This evaluation module (EVM) is a complete evaluation system for the bq20z65/bq29412 battery management system. The EVM includes one bq20z65/bq29412 circuit module and a link to Windows™-based PC software. The circuit module includes one bq20z65 integrated circuit (IC), one bq29412 IC, and all other onboard components necessary to monitor and predict capacity, perform cell balancing, monitor critical parameters, protect the cells from overcharge, over-discharge, short-circuit, and overcurrent in 2-, 3- or 4-series cell Li-ion or Li-polymer battery packs. The circuit module connects directly across the cells in a battery. With the EV2300 interface board and software, the user can read the bq20z65 data registers, program the chipset for different pack configurations, log cycling data for further evaluation, and evaluate the overall functionality of the bq20z65/bq29412 solution under different charge and discharge conditions.
1 Features

- Complete evaluation system for the bq20z65 SBS 1.1-compliant advanced gas gauge with Impedance Track™ technology and bq29412 independent overvoltage protection IC
- Populated circuit module for quick setup
- Software that allows data logging for system analysis

1.1 Kit Contents

- bq20z65/bq29412 circuit module
- Set of support documentation

1.2 Ordering Information

<table>
<thead>
<tr>
<th>EVM PART NUMBER</th>
<th>CHEMISTRY</th>
<th>CONFIGURATION</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>bq20z65EVM-001</td>
<td>Li-ion</td>
<td>2, 3, or 4 cell</td>
<td>Any</td>
</tr>
</tbody>
</table>

2 bq20z65-Based Circuit Module

The bq20z65/bq29412-based circuit module is a complete and compact example solution of a bq20z65 circuit for battery management and protection of Li-ion or Li-polymer packs. The circuit module incorporates a bq20z65 battery monitor IC, bq29412 independent overvoltage protection IC, and all other components necessary to accurately predict the capacity of 2-, 3-, or 4-series cells.

2.1 Circuit Module Connections

Contacts on the circuit module provide the following connections:

- Direct connection to the cells: 1N (BAT-), 1P, 2P, 3P, 4P (BAT+)
- To the serial communications port (SMBC, SMBD)
- The system load and charger connect across PACK+ and PACK-
- To the system-present pin (SYS PRES)

2.2 Pin Descriptions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N</td>
<td>-ve connection of first (bottom) cell</td>
</tr>
<tr>
<td>1P</td>
<td>+ve connection of first (bottom) cell</td>
</tr>
<tr>
<td>2P</td>
<td>+ve connection of second cell</td>
</tr>
<tr>
<td>3P</td>
<td>+ve connection of third cell</td>
</tr>
<tr>
<td>4P</td>
<td>+ve connection of fourth (top) cell</td>
</tr>
<tr>
<td>SMBC</td>
<td>Serial communication port clock</td>
</tr>
<tr>
<td>SMBD</td>
<td>Serial communication data port</td>
</tr>
<tr>
<td>SYS PRES</td>
<td>System present pin (if low, system is present)</td>
</tr>
<tr>
<td>PACK-</td>
<td>Pack negative terminal</td>
</tr>
<tr>
<td>VSS</td>
<td>Pack negative terminal</td>
</tr>
<tr>
<td>PACK+</td>
<td>Pack positive terminal</td>
</tr>
</tbody>
</table>
3 bq20z65 Circuit Module Schematic

This section contains information for modifying and choosing a precharge mode for bq20z65/bq29412 implementation.

3.1 Schematic

The schematic follows the bill of materials in this user's guide.

3.2 Modifications for Choosing Particular Precharge Mode

In order to charge, the charge FET (CHG-FET) must be turned on to create a current path. When the \(V_{(BAT)} \) is 0 V and CHG-FET = ON, the \(V_{(PACK)} \) is as low as the battery voltage. In this case, the supply voltage for the device is too low to operate. This function has three possible configurations, and the IC can be easily configured according to the application needs. The three modes are 0-V Charge FET mode, Common FET mode, and Precharge FET mode.

1. 0-V Charge FET mode - Dedicates a precharge current path using an additional FET (ZVCHG-FET) to sustain the PACK+ voltage level.
2. Common FET mode - Does not use a dedicated precharge FET. The charge FET (CHG-FET) is set to ON state as default.
3. Precharge FET mode - Dedicates a precharge current path using an additional open-drain (OD) pin drive FET (PCHG-FET) to sustain the PACK+ voltage level.

