ZHCSA13M November   2008  – January 2019 TMS320F28020 , TMS320F280200 , TMS320F28021 , TMS320F28022 , TMS320F28023 , TMS320F28026 , TMS320F28027

PRODUCTION DATA.  

  1. 1器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
    4. 1.4 功能方框图
  2. 2修订历史记录
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings – Automotive
    3. 5.3  ESD Ratings – Commercial
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Consumption Summary
      1. Table 5-1 TMS320F2802x/F280200 Current Consumption at 40-MHz SYSCLKOUT
      2. Table 5-2 TMS320F2802x Current Consumption at 50-MHz SYSCLKOUT
      3. Table 5-3 TMS320F2802x Current Consumption at 60-MHz SYSCLKOUT
      4. 5.5.1     Reducing Current Consumption
      5. 5.5.2     Current Consumption Graphs (VREG Enabled)
    6. 5.6  Electrical Characteristics
    7. 5.7  Thermal Resistance Characteristics
      1. 5.7.1 PT Package
      2. 5.7.2 DA Package
    8. 5.8  Thermal Design Considerations
    9. 5.9  Emulator Connection Without Signal Buffering for the MCU
    10. 5.10 Parameter Information
      1. 5.10.1 Timing Parameter Symbology
      2. 5.10.2 General Notes on Timing Parameters
    11. 5.11 Test Load Circuit
    12. 5.12 Power Sequencing
      1. Table 5-5 Reset (XRS) Timing Requirements
      2. Table 5-6 Reset (XRS) Switching Characteristics
    13. 5.13 Clock Specifications
      1. 5.13.1 Device Clock Table
        1. Table 5-7  2802x Clock Table and Nomenclature (40-MHz Devices)
        2. Table 5-8  2802x Clock Table and Nomenclature (50-MHz Devices)
        3. Table 5-9  2802x Clock Table and Nomenclature (60-MHz Devices)
        4. Table 5-10 Device Clocking Requirements/Characteristics
        5. Table 5-11 Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics
      2. 5.13.2 Clock Requirements and Characteristics
        1. Table 5-12 XCLKIN Timing Requirements – PLL Enabled
        2. Table 5-13 XCLKIN Timing Requirements – PLL Disabled
        3. Table 5-14 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
    14. 5.14 Flash Timing
      1. Table 5-15 Flash/OTP Endurance for T Temperature Material
      2. Table 5-16 Flash/OTP Endurance for S Temperature Material
      3. Table 5-17 Flash/OTP Endurance for Q Temperature Material
      4. Table 5-18 Flash Parameters at 60-MHz SYSCLKOUT
      5. Table 5-19 Flash Parameters at 50-MHz SYSCLKOUT
      6. Table 5-20 Flash Parameters at 40-MHz SYSCLKOUT
      7. Table 5-21 Flash Program/Erase Time
      8. Table 5-22 Flash/OTP Access Timing
      9. Table 5-23 Flash Data Retention Duration
  6. 6Detailed Description
    1. 6.1 Overview
      1. 6.1.1  CPU
      2. 6.1.2  Memory Bus (Harvard Bus Architecture)
      3. 6.1.3  Peripheral Bus
      4. 6.1.4  Real-Time JTAG and Analysis
      5. 6.1.5  Flash
      6. 6.1.6  M0, M1 SARAMs
      7. 6.1.7  L0 SARAM
      8. 6.1.8  Boot ROM
        1. 6.1.8.1 Emulation Boot
        2. 6.1.8.2 GetMode
        3. 6.1.8.3 Peripheral Pins Used by the Bootloader
      9. 6.1.9  Security
      10. 6.1.10 Peripheral Interrupt Expansion (PIE) Block
      11. 6.1.11 External Interrupts (XINT1–XINT3)
      12. 6.1.12 Internal Zero Pin Oscillators, Oscillator, and PLL
      13. 6.1.13 Watchdog
      14. 6.1.14 Peripheral Clocking
      15. 6.1.15 Low-power Modes
      16. 6.1.16 Peripheral Frames 0, 1, 2 (PFn)
      17. 6.1.17 General-Purpose Input/Output (GPIO) Multiplexer
      18. 6.1.18 32-Bit CPU-Timers (0, 1, 2)
      19. 6.1.19 Control Peripherals
      20. 6.1.20 Serial Port Peripherals
    2. 6.2 Memory Maps
    3. 6.3 Register Maps
    4. 6.4 Device Emulation Registers
    5. 6.5 VREG/BOR/POR
      1. 6.5.1 On-chip Voltage Regulator (VREG)
        1. 6.5.1.1 Using the On-chip VREG
        2. 6.5.1.2 Disabling the On-chip VREG
      2. 6.5.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit
    6. 6.6 System Control
      1. 6.6.1 Internal Zero Pin Oscillators
      2. 6.6.2 Crystal Oscillator Option
      3. 6.6.3 PLL-Based Clock Module
      4. 6.6.4 Loss of Input Clock (NMI Watchdog Function)
      5. 6.6.5 CPU-Watchdog Module
    7. 6.7 Low-power Modes Block
    8. 6.8 Interrupts
      1. 6.8.1 External Interrupts
        1. 6.8.1.1 External Interrupt Electrical Data/Timing
          1. Table 6-21 External Interrupt Timing Requirements
          2. Table 6-22 External Interrupt Switching Characteristics
    9. 6.9 Peripherals
      1. 6.9.1  Analog Block
        1. 6.9.1.1 Analog-to-Digital Converter (ADC)
          1. 6.9.1.1.1 Features
          2. 6.9.1.1.2 ADC Start-of-Conversion Electrical Data/Timing
            1. Table 6-25 External ADC Start-of-Conversion Switching Characteristics
          3. 6.9.1.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing
            1. Table 6-26  ADC Electrical Characteristics
            2. Table 6-27  ADC Power Modes
            3. 6.9.1.1.3.1 Internal Temperature Sensor
              1. Table 6-28 Temperature Sensor Coefficient
            4. 6.9.1.1.3.2 ADC Power-Up Control Bit Timing
              1. Table 6-29 ADC Power-Up Delays
            5. 6.9.1.1.3.3 ADC Sequential and Simultaneous Timings
        2. 6.9.1.2 ADC MUX
        3. 6.9.1.3 Comparator Block
          1. 6.9.1.3.1 On-Chip Comparator/DAC Electrical Data/Timing
            1. Table 6-31 Electrical Characteristics of the Comparator/DAC
      2. 6.9.2  Detailed Descriptions
      3. 6.9.3  Serial Peripheral Interface (SPI) Module
        1. 6.9.3.1 SPI Master Mode Electrical Data/Timing
          1. Table 6-33 SPI Master Mode External Timing (Clock Phase = 0)
          2. Table 6-34 SPI Master Mode External Timing (Clock Phase = 1)
        2. 6.9.3.2 SPI Slave Mode Electrical Data/Timing
          1. Table 6-35 SPI Slave Mode External Timing (Clock Phase = 0)
          2. Table 6-36 SPI Slave Mode External Timing (Clock Phase = 1)
      4. 6.9.4  Serial Communications Interface (SCI) Module
      5. 6.9.5  Inter-Integrated Circuit (I2C)
        1. 6.9.5.1 I2C Electrical Data/Timing
          1. Table 6-39 I2C Timing Requirements
          2. Table 6-40 I2C Switching Characteristics
      6. 6.9.6  Enhanced PWM Modules (ePWM1/2/3/4)
        1. 6.9.6.1 ePWM Electrical Data/Timing
          1. Table 6-42 ePWM Timing Requirements
          2. Table 6-43 ePWM Switching Characteristics
        2. 6.9.6.2 Trip-Zone Input Timing
          1. Table 6-44 Trip-Zone Input Timing Requirements
      7. 6.9.7  High-Resolution PWM (HRPWM)
        1. 6.9.7.1 HRPWM Electrical Data/Timing
          1. Table 6-45 High-Resolution PWM Characteristics at SYSCLKOUT = 50 MHz–60 MHz
      8. 6.9.8  Enhanced Capture Module (eCAP1)
        1. 6.9.8.1 eCAP Electrical Data/Timing
          1. Table 6-47 Enhanced Capture (eCAP) Timing Requirement
          2. Table 6-48 eCAP Switching Characteristics
      9. 6.9.9  JTAG Port
      10. 6.9.10 General-Purpose Input/Output (GPIO) MUX
        1. 6.9.10.1 GPIO Electrical Data/Timing
          1. 6.9.10.1.1 GPIO - Output Timing
            1. Table 6-54 General-Purpose Output Switching Characteristics
          2. 6.9.10.1.2 GPIO - Input Timing
            1. Table 6-55 General-Purpose Input Timing Requirements
          3. 6.9.10.1.3 Sampling Window Width for Input Signals
          4. 6.9.10.1.4 Low-Power Mode Wakeup Timing
            1. Table 6-56 IDLE Mode Timing Requirements
            2. Table 6-57 IDLE Mode Switching Characteristics
            3. Table 6-58 STANDBY Mode Timing Requirements
            4. Table 6-59 STANDBY Mode Switching Characteristics
            5. Table 6-60 HALT Mode Timing Requirements
            6. Table 6-61 HALT Mode Switching Characteristics
  7. 7Applications, Implementation, and Layout
    1. 7.1 TI Design or Reference Design
  8. 8器件和文档支持
    1. 8.1 使用入门
    2. 8.2 器件和开发支持工具命名规则
    3. 8.3 工具与软件
    4. 8.4 文档支持
    5. 8.5 相关链接
    6. 8.6 Community Resources
    7. 8.7 商标
    8. 8.8 静电放电警告
    9. 8.9 Glossary
  9. 9机械、封装和可订购信息
    1. 9.1 封装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Table 6-59 STANDBY Mode Switching Characteristics

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
td(IDLE-XCOL) Delay time, IDLE instruction executed to XCLKOUT low 32tc(SCO) 45tc(SCO) cycles
td(WAKE-STBY) Delay time, external wake signal to program execution resume(1) cycles
  • Wake up from flash
    • Flash module in active state
Without input qualifier 100tc(SCO) cycles
With input qualifier 100tc(SCO) + tw(WAKE-INT)
  • Wake up from flash
    • Flash module in sleep state
Without input qualifier 1125tc(SCO) cycles
With input qualifier 1125tc(SCO) + tw(WAKE-INT)
  • Wake up from SARAM
Without input qualifier 100tc(SCO) cycles
With input qualifier 100tc(SCO) + tw(WAKE-INT)
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency.
TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200 td_stdb_ex_prs523.gif
IDLE instruction is executed to put the device into STANDBY mode.
The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:
  • 16 cycles, when DIVSEL = 00 or 01
  • 32 cycles, when DIVSEL = 10
  • 64 cycles, when DIVSEL = 11
This delay enables the CPU pipeline and any other pending operations to flush properly.
Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode.
The external wake-up signal is driven active.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.
After a latency period, the STANDBY mode is exited.
Normal execution resumes. The device will respond to the interrupt (if enabled).
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at least 4 OSCCLK cycles have elapsed.
Figure 6-46 STANDBY Entry and Exit Timing Diagram