1 Introduction

The CC2564C dual-mode Bluetooth® stack on MSP432™ microcontroller unit (MCU) software (CC2564CMSP432BTBLESW) for Bluetooth and Bluetooth low energy from TI enables the MSP432 MCU and is comprised of single-mode and dual-mode offerings implementing the Bluetooth 4.2 specification. The Bluetooth stack is fully qualified (QDID 85355 and QDID 69886), provides simple command line sample applications to speed development, and has MFi capability upon request.

For a complete evaluation solution, the CC2564CMSP432BTBLESW software development kit (SDK) works directly with the MSP-EXP432P401R LaunchPad™ Development Kit. The stack for the MSP432 MCU is certified and royalty free (CC2564CMSP432BTBLESW).

The software works with the dual-mode Bluetooth CC256XCQFN-EM evaluation module (EM) through the BOOST-CCEMADAPTER. For audio and voice applications, the software requires an audio codec EVM like the CC3200AUDBOOST. The software also provides a complete Bluetooth BR, EDR, and low energy HCI solution that reduces design effort and ensures a faster time to market. The dual-mode Bluetooth BoosterPack™ Plug-in Module includes TI’s seventh-generation Bluetooth core and provides a product-proven solution that is Bluetooth-4.2 compliant. The device provides one of the best Bluetooth RF performances with a transmit power and receive sensitivity that provides a range of about 2× compared to other Bluetooth Low Energy only solutions. TI’s power-management hardware and software algorithms provide significant power savings in commonly used Bluetooth BR, EDR, and Low Energy modes of operation.

2 Features

Features of the device include the following:

- Supports dual-mode Bluetooth 4.2—Bluetooth certified and royalty free
- Offers fully qualified Bluetooth stack (QDID 85355 and QDID 69886)
- Offers full-thread safety
- Supports nonthreaded (no OS) environment
- Offers fully documented API interface
- Works with any MSP432 MCU
- Includes available sample applications for the MSP-EXP432P401R LaunchPad development kit with the support of the CC256xCQFN-EM through the BOOST-CCEMADAPTER
- Supports CCS, Keil®, and IAR Embedded Workbench® IDEs
2.1 Classic Bluetooth Profiles Available

- Advanced audio distribution profile (A2DP 1.2): Internal SBC encoding/decoding is implemented (Assisted A2DP)

NOTE: Due to a lack of PCM routing in the MSP LaunchPad, manual prototyping is required to interface an external audio codec EVM (for example, CC3200AUDBOOST).

- Audio and video transport protocols (AVDTP 1.2)
- Audio and video remote control profile (AVRCP 1.3)
- Generic access profile (GAP)
- Headset Profile (HSP) and Hands Free Profile (HFP)

NOTE: Due to a lack of PCM routing in the MSP LaunchPad, manual prototyping is required to interface an external audio codec EVM (for example, CC3200AUDBOOST).

- Headset profile (HSP 1.2)
- Hands free profile (HFP 1.6)
- Human-interface device profile (HID 1.0)
- Message access profile (MAP 1.0)
- Phonebook access profile (PBAP 1.0)
- RFCOMM protocol (RFCOMM)
- Service discovery profile (SDP)
- Serial port profile (SPP)

2.2 Bluetooth low energy Profiles Available

- Alert notification service (ANS 1.0)
- Battery service (BAS 1.0)
- Cycle speed and cadence service (CSCS 1.0)
- Device information service (DIS 1.0)
- Find me profile (FMP 1.0)
- Generic access profile service (GAPS 1.0)
- Generic attribute profile (GATT 1.0)
- Health thermometer service (HTS 1.0)
- Heart rate service (HRS 1.0)
- Human-interface device service (HIDS 1.0)
- Immediate alert service (IAS 1.0)
- Link loss service (LLS 1.0)
- Phone alert state service (PASS 1.0)
- Proximity profile (PXP 1.0)
- TX power service (TPS 1.0)

