SBVS038U September   2003  – January 2015 TPS736

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Noise
      2. 7.3.2 Internal Current Limit
      3. 7.3.3 Enable Pin and Shutdown
      4. 7.3.4 Reverse Current
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation with 1.7 V ≤ VIN ≤ 5.5 V and VEN ≥ 1.7 V
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input and Output Capacitor Requirements
        2. 8.2.2.2 Dropout Voltage
        3. 8.2.2.3 Transient Response
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Power Dissipation
    4. 10.4 Thermal Protection
    5. 10.5 Package Mounting
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Modules
        2. 11.1.1.2 Spice Models
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Voltage VIN –0.3 +6.0 V
VEN –0.3 +6.0 V
VOUT –0.3 +5.5 V
VNR, VFB –0.3 +6.0 V
Peak output current IOUT Internally limited
Output short-circuit duration Indefinite
Continuous total power dissipation PDISS See Thermal Information
TJ Junction temperature range –55 150 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Electrical Characteristics Exposure to absolute maximum rated conditions for extended periods may affect device reliability

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input supply voltage range 1.7 5.5 V
IOUT Output current 0 500 mA
TJ Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1)(2) TPS736(3) UNIT
DRB/SON DCQ/SOT223 DBV/SOT23
8 PINS 6 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance(4) 52.8 118.7 221.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(5) 60.4 64.9 74.9
RθJB Junction-to-board thermal resistance(6) 28.4 65.0 51.9
ψJT Junction-to-top characterization parameter(7) 2.1 14.0 2.8
ψJB Junction-to-board characterization parameter(8) 28.6 63.8 51.1
RθJC(bot) Junction-to-case (bottom) thermal resistance(9) 12.0 N/A N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.
(3) Thermal data for the DRB, DCQ, and DRV packages are derived by thermal simulations based on JEDEC-standard methodology as specified in the JESD51 series. The following assumptions are used in the simulations:
  1. i. DRB: The exposed pad is connected to the PCB ground layer through a 2x2 thermal via array.        
    ii. DCQ: The exposed pad is connected to the PCB ground layer through a 3x2 thermal via array.        
    iii. DBV: There is no exposed pad with the DBV package.      
  2. i. DRB: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.    
    ii. DCQ: Each of top and bottom copper layers has a dedicated pattern for 20% copper coverage.        
    iii. DBV: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.
  3. These data were generated with only a single device at the center of a JEDEC high-K (2s2p) board with 3in × 3in copper area. To understand the effects of the copper area on thermal performance, see the Power Dissipation section of this data sheet.
(4) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(5) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the top of the package. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(6) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(7) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data to obtain θJA using a procedure described in JESD51-2a (sections 6 and 7).
(8) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data to obtain θJA using a procedure described in JESD51-2a (sections 6 and 7).
(9) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V(1), IOUT = 10 mA, VEN = 1.7 V, and
COUT = 0.1 μF, unless otherwise noted. Typical values are at TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage range(1)(2) 1.7 5.5 V
VFB Internal reference (TPS73601) TJ = 25°C 1.198 1.20 1.210 V
VOUT Output voltage range (TPS73601)(3) VFB 5.5 – VDO V
Accuracy(1)(4) Nominal TJ = 25°C –0.5 +0.5
over VIN, IOUT,
and T
VOUT + 0.5 V ≤ VIN ≤ 5.5 V;
10 mA ≤ IOUT ≤ 400 mA
–1.0% ±0.5% +1.0%
ΔVOUT(ΔVIN) Line regulation(1) VO(nom) + 0.5 V ≤ VIN ≤ 5.5 V 0.01 %/V
ΔVOUT(ΔIOUT) Load regulation 1 mA ≤ IOUT ≤ 400 mA 0.002 %/mA
10 mA ≤ IOUT ≤ 400 mA 0.0005
VDO Dropout voltage(5)
(VIN = VOUT(nom) – 0.1 V)
IOUT = 400 mA 75 200 mV
ZO(do) Output impedance in dropout 1.7 V ≤ VIN ≤ VOUT + VDO 0.25 Ω
ICL Output current limit VOUT = 0.9 × VOUT(nom) 400 650 800 mA
3.6 V ≤ VIN ≤ 4.2 V, 0°C ≤ TJ ≤ 70°C 500 800 mA
ISC Short-circuit current VOUT = 0 V 450 mA
IREV Reverse leakage current(6) (–IIN) VEN ≤ 0.5 V, 0 V ≤ VIN ≤ VOUT 0.1 10 μA
IGND GND pin current IOUT = 10 mA (IQ) 400 550 μA
IOUT = 400 mA 800 1000
ISHDN Shutdown current (IGND) VEN ≤ 0.5 V, VOUT ≤ VIN ≤ 5.5,
–40°C ≤ TJ ≤ 100°C
0.02 1 μA
IFB FB pin current (TPS73601) 0.1 0.3 μA
PSRR Power-supply rejection ratio (ripple rejection) f = 100 Hz, IOUT = 400 mA 58 dB
f = 10 kHz, IOUT = 400 mA 37
Vn Output noise voltage
BW = 10Hz – 100KHz
COUT = 10 μF, No CNR 27 × VOUT μVRMS
COUT = 10 μF, CNR = 0.01 μF 8.5 × VOUT
tSTR Startup time VOUT = 3 V, RL = 30 Ω COUT = 1 μF, CNR = 0.01 μF 600 μs
VEN(high) EN pin high (enabled) 1.7 VIN V
VEN(low) EN pin low (shutdown) 0 0.5 V
IEN(high) EN pin current (enabled) VEN = 5.5 V 0.02 0.1 μA
TSD Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140
TJ Operating junction temperature –40 125 °C
(1) Minimum VIN = VOUT + VDO or 1.7 V, whichever is greater.
(2) For VOUT(nom) < 1.6 V, when VIN ≤ 1.6 V, the output locks to VIN and may result in a damaging over-voltage level on the output. To avoid this situation, disable the device before powering down the VIN.
(3) TPS73601 is tested at VOUT = 2.5 V.
(4) Tolerance of external resistors not included in this specification.
(5) VDO is not measured for fixed output versions with VOUT(nom) < 1.8 V.
(6) Fixed-voltage versions only; refer to Application Information section for more information.

6.6 Typical Characteristics

For all voltage versions, at TJ = 25°C, VIN = VOUT(nom) + 0.5 V, IOUT = 10 mA, VEN = 1.7 V, and COUT = 0.1 μF, unless otherwise noted.
tc_load_reg-bvs038.gif
Figure 1. Load Regulation
tc_vdo_iout-bvs038.gif
Figure 3. Dropout Voltage vs Output Current
tc_acc_histo-bvs038.gif
Figure 5. Output Voltage Accuracy Histogram
tc_ignd_iout-bvs038.gif
Figure 7. Ground Pin Current vs Output Current
tc_shut_temp-bvs038.gif
Figure 9. Ground Pin Current In Shutdown vs Temperature
tc_lim_vin-bvs038.gif
Figure 11. Current Limit vs VIN
psrr_v_f_bvs037.gif
Figure 13. PSRR (Ripple Rejection) vs Frequency
tc_nsd_fre1-bvs038.gif
Figure 15. Noise Spectral Density cNR = 0 μF
tc_rms_cout-bvs038.gif
Figure 17. RMS Noise Voltage vs COUT
tc_load_633-bvs038.gif
Figure 19. TPS73633 Load Transient Response
tc_on_633-bvs038.gif
Figure 21. TPS73633 Turn-On Response
tc_updown633-bvs038.gif
Figure 23. TPS73633 Power Up / Power Down
tc_rms_601-bvs038.gif
Figure 25. TPS73601 RMS Noise Voltage vs CFB
tc_load_601-bvs038.gif
Figure 27. TPS73601 Load Transient, Adjustable Version
tc_line_reg-bvs038.gif
Figure 2. Line Regulation
tc_vdo_temp-bvs038.gif
Figure 4. Dropout Voltage vs Temperature
tc_dri_histo-bvs038.gif
Figure 6. Output Voltage Drift Histogram
tc_ignd_temp-bvs038.gif
Figure 8. Ground Pin Current vs Temperature
tc_lim_vout-bvs038.gif
Figure 10. Current Limit vs VOUT(Foldback)
tc_lim_temp-bvs038.gif
Figure 12. Current Limit vs Temperature
tc_psrr_vin-bvs038.gif
Figure 14. PSRR (Ripple Rejection) vs VIN – VOUT
tc_nsd_fre2-bvs038.gif
Figure 16. Noise Spectral Density cNR = 0.01 μF
tc_rms_cnr-bvs038.gif
Figure 18. RMS Noise Voltage vs CNR
tc_line_633-bvs038.gif
Figure 20. TPS73633 Line Transient Response
tc_off_633-bvs038.gif
Figure 22. TPS73633 Turn-Off Response
tc_enable_tm-bvs038.gif
Figure 24. IENABLE vs Temperature
tc_ifb_601-bvs038.gif
Figure 26. TPS73601 IFB vs Temperature
tc_line_601-bvs038.gif
Figure 28. TPS73601 Line Transient, Adjustable Version