SLLS804D March 2009 – August 2016 SN65HVDA540-5-Q1 , SN65HVDA540-Q1 , SN65HVDA541-5-Q1 , SN65HVDA541-Q1 , SN65HVDA542-5-Q1 , SN65HVDA542-Q1
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | –0.3 | 6 | V | |
VIO | I/O supply voltage | –0.3 | 6 | V | |
Voltage at bus terminals (CANH, CANL) | –27 | 40 | V | ||
IO | Receiver output current (RXD) | 20 | mA | ||
VI | Voltage input (TXD, STB, S) | HVDA54x | –0.3 | 6 V and VI ≤ VIO + 0.3 | V |
HVDA54x-5 | –0.3 | 6 | V | ||
TJ | Operating virtual-junction temperature | –40 | 150 | °C | |
TLEAD | Lead temperature (soldering, 10 seconds) | 260 | °C | ||
Tstg | Storage temperature | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | All pins except 6 and 7 | ±4000 | V |
Pins 6 and 7(2) | ±12000 | ||||
Charged-device model (CDM), per AEC Q100-011 | ±1000 | ||||
Machine model | ±7000 | ||||
IEC 61000-4-2 contact discharge(3) | Pins 6 and 7 to pin 2 | ±7000 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | 4.68 | 5.33 | V | |
VIO | I/O supply voltage | 3 | 5.33 | V | |
VI or VIC | Voltage at any bus terminal (separately or common mode) | –12 | 12 | V | |
VIH | High-level input voltage | TXD, STB, S (for HVD54x-5: VIO = VCC) | 0.7 × VIO | VIO | V |
VIL | Low-level input voltage | TXD, STB, S (for HVD54x-5: VIO = VCC) | 0 | 0.3 × VIO | V |
VID | Differential input voltage, bus | Between CANH and CANL | –6 | 6 | V |
IOH | High-level output current | RXD | –2 | mA | |
IOL | Low-level output current | RXD | 2 | mA | |
TA | Operating ambient free-air temperature | See Thermal Information and Power Dissipation Ratings | –40 | 125 | °C |
THERMAL METRIC(1) | HVDA54x, HVDA54x-5-Q1 | UNIT | ||
---|---|---|---|---|
D (SOIC) | ||||
8 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | Low-K thermal resistance | 140 | °C/W |
High-K thermal resistance | 112 | |||
RθJC(top) | Junction-to-case (top) thermal resistance | 56 | °C/W | |
RθJB | Junction-to-board thermal resistance | 50 | °C/W | |
ψJT | Junction-to-top characterization parameter | 13 | °C/W | |
ψJB | Junction-to-board characterization parameter | 55 | °C/W | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
SUPPLY CHARACTERISTICS (HVDA54x) | |||||||
ICC | 5-V supply current | Standby mode (HVDA540/541 Only) | STB at VIO, VCC = 5.33 V, VIO = 3 V, TXD at VIO (2) | 5 | µA | ||
Normal mode (Dominant) | TXD at 0 V, 60-Ω load, STB / S at 0 V | 50 | 70 | mA | |||
Normal mode (Recessive) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
Silent Mode (HVDA542 only) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
IIO | I/O supply current | Standby mode (HVDA540/541 Only) | STB at VIO , VCC = 5.33 V or 0 V, RXD floating, TXD at VIO
TA = –40°C, 25°C, 125°C(3) |
7 | 15 | µA | |
Normal mode (recessive or dominant) and Silent Mode (HVDA542 Only) | VCC = 5.33 V, RXD floating, TXD at 0 V or VIO. Normal Mode: STB or S at 0 V. Silent Mode (HVDA542): S at VIO. | 75 | 300 | ||||
UVVCC | Undervoltage detection on VCC for forced standby mode | 3.2 | 3.6 | 4 | V | ||
VHYS(UVVCC) | Hysteresis voltage for undervoltage detection on UVVCC for standby mode | 200 | mV | ||||
UVVIO | Undervoltage detection on VIO for forced standby mode | 1.9 | 2.45 | 2.95 | V | ||
VHYS(UVVIO) | Hysteresis voltage for undervoltage detection on UVVIO for forced standby mode | 130 | mV | ||||
SUPPLY CHARACTERISTICS (HVDA54x-5) | |||||||
ICC | 5-V supply current | Standby mode (HVDA540-5/541-5 Only) | STB at VCC, VCC = 5.33 V, TXD at VCC (2) | 20 | µA | ||
Normal mode (Dominant) | TXD at 0 V, 60-Ω load, STB / S at 0 V | 50 | 70 | mA | |||
Normal mode (Recessive) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
Silent Mode (HVDA542 only) | TXD at VIO, No load, STB / S at 0 V or S at VIO | 5.5 | 10 | ||||
UVVCC | Undervoltage detection on VCC for forced standby mode | 3.2 | 3.6 | 4 | V | ||
VHYS(UVVCC) | Hysteresis voltage for undervoltage detection on UVVCC for standby mode | 240 | mV | ||||
DEVICE SWITCHING CHARACTERISTICS: PROPAGATION TIME (LOOP TIME TXD TO RXD) | |||||||
tPROP(LOOP1) | Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant | Figure 9, STB at 0 V | 70 | 230 | ns | ||
tPROP(LOOP2) | Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive | 70 | 230 | ||||
DRIVER ELECTRICAL CHARACTERISTICS | |||||||
VO(D) | Bus output voltage (dominant) | CANH | VI = 0 V, STB / S at 0 V, RL = 60 Ω, See Figure 2 and Figure 15 |
2.9 | 4.5 | V | |
CANL | 0.8 | 1.75 | |||||
VO(R) | Bus output voltage (recessive) | VI = VIO, VIO = 3 V, STB at 0 V or S at X(4), RL = 60 Ω, See Figure 2 and Figure 15 | 2 | 2.5 | 3 | V | |
VO(STBY) | Bus output voltage, standby mode (HVDA540, HVDA541 only) | STB / S at VIO, RL = 60 Ω, See Figure 2 and Figure 15 |
–0.1 | 0.1 | V | ||
VOD(D) | Differential output voltage (dominant) | VI = 0 V, RL = 60 Ω, STB / S at 0 V, See Figure 2, Figure 15, and Figure 3 |
1.5 | 3 | V | ||
VI = 0 V, RL = 45 Ω, STB / S at 0 V, See Figure 2, Figure 15, and Figure 3 |
1.4 | 3 | |||||
VOD(R) | Differential output voltage (recessive) | VI = 3 V, STB / S at 0 V, RL = 60 Ω, See Figure 2 and Figure 15 | –0.012 | 0.012 | V | ||
VI = 3 V, STB / S at 0 V, No load | –0.5 | 0.05 | |||||
VSYM | Output symmetry (dominant or recessive) (VO(CANH) + VO(CANL)) | STB / S at 0 V, RL = 60 Ω, See Figure 12 |
0.9 VCC | VCC | 1.1 VCC | V | |
VOC(SS) | Steady-state common-mode output voltage | STB / S at 0 V, RL = 60 Ω, See Figure 8 |
2 | 2.5 | 3 | V | |
ΔVOC(SS) | Change in steady-state common-mode output voltage | STB / S at 0 V, RL = 60 Ω, See Figure 8 |
40 | mV | |||
IOS(SS)_DOM | Short-circuit steady-state output current, Dominant | VCANH = 0 V, CANL open, TXD = low, See Figure 11 |
–100 | mA | |||
VCANL = 32 V, CANH open, TXD = low, See Figure 11 | 100 | ||||||
IOS(SS)_REC | Short-circuit steady-state output current, Recessive | –20 V ≤ VCANH ≤ 32 V, CANL open, TXD = high, See Figure 11 |
–10 | 10 | mA | ||
–20 V ≤ VCANL ≤ 32 V, CANH open, TXD = high, See Figure 11 |
–10 | 10 | |||||
CO | Output capacitance | See receiver input capacitance | |||||
DRIVER SWITCHING CHARACTERISTICS | |||||||
tPLH | Propagation delay time, low-to-high level output | STB / S at 0 V, See Figure 4 | 65 | ns | |||
tPHL | Propagation delay time, high-to-low level output | STB / S at 0 V, See Figure 4 | 50 | ns | |||
tR | Differential output signal rise time | STB / S at 0 V, See Figure 4 | 25 | ns | |||
tF | Differential output signal fall time | STB / S at 0 V, See Figure 4 | 55 | ns | |||
tEN | Enable time from standby or silent mode to normal mode dominant | See Figure 7 | 20 | µs | |||
t(DOM)(5) | Dominant time out | See Figure 10 | 300 | 400 | 700 | µs | |
RECEIVER ELECTRICAL CHARACTERISTICS | |||||||
VIT+ | Positive-going input threshold voltage, normal mode | STB / S at 0 V, See Table 1 | 800 | 900 | mV | ||
VIT– | Negative-going input threshold voltage, normal mode | STB / S at 0 V, See Table 1 | 500 | 650 | mV | ||
Vhys | Hysteresis voltage (VIT+ – VIT–) | 100 | 125 | mV | |||
VIT(STBY) | Input threshold voltage, standby mode (HVDA541 only) | STB at VIO | 400 | 1150 | mV | ||
II(OFF_LKG) | Power-off (unpowered) bus input leakage current | CANH = CANL = 5 V, VCC at 0 V, VIO at 0 V, TXD at 0 V |
3 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | HVDA54x: TXD at VIO, VIO at 3.3 V. HVDA54x-5: TXD at VCC VI = 0.4 sin (4E6πt) + 2.5 V |
13 | pF | |||
CID | Differential input capacitance | HVDA54x: TXD at VIO, VIO at 3.3 V. HVDA54x-5: TXD at VCC VI = 0.4 sin(4E6πt) |
5 | pF | |||
RID | Differential input resistance | HVDA54x: TXD at VIO, VIO = 3.3 V, STB at 0 V HVDA54x-5: TXD at VCC, STB at 0 V |
29 | 80 | kΩ | ||
RIN | Input resistance (CANH or CANL) | 14.5 | 25 | 40 | kΩ | ||
RI(M) | Input resistance matching [1 – ®IN(CANH)/RIN(CANL))] × 100% |
V(CANH) = V(CANL) | –3 | 0 | 3 | % | |
RECEIVER SWITCHING CHARACTERISTICS | |||||||
tPLH | Propagation delay time, low-to-high-level output | STB / S at 0 V , See Figure 6 | 95 | ns | |||
tPHL | Propagation delay time, high-to-low-level output | STB / S at 0 V , See Figure 6 | 60 | ns | |||
tR | Output signal rise time | STB / S at 0 V , See Figure 6 | 13 | ns | |||
tF | Output signal fall time | STB / S at 0 V , See Figure 6 | 10 | ns | |||
tBUS | Dominant time required on bus for wake-up from standby (HVDA541 only) | STB at VIO, See Figure 17 and Figure 18 | 1.5 | 5 | µs | ||
tCLEAR | Recessive time on the bus to clear the standby mode receiver output (RXD) if standby mode is entered while bus is dominant (HVDA541 only) | 1.5 | 5 | µs | |||
TXD PIN CHARACTERISTICS | |||||||
VIH | High-level input voltage | HVD54x-5: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD54x-5: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA54x: TXD at VIO HVDA54x-5: TXD at VCC | –2 | 2 | µA | ||
IIL | Low-level input current | TXD at 0 V | –100 | –7 | µA | ||
RXD PIN CHARACTERISTICS | |||||||
VOH | High-level output voltage | IO = –2 mA, See Figure 6 HVD54x-5: VIO = VCC |
0.8 × VIO | V | |||
VOL | Low-level output voltage | IO = 2 mA, See Figure 6 HVD54x-5: VIO = VCC |
0.2 × VIO | V | |||
STB PIN CHARACTERISTICS (HVDA540 AND HVDA541 ONLY) | |||||||
VIH | High-level input voltage | HVD54x-5: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD54x-5: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA54x: STB at VIO HVDA54x-5: STB at VCC | –2 | 2 | µA | ||
IIL | Low-level input current | STB at 0 V | –20 | µA | |||
S PIN CHARACTERISTICS (HVDA542 ONLY) | |||||||
VIH | High-level input voltage | HVD54x-5: VIO = VCC | 0.7 × VIO | V | |||
VIL | Low-level input voltage | HVD54x-5: VIO = VCC | 0.3 × VIO | V | |||
IIH | High-level input current | HVDA54x: S at VIO HVDA54x-5: S at VCC | 30 | µA | |||
IIL | Low-level input current | S at 0 V | –2 | 2 | µA | ||
Thermal shutdown temperature | 185 | °C |
MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|
PD | Average power dissipation | VCC = 5 V, VIO = VCC, TJ = 27°C, RL = 60 Ω, STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
140 | mW | ||
VCC = 5.33 V, VIO = VCC, TJ = 130°C, RL = 60 Ω, STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
215 |
STB = 0 V RL= 60 Ω CL= Open Rcm= open Temp = 25°C | ||