2.3 MFi Support

iAP Protocol (iAP 1/iAP 2)
Provided as an add-on upon request
3 Sample Application Overview

The Sample Applications included in the CC2564CMSP432BTBLESW allow the users to evaluate TI's CC2564C dual-mode Bluetooth 4.2 device with the MSP-EXP432P401R LaunchPad development kit. The MSP-EXP432P401R Bluetooth sample applications are provided to enable a feature-rich and easy-to-use out-of-box experience for the user. These applications let the user use a console to send Bluetooth commands, set up a Bluetooth device to accept connections, connect to a remote Bluetooth device, and communicate over Bluetooth. Each profile is supported with simple command-line based sample applications to speed development. Figure 1 shows an overview of the demonstration example.

![Diagram](image-url)

Figure 1. Demonstration Example Overview
4 Requirements

The following hardware and software tools are required for a complete evaluation:

Hardware
• One MSP432 LaunchPad Development Kit
 – MSP-EXP432P401R
• One EM Adapter BoosterPack
 – BOOST-CCEMADAPTER
• One CC2564C QFN EM board
 – CC256XCQFN-EM
• One SimpleLink Wi-Fi CC3200 Audio BoosterPack (optional) for audio and voice sample applications
 – CC3200AUDBOOST

Software
• TI Dual-Mode Bluetooth stack
 – On MSP432 MCUs: CC2564CMSP432BTBLESW
• Recommended IDE versions for testing
 – Code Composer Studio™ integrated development environment (CCS 6.1.1.00022)
 – IAR Embedded Workbench® v7.3
 – ARM® Keil® μVision® IDE v5.17.0.0

Figure 2 and Figure 4 show the hardware requirement combinations.
5 Hardware Setup

Using TI’s dual-mode Bluetooth CC2564C QFN EM board (CC256XCQFN-EM) and the EM BoosterPack Adapter (BOOST-CCEMADAPTER), the MSP432 MCU LaunchPad Development Kit (MSP-EXP432P401R) can evaluate both classic and Bluetooth low energy capabilities with TI’s dual-mode Bluetooth stack on MSP432 MCUs. Additionally, the TI BoosterPack plug-in module for audio and voice (CC3200AUDBOOST) can be connected to the BOOST-CCEMADAPTER and the MSP-EXP432P401R to evaluate the audio and voice sample applications.

5.1 Setting Up the Hardware

To set up the hardware, do as follows:

1. Fit the CC256XCQFN-EM on the EM BoosterPack Adapter (BOOST-CCEMADAPTER).
2. Stack the BOOST-CCEMADAPTER onto the MSP432 LaunchPad (MSP-EXP432P401R).

NOTE: The boards must be set to their default settings.

For more information on the jumper positions and default settings for the BOOST-CCEMADAPTER, see the CC256XCQFNEM Quick Start Guide and the Dual-Mode Bluetooth CC2564C QFN EM User’s Guide. For jumper positions and configurations for the MSP-EXP432P401R development kit, see the MSP432 LaunchPad Development Kit User’s Guide.

Ensure that the connectors of the LaunchPad and the BOOST-CCEMADAPTER are aligned.

3. To use the CC3200AUDBOOST device for audio and voice applications (optional), do as follows:
 • Ensure that the directions of the PCM signals are properly set on the CC256XCQFN-EM to evaluate audio and voice sample applications. The directions of the PCM signals can be configured so that the PCM port on the CC2564C device is either PCM master or PCM slave, depending on the sample application. See Table 1 to ensure that the R18, R19, and R11 on the CC256XCQFN-EM are properly configured for complete evaluation of the audio and voice sample applications.

<table>
<thead>
<tr>
<th>Demo Name</th>
<th>CC256XCQFN-EM PCM Role</th>
<th>R18 (Ω)</th>
<th>R19 (Ω)</th>
<th>R11 (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3DP Demo_SNK</td>
<td>Master</td>
<td>DNI</td>
<td>10K</td>
<td>0 or DNI</td>
</tr>
<tr>
<td>A3DP Demo_SRC</td>
<td>Slave</td>
<td>10K</td>
<td>DNI</td>
<td>DNI</td>
</tr>
<tr>
<td>HFP Demo_AG, HFP Demo_HF, and HSP Demo</td>
<td>Master</td>
<td>DNI</td>
<td>10K</td>
<td>DNI</td>
</tr>
</tbody>
</table>

(1) DNI indicates Do not install.
Figure 3 shows the position of the R18, R19, and R11 resistors on the CC256XCQFN-EM board.

Figure 3. CC256XCQFN-EM PCM Role Selection for Audio and Voice Sample Applications

For more details regarding the PCM role selection on the CC256XCQFN-EM board, refer to CC256xCQFN-EM User's Guide and Dual-Mode Bluetooth® CC2564CQFN-EM Evaluation Board.

- Connect the CC3200AUDBOOST audio codec board to the BOOST-CCEMADAPTER and the MSP-EXP432P401R, as shown in Figure 4.

NOTE: Because the BOOST-CCEMADAPTER and CC3200AUDBOOST BoosterPack pinouts conflict with each other, the CC3200AUDBOOST cannot be stacked on the MSP432 LaunchPad while the BOOST-CCEMADAPTER is being used. Minor prototyping and jumper wire connections are required to connect the CC3200AUDBOOST with the BOOST-CCEMADAPTER and the MSP-EXP432P401R.
Figure 4. CC3200AUDBOOST Connection With BOOST-CCEMADAPTER and MSP-EXP432P401R

<table>
<thead>
<tr>
<th>Connection Designator</th>
<th>BOOST-CCEMADAPTER Pin</th>
<th>CC3200AUDBOOST Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUD_IN</td>
<td>P21-4</td>
<td>J1-18</td>
</tr>
<tr>
<td>AUD_OUT</td>
<td>P21-5</td>
<td>J1-20</td>
</tr>
<tr>
<td>AUD_FSYNC</td>
<td>P20-6</td>
<td>J1-14</td>
</tr>
<tr>
<td>AUD_CLK</td>
<td>P20-9</td>
<td>J1-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection Designator</th>
<th>MSP-EXP432P401R Pin</th>
<th>CC3200AUDBOOST Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>3V3 Power</td>
<td>3V3</td>
<td>J1-1</td>
</tr>
<tr>
<td>Ground</td>
<td>GND</td>
<td>J1-4</td>
</tr>
<tr>
<td>I2C_SDA</td>
<td>10.2</td>
<td>J1-19</td>
</tr>
<tr>
<td>I2C_SCL</td>
<td>10.3</td>
<td>J1-17</td>
</tr>
</tbody>
</table>
Table 2. CC3200AUDBOOST Ports or Audio Sample Applications

<table>
<thead>
<tr>
<th>Sample Applications</th>
<th>CC3200AUDBOOST Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3DP Demo_SRC</td>
<td>LINE_IN (J3)</td>
</tr>
<tr>
<td>A3DP Demo_SNK</td>
<td>LINE_OUT (J4)</td>
</tr>
<tr>
<td>HFP Demo_AG</td>
<td>Mic (U6) LINE_OUT (J4)</td>
</tr>
<tr>
<td>HFP Demo_HF</td>
<td>Mic (U6) LINE_OUT (J4)</td>
</tr>
<tr>
<td>HSP Demo</td>
<td>Mic (U6) LINE_OUT (J4)</td>
</tr>
</tbody>
</table>

NOTE: For the default settings for the CC3200AUDBOOST device, see the CC3200 SimpleLink™ Wi-Fi® and IoT Solution, a Single Chip Wireless MCU - Audio BoosterPack user’s guide. Ensure the reliability of the connections that are shown in Figure 4.

For more details regarding the PCM role selection on the CC256XCQFN-EM board, refer to CC256xCQFN-EM User’s Guide and Dual-Mode Bluetooth® CC2564CQFN-EM Evaluation Board.

6 Software Setup

6.1 Downloading and Installing

To download and install the Bluetooth software development kit (SDK), do as follows:

1. Create a TI login (if necessary).
2. Complete the export approval form.

NOTE: A request is submitted to TI for approval. When the request is approved, a confirmation appears on the next page with a link to download the software.

3. Click Download to start the download.
4. Run the setup file (for example, CC256XMSP432BTBLESW-v4.2.x.x.x.x-Setup.exe).
5. Accept the TI Bluetooth Stack Clickwrap License Agreement.

NOTE: The SDK installs to C:\TI\Connectivity\CC256X BT\CC256x MSP432 Bluetopia® SDK.

6. Navigate to the SDK through Start → Programs → Texas Instruments → CC256X BT → CC256X MSP432 Bluetopia SDK v4.2.x.x.x.x to access the file.
6.2 Building and Flashing the Bluetooth Code (MSP-EXP432P401R)

Sample applications are available for CCS, IAR, and Keil. To set up the sample applications on each IDE version, do as follows:

CCS
1. Navigate to the workspace through Project → Import CCS Projects.
2. Open C:\TI\Connectivity\CC256X BT\CC256x MSP432 Bluetopia SDK\4.2.x.x\Samples.
3. Select the demonstration to load onto the device (for this example, the SPPDemo).
4. Navigate to SPPDemo → CCS.

NOTE: The CCS SPPDemo project opens (see Figure 5).

![Image of CCS Project Folder]

Figure 5. CCS Project Folder
5. Open Project → Properties → General, and ensure that the “Manage the project’s target-configuration automatically” checkbox is set. See Figure 6.

![Figure 6. Project Properties / General](image)

6. Ensure the MSP432 device is connected.
7. Select the debug icon from the toolbar (see Figure 7).

![Debug Icon](image)

Figure 7. Debug Icon

NOTE: Let the IDE debug and load the software onto the device. This process may take 5 to 10 minutes. After the IDE loads the software, the it is ready to use.

To begin using the profile, do as follows:

1. Click the play and resume icon on the CCS toolbar (see Figure 8).

![Play and Resume Icon](image)

Figure 8. Play and Resume Icon

IAR

To open the workspace, do as follows:

1. Navigate to `C:I\TI\Connectivity\CC256X_BT\CC256x_MSP432_Bluetopia_SDK\4.2.x.x\Samples`.
2. Select the demonstration to load onto the device (for this example, the `SPPDemo`).
3. Navigate to `SPPDemo → EWARM`.
4. Select `SPPDemo.eww`.

NOTE: The IAR IDE opens.
5. Select either the Debug or Release configuration from the drop-down menu (in this example, select **Debug**, see Figure 9).

![Figure 9. Debug Workspace](image)

6. Ensure that the MSP-EXP432P401R LaunchPad development kit is connected.

7. Select **Download and Debug** from the **Project** tab or the play icon (see Figure 10).

![Figure 10. Download and Debug](image)

NOTE: Let the IDE debug and load the software onto the device. This process may take 5 to 10 minutes.
8. Click the red X icon in the IAR toolbar to stop debugging (see Figure 11).

![Figure 11. Red X](image1.png)

To begin using the profile, do as follows:

1. Click the Go icon in IAR (see Figure 12).

![Figure 12. The Go Button](image2.png)
Keil

To open the workspace, do as follows:

1. Navigate to `C:\TI\Connectivity\CC256X BT\CC256x MSP432 Bluetopia SDK\4.2.x.x\Samples`.
2. Select the demonstration to load on the device (for this example, use `SPPDemo`).
3. Navigate to `SPPDemo → Keil` in the samples list.
4. Select `SPPDemo.uvprojx`.

NOTE: Keil µVision5 opens.

5. Select either the Debug or Release configuration from the drop-down menu (in this example, select Debug, see Figure 13).

![Figure 13. Configurations](image)
To build the code, do as follows:

1. Navigate to Project → Build Target in the program menu (see Figure 14).

![Figure 14. Build Project → Target](image)

NOTE: After a few minutes, the build process finishes and should build a .axf file. Each time the configuration is changed, a new .axf file must be built.

2. Choose from the following two options.
 - For Debug Mode Only, do as follows:
 (a) Select Start/Stop Debug Session to start loading the profile on the MSP432 device (see Figure 15).
Figure 15. Start/Stop Debug Session

NOTE: The debug session finishes in a few minutes.

(b) Stop the debugging session from the Debug menu.

NOTE: The profile loads on the MSP-EXP432P401R LaunchPad development kit.

(c) Unplug the device.

(d) Plug in the device.
• For Release and Debug Modes:
 (a) Press the LOAD icon to start loading the profile on the MSP432 device (see Figure 16).

 ![Figure 16. LOAD Button](image)

 Figure 16. LOAD Button

 NOTE: The profile finishes in a few minutes. The profile loads on the MSP-EXP432P401R LaunchPad development kit.

 (b) Unplug the device.
 (c) Plug in the device.
7 Sample Applications

TI dual-mode Bluetooth stack on MSP432 MCUs includes sample applications directory available with source code which demonstrates the use of the TI’s Bluetooth stack. These sample applications are a simple, command line applications that display a list of available commands. Table 3 lists the specific audio connectors for the audio sample applications. The parameters for this port are as follows:

- Baud: 115,200
- Data Bits: 8
- Parity: None
- Stop Bits: 1
- Flow Control: None

Table 3 lists available profiles for Bluetooth SDK.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Role</th>
<th>NoOS</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3DP Demo_SNK</td>
<td>Sink</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Controller</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC3200AUDBOOST(1)(2)</td>
</tr>
<tr>
<td>A3DP Demo_SRC</td>
<td>Source</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Target</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC3200AUDBOOST(1)(2)</td>
</tr>
<tr>
<td>ANP Demo</td>
<td>Server</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td>CSCP Demo</td>
<td>Server</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td>FMP Demo</td>
<td>Target</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Locator</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td>HFP Demo_AG</td>
<td>Audio</td>
<td>IAR, Keil</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Gateway</td>
<td></td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC3200AUDBOOST(1)(2)</td>
</tr>
<tr>
<td>HFP Demo_HF</td>
<td>Audio</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Gateway</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td>Hands-Free</td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>unit</td>
<td></td>
<td>CC3200AUDBOOST(1)(2)</td>
</tr>
<tr>
<td>HID Demo</td>
<td>Host</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Device</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td>HOGP Demo</td>
<td>Host</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Device</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td>HRP Demo</td>
<td>Collector</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Sensor</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td>HSP Demo</td>
<td>Audio</td>
<td>CCS, IAR,</td>
<td>MSP-EXP432P401R</td>
</tr>
<tr>
<td></td>
<td>Gateway</td>
<td>Keil</td>
<td>BOOST-CCEMADAPTER</td>
</tr>
<tr>
<td></td>
<td>Headset</td>
<td></td>
<td>CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC3200AUDBOOST(1)(2)</td>
</tr>
</tbody>
</table>

(1) To evaluate the audio and voice sample application, a codec EVM like the CC3200AUDBOOST must be connected to the P10 port of the MSP432. Regarding the proper PCM direction setting on the CC256XCQFN-EM board for this sample application, see Section 5.1.

(2) Because the BOOST-CCEMADAPTER and CC3200AUDBOOST BoosterPack pinouts conflict with each other, the CC3200AUDBOOST cannot be stacked on the MSP432 LaunchPad while the BOOST-CCEMADAPTER is being used. For details on how to connect the CC3200AUDBOOST through jumper wires for audio and voice sample applications, see Section 5.1.
Table 3. Available Profiles for Bluetooth SDK (continued)

<table>
<thead>
<tr>
<th>Profile</th>
<th>Role</th>
<th>NoOS</th>
<th>Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTP Demo</td>
<td>Collector</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Thermometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iBeacon Demo</td>
<td>Server</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP Demo</td>
<td>Server</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASP Demo</td>
<td>Server</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBAP Demo</td>
<td>Server</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PXP Demo</td>
<td>Monitor</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Reporter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPP Demo</td>
<td>Device A</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Device B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPPDMMulti Demo</td>
<td>Server</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPPLE Demo</td>
<td>Server</td>
<td>CCS, IAR</td>
<td>BOOST-CCEMADAPTER CC256XCQFNEM</td>
</tr>
<tr>
<td></td>
<td>Client</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) The SPPDMMulti Demo application allows the user to simultaneously evaluate complex scenarios and multiple connections in various roles using Bluetooth Classic and Bluetooth low energy. Enabling all those features causes the size of the application code to exceed the code space limitation of the MSP432P401R (256K flash) device in debug mode build configuration (no compiler optimization) for CCS, IAR, and Keil IDEs. This limitation can be avoided by changing the compiler optimization in debug mode settings to reduce code size or by evaluating the sample application in release mode build configuration.

7.1 Classic Bluetooth Sample Applications

A3DP Sink Demo
- The assisted advanced audio distribution profile (A3DP) shows how to send stereo audio over Bluetooth.
- For a step-by-step demonstration of how to run this application for the sink role, visit the A3DP demo sink wiki.

A3DP Source Demo
- The assisted advanced audio distribution profile shows how to send stereo audio over Bluetooth.
- For a step-by-step demonstration of how to run this audio gateway application for the source role, visit the A3DP demo source wiki.

HFP Demo
- The hands-free profile (HFP) lets the user demonstrate the use of hands-free profile on embedded device. The HFP is used to connect a headset or speaker phone with a mobile device to provide remote control and voice connections.
- The HFP supports two roles: hands free and audio gateway.
- For a step-by-step demonstration of how to run the audio gateway application, visit the HFP AG demo application wiki.
- For a step-by-step demonstration of how to run the hands-free application, visit the HFP HG Demo application wiki.
HID Demo
- The human interface device (HID) enables a host to connect and control a HID device.
- For a step-by-step demonstration of how to run this application, visit the HID demo wiki.

HSP Demo
- The headset profile (HSP) lets the user demonstrate the use of HSP on embedded device. The HSP is used to connect a headset or speaker phone with a mobile device or to connect an audio gateway with a headset device to provide basic control and voice connections.
- For a step-by-step demonstration of how to run this application, visit the HSP demo wiki.

MAP Demo
- The MAP demo lets the user exchange message objects over Bluetooth.
- For a step-by-step demonstration of how to run this application, visit the MAP demo application wiki.

PBAP Demo
- The PBAP demo lets the user exchange phonebook objects over Bluetooth.
- For a step-by-step demonstration of how to run this application, visit the PBAP demo application wiki.

SPP Demo
- This application shows how to use the SPP module and how to handle the different callback events. The application can be used to interface with a remote SPP client or server.
- For a step-by-step demonstration of how to run this application, visit the SPP demo application wiki.

7.2 Classic Bluetooth + Bluetooth low energy Sample Applications

SPP + SPPLE Demo
- This application shows how to use low energy (LE) and the GATT profile. This sample emulates using SPP over LE using the GATT profile. This sample acts as an LE master and an LE slave.
- This application also shows how to use the SPP module and how to handle the different SPP callback events. The application acts as either an SPP server or an SPP client and exposes the same command set for SPP as the SPPDemo.
- For a step-by-step demonstration of how to run this application, visit the SPP + SPPLE demo wiki.

SPPDMulti Demo
- This application is based on the SPP + SPPLE Demo application and demonstrates how to utilize the chosen features from Bluetooth specification 4.1 and Bluetooth specification 4.2:
 - LE Dual Mode Topology: Connect in classic Bluetooth and Bluetooth low energy to the same device.
 - LE Link Layer Topology: Support multiple simultaneous roles, that is, Peripheral and Central.
 - L2CAP LE Connection Oriented: Support LE Credit Based Flow Control Mode.
 - LE Ping: Used to verify presence of the remote Link Layer. In addition, can be used to verify message integrity in the LE ACL by forcing the remote device to send an LE ACL packet that contains a valid MIC.
 - LE Low Duty Cycle Advertising: Designed for a case where reconnecting with a specific device is required, but time is not of the essence or when it is not known if the central device is in range
 - 32-bit UUID: Register services with aliases that are represented as 32-bit values instead of 128-bit UUIDs
- The application allows the user establish connection between multiple BLE devices using the SPPLE custom service, send Bluetooth commands and exchange data over BLE. This application also shows how to use the SPP module and how to handle the different SPP callback events. The application acts as either an SPP server or an SPP client and exposes the same command set for SPP as the SPPDemo.
- For a step-by-step demonstration of how to run this application, visit SPPDMulti demo wiki.
7.3 Bluetooth low energy Sample Applications

ANP Demo
• This application shows how to use LE and the GATT profile. This sample implements the alert notification profile (ANP) using the GATT profile. This sample acts as an LE master and an LE slave.
• For a step-by-step demonstration of how to run this application, visit the ANP demo wiki.

iBeacon Demo
• The iBeacon profile is used to provide a different type of location-based information and services. There are two roles defined in this profile: a server and a client. The server transmits a user-defined message, which is received by any client that is in range. The received iBeacon message can trigger different behaviors.
• This application lets the user advertise specific Bluetooth low energy data that can be read by an iBeacon scanner (client).
• For a step-by-step demonstration of how to run this application, visit the iBeacon demo wiki.

HRP Demonstration
• This application shows how to use LE and the GATT profile. This sample implements the heart rate monitoring profile (HRP) using the GATT profile. This sample acts as an LE master and an LE slave.
• For a step-by-step demonstration of how to run this application, visit the HRP demo wiki.

HTP Demonstration
• This application shows how to use LE and the GATT profile. This sample implements the health thermometer profile (HTP) using the GATT profile. This sample acts as an LE master and an LE slave.
• For a step-by-step demonstration of how to run this application, visit the HTP demo wiki.

PASP Demo
• This application shows how to use LE and the GATT profile. This sample implements the phone alert status profile (PASP) using the GATT profile. This sample acts as an LE master and an LE slave.
• For a step-by-step demonstration of how to run this application, visit the PASP demo wiki.

HOGP Demo
• This application shows how to use LE and the GATT profile. This sample implements the HID using the GATT profile.
• For a step-by-step demonstration of how to run this application, visit the HOGP demo wiki.

PXP Demon
• This application shows how to use LE and the GATT profile. This sample implements the proximity profile (PXP) using the GATT profile. This sample acts as an LE master and an LE slave.
• For a step-by-step demonstration of how to run this application, visit the PXP demo wiki.

FMP Demo
• This application shows how to use LE and the GATT profile. This sample implements the find me profile (FMP) using the GATT profile. This sample acts as an LE master and an LE slave.
• For a step-by-step demonstration of how to run this application, visit the FMP demo wiki.

CSCP Demo
• This application shows how to use LE and the GATT profile establish connection between two Bluetooth low energy devices with the cycling speed and cadence service (CSCS), notify measurements and change the sensor location and cumulative wheel value in the Speed Cadence (SC) Control Point.
• For a step-by-step demonstration of how to run this application, visit the CSCP demo wiki.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Literature Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2016</td>
<td>SWRU497*</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated