERVED CL					CLK2		
C4h					RESE	RVED					OSR	_INIT2	RESE	RVED	OSR_INI T3	PD_CHI P
C5h			RESE	RVED			CLK3			RESERVED)		CL	.K4	RESE	RVED
F4h							RESE	ERVED					•		INIT	RESERV ED
F6h	RESERVED INIT_2 RESERVED ED								RESERV ED							
FBh	RESERVED									NCO_SY SREF	XOR_M ODE	CLK5	MIXER_ EN			
FCh							NC	O_PHASE	_COUNT[1	5:0]						
FDh	NCO_FREQUENCY[7:0]						NCO_PHASE_COUNT[23:16]									
FEh							N	ICO_FREQ	UENCY[23	:8]						

Table 7-2. Register Section/Block Access Type Codes

Access Type Code		Description			
R	R	Read			
W W		Write			
R/W	R/W	Read or write			
Reset or Default Value					
-n		Value after reset or the default value			

Figure 7-12. Register Bank 1 Map

7.2.1 Register 0Dh (offset = Dh) [reset = 2002h]

	Figure 7-13. Register obli									
15	14	13	12	11	10	9	8			
RES	ERVED	DATA_FORMAT			RESERVED					
R/W-0h		R/W-1h			R/W-0h					
7	6	5	4	3	2	1	0			
GE_CAL_EN1	OSR_EN	OSR RESERVED					RVED			
R/W-0h				R/W-2h						

Figure 7-13 Register 0Dh

Reset Bit Field Туре Description 15-14 RESERVED R/W 0h Reserved. Do not change from the default reset value. Select data format for the ADC conversion result. 13 DATA FORMAT R/W 1h 0 : Straight binary format 1 : Two's-complement format 12-8 RESERVED R/W 0h Reserved. Do not change from the default reset value. Global control for gain error calibration. 7 GE_CAL_EN1 R/W 0h 0 : Gain error calibration disabled for all channels 1 : Gain error calibration enabled for all channels Control for data averaging depth. 6 OSR_EN R/W 0h 0 : Data averaging disabled 1 : Data averaging enabled Control for enabling data averaging. 0:2 samples averaged 5-2 OSR R/W 0h 1:4 samples averaged 2:8 samples averaged 3:16 samples averaged 1-0 RESERVED R/W 2h Reserved. Do not change from the default reset value.

Figure 7-14. Register 0Dh Field Descriptions

7.2.2 Register 12h (offset = 12h) [reset = 2h]

	Figure 7-15. Register 12h									
15	14	13	12	11	10	9	8			
	RESERVED									
			R/W	/-0h						
7	7 6 5 4			3	2	1	0			
	RESE	RVED		XOR_EN	DATA_LANES					
	R/W	V-0h		R/W-0h		R/W-2h				

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
3	XOR_EN	R/W	0h	Enables XOR operation on ADC conversion result. 0 : XOR operation is disabled 1 : ADC conversion result is bit-wise XOR with the LSB of the ADC conversion result
2-0	DATA_LANES	R/W	2h	 Selects the number of output data lanes and number of data bits per output lane. Enables XOR operation on ADC conversion result. 0 : ADC A and B data output on DOUTA and DOUTB respectively; 20 bits per ADC. 2 : ADC A and B data output on DOUTA and DOUTB respectively; 24 bits per ADC. 5 : ADC A and B data output on DOUTA; 20 bits per ADC. 7 : ADC A and B data output on DOUTA; 24 bits per ADC.

Figure 7-16. Register 12h Field Descriptions

7.2.3 Register 13h (offset = 13h) [reset = 0h]

	Figure 7-17. Register 13h									
15	14	13	12	11	10	9	8			
	RESERVED									
	R/W-0h									
7	6	5	4	3	2	1	0			
	RAMP	INC_A	•	TP_MC	DDE_A	TP_EN_A	RESERVED			
	R/V	V-0h		R/W	/-0h	R/W-0h	R/W-0h			

Figure 7-18. Register 13h Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
7-4	RAMP_INC_A	R/W	0h	Increment value for the ramp pattern output. The output ramp increments by N+1, where N is the value configured in this register.
3-2	TP_MODE_A	R/W	0h	Select digital test pattern for ADC A. 0 : Fixed pattern from the TP0_A register 1 : Fixed pattern from the TP0_A register 2 : Digital ramp output 3 : Alternate fixed pattern output from the TP0_A and TP1_A registers
1	TP_EN_A	R/W	0h	Enable digital test pattern for data corresponding to ADC A. 0 : Data output is the ADC conversion result 1 : Data output is the digital test pattern for ACD A
0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.4 Register 14h (offset = 14h) [reset = 0h]

Figure 7-19. Register 14h									
15	15 14 1		12	12 11 10		9	8		
	TP0_A[15:0]								
	R/W-0h								
7	6	5	4	3	2	1	0		
	TP0_A[15:0]								
			R/W	/-0h					

Figure 7-20. Register 14h Field Descriptions

· · · · · · · · · · · · · · · · · · ·									
Bit	Field	Туре	Reset	Description					
15-0	TP0_A[15:0]	R/W	0h	Lower 16 bits of test pattern 0					

7.2.5 Register 15h (offset = 15h) [reset = 0h]

	Figure 7-21. Register 15h								
15	15 14 13 12 11 10 9 8						8		
	TP1_A[7:0]								
	R/W-0h								
7	6	5	4	3	2	1	0		
	TP0_A[23:16]								
			R/W	/-0h					