To use a particular mode of charging with the EVM, add or remove some elements shown in Table 2, and use the given settings of DF.Configuration, ZVCHG1, 0.

<table>
<thead>
<tr>
<th>MODE</th>
<th>RESISTORS</th>
<th>PRECHG FET</th>
<th>ZVCHG1</th>
<th>ZVCHG0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 0-V Chg (default)</td>
<td>R21, R28</td>
<td>Q3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Common FET</td>
<td>R24</td>
<td>Q2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3. Precharge</td>
<td>R23, R28</td>
<td>Q3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

For more details about precharge operation and mode choices, see the bq20z65 data sheet (SLUS878).

3.3 Testing Fuse-Blowing Circuit

To prevent the loss of board functionality during the fuse-blowing test, the actual chemical fuse is not provided in the circuit. FET Q1 drives TP3 low if a fuse-blow condition occurs; so, monitoring TP3 can be used to test this condition. Fuse placement on the application board is shown in the bq20z65 data sheet reference-board schematic.

4 Circuit Module Physical Layouts and Bill of Materials

This section contains the printed-circuit board (PCB) layout, bill of materials, and assembly drawings for the bq20z65/bq29412 circuit module.
4.1 **Board Layout**

This section shows the dimensions, PCB layers (Figure 1 through Figure 5), and assembly drawing for the bq20z65 module.

![Figure 1. bq20z65EVM-001 Layout – Silk Screen](image)

![Figure 2. Top Assembly](image)

![Figure 3. Top Layer](image)
4.2 Bill of Materials and Schematic

Table 3. Bill of Materials

<table>
<thead>
<tr>
<th>Count</th>
<th>RefDes</th>
<th>Description</th>
<th>Size</th>
<th>Mfr</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>C1–C9, C12, C13, C15–C18, C23, C24, C26–C28</td>
<td>Capacitor, Ceramic, 0.1µF, 50 V, X7R, 20%</td>
<td>0603</td>
<td>Any</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>Capacitor, Ceramic, 0.22µF, 50 V, X7R, 20%</td>
<td>0603</td>
<td>Any</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>C19</td>
<td>Capacitor, Ceramic, 4.7µF, 10 V, X7R, 20%</td>
<td>0603</td>
<td>Any</td>
<td>STD</td>
</tr>
<tr>
<td>1</td>
<td>C20</td>
<td>Capacitor, Ceramic, 47nF, 50 V, X7R, 20%</td>
<td>0603</td>
<td>Any</td>
<td>STD</td>
</tr>
<tr>
<td>2</td>
<td>C22, C25</td>
<td>Capacitor, Ceramic, 0.47µF, 16 V, X7R, 20%</td>
<td>0603</td>
<td>Any</td>
<td>STD</td>
</tr>
<tr>
<td>3</td>
<td>C10, C14, C21</td>
<td>Capacitor, Ceramic, 1.0µF, 25 V, X7R, 20%</td>
<td>0805</td>
<td>Any</td>
<td>STD</td>
</tr>
<tr>
<td>4</td>
<td>D1–D3, D11</td>
<td>Diode, Switching, 150-mA, 75-V, 350mW</td>
<td>SOT23</td>
<td>Vishay-Liteon</td>
<td>BAS16</td>
</tr>
<tr>
<td>2</td>
<td>D4, D5</td>
<td>Diode, Dual, Zener, 5.6V, 300mW</td>
<td>SOT23</td>
<td>Vishay-Telefunken</td>
<td>AZ23C5V6</td>
</tr>
<tr>
<td>5</td>
<td>D6–D10</td>
<td>Diode, LED, Green, Gullwing, GW Type, 20mA, 7.5 mcd typ.</td>
<td>0.120 × 0.087 inches</td>
<td>Panasonic</td>
<td>LN1361C</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>Header, Friction Lock Assy, 4-pin Right Angle,</td>
<td>0.400 × 0.500</td>
<td>Molex</td>
<td>22-05-3041</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>MOSFET, N-ch, 20-V, 1.3A, 0.16-Ω</td>
<td>SOT23</td>
<td>Fairchild</td>
<td>NDS331N</td>
</tr>
<tr>
<td>2</td>
<td>Q2, Q4</td>
<td>MOSFET, N-ch Logic Level, Power Trench, 30V, 11A, 12.5 mΩ</td>
<td>SO8</td>
<td>Fairchild</td>
<td>FDS6690A</td>
</tr>
</tbody>
</table>
Table 3. Bill of Materials (continued)

<table>
<thead>
<tr>
<th>Count</th>
<th>RefDes</th>
<th>Description</th>
<th>Size</th>
<th>Mfr</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q3</td>
<td>MOSFET, P-ch, 30-V, 8.0-A, 20-mΩ</td>
<td>SO8</td>
<td>Siliconix</td>
<td>Si4435DY</td>
</tr>
<tr>
<td>1</td>
<td>Q6</td>
<td>MOSFET, Nch, 50V, 0.22A, 6 Ω</td>
<td>SOT23</td>
<td>Fairchild</td>
<td>BSS138</td>
</tr>
<tr>
<td>12</td>
<td>R1–R5, R12, R13, R32–R34, R38, R39</td>
<td>Resistor, Chip, 100-Ω, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R11</td>
<td>Resistor, Chip, 0.010 Ω, 1-W, xx%</td>
<td>2512</td>
<td>Vishay</td>
<td>WSL-2512-010 R86</td>
</tr>
<tr>
<td>3</td>
<td>R15, R16, R40</td>
<td>Resistor, Chip, 220 kΩ, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R17</td>
<td>Resistor, Chip, 300-Ω, 1-W, 10%</td>
<td>2512</td>
<td>WSL-2512-300 1% R86</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R18, R27</td>
<td>Resistor, Chip, 3.01MΩ, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R14, R19, R21–R23</td>
<td>Resistor, Chip, 5.1kΩ, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>4</td>
<td>R20, R36, R37, R41</td>
<td>Resistor, Chip, 1MΩ, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>R24, R28</td>
<td>Resistor, Chip, 100kΩ, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>R25, R29</td>
<td>Resistor, Chip, 8.45kΩ, 1/16-W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>R26, R30</td>
<td>Resistor, Chip, 61.9kΩ, 1/16-W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>7</td>
<td>R6–R10, R31, R35</td>
<td>Resistor, Chip, 1kΩ, 1/16-W, 5%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>RT1, RT2</td>
<td>Thermistor, 10kΩ</td>
<td>0.095 × 0.150</td>
<td>Semitec</td>
<td>NTC103AT</td>
</tr>
<tr>
<td>1</td>
<td>SW1</td>
<td>Switch, Push button, Momentary, N.O. Low Profile</td>
<td>5 mm × 5 mm</td>
<td>Panasonic</td>
<td>EVQPLCxxxx</td>
</tr>
<tr>
<td>2</td>
<td>TB1, TB4</td>
<td>Terminal Block, 2-pin, 6-A, 3.5mm</td>
<td>0.27 × 0.25</td>
<td>OST</td>
<td>ED1514</td>
</tr>
<tr>
<td>2</td>
<td>TB2, TB3</td>
<td>Terminal Block, 3-pin, 6-A, 3.5mm</td>
<td>0.41 × 0.25</td>
<td>OST</td>
<td>ED1515</td>
</tr>
<tr>
<td>1</td>
<td>TP1</td>
<td>Test Point, Black, Thru Hole Color Keyed</td>
<td>0.100 × 0.100 inch</td>
<td>Keystone</td>
<td>5001</td>
</tr>
<tr>
<td>1</td>
<td>TP3</td>
<td>Test Point, White, Thru Hole Color Keyed</td>
<td>0.100 × 0.100 inch</td>
<td>Keystone</td>
<td>5002</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>IC, Voltage Protection for 2, 3, 4 Cell Lion , 2nd Protection, 4.45 V OVP</td>
<td>SSOP-08</td>
<td>TI</td>
<td>BC29412DCT</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>IC, Cool-GG Programmable Battery Management</td>
<td>TSSOP30</td>
<td>TI</td>
<td>bq20z65DBT</td>
</tr>
</tbody>
</table>
4.3 bq20z65/bq29412 Circuit Module Performance Specification Summary

This section summarizes the performance specifications of the bq20z65/bq29412 circuit module.
Table 4. Performance Specification Summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage Pack+ to Pack−</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Charge and discharge current</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>A</td>
</tr>
</tbody>
</table>

5 EVM Hardware and Software Setup

This section describes how to install the bq20z65 PC software and how to connect the different components of the EVM.

5.1 System Requirements

The bq20z65EVSW software requires Windows™ 2000 or Windows XP.

5.2 Software Installation

Find the latest software version in the bq20z65 tool folder on power.ti.com. Use the following steps to install the bq20z65EVSW software:

1. Copy the files from the Ti Web site into a temporary directory you select, double-click on bqEV-EASYSetup00.09.xx.exe, where xx indicates the version, and follow the installer instructions to complete the bq20z60 EVSW installation.
2. If the EV2300 was not previously installed, after bq20z60 EVSW installation, a TI USB DRIVER INSTALLER pops up. Click Yes for the agreement message and follow its instructions. Two drivers are associated with the EV2300. Follow the instructions to install both. Do not reboot the computer, even if asked to do so.
3. Plug the EV2300 into a USB port. The Windows system may show a prompt that new hardware has been found. When asked, “Can Windows connect to Windows Update to search for software?”, select “No, not this time” and click on NEXT. In the next dialog window, it indicates “This wizard helps you install software for: TI USB Firmware Updater”, select “Install the software automatically (Recommended)” and click NEXT. It is common for the next screen to be the Confirm File Replace screen. Click No to continue. If this screen does not appear, then go to the next step. After Windows indicates that the installation was finished, a similar dialog window pops up to install the second driver; proceed with the same installation preference as the first one. The second driver is TI USB bq80xx Driver.

6 Troubleshooting Unexpected Dialog Boxes

The following actions can help the user to avoid unexpected dialog boxes.

- Ensure that the files were extracted from the zip file using the Preserve Folder names option.
- Ensure that all the files were extracted from the zip file.
- The user that is downloading the files must be logged in as the administrator.
- The driver is not signed, so the administrator must allow installation of unsigned drivers in the operating system policy.

7 Hardware Connection

The bq20z65EVM-001 comprises three hardware components: the bq20z65/bq29412 circuit module, the EV2300 PC interface board, and the PC.

7.1 Connecting bq20z65/bq29412 Circuit Module to Battery Pack

Figure 7 shows how to connect the bq20z65/bq29412 circuit module to the cells and system load/charger. The cells must be connected in the following order:
7.2 **PC Interface Connection**

The following steps configure the hardware for interface to the PC:

1. Connect the bq20z65-based smart battery to the EV2300 using wire leads as shown in Table 5.

<table>
<thead>
<tr>
<th>bq20z65-Based Battery</th>
<th>EV2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBD</td>
<td>SMBD</td>
</tr>
<tr>
<td>SMBC</td>
<td>SMBC</td>
</tr>
<tr>
<td>VSS</td>
<td>GND</td>
</tr>
</tbody>
</table>

2. Connect the PC USB cable to the EV2300 and the PC USB port.

The bq20z65EVM-001 is now set up for operation.

8 **Operation**

This section details the operation of the bq20z65 EVSW software.

8.1 **Starting the Program**

Run bq Evaluation Software from the Start | Programs | Texas Instruments | bq20z65 EVSW menu sequence. The SBS Data screen (Figure 8) appears. Data begins to appear once the <Refresh> (single time scan) button is clicked, or when the <Keep Scanning> check box is checked. To disable the scan feature, deselect <Keep Scanning>.

The continuous scanning period can be set via the | Options | and | Set Scan Interval | menu selections. The range for this interval is 0 ms to 65535 ms. Only items that are selected for scanning are scanned within this period.
The bq Evaluation Software provides a logging function which logs the values that were last scanned by EVSW. To enable this function, select the Start Logging button; this causes the Keep Scanning button to be selected. When logging is Stopped, the keep scanning button is still selected and has to be manually unchecked.

The logging intervals are specified under the | Options | menu with the maximum value of 65535 ms. The Log interval cannot be smaller than the scan interval because this results in the same value being logged at least twice.

![Figure 8. SBS Data Screen](image)

This screen (Figure 8) shows the SBS data set along with additional ManufacturersAccess() command information such as individual cell measurements. Additional Flag and Static data can be viewed by selecting the appropriate tab at the bottom of the SBS screen.

Data such as SBS.ManufacturerName() is static and does not change. This data is viewed separately using the Static Data tab available at the bottom of the screen.

Dragging the splitter bar (line that separates the Flags/Static data from SBS values) changes the height of the Flags/Static Data display. Selecting | View |, then | Auto Arrange | returns the splitter bar to its original location.
8.2 Setting Programmable bq20z65 Options

The bq20z65 data flash comes configured per the default settings detailed in the bq20z65 data sheet. Ensure that the settings are correctly changed to match the pack and application for the bq20z65 solution being evaluated.

IMPORTANT: The correct setting of these options is essential to get the best performance.

The settings can be configured using the Data Flash screen (Figure 9).

