ZHCSCQ1B October   2013  – August 2014 ADS7253 , ADS7853 , ADS8353

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configurations and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  Handling Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: ADS8353
    6. 7.6  Electrical Characteristics: ADS7853
    7. 7.7  Electrical Characteristics: ADS7253
    8. 7.8  Electrical Characteristics: All Devices
    9. 7.9  Timing Requirements: Interface Mode
    10. 7.10 Timing Characteristics: Serial Interface
    11. 7.11 Typical Characteristics: ADS8353
    12. 7.12 Typical Characteristics: ADS7853
    13. 7.13 Typical Characteristics: ADS7253
    14. 7.14 Typical Characteristics: Common to ADS8353, ADS7853, and ADS7253
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Reference
      2. 8.3.2 Analog Inputs
        1. 8.3.2.1 Analog Input: Full-Scale Range Selection
        2. 8.3.2.2 Analog Input: Single-Ended and Pseudo-Differential Configurations
      3. 8.3.3 Transfer Function
    4. 8.4 Device Functional Modes
    5. 8.5 Register Maps and Serial Interface
      1. 8.5.1 Serial Interface
      2. 8.5.2 Write to User Programmable Registers
        1. 8.5.2.1 Configuration Register (CFR)
        2. 8.5.2.2 REFDAC Registers (REFDAC_A and REFDAC_B)
      3. 8.5.3 Data Read Operation
        1. 8.5.3.1 Reading User-Programmable Registers
        2. 8.5.3.2 Conversion Data Read
          1. 8.5.3.2.1 32-CLK, Dual-SDO Mode (CFR.B11 = 0, CFR.B10 = 0, Default)
          2. 8.5.3.2.2 32-CLK, Single-SDO Mode (CFR.B11 = 0, CFR.B10 = 1)
          3. 8.5.3.2.3 16-CLK, Dual-SDO Mode (CFR.B11 = 1, CFR.B10 = 0)
          4. 8.5.3.2.4 16-CLK, Single-SDO Mode (CFR.B11 = 1, CFR.B10 = 1)
      4. 8.5.4 Low-Power Modes
        1. 8.5.4.1 STANDBY Mode
        2. 8.5.4.2 Software Power-Down (SPD) Mode
      5. 8.5.5 Frame Abort, Reconversion, or Short-Cycling
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Amplifier Selection
      2. 9.1.2 Antialiasing Filter
    2. 9.2 Typical Applications
      1. 9.2.1 DAQ Circuit to Achieve Maximum SINAD for a 10-kHz Input Signal at Full Throughput
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 DAQ Circuit to Achieve Maximum SINAD for a 100-kHz Input Signal at Full Throughput
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power-Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 相关链接
    2. 12.2 相关文档 
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 术语表
  13. 13机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
AVDD to REFGND_x or DVDD to GND –0.3 6 V
Analog (AINP_x and AINM_x) and reference input (REFIO_x) voltage with respect to REFGND_x REFGND_x – 0.3 AVDD + 0.3 V
Digital input voltage with respect to GND GND – 0.3 DVDD + 0.3 V
Ground voltage difference |REFGND_x-GND| 0.3 V
Input current to any pin except supply pins ±10 mA
Maximum virtual junction temperature, TJ 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) –2000 2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) –500 500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
AVDD Analog supply voltage 5 V
DVDD Digital supply voltage 3.3 V

7.4 Thermal Information

THERMAL METRIC(1) ADS8353, ADS7853, ADS7253 UNIT
RTE (WQFN) PW (TSSOP)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 33.3 86.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 29.5 21
RθJB Junction-to-board thermal resistance 7.3 39.1
ψJT Junction-to-top characterization parameter 0.2 0.8
ψJB Junction-to-board characterization parameter 7.4 38.4
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.9 N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: ADS8353

All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF = 2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION
Resolution 16 Bits
DC ACCURACY(2)
NMC No missing codes 32-clock mode 16 Bits
INL Integral nonlinearity 32-clock mode –2.5 ±1 2.5 LSB
DNL Differential nonlinearity 32-clock mode –0.99 ±0.6 2 LSB
EIO Input offset error –1 ±0.5 1 mV
EIO match ADC_A to ADC_B –1 ±0.5 1 mV
dEIO/dT Input offset thermal drift 1 μV/°C
EG Gain error Referenced to the voltage at REFIO_x –0.1 ±0.05 0.1 %FS
EG match ADC_A to ADC_B –0.1 ±0.05 0.1 %FS
dEG/dT Gain error thermal drift Referenced to the voltage at REFIO_x 1 ppm/°C
AC ACCURACY(1)
SINAD Signal-to-noise + distortion VREF = 2.5 V,
VREF input range, 32-clock mode
80.2 83 dB
VREF = 2.5 V,
2 × VREF input range, 32-clock mode
83.9 dB
VREF = 5 V (external),
VREF input range, 32-clock mode
88.7 dB
SNR Signal-to-noise ratio VREF = 2.5 V,
VREF input range, 32-clock mode
80.5 83 dB
VREF = 2.5 V,
2 × VREF input range, 32-clock mode
84 dB
VREF = 5 V (external),
VREF input range, 32-clock mode
89 dB
THD Total harmonic distortion VREF = 2.5 V,
VREF input range, 32-clock mode
–100 dB
VREF = 2.5 V,
2 × VREF input range, 32-clock mode
–100 dB
VREF = 5 V (external),
VREF input range, 32-clock mode
–100 dB
SFDR Spurious-free dynamic range VREF = 2.5 V,
VREF input range, 32-clock mode
105 dB
VREF = 2.5 V,
2 × VREF input range, 32-clock mode
105 dB
VREF = 5 V (external),
VREF input range, 32-clock mode
105 dB
(1) All ac parameters are tested at –0.5 dBFS and a 2-kHz input frequency.
(2) LSB = least significant bit.

7.6 Electrical Characteristics: ADS7853

All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION
Resolution 14 Bits
DC ACCURACY(2)
NMC No missing codes 32-clock mode 14 Bits
16-clock mode 13 Bits
INL Integral nonlinearity 32-clock mode –2 ±0.7 2 LSB
16-clock mode –2.5 ±1 2.5 LSB
DNL Differential nonlinearity 32-clock mode –0.99 ±0.5 1 LSB
16-clock mode –1 ±0.9 2 LSB
EIO Input offset error –1 ±0.5 1 mV
EIO match ADC_A to ADC_B –1 ±0.5 1 mV
dEIO/dT Input offset thermal drift ±1 μV/°C
EG Gain error Referenced to the voltage at REFIO_x –0.1 ±0.05 0.1 %FS
EG match ADC_A to ADC_B –0.1 ±0.05 0.1 %FS
dEG/dT Gain error thermal drift Referenced to the voltage at REFIO_x ±1 ppm/°C
AC ACCURACY(1)
SINAD Signal-to-noise + distortion VREF = 2.5 V,
VREF input range
32-clock mode 78.4 80.9 dB
16-clock mode 80.3 dB
VREF = 2.5 V,
2 × VREF input range
32-clock mode 81.4 dB
16-clock mode 80.8 dB
VREF = 5 V (external),
VREF input range
32-clock mode 83.9 dB
16-clock mode 82.9 dB
SNR Signal-to-noise ratio VREF = 2.5 V,
VREF input range
32-clock mode 78.5 81 dB
16-clock mode 80.5 dB
VREF = 2.5 V,
2 × VREF input range
32-clock mode 81.5 dB
16-clock mode 81 dB
VREF = 5 V (external),
VREF input range
32-clock mode 84 dB
16-clock mode 83.5 dB
THD Total harmonic distortion VREF = 2.5 V,
VREF input range
32-clock mode –100 dB
16-clock mode –93 dB
VREF = 2.5 V,
2 × VREF input range
32-clock mode –98 dB
16-clock mode –94 dB
VREF = 5 V (external),
VREF input range
32-clock mode –102 dB
16-clock mode –92 dB
SFDR Spurious-free dynamic range VREF = 2.5 V,
VREF input range
32-clock mode 100 dB
16-clock mode 95 dB
VREF = 2.5 V,
2 × VREF input range
32-clock mode 100 dB
16-clock mode 95 dB
VREF = 5 V (external),
VREF input range
32-clock mode 102 dB
16-clock mode 95 dB
ISOXT ADC-to-ADC isolation fIN = 15 kHz at 10 %FS,
fNOISE = 25 kHz at FS
–100 dB
(1) All ac parameters are tested at –0.5 dBFS and a 2-kHz input frequency.
(2) LSB = least significant bit.

7.7 Electrical Characteristics: ADS7253

All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION
Resolution 12 Bits
DC ACCURACY(2)
NMC No missing codes 12 Bits
INL Integral nonlinearity –1 ±0.3 1 LSB
DNL Differential nonlinearity –0.99 ±0.3 1 LSB
EIO Input offset error –2 ±0.5 2 mV
EIO match ADC_A to ADC_B –2 ±0.5 2 mV
dEIO/dT Input offset thermal drift ±1 μV/°C
EG Gain error Referenced to the voltage at REFIO_x –0.2 ±0.05 0.2 %FS
EG match ADC_A to ADC_B –0.2 ±0.05 0.2 %FS
dEG/dT Gain error thermal drift Referenced to the voltage at REFIO_x ±1 ppm/°C
AC ACCURACY(1)
SINAD Signal-to-noise + distortion VREF = 2.5 V,
VREF input range
71 72.9 dB
VREF = 2.5 V,
2 × VREF input range
72.9 dB
VREF = 5 V (external),
VREF input range
73.4 dB
SNR Signal-to-noise ratio VREF = 2.5 V,
VREF input range
71.5 73 dB
VREF = 2.5 V,
2 × VREF input range
73 dB
VREF = 5 V (external),
VREF input range
73.5 dB
THD Total harmonic distortion VREF = 2.5 V,
VREF input range
–90 dB
VREF = 2.5 V,
2 × VREF input range
–90 dB
VREF = 5 V (external),
VREF input range
–90 dB
SFDR Spurious-free dynamic range VREF = 2.5 V,
VREF input range
93.5 dB
VREF = 2.5 V,
2 × VREF input range
93.5 dB
VREF = 5 V (external),
VREF input range
93.5 dB
ISOXT ADC-to-ADC isolation fIN = 15 kHz at 10 %FS,
fNOISE = 25 kHz at FS
–80 dB
(1) All ac parameters are tested at –0.5 dBFS and a 2-kHz input frequency.
(2) LSB = least significant bit.

7.8 Electrical Characteristics: All Devices

All minimum and maximum specifications are at TA = –40°C to 125°C, AVDD = 5 V, DVDD = 3.3 V, VREF_A = VREF_B = VREF = 2.5 V, and fDATA = maximum, unless otherwise noted.
Typical values are at TA = 25°C, AVDD = 5 V, and DVDD = 3.3 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
FSR Full-scale input range(1)
(AINP_x – AINM_x)
VREF range Single-ended input,
AINM_x = GND
0 VREF V
Pseudo-differential input,
AINM_x = +VREF / 2
–VREF / 2 VREF / 2 V
2 × VREF range Single-ended input,
AINM_x = GND,
AVDD ≥ 2 × VREF
0 2 × VREF V
Pseudo-differential input,
AINM_x = +VREF,
AVDD ≥ 2 × VREF
–VREF VREF V
VINP Absolute input voltage
(AINP_x to REFGND)
VREF range 0 VREF V
2 × VREF range, AVDD ≥ 2 × VREF 0 2 × VREF V
VINM Absolute input voltage
(AINM_x to REFGND)
VREF range Single-ended input –0.1 0.1 V
Pseudo-differential input VREF / 2 – 0.1 VREF / 2 VREF / 2 + 0.1 V
2 × VREF range Single-ended input, AVDD ≥ 2 × VREF –0.1 0.1 V
Pseudo-differential input, AVDD ≥ 2 × VREF VREF – 0.1 VREF VREF + 0.1 V
Ci Input capacitance In sample mode 40 pF
In hold mode 4 pF
Ilkg(i) Input leakage current 0.1 µA
INTERNAL VOLTAGE REFERENCE
VREFOUT Reference output voltage REFDAC_x = 1FFh (default),
at 25°C
2.495 2.500 2.505 V
VREF-match VREF_A to VREF_B matching REFDAC_x = 1FFh (default),
at 25°C
±1 mV
REFDAC_x resolution(4) 1.1 mV
dVREFOUT/dT Reference voltage temperature drift REFDAC_x = 1FFh (default) ±10 ppm/°C
dVREFOUT/dt Long-term stability 1000 hours 150 ppm
RO Internal reference output impedance 1 Ω
IREFOUT Reference output dc current 2 mA
CREFOUT Recommended output capacitor 10 µF
tREFON Reference output settling time For CREF = 10 μF 8 ms
VOLTAGE REFERENCE INPUT
VREF Reference voltage (input) VREF range 2.4 2.5 AVDD V
2 × VREF range 2.4 2.5 AVDD / 2 V
IREF Average Reference input current Per ADC 300 μA
CREF External ceramic reference capacitance 10 μF
Ilkg(dc) DC leakage current ±0.1 μA
SAMPLING DYNAMICS
tA Aperture delay 8 ns
tA match ADC_A to ADC_B 40 ps
tAJIT Aperture jitter 50 ps
DIGITAL INPUTS(2)
VIH High-level input voltage DVDD > 2.3 V 0.7 DVDD DVDD + 0.3 V
DVDD ≤ 2.3 V 0.8 DVDD DVDD + 0.3 V
VIL Low-level input voltage DVDD > 2.3 V –0.3 0.3 DVDD V
DVDD ≤ 2.3 V –0.3 0.2 DVDD V
Input current ±10 nA
DIGITAL OUTPUTS(2)
VOH High-level output voltage IOH = 500-µA source 0.8 DVDD DVDD V
VOL Low-level output voltage IOH = 500-µA sink 0 0.2 DVDD V
POWER SUPPLY
AVDD Analog supply voltage
(AVDD to AGND)
±VREF range Internal reference 4.5 5.0 5.5 V
External reference: VEXT_REF < 4.5 V 4.5 5.0 5.5 V
External reference: VEXT_REF > 4.5 V VEXT_REF 5.0 5.5 V
±2 × VREF range Internal reference 5.0 5.0 5.5 V
External reference 2 × VREF_EXT 5.0 5.5 V
DVDD Digital supply voltage
(DVDD to AGND)
1.65 5.5 V
AIDD Analog supply current AVDD = 5 V, fastest throughput
internal reference
8.5 10 mA
AVDD = 5 V, fastest throughput
external reference(3)
7.5 mA
AVDD = 5 V, no conversion
internal reference
5.5 7 mA
AVDD = 5 V, no conversion
external reference(3)
4.5 mA
AVDD = 5 V, STANDBY mode
Internal Reference
2.5 mA
AVDD = 5 V, STANDBY mode
external reference(3)
1 mA
Power-down mode 10 50 μA
DIDD Digital supply current DVDD = 3.3 V, CLOAD = 10 pF,
fastest throughput
0.5 mA
DVDD = 5 V, CLOAD = 10 pF
fastest throughput
1 mA
PD Power dissipation
(normal operation)
AVDD = 5V, fastest throughput,
internal reference
42.5 50 mW
(1) Ideal input span, does not include gain or offset error.
(2) Specified by design; not production tested.
(3) With internal reference powered down, CFR.B6 = 0.
(4) Refer to the Reference section for more details.

7.9 Timing Requirements: Interface Mode(1)

PARAMETER ASSOCIATED FIGURES
tCLK CLOCK period Figure 1, Figure 91, Figure 92, Figure 93, Figure 94
tACQ Acquisition time Figure 91, Figure 92, Figure 93, Figure 94
tCONV Conversion time Figure 91, Figure 92, Figure 93, Figure 94
(1) These parameters are specific to the interface mode of operation. Refer to the Conversion Data Read section for more details.

7.10 Timing Characteristics: Serial Interface

PARAMETER TEST CONDITIONS ASSOCIATED FIGURES MIN TYP MAX UNIT
TIMING REQUIREMENTS
tPH_CK CLOCK high time Figure 1 0.4 0.6 tCLK
tPL_CK CLOCK low time 0.4 0.6 tCLK
fCLK CLOCK frequency 1 / tCLK MHz
tPH_CS CS high time Figure 1 40 ns
tPH_CS_SHRT CS high time after frame abort ADS8353 Figure 99 150 ns
ADS7853 100 ns
ADS7253 70 ns
tSU_CSCK Setup time: CS falling edge to SCLK falling edge Figure 1 15 ns
tD_CKCS Delay time: Last SCLK falling edge to CS rising edge 15 ns
tSU_CKDI Setup time: DIN data valid to SCLK falling edge 5 ns
tHT_CKDI Hold time: SCLK falling edge to (previous) data valid on DIN 5 ns
tPU_STDBY Power-up time from STANDBY mode Figure 96 1 µs
tPU_SPD Power-up time from SPD mode With internal reference Figure 98 3 ms
With external reference 1 ms
TIMING SPECIFICATIONS
tTHROUGHPUT Throughput time ADS8353 32-CLK mode Figure 91, Figure 92 1.666 µs
ADS7853 32-CLK mode 1 µs
16-CLK mode Figure 93, Figure 94 1 µs
ADS7253 32-CLK mode Figure 91, Figure 92 1 µs
16-CLK mode Figure 93, Figure 94 1 µs
fTHROUGHPUT Throughput Figure 91, Figure 92, Figure 93, Figure 94 1 / tTHROUGHPUT kSPS
tDV_CSDO Delay time: CS falling edge to data enable Figure 1 12 ns
tDZ_CSDO Delay time: CS rising edge to data going to 3-state 12 ns
tD_CKDO Delay time: SCLK falling edge to next data valid 20 ns

Figure 1 shows the details of the serial interface between the device and the digital host controller.

tim_generic_bas556.gifFigure 1. Serial Interface Timing Diagram

7.11 Typical Characteristics: ADS8353

At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 600 kSPS, unless otherwise noted.
C201_SBAS584.png
fIN = 2 kHz SNR = 84.2 dB THD = -101.3 dB
Figure 2. Typical FFT
C203_SBAS584.png
fIN = 2 kHz
Figure 4. SNR vs Temperature
C205_SBAS584.png
fIN = 2 kHz
Figure 6. SNR vs Reference Voltage
C207_SBAS584.png
VREF = 5 V
Figure 8. SNR vs Input Frequency
C209_SBAS584.png
fIN = 2 kHz
Figure 10. THD vs Temperature
C213_SBAS584.png
VREF = 5 V
Figure 12. THD vs Input Frequency
C225_SBAS584.png
Figure 14. Analog Supply Current vs SCLK Frequency
C216_SBAS584.png
Figure 16. Offset Error vs Temperature
C218_SBAS584.png
Figure 18. Typical DNL
C220_SBAS584.png
Figure 20. DNL vs Temperature
C222_SBAS584.png
Figure 22. DNL vs Reference Voltage
C202_SBAS584.png
fIN = 100 kHz SNR = 80.8 dB THD = -99.1 dB
Figure 3. Typical FFT
C204_SBAS584.png
fIN = 2 kHz
Figure 5. SINAD vs Temperature
C206_SBAS584.png
fIN = 2 kHz
Figure 7. SINAD vs Reference Voltage
C208_SBAS584.png
VREF = 5 V
Figure 9. SINAD vs Input Frequency
C211_SBAS584.png
fIN = 2 kHz
Figure 11. THD vs Reference Voltage
C224_SBAS584.png
Figure 13. Analog Supply Current vs Temperature
C215_SBAS584.png
65536 data points VIN-DIFF = 0 V
Figure 15. DC Histogram
C217_SBAS584.png
Figure 17. Gain Error vs Temperature
C219_SBAS584.png
Figure 19. Typical INL
C221_SBAS584.png
Figure 21. INL vs Temperature
C223_SBAS584.png
Figure 23. INL vs Reference Voltage

7.12 Typical Characteristics: ADS7853

At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.
C101_ADS7853_SBAS584.png
fIN = 2 kHz SNR = 81.1 dB THD = –94.2 dB
16-CLK interface
Figure 24. Typical FFT
C151_ADS7853_SBAS584.png
fIN = 2 kHz SNR = 81.9 dB THD = –98.1 dB
32-CLK interface
Figure 26. Typical FFT
C103_ADS7853_SBAS584.png
fIN = 2 kHz
Figure 28. SNR vs Temperature
C105_ADS7853_SBAS584.png
fIN = 2 kHz
Figure 30. SNR vs Reference Voltage
C107_ADS7853_SBAS584.png
VREF = 5 V
Figure 32. SNR vs Input Frequency
C109_ADS7853_SBAS584.png
fIN = 2 kHz
Figure 34. THD vs Temperature
C113_ADS7853_SBAS584.png
VREF = 5 V
Figure 36. THD vs Input Frequency
C030_SBAS556.png
16-CLK interface
Figure 38. Analog Supply Current vs SCLK Frequency
C115_ADS7853_SBAS584.png
16-CLK interface 65536 data points VIN-DIFF = 0 V
Figure 40. DC Histogram
C116_ADS7853_SBAS584.png
Figure 42. Offset Error vs Temperature
C118_ADS7853_SBAS584.png
16-CLK interface
Figure 44. Typical DNL
C153_ADS7853_SBAS584.png
32-CLK interface
Figure 46. Typical DNL
C120_ADS7853_SBAS584.png
Figure 48. DNL vs Temperature
C122_ADS7853_SBAS584.png
Figure 50. DNL vs Reference Voltage
C102_ADS7853_SBAS584.png
fIN = 250 kHz SNR = 80.2 dB THD = –90.4 dB
16-CLK interface
Figure 25. Typical FFT
C152_ADS7853_SBAS584.png
fIN = 250 kHz SNR = 80.8 dB THD = –92.1 dB
32-CLK interface
Figure 27. Typical FFT
C104_ADS7853_SBAS584.png
fIN = 2 kHz
Figure 29. SINAD vs Temperature
C106_ADS7853_SBAS584.png
fIN = 2 kHz
Figure 31. SINAD vs Reference Voltage
C108_ADS7853_SBAS584.png
VREF = 5 V
Figure 33. SINAD vs Input Frequency
C111_ADS7853_SBAS584.png
fIN = 2 kHz
Figure 35. THD vs Reference Voltage
C124_ADS7853_SBAS584.png
Figure 37. Analog Supply Current vs Temperature
C125_ADS7853_SBAS584.png
32-CLK interface
Figure 39. Analog Supply Current vs SCLK Frequency
C155_ADS7853_SBAS584.png
32-CLK interface 65536 data points VIN-DIFF = 0 V
Figure 41. DC Histogram
C117_ADS7853_SBAS584.png
Figure 43. Gain Error vs Temperature
C119_ADS7853_SBAS584.png
16-CLK interface
Figure 45. Typical INL
C154_ADS7853_SBAS584.png
32-CLK interface
Figure 47. Typical INL
C121_ADS7853_SBAS584.png
Figure 49. INL vs Temperature
C123_ADS7853_SBAS584.png
Figure 51. INL vs Reference Voltage

7.13 Typical Characteristics: ADS7253

At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = 1 MSPS, unless otherwise noted.
C001_ADS7253_SBAS584.png
fIN = 2 kHz SNR = 73.2 dB THD = –90.5 dB
16-CLK interface
Figure 52. Typical FFT
C051_ADS7253_SBAS584.png
fIN = 2 kHz SNR = 73.6 dB THD = –91.6 dB
32-CLK interface
Figure 54. Typical FFT
C003_ADS7253_SBAS584.png
fIN = 2 kHz
Figure 56. SNR vs Temperature
C005_ADS7253_SBAS584.png
fIN = 2 kHz
Figure 58. SNR vs Reference Voltage
C007_ADS7253_SBAS584.png
VREF = 5 V
Figure 60. SNR vs Input Frequency
C009_ADS7253_SBAS584.png
fIN = 2 kHz
Figure 62. THD vs Temperature
C013_ADS7253_SBAS584.png
VREF = 5 V
Figure 64. THD vs Input Frequency
C030_SBAS556.png
16-CLK interface
Figure 66. Analog Supply Current vs SCLK Frequency
C015_ADS7253_SBAS584.png
16-CLK interface 65536 data points VIN-DIFF = 0 V
Figure 68. DC Histogram
C016_ADS7253_SBAS584.png
Figure 70. Offset Error vs Temperature
C018_ADS7253_SBAS584.png
16-CLK interface
Figure 72. Typical DNL
C053_ADS7253_SBAS584.png
32-CLK interface
Figure 74. Typical DNL
C020_ADS7253_SBAS584.png
Figure 76. DNL vs Temperature
C022_ADS7253_SBAS584.png
Figure 78. DNL vs Reference Voltage
C002_ADS7253_SBAS584.png
fIN = 250 kHz SNR = 73.1 dB THD = –90.1 dB
16-CLK interface
Figure 53. Typical FFT
C052_ADS7253_SBAS584.png
fIN = 250 kHz SNR = 73.4 dB THD = –90.6 dB
32-CLK interface
Figure 55. Typical FFT
C004_ADS7253_SBAS584.png
fIN = 2 kHz
Figure 57. SINAD vs Temperature
C006_ADS7253_SBAS584.png
fIN = 2 kHz
Figure 59. SINAD vs Reference Voltage
C008_ADS7253_SBAS584.png
VREF = 5 V
Figure 61. SINAD vs Input Frequency
C011_ADS7253_SBAS584.png
fIN = 2 kHz
Figure 63. THD vs Reference Voltage
C024_ADS7253_SBAS584.png
Figure 65. Analog Supply Current vs Temperature
C125_ADS7853_SBAS584.png
32-CLK interface
Figure 67. Analog Supply Current vs SCLK Frequency
C015_ADS7253_SBAS584.png
32-CLK interface 65536 data points VIN-DIFF = 0 V
Figure 69. DC Histogram
C017_ADS7253_SBAS584.png
Figure 71. Gain Error vs Temperature
C019_ADS7253_SBAS584.png
16-CLK interface
Figure 73. Typical INL
C054_ADS7253_SBAS584.png
32-CLK interface
Figure 75. Typical INL
C021_ADS7253_SBAS584.png
Figure 77. DNL vs Temperature
C023_ADS7253_SBAS584.png
Figure 79. INL vs Reference Voltage

7.14 Typical Characteristics: Common to ADS8353, ADS7853, and ADS7253

At TA = 25°C, AVDD = 5 V, DVDD = 3.3 V, VREF = 2.5 V (internal), and fDATA = maximum, unless otherwise noted.
C027_SBAS556.png
Figure 80. STANDBY Current vs Temperature
C016_SBAS556.png
Figure 82. Internal Reference Output vs Temperature
C028_SBAS556.png
Figure 81. Power-Down Current vs Temperature
C017_SBAS556.png
ROUT = 0.67 Ω
Figure 83. Internal Reference Output Impedance