Figure 7-22. Register 15h Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	TP1_A[7:0]	R/W	0h	Lower eight bits of test pattern 1
7-0	TP0_A[23:16]	R/W	0h	Upper eight bits of test pattern 0

7.2.6 Register 16h (offset = 16h) [reset = 0h]

	Figure 7-23. Register 16h							
15	15 14 13 12 11 10 9 8						8	
	TP1_A[23:8]							
	R/W-0h							
7	6	5	4	3	2	1	0	
	TP1_A[23:8]							
			R/W	/-0h				

Figure 7-24. Register 16h Field Descriptions

Bit	Field	Туре	Reset	Description				
15-0	TP1_A[23:8]	R/W	0h	Upper 16 bits of test pattern 1				

7.2.7 Register 18h (offset = 18h) [reset = 0h]

	Figure 7-25. Register 18h							
15	14	13	12	11	10	9	8	
	RESERVED							
	R/W-0h							
7	6	5	4	3	2	1	0	
	RAMP_	INC_B		TP_MC	DDE_B	TP_EN_B	RESERVED	
	R/W	/-0h		R/W	/-0h	R/W-0h	R/W-0h	

Figure 7-26. Register 18h Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
7-4	RAMP_INC_B	R/W	0h	Increment value for the ramp pattern output. The output ramp increments by N+1, where N is the value configured in this register.
3-2	TP_MODE_B	R/W	Oh	Select digital test pattern for ADC B. 0 : Fixed pattern from the TP0_B register 1 : Fixed pattern from the TP0_B register 2 : Digital ramp output 3 : Alternate fixed pattern output from the TP0_B and TP1_B registers
1	TP_EN_B	R/W	0h	Enable digital test pattern for data corresponding to ADC B. 0 : Data output is the ADC conversion result 1 : Data output is the digital test pattern
0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.8 Register 19h (offset = 19h) [reset = 0h]

	Figure 7-27. Register 19h							
15	15 14 13 12 11 10 9 8					8		
	TP0_B[15:0]							
	R/W-0h							
7	6	5	4	3	2	1	0	
	TP0_B[15:0]							
			R/W	/-0h				

Figure 7-28. Register 19h Field Descriptions

Bit	Field	Туре	Reset	Description			
15-0	TP0_B[15:0]	R/W	0h	Lower 16 bits of test pattern 0			

7.2.9 Register 1Ah (offset = 1Ah) [reset = 0h]

Figure 7-29. Register 1Ah								
15	15 14 13 12 11 10 9 8							
	TP1_B[7:0]							
	R/W-0h							
7	6	5	4	3	2	1	0	
	TP0_B[23:16]							
			R/W	/-0h				

Figure 7-30. Register 1Ah Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	TP1_B[7:0]	R/W	0h	Lower eight bits of test pattern 1
7-0	TP0_B[23:16]	R/W	0h	Upper eight bits of test pattern 0

Copyright © 2024 Texas Instruments Incorporated

7.2.10 Register 1Ch (offset = 1Ch) [reset = 0h]

	Figure 7-31. Register 1Ch						
15	14	13 12 11 10 9 8				8	
RESE	RVED	USER_BITS_ADC_B					
R/W	V-0h	R/W-0h					
7	6	5	4	3	2	1	0
RESE	RVED	USER_BITS_ADC_A					
R/W	V-0h			R/W	/-0h		

Figure 7-32. Register 1Ch Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
13-8	USER_BITS_ADC _B	R/W	0h	User-defined bits appended to the ADC conversion result from ADC B.
7-6	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
5-0	USER_BITS_ADC _A	R/W	0h	User-defined bits appended to the ADC conversion result from ADC A.

7.2.11 Register 33h (offset = 33h) [reset = 0h]

Figure 7-33. Register 33h

			•	•				
15	14	13	12	11	10	9	8	
RESERVED		GE_CAL_EN3	RESERVED					
R/W	V-0h	R/W-0h			R/W-0h			
7	6	5	4	3	2	1	0	
RESERVED	GE_CAL_EN2	INIT_	INIT_KEY		RESERVED			
R/W-0h	R/W-0h	R/W	/-0h		R/V	V-0h		

Figure 7-34. Register 33h Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
13	GE_CAL_EN3	R/W	0h	Global control for gain error calibration. 0 : Gain error calibration disabled for all channels 1 : Gain error calibration enabled for all channels
12-7	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
6	GE_CAL_EN2	R/W	0h	Global control for gain error calibration. 0 : Gain error calibration disabled for all channels 1 : Gain error calibration enabled for all channels
5-4	INIT_KEY	R/W	0h	Device initialization sequence access key. Write 11b to access the device initialization sequence. Write 00b for normal operation.
3-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.12 Register 90h (offset = 90h) [reset = 0h]

	Figure 7-35. Register 90h							
15	14	13	13 12 11 10 9 8					
RESERVED	TS_LD		RESERVED					
R/W-0h	R/W-0h		R/W-0h					
7	6	5	4	3	2	1	0	
RESERVED								
			R/V	V-0h				

Figure 7-36. Register 90h Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
14	TS_LD	R/W	0h	Trigger to load temperature sensor output in address 0x91. Transition from 0 to 1 if this bit triggers the data load operation.
13-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

46 Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7.2.13 Register 91h (offset = 91h) [reset = 00h]

Figure 7-37. Register 91h									
15	15 14 13 12 11 10 9 8								
	RESERVED TEMPERATURE_SENSOR								
R/W-0h R/W-0h									
7	6	5	4	3	2	1	0		
TEMPERATURE_SENSOR									
			R/W	/-0h					

ogiotor 01k - --П

Figure 7-38. Register 91h Field Descriptions

Bit	Field	Туре	Reset	Description
15-10	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
9-0	TEMPERATURE_ SENSOR	R/W	0h	10-bit temperature sensor output. See the <i>Temperature Sensor</i> section.