![Data Flash Screen, 1st Level Safety Class](image)

Figure 9. Data Flash Screen, 1st Level Safety Class

To read all the data from the bq20z65 data flash, click on menu option | Data Flash | Read All |.

To write to a data flash location, click on the desired location, enter the data and press <Enter>, which writes the entire tab of flash data, or select menu option | Data Flash | Write All |. The data flash must be read before any writes are performed to avoid any incorrect data being written to the device.

The | File | Special Export | menu option allows the data flash to be exported, but it configures the exported data flash to a learned state ready for mass production use.

The data flash configuration can be saved to a file by selecting | File | Export | and entering a file name. A data flash file also can be retrieved in this way, imported, and written to the bq20z65 using the | Write All | button.

The configuration information of the bq29z95 and module calibration data also is held in the bq20z65 data flash.
Calibration Screen

The bq20z65 allows for an automatic data flash export function, similar to the SBS Data logging function. This feature, when selected via | Options | Auto Export |, exports Data Flash to a sequential series of files named as FilenameNNNNNN.gg where N = a decimal number from 0 to 9.

The AutoExport interval is set under the | Options menu | with a minimum value of 15 s. The AutoExport filename also is set under the | Options menu |.

When a check mark is next to | AutoExport |, the AutoExport is in progress. The same menu selection is used to turn on/off AutoExport.

If the data flash screen is blank, then the bq20z65 that is being used may not be supported by the bqEVSW version that is being used. An upgrade may be required.

9 Calibration Screen

9.1 How to Calibrate

The bq20z65 must be calibrated using power supplies or a power supply and cell simulation resistors (200 Ω to 1000 Ω each) before cells are attached. Before the bq20z65 is calibrated:

- Connect and measure a 2-A current source from 1N (-) and Pack- (+) to calibrate without using the FETs. (Calibration using the FETs is not recommended.)
- Measure the pack voltage from Batt+ to Batt- (total of cell voltages).
- Measure the temperature of the pack.
- These steps may not be required, depending on the type of calibration being performed.

9.2 To Calibrate the bq20z65

Perform the following steps.
1. Select the types of calibration to be performed (see Figure 10).
2. Enter the measured values for the types selected (except for CC Offset Calibration).
3. If Voltage Calibration is selected, then enter the number of cells on the pack.
4. If Temperature Calibration is selected, then select the sensor that is to be calibrated.
5. If the current source is connected between 1N and Pack-, then select the Off (bypassed) check box in the FET Control section.
6. Press the Calibrate Part button.

9.3 Board Offset Calibration

The following steps perform the offset calibration for the current offset of the board.
1. Remove load/external voltage and short Pack- to Batt-.
2. Press the CC Board Offset Calibration button.

9.4 Pack Voltage Calibration

The following steps calibrate the voltage at the AFE Pack pin.
1. Ensure that Voltage Calibration has been performed for the pack. Ensure that a stable charger voltage higher than 8-V is present at Pack+.
2. Press the Pack Voltage button to calibrate.
10 Pro (Advanced) Screen

10.1 SMB Communication

The set of read/write operations over SMBus are not specific to any gas gauge. These are provided as general-purpose communication tools (Figure 11).

10.2 Hexadecimal/Decimal Converter

These two boxes convert between hexadecimal and decimal as soon as values are typed into the boxes. Invalid values may cause erroneous results.

When scaling converted hexadecimal values to a higher number of bytes, follow these rules:

- When unsigned is selected, the left pad contains zeroes.
- When signed is selected, the left pad contains zeroes for a positive number, or the left pad contains F for negative numbers.

Figure 10. Calibration Screen
10.3 Programming

This screen allows device reprogramming from unencrypted and encrypted files.

Figure 11. Pro (Advanced) Screen

11 Related Documentation from Texas Instruments

1. bq20z95, SBS 1.1-Compliant Gas Gauge Enabled and Protection Enabled With Impedance Track™ data sheet (SLUS757)
2. bq20z90-V1.50 + bq29330, bq20z95 Technical Reference manual (SLUU264)
3. bq20z70 and bq20z90 Application Book (SLUA404)
4. Quick-Start Guide for bq20zxx Family Gas Gauge application report (SLUA421)
5. bqEasy™ User’s Guide (SLUU278)
EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 6 V to 25 V and the output voltage range of 0 V to 16.4 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.
Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided "AS IS". TI makes no warranties or representations with regard to the reference designs or use of the reference designs, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI reference designs OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI reference DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI reference DESIGNS OR BUYER'S USE OF TI reference DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated