TIDT330 june   2023

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5. 1Test Prerequisites
    1. 1.1 Voltage and Current Requirements
    2. 1.2 Considerations
    3. 1.3 Dimensions
  6. 2Testing and Results
    1. 2.1 Efficiency Graphs
      1. 2.1.1 One Low-Side FET , 680-nH Coil , 1.0 VIN – 1.5 VIN
      2. 2.1.2 One Low-Side FET , 680-nH Coil , 2.0 VIN – 3.0 VIN
    2. 2.2 Load Regulation
      1. 2.2.1 One Low-Side FET, 680-nH Coil, 1.0 VIN – 1.5 VIN
      2. 2.2.2 One Low-Side FET, 680-nH Coil, 2.0 VIN – 3.0 VIN
    3. 2.3 Thermal Images
      1. 2.3.1 1.0-V Input Voltage – Full Load 3.0 A
        1. 2.3.1.1 Two Low-Side FETs, 330-nH Coil
        2. 2.3.1.2 One Low-Side FET, 680-nH Coil
      2. 2.3.2 2.0-V Input Voltage, Full Load 3.0 A
        1. 2.3.2.1 Two Low-Side FETs, 330-nH Coil
      3. 2.3.3 3.0-V Input Voltage, Full Load 3.0 A
        1. 2.3.3.1 Two Low-Side FETs, 330-nH Coil
    4. 2.4 Bode Plots
      1. 2.4.1 1.0-V Input Voltage
      2. 2.4.2 2.0-V Input Voltage
      3. 2.4.3 3.0-V Input Voltage
  7. 3Waveforms
    1. 3.1 Switching Q2 FET (Drain to Source)
      1. 3.1.1 1.0-V Input Voltage
      2. 3.1.2 3.0-V Input Voltage
    2. 3.2 Output Voltage Ripple
      1. 3.2.1 1.0-V Input Voltage
      2. 3.2.2 3.0-V Input Voltage
    3. 3.3 Input Voltage Ripple
      1. 3.3.1 1.0-V Input Voltage
      2. 3.3.2 3.0-V Input Voltage
    4. 3.4 Load Transients
      1. 3.4.1 Load Steps of 1.5 A to 3 A
        1. 3.4.1.1 1.0-V Input Voltage
        2. 3.4.1.2 3.0-V Input Voltage
      2. 3.4.2 Load Steps of 0.2 A to 3 A
        1. 3.4.2.1 1.0-V Input Voltage
        2. 3.4.2.2 3.0-V Input Voltage
    5. 3.5 Start-Up Sequence
      1. 3.5.1 1.0-V Input Voltage
      2. 3.5.2 3.0-V Input Voltage
    6. 3.6 Shutdown Sequence
      1. 3.6.1 1.0-V Input Voltage
      2. 3.6.2 3.0-V Input Voltage
Test Report

24-W, Low-Input Voltage Synchronous Boost Converter Reference Design