7.2.14 Register C0h (offset = C0h) [reset = 0h]

	Figure 7-35. Register Con							
15	14	13	12	11	10	9	8	
RESERVED			CLK1	OSR_	INIT1	OSR_CLK		
	R/W-0h R/			R/W-0h	R/W-0h	R/W-0h		
7	6	5	4	3	2	1	0	
OSR_CLK	RESERVED PD_CH						_CH	
R/W-0h			R/W-0h			R/W	/-0h	

Figure 7-39 Register C0h

Figure 7-40. Register C0h Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
12	CLK1	R/W	0h	Selects the clock configuration based on output data-lanes. 0 : Configuration for DATA_LANES = 0 or 2 1 : Configuration for DATA_LANES = 5 or 7
11-10	OSR_INIT1	R/W	0h	Initialization for data averaging. 0 : Configuration for disabling data averaging 1 : Configuration for enabling data averaging
9-7	OSR_CLK	R/W	0h	Data output clock configuration for data averaging. See Table 6-3 for more details.
6-2	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
1-0	PD_CH	R/W	0h	 Power-down control for the analog input channels. 0 : Normal operation 1 : ADC A powered down 2 : ADC B powered down 3 : ADC A and B powered down

7.2.15 Register C1h (offset = C1h) [reset = 0h]

Figure 7-41. Register Cili							
15	14	13	12	11	10	9	8
	RESE	RVED	•	PD_REF	RESERVED		DATA_RATE
R/W-0h				R/W-0h	R/W-0h		R/W-0h
7	6	5	4	3	2	1	0
	RESERVED						
			R/W-0h				R/W-0h

Figure 7-41, Register C1h

Figure 7-42. Register C1h Field Descriptions

Bit	Field	Туре	Reset	Description
15-12	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
11	PD_REF	R/W	Oh	ADC reference voltage source selection.0 : Internal reference enabled.1 : Internal reference disabled. Connect the external reference voltage to the REFIO pin.
10-9	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
8	DATA_RATE	R/W	0h	Select data rate for the data interface. 0 : Double data rate (DDR) 1 : Single data rate (SDR)
7-1	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
0	CLK2	R/W	0h	Select data rate for the data interface. 0 : Configuration for DATA_LANES = 2 or 7 1 : Configuration for DATA_LANES = 0 or 5

7.2.16 Register C4h (offset = C4h) [reset = 0h]

			Figure 7-43.	Register C4h			
15	14	13	12	11	10	9	8
			RESE	RVED			
R/W-0h							
7	6	5	4	3	2	1	0
RESE	RVED	OSR_	INIT2	RESERVED		OSR_INIT3	PD_CHIP
R/V	V-0h	R/W	/-0h	R/W	/-0h	R/W-0h	R/W-0h

Figure 7-44. Register C4h Field Descriptions

Bit	Field	Туре	Reset	Description
15-6	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
5-4	OSR_INIT2	R/W	0h	Initialization for data averaging. 0 : Configuration for disabling data averaging 2 : Configuration for enabling data averaging
3-2	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
1	OSR_INIT3	R/W	0h	Initialization for data averaging. 0 : Configuration for disabling data averaging 1 : Configuration for enabling data averaging
0	PD_CHIP	R/W	0h	Full chip power-down control. 0 : Normal device operation 1 : Full device powered-down

48 Submit Document Feedback

7.2.17 Register C5h (offset = C5h) [reset = 0h]

Figure 7-45. Register C5n							
15	14	13	12	11	10	9	8
RESERVED							RESERVED
		R/W	/-0h			R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
RESERVED				CL	K4	RESE	RVED
	R/W	/-0h		R/W	/-0h	R/W	/-0h

Figure 7 45 Degister CEh

Figure 7-46. Register C5h Field Descriptions

Bit	Field	Туре	Reset	Description
15-10	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
9	CLK3	R/W	0h	Select data rate for the data interface. 0 : Configuration for DATA_LANES = 0 or 2 1 : Configuration for DATA_LANES = 5 or 7
8 - 4	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
3 - 2	CLK4	R/W	0h	Clock configuration for ADS9217. See section on <i>Data</i> <i>Interface</i> for details. Not applicable for ADS9219 and ADS9218. 0 : 24-bit 2-lane mode 3 : all other modes
1 - 0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.18 Register F4h (offset = F4h) [reset = 0h]

	Figure 7-47. Register F4h								
15	14	13	12	11	10	9	8		
	RESERVED								
	R/W-0h								
7	6	5	4	3	2	1	0		
	RESERVED CM_CTRL_EN RESERVED								
		R/W	/-0h			R/W-0h	R/W-0h		

Figure 7-48. Register F4h Field Descriptions

				•
Bit	Field	Туре	Reset	Description
15-2	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
1	INIT	R/W	0h	INIT field for device initialization. Write 1b during the initialization sequence. Write 0b for normal operation.
0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.19 Register F6h (offset = F6h) [reset = 0h]

Figure 7-49. Register F6h								
15	14	13	12	11	10	9	8	
	RESERVED							
R/W-0h								
7	6	5	4	3	2	1	0	
	RESERVED INIT_2 RESERVED							
		R/W	/-0h			R/W-0h	R/W-0h	

Figure 7-50. Register F6h Field Descriptions

Bit	Field	Туре	Reset	Description
15-2	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
1	INIT_2	R/W	0h	INIT_2 field for device initialization. Write 1b during the initialization sequence. Write 0b for normal operation.
0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.2.20 Register FBh (offset = FBh) [reset = 0h]

	Figure 7-51. Register FBh						
15	14	13	12	11	10	9	8
	RESERVED						
R/				/-0h			
7	6	5	4	3	2	1	0
RESERVED				NCO_SYSREF	XOR_MODE	CLK5	MIXER_EN
	R/W-0h				R/W-0h	R/W-0h	R/W-0h

Figure 7-52. Register FBh Field Descriptions

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
3	NCO_SYSREF	R/W	Oh	Set to 1b when applying periodic pulses on the SMPL_SYNC pin. 0: Synchronize the NCO with one pulse on the SMPL_SYNC pin. 1: Synchronize the NCO with the first pulse on the SMPL_SYNC pin when using periodic pulses.
2	XOR_MODE	R/W	0h	Selects the bit with which the ADC output data is XOR'ed when XOR output mode is enabled. 0 : PRBS bit is output after the ADC LSB. ADC output data is XOR'ed with the PRBS bit. 1 : ADC output data is XOR'ed with the LSB of the conversion result.
1	CLK5	R/W	0h	Clock configuration for the ADS9219 and ADS9218. See the <i>Data Interface</i> section for details. Not applicable for the ADS9217. 0 : 24-bit 2-lane SDR and DDR modes 1 : 24-bit 1-lane SDR and DDR modes
0	MIXER_EN	R/W	0h	0: Digital down converter disabled 1: Digital down converter enabled

7.2.21 Register FCh (offset = FCh) [reset = 0h]

Figure 7-53. Register FCh								
15	14	13	12	11	10	9	8	
NCO_PHASE_COUNT								
R/W-0h								
7	6	5	4	3	2	1	0	
NCO_PHASE_COUNT								
			R/W	/-0h				

Figure 7-54. Register FCh Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	NCO_PHASE_CO UNT[15:0]	R/W	1 ()h	Lower 15 bits of the NCO phase count. See the <i>Digital Down Converter</i> section.

7.2.22 Register FDh (offset = FDh) [reset = 0h]

Figure 7-55. Register FDh								
15	14	13	12	11	10	9	8	
NCO_FREQUENCY								
R/W-0h								
7	6	5	4	3	2	1	0	
NCO_PHASE_COUNT								
			R/W	/-0h				

Figure 7-56. Register FDh Field Descriptions

Bit	Field	Туре	Reset	Description
15-8	NCO_FREQUEN CY[7:0]	R/W	0h	Lower eight bits of the NCO phase count. See the <i>Digital Down Converter</i> section.
7-0	NCO_PHASE_CO UNT[23:16]	R/W	0h	Higher eight bits of the NCO phase count. See the <i>Digital Down Converter</i> section.

7.2.23 Register FEh (offset = FEh) [reset = 0h]

Figure 7-57. Register FEh										
15	14 13 12 11 10 9						8			
NCO_FREQUENCY										
R/W-0h										
7	6	5	4	3	2	1	0			
	NCO_FREQUENCY									
			R/W	/-0h						

Figure 7-58. Register FEh Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	NCO_FREQUEN CY	R/W	0h	Higher 16 bits of the NCO phase count. See the <i>Digital Down Converter</i> section.

7.3 Register Bank 2

	Figure 7-59. Register Bank 2 Map															
ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
12h	RESERVED									INIT_3	RESERVED					
13h	INIT_4		RESERVED													
0Ah	RESERV ED	INIT_2	NIT_2 RESERVED													
1Ch				RESE	RVED				CL	K6			RESE	RVED		

Table 7-3. Register Section/Block Access Type Codes

Access Type	Code	Description					
R	R	Read					
W	W	Write					
R/W	R/W	Read or write					
Reset or Default Value	Reset or Default Value						
-n		Value after reset or the default value					

7.3.1 Register 12h (offset = 12h) [reset = 0h]

	Figure 7-60. Register 12h									
15	14	13	12	11	10	9	8			
	RESERVED									
	R/W-0h									
7	6	5	4	3	2	1	0			
RESERVED	INIT_3		RESERVED							
R/W-0h	R/W-0h		R/W-0h							

Figure 7-61. Register 12h Field Descriptions

			- J	
Bit	Field	Туре	Reset	Description
15-7	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
6	INIT_3	R/W) ()h	INIT_3 field for device initialization. Write 1b during the initialization sequence. Write 0b for normal operation.
5-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.3.2 Register 13h (offset = 13h) [reset = 0h]

	Figure 7-62. Register 13h										
15	14 13 12 11 10 9 8										
INIT_4		RESERVED									
R/W-0h	R/W-0h										
7	6	5	4	3	2	1	0				
	RESERVED										
			R/W	/-0h							

Figure 7-63. Register 13h Field Descriptions

Bit	Field	Туре	Reset	Description
15	INIT_4	R/W	i un	INIT_4 field for device initialization. Write 1b during initialization sequence. Write 0b for normal operation.
14-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

7.3.3 Register 0Ah (offset = 0Ah) [reset = 0h]

	Figure 7-64. Register 0Ah									
15	14	13 12 11 10 9 8								
RESERVED	INIT_5	RESERVED								
R/W-0h	R/W-0h		R/W-0h							
7	6	5	4	3	2	1	0			
	RESERVED									
			R/W	/-0h						

	Figure 7-65. Register 0Ah Field Descriptions										
Bit	Field	Туре	Reset	Description							
15	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.							
14	INIT_5	R/W	0h	INIT_5 field for device initialization. Write 1b during initialization sequence. Write 0b for normal operation.							
13-0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.							

Copyright © 2024 Texas Instruments Incorporated

7.3.4 Register 1Ch (offset = 1Ch) [reset = 0h]

	Figure 7-66. Register 1Ch									
15	14	13	12	11	10	9	8			
RESERVED										
	R/W-0h									
7	6	5	4	3	2	1	0			
CLK6 RESERVED										
R/V	V-0h			R/W	/-0h					

Figure 7-67. Register 1Ch Field Descriptions

Bit	Field	Туре	Reset	Description
15 - 8	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.
7 - 6	CLK6	R/W	0h	Clock configuration for ADS9217. See the <i>Data Interface</i> section for details. Not applicable for ADS9219 and ADS9218. 0 : 24-bit 2-lane mode 3 : all other modes
5 - 0	RESERVED	R/W	0h	Reserved. Do not change from the default reset value.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The ADS921x features an integrated ADC driver, low-latency, high-speed, low AC and DC errors, and low temperature drift. These features make the ADS921x a high-performance signal-chain for applications where precision measurements with low-latency are required. The following section gives an example circuit and recommendations for using the ADS921x device family in a data acquisition (DAQ) system.

8.2 Typical Applications

8.2.1 Data Acquisition (DAQ) Circuit for ≤20kHz Input Signal Bandwidth

Figure 8-1 shows a 2-channel signal-chain with minimum external components. This signal-chain significantly reduces solution size by driving the ADS921x with the 2-channel, fully differential amplifier (FDA) THS4552.

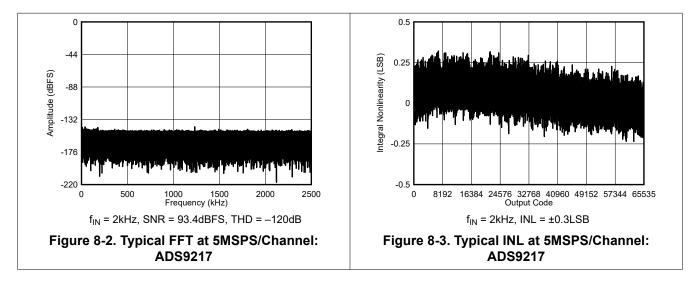
Figure 8-1. Data Acquisition (DAQ) Circuit for ≤20kHz Input Signal Bandwidth

8.2.1.1 Design Requirements

 Table 8-1 lists the parameters for this typical application.

Table 8-1	. Design	Parameters
-----------	----------	------------

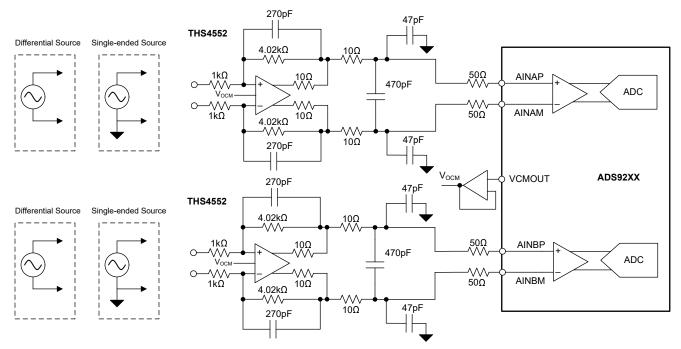
PARAMETER	VALUE							
SNR	≥ 92dB							
THD	≤ -110dB							
Input signal frequency	≤ 20kHz							


8.2.1.2 Detailed Design Procedure

Use the procedure discussed in this section for any ADS921x application circuit.

- All ADS921x applications require the supply decoupling as provided in the *Power Supply Recommendations* section.
- Make sure the values provided in this section meet the maximum throughput and input signal frequency design requirements given. Use a lower bandwidth signal chain when lower noise performance is required.

8.2.1.3 Application Curves


Figure 8-2 and Figure 8-3 show the SNR and INL performance for the circuit in Figure 8-1, respectively.

8.2.2 Data Acquisition (DAQ) Circuit for ≤100kHz Input Signal Bandwidth

Figure 8-4 shows a 2-channel signal-chain with minimum external components. This signal-chain significantly reduces solution size by driving the ADS921x with the 2-channel, fully differential amplifier (FDA) THS4552.

Figure 8-4. Data Acquisition (DAQ) Circuit for ≤100kHz Input Signal Bandwidth

8.2.2.1 Design Requirements

Table 8-2 lists the parameters for this typical application.

Table 8-2. Design Parameters

PARAMETER	VALUE
SNR	≥ 91dB
THD	≤ -110dB
Input signal frequency	≤ 100kHz

8.2.2.2 Application Curves

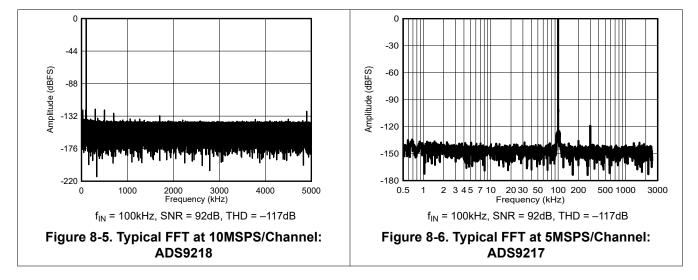


Figure 8-5 and Figure 8-6 show the FFT plots for the circuit in Figure 8-4.

8.2.3 Data Acquisition (DAQ) Circuit for ≤1MHz Input Signal Bandwidth

Figure 8-7 shows a 2-channel solution with minimum external components. This signal-chain significantly reduces signal-chain size by driving the ADS9219 with the THS4541, which enables low-distortion performance with low power over wide signal bandwidth.

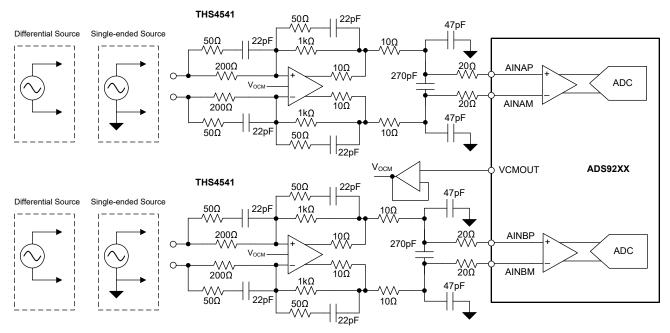


Figure 8-7. Data Acquisition (DAQ) Circuit for ≤1MHz Input Signal Bandwidth

8.2.3.1 Design Requirements

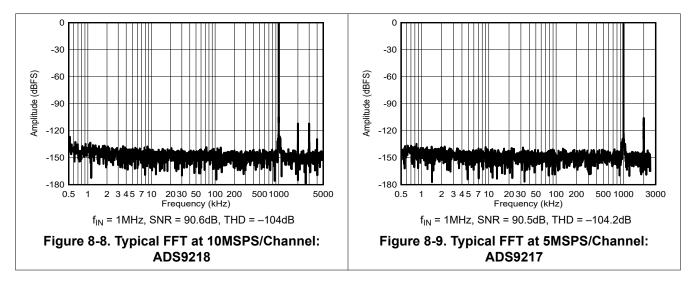

Table 8-3 lists the parameters for this typical application.

Table 8-3. Design Parameters

PARAMETER	VALUE
SNR	≥ 80dB
THD	≤ -100dB
Input signal frequency	≤ 1MHz

8.2.3.2 Application Curves

Figure 8-8 and Figure 8-9 show the FFT plots for the circuit in Figure 8-7.

8.3 Power Supply Recommendations

The ADS921x has three independent power supplies, AVDD_5V, AVDD_1V8, and DVDD_1V8. The AVDD_5V supply provides power to the ADC driver. The AVDD_1V8 provides power to the analog circuits. The DVDD_1V8 supply provides power to the digital interface. Set the AVDD_5, AVDD_1V8, and DVDD_1V8 supplies independently to voltages within the permissible range. Figure 8-10 shows how to decouple the power supplies.

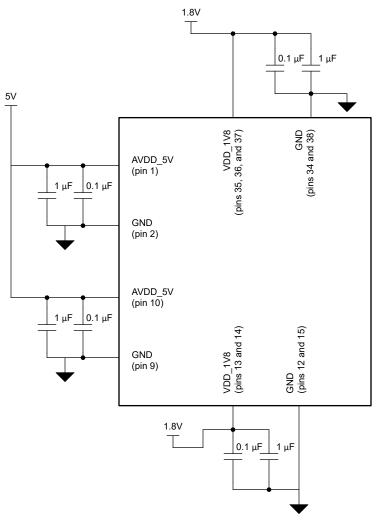


Figure 8-10. Power-Supply Decoupling

8.4 Layout

8.4.1 Layout Guidelines

Figure 8-11 shows a board layout example for the ADS921x. Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference signals away from noise sources. Use 0.1μ F ceramic bypass capacitors in close proximity to the analog (AVDD_5V and VDD_1V8), and digital (VDD_1V8) power-supply pins. Avoid placing vias between the power-supply pins and the bypass capacitors. Place the reference decoupling capacitor close to the device REFIO and REFM pins. Avoid placing vias between the REFIO pin and the bypass capacitors. Connect the GND and REFM pins to a ground plane using short, low-impedance paths.

8.4.2 Layout Example

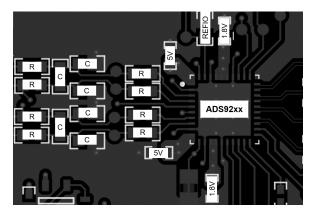


Figure 8-11. Example Layout

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, REF70 2 ppm/°C Maximum Drift, 0.23 ppm_{p-p} 1/f Noise, Precision Voltage Reference, data sheet
- Texas Instruments, THS4552 Dual-Channel, Low-Noise, Precision, 150-MHz, Fully Differential Amplifier, data sheet
- Texas Instruments, THS4541 Negative Rail Input, Rail-to-Rail Output, Precision, 850-MHz Fully Differential Amplifier, data sheet

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

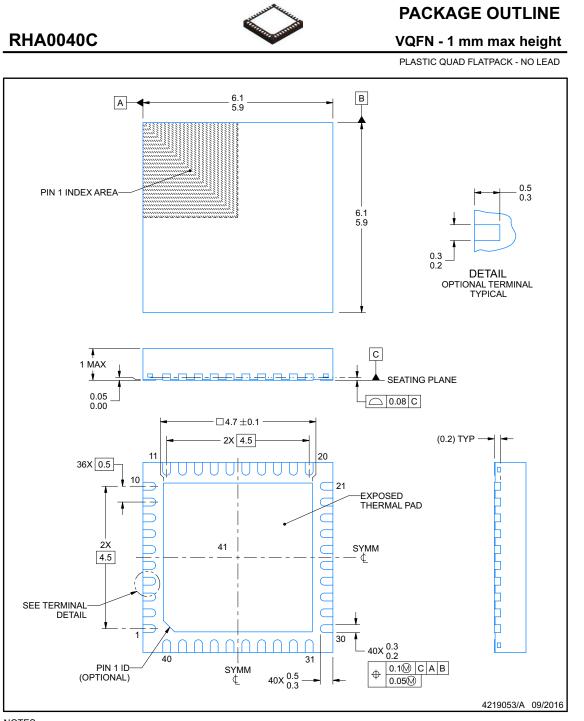
TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (April 2024) to Revision B (May 2024)						
•	Changed ADS9218 from Advance Information to Production Data	1				

С	hanges from Revision * (January 2023) to Revision A (April 2024)	Page
•	Added ADS9219 to document as Advance Information device	1



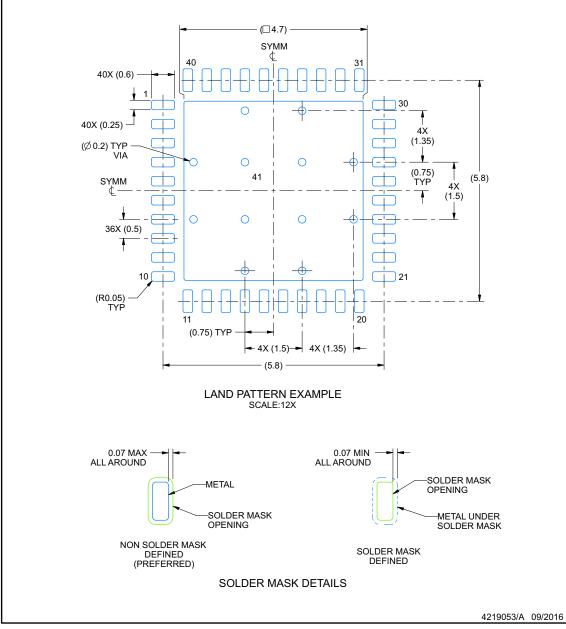
11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

11.1 Mechanical Data

NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.


www.ti.com

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

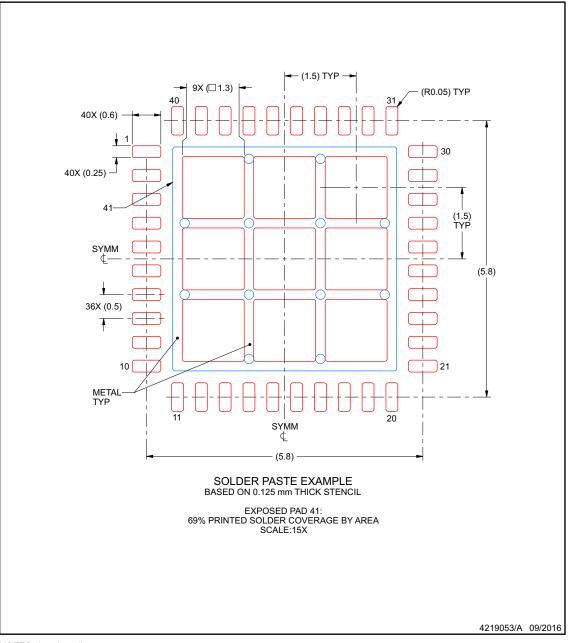
NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

www.ti.com

RHA0040C



RHA0040C

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
PADS9218RHAT	ACTIVE	VQFN	RHA	40	250	TBD	Call TI	Call TI	-40 to 125		Samples
PADS9219RHAR	ACTIVE	VQFN	RHA	40	4000	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

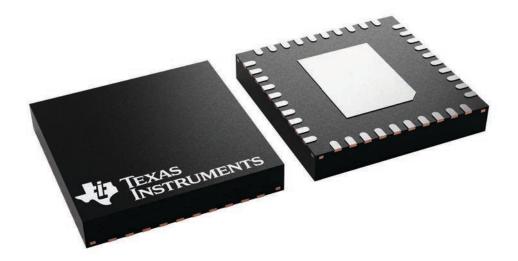
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

