
1

Using DMA with High Performance
Peripherals to Maximize System

Performance
John Mangino

WW TMS470 Catalog Applications

x00geoff
Text Box
SPNA105 – JANUARY 2007

2

© 2007 Texas Instruments Incorporated, Slide 2

DMA and High Performance Peripherals Doubles
available ARM7 CPU Processing

DMA Overview
High Performance peripherals
Comparison of DMA an Non DMA transfers
Bench Mark Results
Conclusions

3

© 2007 Texas Instruments Incorporated, Slide 3

DMA – Direct memory Access Overview
Direct Memory Access (DMA) transfers data between memory
and peripheral locations
The data transfers take place in parallel with CPU activity,
maximizing system performance
Data can be transferred concurrently with CPU transactions
as long as there is no resource conflict (such as may occur
when both the CPU and DMA controller attempt to access the
same bus)
Data transfers are not interrupt driven, the system
performance is maximized

4

© 2007 Texas Instruments Incorporated, Slide 4

TMS470 DMA Controller
TMS470 DMA utilizes 32 control packets and 16 channels

Control packets control DMA transfers
DMA channels connect peripherals to DMA controller

Configurable transfer access size is to byte, half-word, or
word transfers
Block transfer size is configurable to allow a set number of
DMA transactions (1 to 65,535)
Control packet allows for interrupt enable after completion of
block transfers
Each channel may be individually enabled

5

© 2007 Texas Instruments Incorporated, Slide 5

DMA Usage
Transfer data between memory locations
Transfer data between memory and peripherals
Transfer data between peripherals

6

© 2007 Texas Instruments Incorporated, Slide 6

TMS470 Software

6 5 5 4 4 3 3 2 2 1 1 0Control packet transfer counter

DMA transfer [from source to destination buffer]
TMS470 interrupt (optional)

3

DMA transfer

• Setup of control packet :
• DMACW: [increment destination address]

[increment source address]
[enable interrupt] (optional)

• Source Address = start of source buffer
• Destination Address = start of destination buffer
• Transfer Counter = 6

• DMACCRx: Clear RQEN Bit for selected DMA channel to
achieve a non request mode transfer

• DMACPSR: Enable control packet
• DMACCPRx: • Assign control packet to the DMA channel

• Enable the DMA channel

1

1

2

3

Basic RAM to RAM transfer with DMA

2 2 2 2 2

2

RAM Buffer
(source)

RAM Buffer
(destination)

TMS470 interrupt (optional)

Transfer count size
Destination address
Source address
Configuration word

Control packet x

Classic DMA transfers are between memory locations. The transfers are
done with no CPU cycles except for the initialization of the DMA.

7

© 2007 Texas Instruments Incorporated, Slide 7

CCPACKx

Control packet 00xFFFFF800

Control packet 1

Control packet 2

Control packet 31

0xFFFFF810

0xFFFFF820

0xFFFFF9F0

TMS470R1B1M Configuration
Tms470 devices that support DMA have
internal DMA channel enables to facilitate
data ready conditions

•
•
•

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

DMA
channel x

...
1
3
…
…
…
…
…
…
…
…
…
…
…
…
...

Control packet 30xFFFFF830

DMA command
buffer memory map

DMA Principle

Transfer count size
Destination address
Source address
Configuration word

EBM
SPI1/I2C4
SPI1/I2C4
MibADC/I2C1
MibADC/SCI1/I2C5
MibADC/SCI1/I2C5
I2C1
SCI3/SPI2 SCI3
SCI3/SPI2 SCI3
I2C2 I2C2
I2C2 I2C2
I2C3 I2C3
I2C3 I2C3
Reserved
SCI2
SCI2

The TMS470 devices have DMA channel enables that connect the peripheral to
the DMA. The enable line are the data ready for transfer to and from the
peripheral. The DMA manages up to 16 channels, and supports data transfer for
both on-chip and off-chip memories and peripherals. The DMA controller
is connected to both the CPU and peripheral buses, enabling these data transfers
to occur in parallel with CPU activity and thus maximizing overall system
performance. Each channel has two control packets attached to it, allowing the
DMA to continuously load RAM and generate periodic interrupts so that the data
can be read by the CPU. The control packets allow for the interrupt enable, and
the channels determine the priority level of the interrupt.

DMA transfers occur in one of two modes:
· Non-request mode (used when transferring from memory to memory)
· Request mode (used when transferring from memory to peripheral)

8

© 2007 Texas Instruments Incorporated, Slide 8

SPI

SIMO

SPIBUF

SPI shift register
SPIDAT1 / SPIDAT0

SOMI

RAM Buffer
(received data)

RAM Buffer
(data to send)

DMA

SPI Transmit and Receive Data with DMA

Transfer count size
Destination address
Source address
Configuration word

Control packet A
(transmit)

Transfer count size
Destination address
Source address
Configuration word

Control packet B
(receive)

SPIREQ

This diagram show the DMA between memory and the SPI peripheral. This
setup enable SPI transfers with the need for CPU interrupts.

9

© 2007 Texas Instruments Incorporated, Slide 9

High Performance Peripherals
Powerful High End Timer

32 channel programmable micromachine coprocessor
Capture, compare, PWM and complex functions generation

Fast MultiBuffer ADC
FIFO RAM for results storage
1.55μs, 10-bit resolution, up to 16 channels

Robust CAN With up to 32 Message Objects
Up to 32 message objects
Secure communication in noisy environments

DMA
Parallel CPU activity maximizes system performance
32 control packets and 16 channels

The MultiBuffer ADC is fast, has lots of channels, and the multibuffered feature off
loads the CPU

The High End Timer is a powerful RISC coprocessor providing significant
additional system performance and flexibility

The High End Can Controller provides high level messaging without additional
CPU overhead.

The Direct Memory Access (DMA) controller transfers data between address
ranges in the memory map without intervention by the CPU, maximizing system
performance. When coupled with the other peripherals the DMA can significantly
off load the CPU.

10

© 2007 Texas Instruments Incorporated, Slide 10

ADEISR

Event
group
FIFO

12 value
8 value

read
ADBUFE

ADDR 0
ADDR 1
ADDR 2
ADDR 3
ADDR 4
ADDR 5
ADDR 6
ADDR 7
ADDR 8
ADDR 9
ADDR 10
ADDR 11
ADDR 12
ADDR 13
ADDR 14
ADDR 15

Digital Result Registers

ADISR1 ADISR2

Input Channel Select Registers

Group 1
FIFO

9 value 3 value

Group 2
FIFO

value

value

value

value

Buffered
ModeCompatibility

Mode

read
ADBUF1

read
ADBUF2

15

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Buffered Mode ADC

This slide shows very clearly the difference between Compatibility and Buffered
Mode. In Compatibility mode, when each group has a particular channel selected,
that channel’s results are placed in the corresponding Digital Result Register. In
Buffered mode each Group’s conversions are placed in the corresponding buffer
in the order in which they were received.

11

© 2007 Texas Instruments Incorporated, Slide 11

SPI (master mode)

SIMO

SPIBUF

SPI shift register
SPIDAT1 / SPIDAT0

SOMI

RAM Buffer
(received data)

ADC Buffer
ADBUF1

(data to send)

DMA

ADC to SPI Transfer Data with DMA

Transfer count size
Destination address
Source address
Configuration word

Control packet A
(transmit)

Transfer count size
Destination address
Source address
Configuration word

Control packet B
(receive)

ADCREQ

This example show the DMA transferring data between the ADC and the
SPI. The ADC is set up in an auto convert mode and the data is
transferred to the SPI for transmission to an external device. The following
slide will compare the use of DMA verses a non DMA implementaion.

12

© 2007 Texas Instruments Incorporated, Slide 12

ADC to SPI Transfers (DMA and non DMA)
ADC controls DMA transfers or interrupts for non DMA
ADC conversion every 3.9 micro seconds
ADC in buffer mode
SPI receives data and transmits

13

© 2007 Texas Instruments Incorporated, Slide 13

Bench Mark Results
DMA mode only interrupts to service DMA ~ 4 times per
second (< 50 CPU clock cycles, 200 CPU cycles per second)
0.00033 % of CPU to facilitate transfer
Non DMA mode ADC interrupts CPU to read and transfer data
to SPI – 52 % of CPU to facilitate transfer (> 31,000,000 CPU
clock cycles per second)

The bench mark comparing the use of DMA verses a interrupt driven code
is incredible. The ADC is converting data at 3.9 microseconds or 256,000
samples per second. Interrupt driven code to transfer the data to the SPI
takes over 50% of the CPU cycles verses only 200 CPU cycles per
second, or 0.00033%.

14

© 2007 Texas Instruments Incorporated, Slide 14

Bench Marks
Simple method
1. Create a loop toggling a I/O pin
2. Measure pulse period with no DMA and no non DMA transfer method
3. Measure Pulse period with non DMA data transfer method
4. Measure pulse period with DMA data transfers

This shows an apples to apples comparison, taking into
account all addressing and CPU cycle usage
No nebulous theoretical cycle count calculations, bus
accesses and addressing latency
Automatically takes into account DMA CPU bus usage if any

The test set up uses a IO toggle that compares the period of the toggling
IO pin between DMA and the non DMA method.

15

© 2007 Texas Instruments Incorporated, Slide 15

ADC to SPI Non DMA Transfer
GIO toggle with out data transfers – 454.4 micro seconds
GIO toggle with data transfers – 947.6 micro seconds
52 % of CPU to facilitate transfer (> 31,000,000 CPU clock
cycles per second)

Transfer

No Transfer

454.4 us

947.6 us

With a CPU clock of 60 MHz the IO toggles with a period of 454.4 micro
seconds with no interrupts for data transfer. When the interrupts are
enabled the IO toggle period is lengthened to 947.6 microseconds. This
shows the need CPU cycle to service the interrupts verses no data
transfers.

16

© 2007 Texas Instruments Incorporated, Slide 16

Toggle IO Pulse

while(1)
{
GIODOUTG^= 0x00000001; // GIOB0 Toggle
for (i = 0; i < 800; i++);

}

This the simple toggle IO routine.

17

© 2007 Texas Instruments Incorporated, Slide 17

Non DMA Interrupt Handler
// TMS470R1B1M Standard Interrupt Handler
__irq __arm void irq_handler(void)
{
switch ((0xff & IRQIVEC) - 1)
{

// channel 27 (AD1) interrupt?
case CIM_MIBADCE1 : ADC_irq_handler(); break;

}
}

This is the interrupt handler routine.

18

© 2007 Texas Instruments Incorporated, Slide 18

Non DMA ADC Interrupt Handler
// ADC Interrupt Handler
// Executed 250,000 per second
void ADC_irq_handler()
{

{
ADBUFST &= ~G1_INT_FLAG; // clear flag
SPI1DAT0 = ADBUF1;
}

}

This is the interrupt service routine to handle the data transfer between the
ADC and the SPI. It is controlled by the ADC data conversion done signal.

19

© 2007 Texas Instruments Incorporated, Slide 19

ADC to SPI DMA Transfer
GIO toggle with out data transfers – 454.4 micro seconds
GIO toggle with data transfers – 454.4 micro seconds
0.0003 % of CPU to facilitate transfer (< 200 CPU clock
cycles per second)
DMA interrupt every 65,535 transfers ~ 4 per second

DMA

Non DMA

454.4 us

With a CPU clock of 60 MHz the IO toggles with a period of 454.4 micro
seconds with no interrupts or DMA for data transfer. When the DMA is
enabled the IO toggle appears the same on the oscilloscope. After 65,535
DMA transfers the DMA interrupts the CPU to re initialize the DMA for
another 65,535 transfers. It takes about 41 CPU cycles to service the
interrupt. This occurs about 4 times per second, thus less than 200 CPU
cycles per second for the DMA servicing. This shows very little CPU cycles
to service the interrupts verses no data transfers.

20

© 2007 Texas Instruments Incorporated, Slide 20

DMA Interrupt Handler
// TMS470R1B1M Standard Interrupt Handler
__irq __arm void irq_handler(void)
{
switch ((0xff & IRQIVEC) - 1)
{

// DMA 0 interrupt?
case CIM_DMA0 : DMA0_irq_handler(); break;

}
}

This is the interrupt handler routine.

21

© 2007 Texas Instruments Incorporated, Slide 21

Non DMA ADC Interrupt Handler
// DMA Interrupt Handler
// Executed 4 times per second
void DMA0_irq_handler()
{

DMAS=0;
DMATC00 = 0xffff; // Set transfer size = 65535
DMACPS = 0x00000001;
DMACCP1 = 0x00000040;

}

This is the interrupt service routine to handle the DMA re initialization. It is
controlled by the DMA transfer complete signal.

22

© 2007 Texas Instruments Incorporated, Slide 22

Conclusions
CPU performance more than Doubled
Add the capabilities of the High End Timer and triple,
quadruple,……… performance

With DMA and other high performance peripherals, the processing power
of the CPU can be doubled or more.

23

Thank You

	Using DMA with High Performance Peripherals to Maximize System Performance
	DMA and High Performance Peripherals Doubles available ARM7 CPU Processing
	DMA – Direct memory Access Overview
	TMS470 DMA Controller
	DMA Usage
	Basic RAM to RAM transfer with DMA
	DMA Principle
	SPI Transmit and Receive Data with DMA
	High Performance Peripherals
	ADC to SPI Transfer Data with DMA
	ADC to SPI Transfers (DMA and non DMA)
	Bench Mark Results
	Bench Marks
	ADC to SPI Non DMA Transfer
	Toggle IO Pulse
	Non DMA Interrupt Handler
	Non DMA ADC Interrupt Handler
	ADC to SPI DMA Transfer
	DMA Interrupt Handler
	Non DMA ADC Interrupt Handler
	Conclusions
	Thank You

