ZHCSI51A May   2018  – June 2018 OPA521

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      OPA521 方框图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics: Digital
    7. 6.7 Electrical Characteristics: Power Supply
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 IQSET Pin
      2. 7.3.2 EN Pin
      3. 7.3.3 ILIM Pin Current Limiting
      4. 7.3.4 IFLAG and TFLAG Pins
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Interfacing the OPA521 to the AC Mains
          1. 8.2.2.1.1 Low-Voltage Capacitor
          2. 8.2.2.1.2 High-Voltage Capacitor
          3. 8.2.2.1.3 Inductor
          4. 8.2.2.1.4 Line Coupling Transformer
        2. 8.2.2.2 Circuit Protection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Thermal Considerations
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方产品免责声明
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 术语表
  12. 12"机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Circuit Protection

Power-line communications are often located in operating environments that are harsh for electrical components connected to the ac line. Noise or surges from electrical anomalies (such as lightning, capacitor bank switching, inductive switching, or other grid fault conditions) can damage high-performance integrated circuits if proper protection is not provided. The OPA521, however, can survive even the harshest conditions by using a variety of techniques to protect the device. Layout the protection circuitry in order to dissipate as much of the electrical disturbance as possible with a multilayer approach using metal-oxide varistors (MOVs), transient voltage suppression diodes (TVSs), Schottky diodes, and a Zener diode. These components dissipate the electrical disturbance before the anomaly reaches the device. shows the recommended strategy for transient overvoltage protection.

OPA521 ai_line_transient_protect_bos669.gifFigure 23. Transient Overvoltage Protection for OPA521

Note that the high-voltage coupling capacitor must be able to withstand pulses up to the clamping protection provided by the MOV. A metalized polypropylene capacitor, such as the 474MKP275KA from Illinois Capacitor, is rated for 50 Hz to 60 Hz and 250 VAC to 310 VAC, and can withstand 24 impulses of 2.5 kV. Table 2 lists several recommended transient protection components.

Table 2. Recommended Transient Protection Components

COMPONENT DESCRIPTION MANUFACTURER MFR PART NO (OR EQUIVALENT)
D1 Zener diode Diodes, Inc. 1SMB59xxB
D2, D3 Schottky diode Diodes, Inc. 1N5819HW
TVS Transient voltage suppressor Diodec Semiconductor P6SMBJxxC
MOV Varistor (for 120 VAC, 60 Hz) LittleFuse TMOV20RP140E
MOV Varistor (for 240 VAC, 50 Hz) LittleFuse TMOV20RP300E
HV Cap High-voltage capacitor Illinois Capacitor, Inc 474MKP275KA