9-May-2024

RHA 40

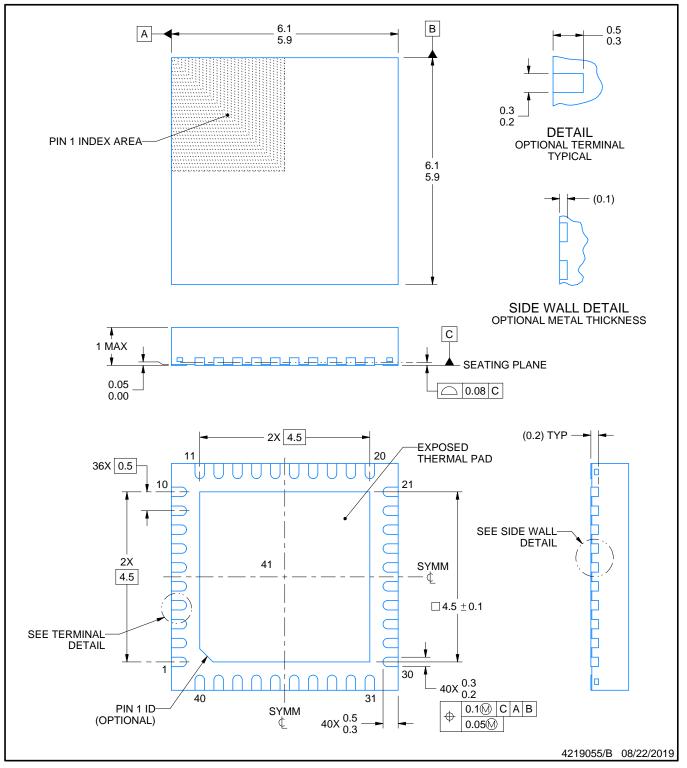

6 x 6, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RHA0040H

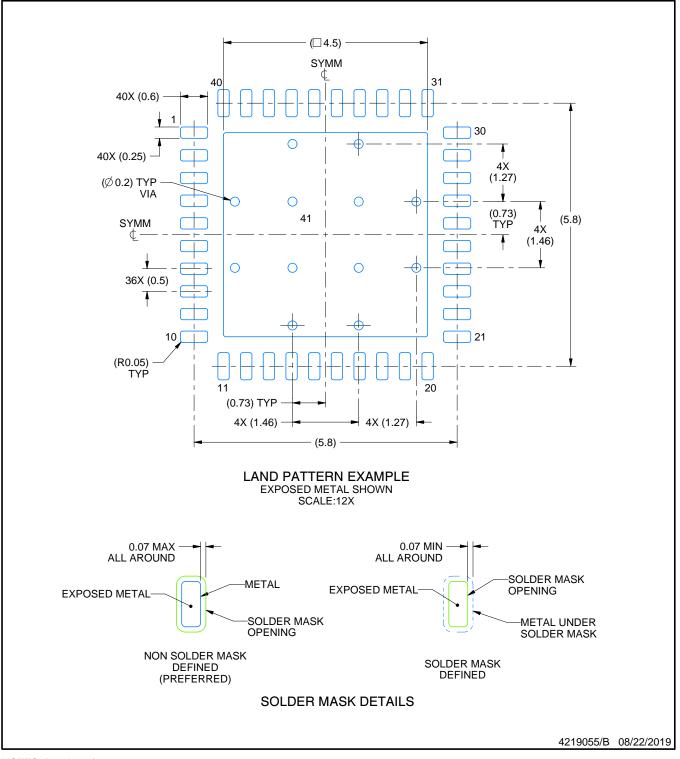
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RHA0040H

EXAMPLE BOARD LAYOUT

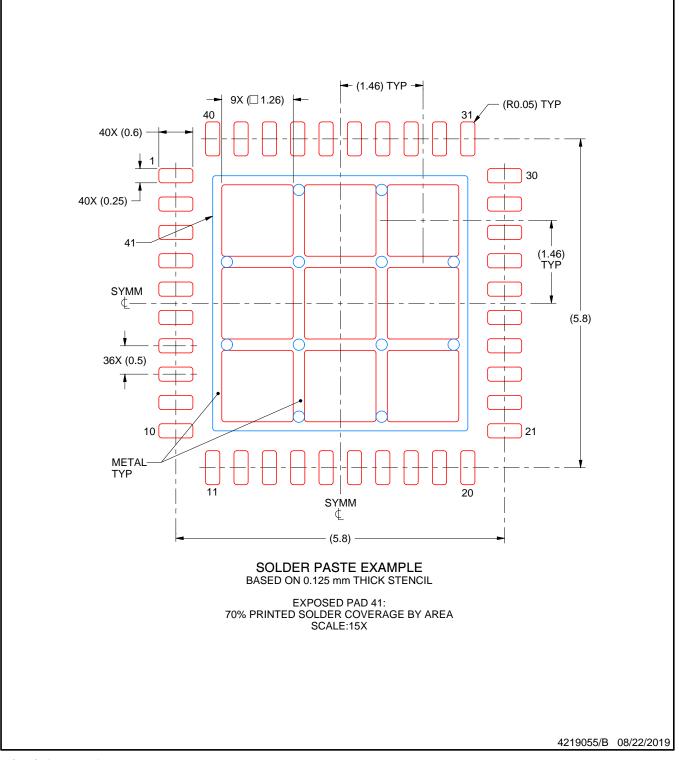
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RHA0040H

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated