ZHCSIG4A July   2018  – June 2019 DLPC3434

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化应用
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions – Board Level Test, Debug, and Initialization
    2.     Pin Functions – Parallel Port Input Data and Control
    3.     Pin Functions – DMD Reset and Bias Control
    4.     Pin Functions – DMD Sub-LVDS Interface
    5.     Pin Functions – Peripheral Interface
    6.     Pin Functions – GPIO Peripheral Interface
    7.     Pin Functions – Clock and PLL Support
    8.     Pin Functions – Power and Ground
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics over Recommended Operating Conditions
    6. 6.6  Electrical Characteristics
    7. 6.7  Internal Pullup and Pulldown Characteristics
    8. 6.8  High-Speed Sub-LVDS Electrical Characteristics
    9. 6.9  Low-Speed SDR Electrical Characteristics
    10. 6.10 System Oscillators Timing Requirements
    11. 6.11 Power-Up and Reset Timing Requirements
    12. 6.12 Parallel Interface Frame Timing Requirements
    13. 6.13 Parallel Interface General Timing Requirements
    14. 6.14 Flash Interface Timing Requirements
  7. Parameter Measurement Information
    1. 7.1 HOST_IRQ Usage Model
    2. 7.2 Input Frame Rates and 3-D Display Operation
      1. 7.2.1 Parallel Interface Data Transfer Format
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Interface Timing Requirements
        1. 8.3.1.1 Parallel Interface
      2. 8.3.2  Serial Flash Interface
      3. 8.3.3  Tested Flash Devices
      4. 8.3.4  Serial Flash Programming
      5. 8.3.5  SPI Signal Routing
      6. 8.3.6  I2C Interface Performance
      7. 8.3.7  Content-Adaptive Illumination Control
      8. 8.3.8  Local Area Brightness Boost
      9. 8.3.9  3-D Glasses Operation
      10. 8.3.10 DMD (Sub-LVDS) Interface
      11. 8.3.11 Calibration and Debug Support
      12. 8.3.12 DMD Interface Considerations
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 System Power-Up and Power-Down Sequence
    2. 10.2 DLPC3434 Power-Up Initialization Sequence
    3. 10.3 DMD Fast PARK Control (PARKZ)
    4. 10.4 Hot Plug Usage
    5. 10.5 Maximum Signal Transition Time
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1  PCB Layout Guidelines for Internal ASIC PLL Power
      2. 11.1.2  DLPC3434 Reference Clock
        1. 11.1.2.1 Recommended Crystal Oscillator Configuration
      3. 11.1.3  General PCB Recommendations
      4. 11.1.4  General Handling Guidelines for Unused CMOS-Type Pins
      5. 11.1.5  Maximum Pin-to-Pin, PCB Interconnects Etch Lengths
      6. 11.1.6  Number of Layer Changes
      7. 11.1.7  Stubs
      8. 11.1.8  Terminations
      9. 11.1.9  Routing Vias
      10. 11.1.10 Thermal Considerations
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 第三方产品免责声明
      2. 12.1.2 器件命名规则
        1. 12.1.2.1 器件标记
      3. 12.1.3 视频时序参数定义
    2. 12.2 相关链接
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息
    1. 13.1 Package Option Addendum
      1. 13.1.1 Packaging Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

DLPC3434 Power-Up Initialization Sequence

It is assumed that an external power monitor will hold the DLPC3434 in system reset during power-up. It must do this by driving RESETZ to a logic low state. It should continue to assert system reset until all ASIC voltages have reached minimum specified voltage levels, PARKZ is asserted high, and input clocks are stable. During this time, most ASIC outputs will be driven to an inactive state and all bidirectional signals will be configured as inputs to avoid contention. ASIC outputs that are not driven to an inactive state are tri-stated. These include LED_SEL_0, LED_SEL_1, SPICLK, SPIDOUT, and SPICSZ0 (see RESETZ pin description for full signal descriptions in . After power is stable and the PLL_REFCLK_I clock input to the DLPC3434 is stable, then RESETZ should be deactivated (set to a logic high). The DLPC3434 then performs a power-up initialization routine that first locks its PLL followed by loading self configuration data from the external flash. Upon release of RESETZ all DLPC3434 I/Os will become active. Immediately following the release of RESETZ, the HOST_IRQ signal will be driven high to indicate that the auto initialization routine is in progress. However, since a pullup resistor is connected to signal HOST_IRQ, this signal will have already gone high before the DLPC3434 actively drives it high. Upon completion of the chipset auto-initialization routine, the master DLPC3434 will drive HOST_IRQ low to indicate the initialization done state of the DLPC3434 has been reached.

Note that the host processor must wait for HOST_IRQ to go low before initiating I2C commands.