
TI 10KW High efficient/small size solar inverter new solution

Texas Instruments April, Y18

WW Solar Trends

FIGURE 8 GLOBAL ANNUAL SOLAR PV MARKET SCENARIOS UNTIL 2020

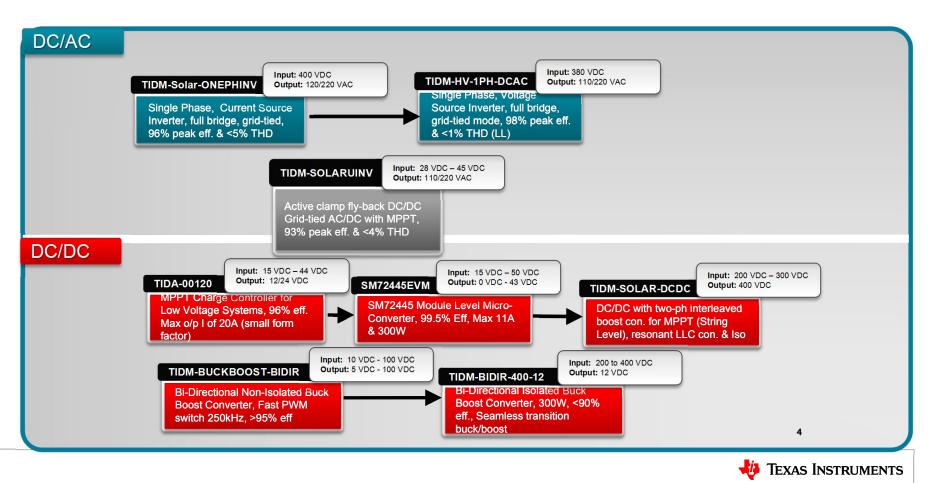


- · China is expected to install 30+GW in 2017
- 570+GW of Cumulative growth by 2022
- 5%+ growth CAGR 2017-2022

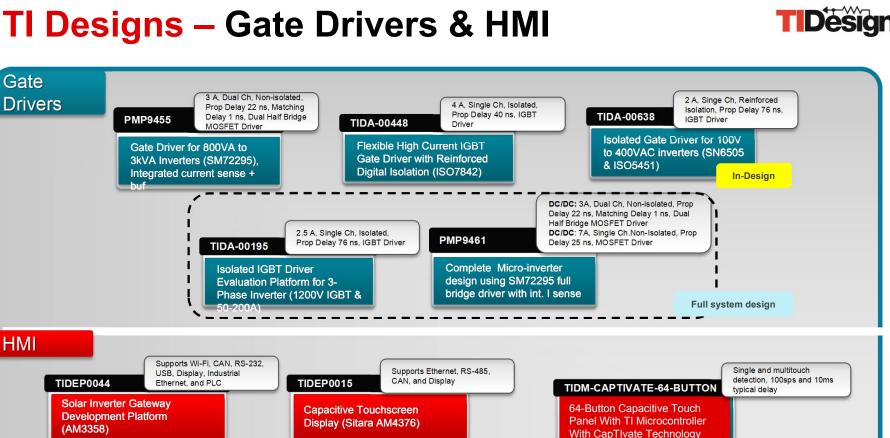
FIGURE: Top 10 Global PV Inverter Vendors by Shipments and Revenue, 2015

Ranking by Total PV Inverter Shipments (MWac)		Ranking by Total PV Inverter Revenue (\$M	
Rank	Company	Rank	Company
1	Huawei	1	SMA
2	Sungrow	2	Huawei
3	SMA	3	Sungrow
4	ABB	4	ABB
5	Sineng	5	SolarEdge
6	TMEIC	6	TMEIC
7	TBEA	7	Enphase
8	Schneider Electric	8	Schneider Electric
9	Power Electronics	9	Omron
10	SolarEdge	10	Tabuchi

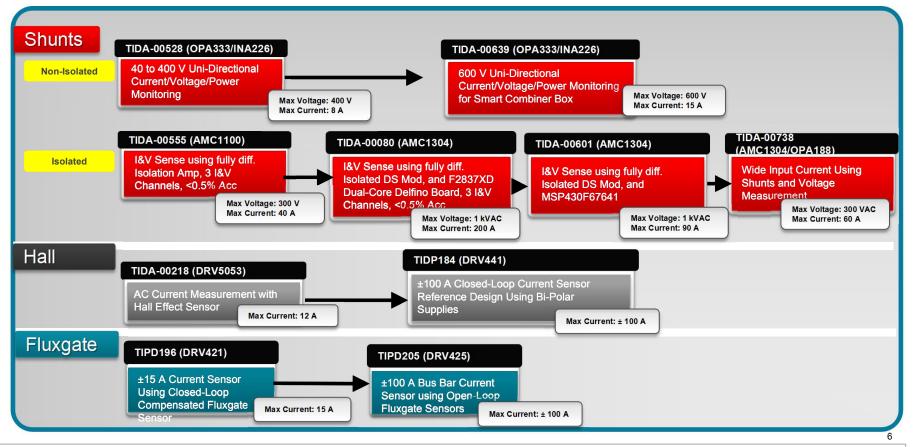
Source: GTM Research's Global PV Inverter and MLPE Landscape


http://www.greentechmedia.com/articles/read/huawei-and-sma-lead-gtm-researchs-2015-global-pv-inverter-rankings http://press.ihs.com/press-release/technology/sma-retains-top-ranking-global-pv-inverter-market-competitors-are-gaining-i

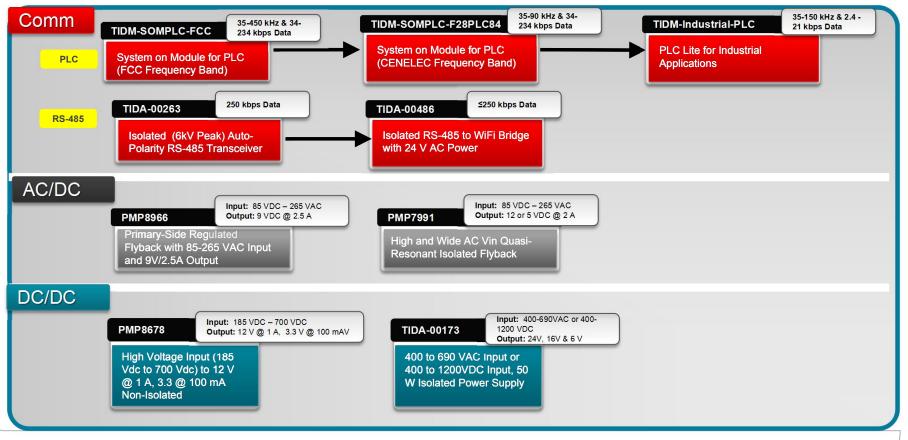
TI Design map for Solar Inverters and Renewable Energy Storage


TI Designs – Power Conversion Stages

TI Designs – Gate Drivers & HMI


Gate

HMI



TI Designs – V & I Sensing

TI Designs – Communication & Power Supply

TI 10KW Solar Inverter Design(TIDA-01606)

TIDA-01606

10kW 3-Phase 3-Level Grid Tie inverter reference design for solar string inverter

Design Features

- 10kW 3-Phase 3-Level inverter using SiC MOSFETs
- System Specifications:
 - Input

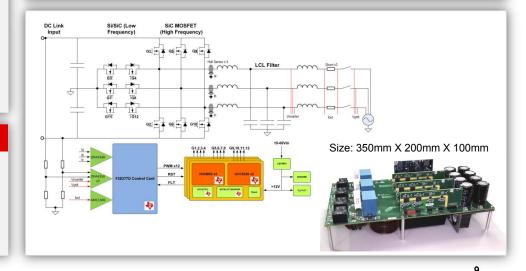
: 800V/1000V

: 10KW/10KVA

: > 99% peak efficiency

: 400VAC 50/60 Hz

: 50kHz


- Output Power
- Efficiency
- PWM frequency
- Uses ISO5852, UCC5320 gate driver & C2000 MCU controller
- Uses Littelfuse LSIC1MO120E0080 1200V 80mOhms SiC MOSFETS
- Reduces output filter size by switching inverter at 50KHz
- Isolated current sensing using AMC1306 for load current monitoring
- Differential voltage sensing using OPA4350 for load voltage monitoring
- Targets less than 2% output current THD at full load

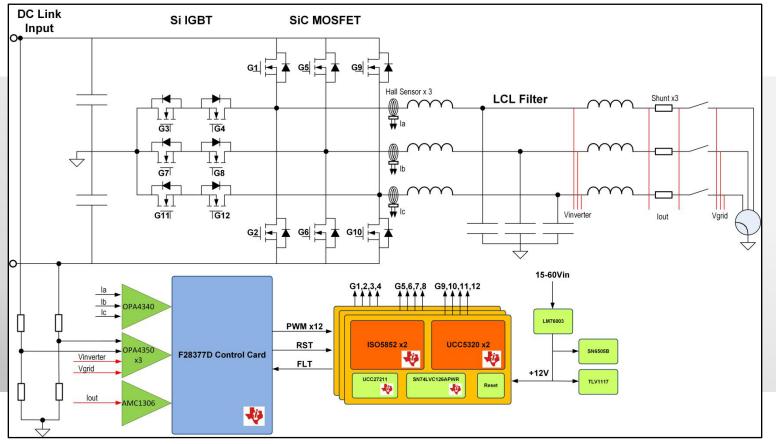
Tools & Resources

- TIDA-01606 Tools Folder
- Test Data/Design Guide
- Design Files: Schematics, BOM and BOM Analysis, Design Files
- Key TI Devices: UCC5320, ISO5852, AMC1306, SN6505, TMS320F28379D, OPA4350, OPA350, LM76003, PTH08080WAZT, UCC27211

Design Benefits

- 3-Level T-type inverter topology for reduced ground current in transformer-less grid-tie inverter applications
- Reduced size at higher efficiency using low Rdson SiC MosFET and higher switching frequency (50kHz) at higher power (10kW)
- Platform for testing both 2-level and 3-level inverter by enabling or disabling middle devices through digital control.

Specifications

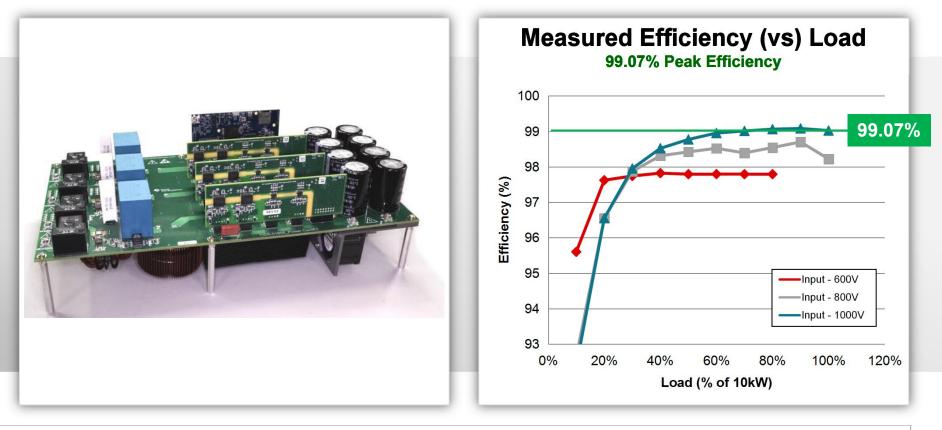

AC Output	Power (KW/KVA)	10/10	
	PF rated/adjustable	1/0.7lag to 0.7lead	
	Grid Voltage (L-L)	400V ± 20%	
	No of Phases	3	
	Frequency	50/60Hz ± 5Hz	
	Current (Max)(A)	18	
DC Input	Nominal Voltage (V)	800	
	Rated Min/Max Voltage (V)	600/1000	
Performance	Efficiency (peak/European)	98.5%	
	Output current THD	<2%	
Other Specs	Off Grid operation	No	
	Operating temperature	-25°C to +60°C	
	Thermal management	Forced air cooling	

Target End Equipment's

String Inverters – Residential/Commercial

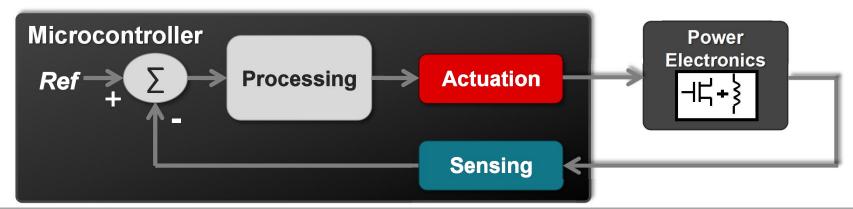
Topology & System Architecture

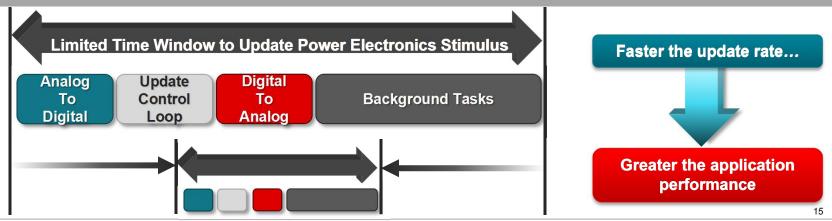
10kW Three Level Inverter Hardware



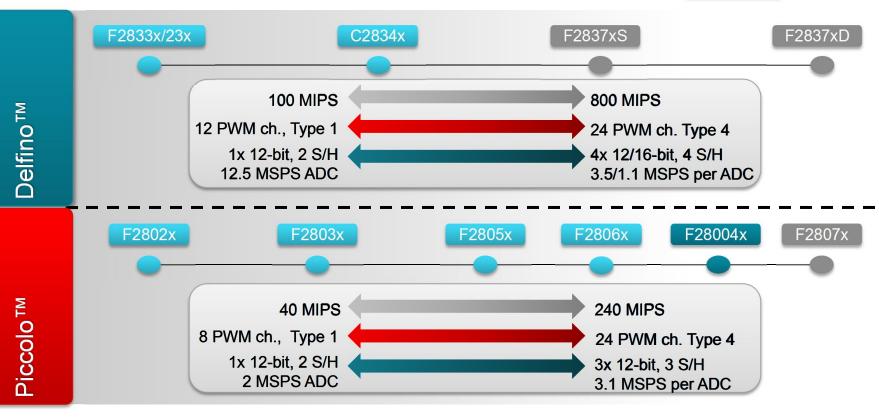
Total Size: 350mmx 200mm x 100mm

10kW Three Level Inverter Measurements


10kW Three Level Inverter Summary


- 99.07% Peak Efficiency at 8kW
- 99.02% Efficiency at 10kW
- 1.4kW/l

Measured Results Summary				
SYSTEM PARAMETER	VALUE			
Input Voltage	600-1000Vdc			
Output Voltage	400VAC 50/60Hz			
Maximum Power	10kW			
PWM Frequency	50kHz			
Efficiency (Peak)	99.07% @ 8kW			
Efficiency (Full Load)	99.02% @ 10kW			
Size	350mm x 200mm x 100mm			


C2000 - Essentials of Real-time Control

C2000 - The Real-Time Control Portfolio

Production

Sampling

Delfino[™] TMS320F2837xD

Features

- 800MIPS real-time performance of dual C28x core with dual CLA co-processors to run parallel control loops
- 4 differential 16-bit ADC, 1MSPS each and 3x 12-bit DAC
- Trigonometric Math Unit (TMU) 1 to 3 cycle SIN, COS, ARCTAN instructions
- Direct memory access through dual EMIFs (16bit/32bit)
- Protection with 8x Windowed Comparators and X-Bar
- 8 Sigma Delta Decimation Filters to enable sensing across the isolation boundary

Tools

TMS320F28379D Experimenter's Kit

Part Number: TMDXDOCK28379D

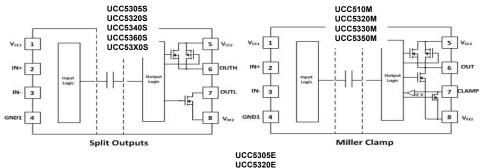
TMS320F2837xD Temperatures 105C 125C Q100					
Sensing	Processing	Processing		Actuation	
ADC1: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS	C28x™ DSP core	C28x™ DSP core	12x ePWM Modules (Type 4) 24x Outputs (16x High-Res)		
ADC2: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS	200 MHz	200 MHz	Fault Trip Zones		
ADC3: 16-bit. 1.1-MSPS	FPU	FPU	3x 12-bit DAC		
12-bit, 3.5 MSPS	TMU	TMU		Connectivity	
ADC4: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS	VCU-II	VCU-II	4x UART		
8x Windowed Comparators w/ Integrated 12-bit DAC	CLA DSP core	core core 200 MHz 200 MHz	2x I2C (w/ true PMBus) 3x SPI		PMBus)
8x Sigma Delta Interface			2x McBSP		Р
Temperature Sensor	Floating-Point Math	Floating-Point Math	2x CAN 2.0		
3x eQEP	6ch DMA	6ch DMA	US	AAC & PHY	
6x eCAP	Memory	Memory	uPP		
System Modules	System Modules Up to 512 KB		Power & Clocking		ocking
3x 32-bit CPU Timers	Flash	Flash		2x 10 MHz	osc
NMI Watchdog Timer	Up to 102 KB SRAM	Up to 102 KB SRAM	Ext OSC Input		nput
2x 192 Interrupt PIE	2x 128-bit Security Zones		Debug		3
	Boot ROM			Real-time J	TAG
	2x EMIF				

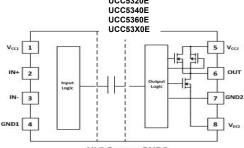
Packages	
Package	Dimension
176-pin HLQFP	24x24mm ²
337-pin NFBGA	16x16mm ²

UCC53xx Family

0.5/2/4/6A/10A Isolated IGBT/SiC Gate Drivers with High CMTI

Features


- Integrated SiO₂ Dielectric Capacitor
 - 0.5A, 2A, 4A, 6A, 10A Peak Source/Sink Drive
 - Flexibility and Options
 - Split Outputs (ISO53xxS)
 - UVLO with respect to IGBT emitter (ISO53xxE)
 - Miller Clamp option (ISO53xxM)
 - 100 kV/us CMTI min
 - 70 ns (max) Prop Delay.
 - 4kV ESD on all pins
- Immunity and Certifications
 - Basic and Reinforced Isolation Options
 - Upto 5.0 kVrms Isolation rating (UL 1577)
 - Upto 8kVpk Transient (VDE0884-10)
 - Upto 1414 Vpk Working Voltage (VDE0884-10)
 - Enables IEC61800-5-1, IEC60664-1 & IEC62109-1
- Power and Package
 - Wide V_{CC2} Range: 15V-35V
 - 8-pin Narrow Body SOIC (4 mm Creepage)
 - 8-pin Wide SOIC Package (>8.3mm Creepage)
 - 3V to 15V input supply range.
 - Extended Temp: -55 to 125 °C


Applications

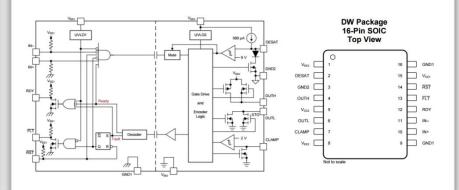
- Industrial Motor Control Drives
- Industrial Power Supplies
- Solar Inverters
- HEV & EV power modules

Benefits

- · Reinforced isolation rating
- Different configuration options available
- Improved system performance
- Enabling low power & efficient solutions

UVLO w.r.t GND2

ISO5852S: +2.5A/-5A, Isolated, High CMTI, Miller Clamp


Features

- Integrated SiO₂ Dielectric Capacitor
 - CMOS compatible logic input threshold
 - Safety Features: Miller Clamp, Desat Detect, UVLO, Fault feedback, Ready status feedback, auto soft-shutdown on short
 - +2.5/-5A Peak Source/Sink Split Outputs
 - 120 kV/µs CMTI (typ) / 100 kV/µs (min)
 - 30ns Integrated Glitch Filter
 - 110 ns (max) Prop Delay
 - 4kV ESD on all pins
- Immunity and Certifications
 - 12.8 kVpk Surge (8 kV V_{IOSM}) per VDE Reinforced Isolation
 - 5.7 kVrms Isolation rating per UL1577
 - 8000 Vpk V_{IOTM} (transient) and 2121 Vpk V_{IORM} (working voltage) per VDE0884-10
 - Enables IEC61800-5-1, IEC60664-1 & IEC62109-1
- Power and Package
 - Wide V_{CC2} Range: 15V-30V
 - 16-pin Wide SOIC Package (>8mm Creepage)
 - Extended Temp: -40 to 125 °C

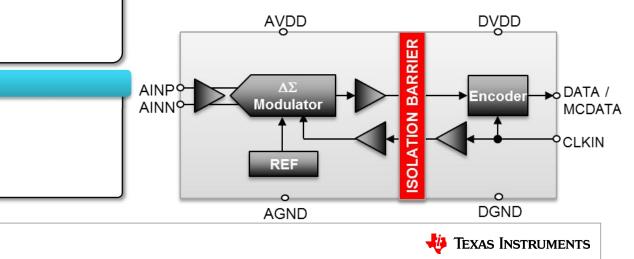
Benefits

- Component-level Reinforced rating
- Improved system performance
- Enabling low power & efficient solutions
- High Immunity for Noisy Environments
- High Reliability in Harsh Environments
- Certified by all 3 World Wide agencies

PART #	Split outputs	Soft Turnoff	UVLO+/ UVLO- (typ)	PKG
ISO5852S	Yes	Yes	11.6/10.3	16DW

🚘 : AEC-Q100

AMC1306

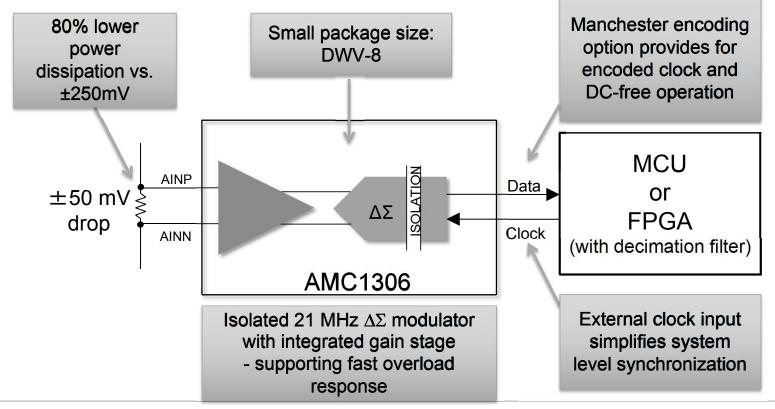

Small Reinforced Isolated Modulator, ±50mV | ±250mV Input, CMOS Interface/Manchester Encoding

Features

- Reinforced Isolation (UL1577 & VDE 0884-10)
 - Working Voltage: 1.5 kV_{RMS}, 2.1 kV_{DC}
 - Isolation Voltage: 7 kV_{PEAK} / 12.8 kV_{SURGE}
 - Isolation Lifetime: >> 135 years
- CMTI: 100 kV/µs (typ) / 50 kV/µs (min)
- Clock: 5-21 MHz (external)
- Various Input Voltage Ranges:
 - ±50 mV & ±250 mV
- Superior DC Performance:
 - Offset / Offset Drift: ±4.5 μV (±100 μV max) / ±1 μV/°C
 - Gain / Gain Drift: ±0.2% (max)/40 ppm/°C (max)
- Manchester-coded Modulator Bitstream Options
- Temperature Range: -40°C to 125°C
- Small Package: SO-8 (DWV)

Benefits

- Unique ±50-mV input & Manchester coded (DC-free) output options
- Reduced input voltage range for lowest P_D on shunt
- Smallest package size
- Simplified clock routing & duty cycle correction with Manchester Encoding
- Missing high-side supply & input common-mode over-range indication



Applications

- Shunt-based Current Measurement:
 - Compact Motor Drives
 - Frequency Inverter Applications
 - Solar Inverters

AMC1306– Advantages

Small Reinforced Isolated Modulator, ±50mV | ±250mV Input, CMOS Interface/Manchester Encoding

Thanks!

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated