
KeyStone Architecture

Literature Number: SPRUGV3
August 2011

Inter-IC Control Bus (I2C)

User Guide

ø-ii KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011

www.ti.com

Submit Documentation Feedback

Release History

Release Date Chapter/Topic Description/Comments

SPRUGV3 August 2011 All First release

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Contents

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide ø-iii
Submit Documentation Feedback

www.ti.com

Contents

Release History. ø-ii
List of Tables . ø-v
List of Figures . ø-vi

Preface ø-vii
About This Manual . ø-vii
Notational Conventions . ø-vii
Related Documentation from Texas Instruments . ø-viii
Trademarks . ø-viii

Chapter 1

Introduction 1-1
1.1 Introduction . 1-2
1.2 Purpose of the Peripheral . 1-2
1.3 Features . 1-2
1.4 Functional Block Diagram . 1-3
1.5 Industry Standard(s) Compliance Statement . 1-3

Chapter 2

Peripheral Architecture 2-1
2.1 Peripheral Architecture . 2-2
2.2 Bus Structure . 2-2
2.3 Clock Generation . 2-3
2.4 Clock Synchronization . 2-4
2.5 Signal Descriptions . 2-5

2.5.1 Input and Output Voltage Levels . 2-5
2.5.2 Data Validity . 2-5

2.6 START and STOP Conditions. 2-5
2.7 Serial Data Formats . 2-6

2.7.1 7-Bit Addressing Format. 2-7
2.7.2 10-Bit Addressing Format . 2-7
2.7.3 Free Data Format . 2-7
2.7.4 Using a Repeated START Condition . 2-8

2.8 Operating Modes . 2-8
2.9 NACK Bit Generation . 2-9
2.10 Arbitration .2-10
2.11 Reset Considerations .2-10

2.11.1 Software Reset Considerations .2-10
2.11.2 Hardware Reset Considerations .2-11

2.12 Interrupt Support .2-11
2.12.1 Interrupt Events and Requests. .2-11
2.12.2 Interrupt Multiplexing .2-11

2.13 DMA Events Generated by the I2C Module .2-12
2.14 Emulation Considerations. .2-12
2.15 I2C Bus Hang Caused by Reset. .2-12

Chapter 3

Registers 3-1

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Contents

ø-iv KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

www.ti.com

3.1 Register Overview . 3-2
3.2 I2C Own Address Register (ICOAR) . 3-2
3.3 I2C Interrupt Mask Register (ICIMR) . 3-3
3.4 I2C Interrupt Status Register (ICSTR) . 3-4
3.5 I2C Clock Divider Registers (ICCLKL and ICCLKH) . 3-6

3.5.1 I2C Clock Low-Time Divider Register (ICCLKL) . 3-7
3.5.2 I2C Clock High-Time Divider Register (ICCLKH) . 3-7

3.6 I2C Data Count Register (ICCNT) . 3-8
3.7 I2C Data Receive Register (ICDRR). 3-8
3.8 I2C Slave Address Register (ICSAR) . 3-9
3.9 I2C Data Transmit Register (ICDXR) .3-10
3.10 I2C Mode Register (ICMDR) .3-10
3.11 I2C Interrupt Vector Register (ICIVR) .3-14
3.12 I2C Extended Mode Register (ICEMDR). .3-14
3.13 I2C Prescaler Register (ICPSC). .3-15
3.14 I2C Peripheral Identification Registers (ICPID1 and ICPID2) .3-16

Appendix A

I2C Lockup Issue A-1

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

List of Tables

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide ø-v
Submit Documentation Feedback

www.ti.com

List of Tables

Table 2-1 Operating Modes of the I2C Module. 2-8
Table 2-2 Generating a NACK Bit . 2-9
Table 2-3 Descriptions of the I2C Interrupt Events . 2-11
Table 3-1 GPIO Registers . 3-2
Table 3-2 I2C Own Address Register Field Descriptions . 3-2
Table 3-3 I2C Interrupt Mask Register Field Descriptions . 3-3
Table 3-4 I2C Interrupt Status Register Field Descriptions . 3-4
Table 3-5 I2C Clock Low-Time Divider Register Field Descriptions . 3-7
Table 3-6 I2C Clock High-Time Divider Register Field Descriptions. 3-7
Table 3-7 I2C Data Count Register Field Descriptions . 3-8
Table 3-8 I2C Data Count Register Field Descriptions . 3-9
Table 3-9 I2C Slave Address Register Field Descriptions . 3-9
Table 3-10 I2C Data Transmit Register Field Descriptions . 3-10
Table 3-11 I2C Mode Register Field Descriptions . 3-11
Table 3-12 Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits . 3-12
Table 3-13 How the MST and FDF Bits Affect the Role of TRX Bit . 3-13
Table 3-14 I2C Interrupt Vector Register Field Descriptions . 3-14
Table 3-15 I2C Extended Mode Register Field Descriptions . 3-15
Table 3-16 I2C Prescaler Register Field Descriptions. 3-15
Table 3-17 I2C Peripheral Identification Register 1 Field Descriptions . 3-16
Table 3-18 I2C Peripheral Identification Register 2 Field Descriptions . 3-16

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

List of Figures

ø-vi KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

www.ti.com

List of Figures

Figure 1-1 Block Diagram. 1-3
Figure 2-1 Multiple I2C Modules Connected. 2-3
Figure 2-2 Clocking Diagram for the I2C Module. 2-4
Figure 2-3 Synchronization of Two I2C Clock Generators During Arbitration . 2-4
Figure 2-4 Bit Transfer on the I2C-Bus . 2-5
Figure 2-5 I2C Module START and STOP Conditions. 2-6
Figure 2-6 I2C Module Data Transfer . 2-6
Figure 2-7 I2C Module 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR) . 2-7
Figure 2-8 I2C Module 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver (FDF = 0, XA = 1 in ICMDR) . .

2-7
Figure 2-9 I2C Module Free Data Format (FDF = 1 in ICMDR) . 2-8
Figure 2-10 I2C Module 7-Bit Addressing Format With Repeated START Condition . 2-8
Figure 2-11 Arbitration Procedure Between Two Master-Transmitters . 2-10
Figure 3-1 I2C Own Address Register (ICOAR) . 3-2
Figure 3-2 I2C Interrupt Mask Register (ICIMR) . 3-3
Figure 3-3 I2C Interrupt Status Register (ICSTR) . 3-4
Figure 3-4 Roles of the Clock Divide-Down Values (ICCL and ICCH). 3-6
Figure 3-5 I2C Clock Low-Time Divider Register (ICCLKL). 3-7
Figure 3-6 I2C Clock High-Time Divider Register (ICCLKH). 3-7
Figure 3-7 I2C Data Count Register (ICCNT). 3-8
Figure 3-8 I2C Data Count Register (ICCNT). 3-8
Figure 3-9 I2C Slave Address Register (ICSAR) . 3-9
Figure 3-10 I2C Data Transmit Register (ICDXR) . 3-10
Figure 3-11 I2C Mode Register (ICMDR). 3-10
Figure 3-12 Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit . 3-13
Figure 3-13 I2C Interrupt Vector Register (ICIVR) . 3-14
Figure 3-14 I2C Extended Mode Register (ICEMDR) . 3-14
Figure 3-15 I2C Prescaler Register (ICPSC) . 3-15
Figure 3-16 I2C Peripheral Identification Register 1 (ICPID1) . 3-16
Figure 3-17 I2C Peripheral Identification Register 2 (ICPID2) . 3-16
Figure A-1 Example I2C Interface. A-2
Figure A-2 Normal Read Cycle . A-3
Figure A-3 Bus-Hang Read Cycle . A-3
Figure A-4 I2C Master Bus Hang . A-4
Figure A-5 Multiple Master Bus Hang . A-5

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide ø-vii
Submit Documentation Feedback

Preface

About This Manual
This document describes the inter-integrated circuit (I2C) module in the KeyStone
Architecture Digital Signal Processor (DSP). The I2C provides an interface between the
KeyStone device and other devices compliant with Philips Semiconductors Inter-IC
bus (I2C-bus) specification version 2.1 and connected by way of an I2C-bus. This
document assumes the reader is familiar with the I2C-bus specification.

Notational Conventions
This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following
number is 40 hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.
– Each register figure shows a rectangle divided into fields that represent the

fields of the register. Each field is labelled with its bit name, its beginning and
ending bit numbers above, and its read/write properties below. A legend
explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device
expansion.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

ø-viii KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Preface www.ti.com

Related Documentation from Texas Instruments

Trademarks
TMS320C66x is a trademark of Texas Instruments Incorporated.

All other brand names and trademarks mentioned in this document are the property of Texas Instruments
Incorporated or their respective owners, as applicable.

C66x CorePac User Guide SPRUGW0

C66x CPU and Instruction Set Reference Guide SPRUGH7

http://www.ti.com/lit/sprugw0
http://www.ti.com/lit/sprugh7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 1-1
Submit Documentation Feedback

Chapter 1

Introduction

IMPORTANT NOTE—The information in this document should be used in conjunction
with information in the device-specific Keystone Architecture data manual that applies
to the part number of your device.

 1.1 "Introduction" on page 1-2
 1.2 "Purpose of the Peripheral" on page 1-2
 1.3 "Features" on page 1-2
 1.4 "Functional Block Diagram" on page 1-3
 1.5 "Industry Standard(s) Compliance Statement" on page 1-3

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

1.1 Introduction

1-2 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 1—Introduction www.ti.com

1.1 Introduction
This document describes the inter-integrated circuit (I2C) module in the KeyStone
Architecture Digital Signal Processor (DSP). This document assumes the reader is
familiar with the I2C-bus specification.

1.2 Purpose of the Peripheral
The I2C module provides an interface between the KeyStone device and other devices
compliant with the I2C-bus specification and connected by way of an I2C-bus. External
components attached to this 2-wire serial bus can transmit and receive up to 8-bit wide
data to and from the device through the I2C module.

1.3 Features
The I2C module has the following features:

• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):
– Support for byte format transfer
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers mode
– Support for multiple slave-transmitters and master-receivers mode
– Combined master transmit/receive and receive/transmit mode
– I2C data transfer rate of from 10 kbps up to 400 kbps (Philips I2C rate)

• 2 to 7 bit format transfer
• Free data format mode
• One read DMA event and one write DMA event that can be used by the DMA
• Seven interrupts that can be used by the CPU
• Interface to V-bus (32-bit synchronously slave bus)
• Module enable/disable capability.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

1.4 Functional Block Diagram

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 1-3
Submit Documentation Feedback

Chapter 1—Introductionwww.ti.com

1.4 Functional Block Diagram
A block diagram of the I2C module is shown in Figure 1-1. Detailed information about
the architecture of the I2C module is in Section 2.
Figure 1-1 Block Diagram

1.5 Industry Standard(s) Compliance Statement
The I2C module is compliant with the Philips Semiconductors Inter-IC bus (I2C-bus)
specification version 2.1.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

1.5 Industry Standard(s) Compliance Statement

1-4 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 1—Introduction www.ti.com

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 2-1
Submit Documentation Feedback

Chapter 2

Peripheral Architecture

 2.1 "Peripheral Architecture" on page 2-2
 2.2 "Bus Structure" on page 2-2
 2.3 "Clock Generation" on page 2-3
 2.4 "Clock Synchronization" on page 2-4
 2.5 "Signal Descriptions" on page 2-5
 2.6 "START and STOP Conditions" on page 2-5
 2.7 "Serial Data Formats" on page 2-6
 2.8 "Operating Modes" on page 2-8
 2.9 "NACK Bit Generation" on page 2-9

 2.10 "Arbitration" on page 2-10
 2.11 "Reset Considerations" on page 2-10
 2.12 "Interrupt Support" on page 2-11
 2.13 "DMA Events Generated by the I2C Module" on page 2-12
 2.14 "Emulation Considerations" on page 2-12
 2.15 "I2C Bus Hang Caused by Reset" on page 2-12

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.1 Peripheral Architecture

2-2 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 2—Peripheral Architecture www.ti.com

2.1 Peripheral Architecture
The I2C module consists of the following primary blocks:

• A serial interface: one data pin (SDA) and one clock pin (SCL)
• Data registers to temporarily hold receive data and transmit data traveling

between the SDA pin and the CPU or the EDMA controller
• Control and status registers
• An EDMA bus interface to enable the CPU and the EDMA controller to access

the I2C module registers
• A clock synchronizer to synchronize the I2C input clock (from the clock

generator) and the clock on the SCL pin, and to synchronize data transfers with
masters of different clock speeds

• A prescaler to divide down the input clock that is driven to the I2C module
• A noise filter on each of the two pins, SDA and SCL
• An arbitrator to handle arbitration between the I2C module (when it is a master)

and another master
• Interrupt generation logic, so that an interrupt can be sent to the CPU
• EDMA event generation logic, so that activity in the EDMA controller can be

synchronized to data reception and data transmission in the I2C module

Figure 1-1 on page 1-3 shows the four registers used for transmission and reception.
The CPU or the EDMA controller writes data for transmission to ICDXR and reads
received data from ICDRR. When the I2C module is configured as a transmitter, data
written to ICDXR is copied to ICXSR and shifted out on the SDA pin one bit a time.
When the I2C module is configured as a receiver, received data is shifted into ICRSR
and then copied to ICDRR.

2.2 Bus Structure
Figure 1-1 on page 1-3 shows how the I2C module is connected to the I2C bus. The I2C
bus is a multi-master bus that supports a multi-master mode. This allows more than
one device capable of controlling the bus that is connected to it. Each I2C device is
recognized by a unique address and can operate as either transmitter or receiver
depending on the function of the device. In addition to being a transmitter or receiver,
devices connected to the I2C bus also can be considered as master or slave when
performing data transfers.

Note that a master device is the device that initiates a data transfer on the bus and
generates the clock signals to permit that transfer. During this transfer, any device
addressed by this master is considered a slave. Figure 2-1 shows an example of multiple
I2C modules connected for a two-way transfer from one device to other devices.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.3 Clock Generation

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 2-3
Submit Documentation Feedback

Chapter 2—Peripheral Architecturewww.ti.com

Figure 2-1 Multiple I2C Modules Connected

2.3 Clock Generation
The I2C module is recommended to operate with a module clock in a range of 7 to 12
MHz. This clock is generated via the I2C prescaler block. The I2C prescaler register
(ICPSC) is used to divide-down the input clock to obtain a clock within the specified
range for the I2C module.

As shown in Figure 2-2, the PLL1 receives a signal from an external clock source and
produces an I2C input clock with a programmed frequency. The clock is then divided
twice more inside the I2C module to produce to the module clock and the master clock.

The module clock determines the frequency at which the I2C module operates.
Figure 2-2 shows how this clock is generated. A programmable prescaler in the I2C
module divides down the I2C input clock to produce the module clock. To specify the
divide-down value, initialize the IPSC field of the I2C prescaler register (ICPSC). The
resulting frequency is:

The prescaler must be initialized only while the I2C module is in the reset state (IRS =
0 in ICMDR). The prescaled frequency takes effect only when IRS is changed to 1.
Changing the IPSC value while IRS = 1 has no effect.

The master clock appears on the SCL pin when the I2C module is configured to be a
master on the I2C-bus. This clock controls the timing of communication between the
I2C module and a slave. As shown in Figure 2-2, a second clock divider in the I2C
module divides down the module clock to produce the master clock. The clock divider
uses the ICCL value of ICCLKL to divide-down the low portion of the module clock
signal and uses the ICCH value of ICCLKH to divide-down the high portion of the
module clock signal. The resulting frequency is:

module clock frequency =
I2C input clock frequency

(IPSC +1)

master clock frequency
module clock frequency

(ICCL6) + (ICCH6)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.4 Clock Synchronization

2-4 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 2—Peripheral Architecture www.ti.com

Figure 2-2 Clocking Diagram for the I2C Module

2.4 Clock Synchronization
Under normal conditions, only one master device generates the clock signal, SCL.
During the arbitration procedure, however, there are two or more masters and the
clock must be synchronized so that the data output can be compared. Figure 2-3
illustrates the clock synchronization. The wired-AND property of SCL means that a
device that first generates a low period on SCL (device #1) overrules the other devices.
At this high-to-low transition, the clock generators of the other devices are forced to
start their own low period. The SCL is held low by the device with the longest low
period. The other devices that finish their low periods must wait for SCL to be released,
before starting their high periods. A synchronized signal on SCL is obtained, where the
slowest device determines the length of the low period and the fastest device determines
the length of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock
generators must enter the wait state. In this way, a slave slows down a fast master and
the slow device creates enough time to store a received data word or to prepare a data
word to be transmitted.
Figure 2-3 Synchronization of Two I2C Clock Generators During Arbitration

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.5 Signal Descriptions

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 2-5
Submit Documentation Feedback

Chapter 2—Peripheral Architecturewww.ti.com

2.5 Signal Descriptions
For data communication, the I2C module has a serial data pin (SDA) and a serial clock
pin (SCL), as shown in Figure 1-1 on page 1-3. These two pins carry information
between the KeyStone device and other devices connected to the I2C-bus. The SDA and
SCL pins both are bidirectional. They each must be connected to a positive supply
voltage using a pull-up resistor. When the bus is free, both pins are high. The driver of
these two pins has an open-drain configuration to perform the required wired-AND
function.

For additional timing and electrical specifications for these pins, see the device-specific
data manual.

2.5.1 Input and Output Voltage Levels
One clock pulse is generated by the master device for each data bit transferred. Due to
a variety of different technology devices that can be connected to the I2C-bus, the levels
of logic 0 (low) and logic 1 (high) are not fixed and depend on the associated power
supply level. For details, see the device-specific data manual.

2.5.2 Data Validity
The data on SDA must be stable during the high period of the clock (see Figure 2-4).
The high or low state of the data line, SDA, can change only when the clock signal on
SCL is low.

Figure 2-4 Bit Transfer on the I2C-Bus

2.6 START and STOP Conditions
START and STOP conditions can be generated by the I2C module when the module is
configured to be a master on the I2C-bus. As shown in Figure 2-5:

• The START condition is defined as a high-to-low transition on the SDA line
while SCL is high. A master drives this condition to indicate the start of a data
transfer.

• The STOP condition is defined as a low-to-high transition on the SDA line while
SCL is high. A master drives this condition to indicate the end of a data transfer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.7 Serial Data Formats

2-6 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 2—Peripheral Architecture www.ti.com

Figure 2-5 I2C Module START and STOP Conditions

After a START condition and before a subsequent STOP condition, the I2C-bus is
considered busy, and the bus busy (BB) bit of ICSTR is 1. Between a STOP condition
and the next START condition, the bus is considered free, and BB is 0.

For the I2C module to start a data transfer with a START condition, the master mode
(MST) bit and the START condition (STT) bit in ICMDR must both be 1. For the I2C
module to end a data transfer with a STOP condition, the STOP condition (STP) bit
must be set to 1. When BB is set to 1 and STT is set to 1, a repeated START condition
is generated. For a description of ICMDR (including the MST, STT, and STP bits), see
Section 3.10.

2.7 Serial Data Formats
Figure 2-6 shows an example of a data transfer on the I2C-bus. The I2C module
supports 1-bit to 8-bit data values. Figure 2-6 is shown in an 8-bit data format
(BC = 000 in ICMDR). Each bit put on the SDA line equates to 1 pulse on the SCL line
and the data is always transferred with the most-significant bit (MSB) first. The number
of data values that can be transmitted or received is unrestricted; however, the
transmitters and receivers must agree on the number of data values being transferred.
The I2C module supports the following data formats.

• 7-bit addressing mode
• 10-bit addressing mode
• Free data format mode

Figure 2-6 I2C Module Data Transfer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.7 Serial Data Formats

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 2-7
Submit Documentation Feedback

Chapter 2—Peripheral Architecturewww.ti.com

2.7.1 7-Bit Addressing Format
In the 7-bit addressing format (Figure 2-7), the first byte after a START condition (S)
consists of a 7-bit slave address followed by a R/W bit. The R/W bit determines the
direction of the data:

• R/W = 0: The master writes (transmits) data to the addressed slave.
• R/W = 1: The master reads (receives) data from the slave.

An extra clock cycle dedicated for acknowledgment (ACK) is inserted after the R/W bit.
If the ACK bit is inserted by the slave, it is followed by n bits of data from the
transmitter (master or slave, depending on the R/W bit). n is a number from 1 to 8
determined by the bit count (BC) bits of ICMDR. After the data bits have been
transferred, the receiver inserts an ACK bit. To select the 7-bit addressing format, write
0 to the expanded address enable (XA) bit of ICMDR.

Figure 2-7 I2C Module 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR)

2.7.2 10-Bit Addressing Format
The 10-bit addressing format (Figure 2-8) is like the 7-bit addressing format, but the
master sends the slave address in two separate byte transfers. The first byte consists of
11110b, the two MSBs of the 10-bit slave address, and R/W = 0 (write). The second byte
is the remaining 8 bits of the 10-bit slave address. The slave must send acknowledgment
(ACK) after each of the two byte transfers. Once the master has written the second byte
to the slave, the master can either write data or use a repeated START condition to
change the data direction. (For more details about using 10-bit addressing, see the
Philips Semiconductors I2C-bus specification.)

To select the 10-bit addressing format, write 1 to the XA bit of ICMDR.
Figure 2-8 I2C Module 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver (FDF = 0, XA = 1 in

ICMDR)

2.7.3 Free Data Format
In the free data format (Figure 2-9), the first bits after a START condition (S) are a data
word. An ACK bit is inserted after each data word, which can be from 1 to 8 bits,
depending on the bit count (BC) bits of ICMDR. No address or data-direction bit is
sent. Therefore, the transmitter and the receiver must both support the free data
format, and the direction of the data must be constant throughout the transfer.

To select the free data format, write 1 to the free data format (FDF) bit of ICMDR.

1 7 1 1 n 1 n 1 1

S Slave Address R/W ACK Data ACK Data ACK P

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

1 7 1 1 n 1 n 1 1

S 1 1 1 10 A A 0 ACK A A A A A A A A ACK Data ACK P

AA = 2 MSBs R/W 8 LSBs of slave address

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.8 Operating Modes

2-8 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 2—Peripheral Architecture www.ti.com

Figure 2-9 I2C Module Free Data Format (FDF = 1 in ICMDR)

2.7.4 Using a Repeated START Condition
The repeated START condition can be used with the 7-bit addressing, 10-bit
addressing, and free data formats. The 7-bit addressing format using a repeated START
condition (S) is shown in Figure 2-10. At the end of each data word, the master can
drive another START condition. Using this capability, a master can transmit/receive
any number of data words before driving a STOP condition. The length of a data word
can be from 1 to 8 bits and is selected with the bit count (BC) bits of ICMDR.

Figure 2-10 I2C Module 7-Bit Addressing Format With Repeated START Condition

2.8 Operating Modes
The I2C module has four basic operating modes to support data transfers as a master
and as a slave. For the names and descriptions of the modes, see Table 2-1.

If the I2C module is a master, it begins as a master-transmitter and typically transmits
an address for a particular slave. When giving data to the slave, the I2C module must
remain a master-transmitter. In order to receive data from a slave, the I2C module must
be changed to the master-receiver mode.

If the I2C module is a slave, it begins as a slave-receiver and, typically, sends
acknowledgment when it recognizes its slave address from a master. If the master will
be sending data to the I2C module, the module must remain a slave-receiver. If the
master has requested data from the I2C module, the module must be changed to the
slave-transmitter mode.

1 n 1 n 1 n 1 1

S Data ACK Data ACK Data ACK P

n = The number of data bits (from 1 to 8) specified by the bit count (BC) field of ICMDR.

1 7 1 1 n 1 1 7 1 1 n 1 1

S Slave Address R/W ACK Data ACK S Slave Address R/W ACK Data ACK P

1 Any Number 1 Any Number

Table 2-1 Operating Modes of the I2C Module

Operating Mode Description

Slave-receiver mode The I2C module is a slave and receives data from a master. All slave modules begin in this mode. In this mode, serial data
bits received on SDA are shifted in with the clock pulses that are generated by the master. As a slave, the I2C module does
not generate the clock signal, but it can hold SCL low while the intervention of the DSP is required (RSFULL = 1 in ICSTR)
after data has been received.

Slave-transmitter mode The I2C module is a slave and transmits data to a master. This mode can only be entered from the slave-receiver mode; the
I2C module must first receive a command from the master. When you are using any of the 7-bit/10-bit addressing formats,
the I2C module enters its slave-transmitter mode if the slave address is the same as its own address (in ICOAR) and the
master has transmitted R/W = 1. As a slave-transmitter, the I2C module then shifts the serial data out on SDA with the clock
pulses that are generated by the master. While a slave, the I2C module does not generate the clock signal, but it can hold
SCL low while the intervention of the DSP is required (XSMT = 0 in ICSTR) after data has been transmitted.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.9 NACK Bit Generation

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 2-9
Submit Documentation Feedback

Chapter 2—Peripheral Architecturewww.ti.com

2.9 NACK Bit Generation
When the I2C module is a receiver (master or slave), it can acknowledge or ignore bits
sent by the transmitter. To ignore any new bits, the I2C module must send a
no-acknowledge (NACK) bit during the acknowledge cycle on the bus. Table 2-2
summarizes the various ways the I2C module sends a NACK bit.
.

Master-receiver mode The I2C module is a master and receives data from a slave. This mode can only be entered from the master-transmitter
mode; the I2C module must first transmit a command to the slave. When you are using any of the 7-bit/10-bit addressing
formats, the I2C module enters its master-receiver mode after transmitting the slave address and R/W = 1. Serial data bits on
SDA are shifted into the I2C module with the clock pulses generated by the I2C module on SCL. The clock pulses are
inhibited and SCL is held low when the intervention of the DSP is required (RSFULL = 1 in ICSTR) after data has been
received.

Master-transmitter mode The I2C module is a master and transmits control information and data to a slave. All master modules begin in this mode. In
this mode, data assembled in any of the 7-bit/10-bit addressing formats is shifted out on SDA. The bit shifting is
synchronized with the clock pulses generated by the I2C module on SCL. The clock pulses are inhibited and SCL is held low
when the intervention of the DSP is required (XSMT = 0 in ICSTR) after data has been transmitted.

End of Table 2-1

Table 2-1 Operating Modes of the I2C Module

Operating Mode Description

Table 2-2 Generating a NACK Bit

I2C Module Condition

NACK Bit Generation

Basic Optional

Slave-receiver mode • Disable data transfers (STT = 0 in ICSTR).
• Allow an overrun condition (RSFULL = 1 in ICSTR).
• Reset the module (IRS = 0 in ICMDR)

Set the NACKMOD bit of ICMDR before the rising edge of
the last data bit you intend to receive.

Master-receiver mode
AND
Repeat mode
(RM = 1 in ICMDR)

• Generate a STOP condition (STOP = 1 in ICMDR).
• Reset the module (IRS = 0 in ICMDR).

Set the NACKMOD bit of ICMDR before the rising edge of
the last data bit you intend to receive.

Master-receiver mode
AND
Nonrepeat mode
(RM = 0 in ICMDR)

• If STP = 1 in ICMDR, allow the internal data counter to
count down to 0 and force a STOP condition.

• If STP = 0, make STP = 1 to generate a STOP condition.
• Reset the module (IRS = 0 in ICMDR).

Set the NACKMOD bit of ICMDR before the rising edge of
the last data bit you intend to receive.

End of Table 2-2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.10 Arbitration

2-10 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 2—Peripheral Architecture www.ti.com

2.10 Arbitration
If two or more master-transmitters simultaneously start a transmission on the same
bus, an arbitration procedure is invoked. The arbitration procedure uses the data
presented on the serial data bus (SDA) by the competing transmitters. Figure 2-11
illustrates the arbitration procedure between two devices.
Figure 2-11 Arbitration Procedure Between Two Master-Transmitters

\

The first master-transmitter, which drives SDA high, is overruled by another
master-transmitter that drives SDA low. The arbitration procedure gives priority to the
device that transmits the serial data stream with the lowest binary value. Should two or
more devices send identical first bytes, arbitration continues on the subsequent bytes.

If the I2C module is the losing master, it switches to the slave-receiver mode, sets the
arbitration lost (AL) flag, and generates the arbitration-lost interrupt.

If during a serial transfer the arbitration procedure is still in progress when a repeated
START condition or a STOP condition is transmitted to SDA, the master-transmitters
involved must send the repeated START condition or the STOP condition at the same
position in the format frame. Arbitration is not allowed between:

• A repeated START condition and a data bit
• A STOP condition and a data bit
• A repeated START condition and a STOP condition

2.11 Reset Considerations
The I2C module has two reset sources: software reset and hardware reset.

2.11.1 Software Reset Considerations
To reset the I2C module write 0 to the I2C reset (IRS) bit in the I2C mode register
(ICMDR). All status bits in the I2C interrupt status register (ICSTR) are forced to their
default values. The I2C module remains disabled until IRS is changed to 1. The SDA
and SCL pins are in the high-impedance state.

Note—If the IRS bit is cleared to 0 during a transfer, this can cause the I2C bus
to hang. For more information, see Section 2.15

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.12 Interrupt Support

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 2-11
Submit Documentation Feedback

Chapter 2—Peripheral Architecturewww.ti.com

2.11.2 Hardware Reset Considerations
When a hardware reset occurs, all the registers of the I2C module are set to the default
value and the module remains disabled until the I2C reset (IRS) bit in the I2C mode
register (ICMDR) is changed to 1.

Note—The IRS bit must be cleared to 0 while you configure/reconfigure the I2C
module. Forcing IRS to 0 can be used to save power and to clear error
conditions.

2.12 Interrupt Support
The I2C module is capable of interrupting the DSP CPU and sends a single interrupt to
the CPU. The CPU can determine which I2C events caused the interrupt by reading the
I2C interrupt vector register (ICIVR). ICIVR contains a binary-coded interrupt vector
type to indicate which interrupt has occurred. Reading ICIVR clears the interrupt flag;
if other interrupts are pending, a new interrupt is generated. If there is more than one
pending interrupt flag, reading ICIVR clears the highest-priority interrupt flag.

2.12.1 Interrupt Events and Requests
The I2C module can generate the interrupts described in Table 2-3. Each interrupt has
a flag bit in the I2C interrupt status register (ICSTR) and a mask bit in the interrupt
mask register (ICIMR). When one of the specified events occurs, its flag bit is set. If the
corresponding mask bit is 0, the interrupt request is blocked; if the mask bit is 1, the
request is forwarded to the CPU as an I2C interrupt.

2.12.2 Interrupt Multiplexing
The I2C interrupt to the DSP CPU is not multiplexed with any other interrupt source.

Table 2-3 Descriptions of the I2C Interrupt Events

I2C Interrupt Initiating Event

Arbitration-lost interrupt (AL) Generated when the I2C arbitration procedure is lost or illegal START/STOP conditions occur.

No-acknowledge interrupt (NACK) Generated when the master I2C does not receive any acknowledge from the receiver.

Registers-ready-for-access (ARDY) Generated by the I2C when the previously programmed address, data and command have been
interrupt performed and the status bits have been updated. This interrupt is used to let the controlling
processor know that the I2C registers are ready to be accessed.

Receive interrupt/status (ICRINT and ICRRDY) Generated when the received data in the receive-shift register (ICRSR) has been copied into the ICDRR.
The ICRRDY bit can also be polled by the DSP to read the received data in the ICDRR.

Transmit interrupt/status (ICXINT and ICXRDY) Generated when the transmitted data has been copied from ICDXR to the transmit-shift register
(ICXSR) and shifted out on the SDA pin. This bit can also polled by the DSP to write the next
transmitted data into the ICDXR.

Stop-Condition-Detection interrupt (SCD) Generated when a STOP condition has been detected.

Address-as-Slave interrupt (AAS) Generated when the IC has recognized its own slave address or an address of all (8) zeros.

End of Table 2-3

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

2.13 DMA Events Generated by the I2C Module

2-12 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 2—Peripheral Architecture www.ti.com

2.13 DMA Events Generated by the I2C Module
For the EDMA controller to handle transmit and receive data, the I2C module
generates the following two EDMA events. Activity in EDMA channels can be
synchronized to these events.

• Receive event (ICREVT): When receive data has been copied from the receive
shift register (ICRSR) to the data receive register (ICDRR), the I2C module sends
an REVT signal to the EDMA controller. In response, the EDMA controller can
read the data from ICDRR.

• Transmit event (ICXEVT): When transmit data has been copied from the data
transmit register (ICDXR) to the transmit shift register (ICXSR), the I2C module
sends an XEVT signal to the EDMA controller. In response, the EDMA controller
can write the next transmit data value to ICDXR.

2.14 Emulation Considerations
The response of the I2C events to emulation suspend events (such as halts and
breakpoints) is controlled by the FREE bit in the I2C mode register (ICMDR). The I2C
module either stops exchanging data (FREE = 0) or continues to run (FREE = 1) when
an emulation suspend event occurs. How the I2C module terminates data transactions
is affected by whether the I2C module is acting as a master or a slave. For a description
of the FREE bit in ICMDR, see Section 3.10.

2.15 I2C Bus Hang Caused by Reset
It is generally known that the I2C bus can hang if an I2C master is removed from the
bus in the middle of a data read. This can occur because the I2C protocol does not
mandate a minimum clock rate. Therefore, if a master is reset in the middle of a read
while a slave is driving the data line low, the slave will continue driving the data line low
while it waits for the next clock edge. This prevents bus masters from initiating
transfers. If this condition is detected, the following three steps will clear the bus hang
condition:

1. An I2C master must generate up to 9 clock cycles.
2. After each clock cycle, the data pin must be observed to determine whether it has

gone high while the clock is high.
3. As soon as the data pin is observed high, the master can initiate a start condition.

Appendix A on page A-1 contains more information on this topic.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-1
Submit Documentation Feedback

Chapter 3

Registers

This chapter provides a brief description of the peripheral registers and a table listing
each of the registers.

 3.1 "Register Overview" on page 3-2
 3.2 "I2C Own Address Register (ICOAR)" on page 3-2
 3.3 "I2C Interrupt Mask Register (ICIMR)" on page 3-3
 3.4 "I2C Interrupt Status Register (ICSTR)" on page 3-4
 3.5 "I2C Clock Divider Registers (ICCLKL and ICCLKH)" on page 3-6
 3.6 "I2C Data Count Register (ICCNT)" on page 3-8
 3.7 "I2C Data Receive Register (ICDRR)" on page 3-8
 3.8 "I2C Slave Address Register (ICSAR)" on page 3-9
 3.9 "I2C Data Transmit Register (ICDXR)" on page 3-10

 3.10 "I2C Mode Register (ICMDR)" on page 3-10
 3.11 "I2C Interrupt Vector Register (ICIVR)" on page 3-14
 3.12 "I2C Extended Mode Register (ICEMDR)" on page 3-14
 3.13 "I2C Prescaler Register (ICPSC)" on page 3-15
 3.14 "I2C Peripheral Identification Registers (ICPID1 and ICPID2)" on page 3-16

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.1 Register Overview

3-2 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.1 Register Overview
Table 3-1 lists the memory-mapped registers for the inter-integrated circuit (I2C)
module. For the memory address of these registers, see the device-specific data manual.
.

3.2 I2C Own Address Register (ICOAR)
The I2C own address register (ICOAR) is used to specify its own slave address, which
distinguishes it from other slaves connected to the I2C-bus. If the 7-bit addressing
mode is selected (XA = 0 in ICMDR), only bits 6-0 are used; bits 9-7 are ignored. The
ICOAR register is shown in Figure 3-1 and described in Table 3-2
.

Table 3-1 GPIO Registers

Offsets Acronym Register Name See

0h ICOAR I2C Own Address Register Section 3.2

4h ICIMR I2C Interrupt Mask/Status Register Section 3.3

8h ICSTR I2C Interrupt Status Register Section 3.4

Ch ICCLKL I2C Clock Low-Time Divider Register Section 3.5.1

10h ICCLKH I2C Clock High-Time divider Register Section 3.5.2

14h ICCNT I2C Data Count Register Section 3.6

18h ICDRR I2C Data Receive Register Section 3.7

1Ch ICSAR I2C Slave Address Register Section 3.8

20h ICDXR I2C Data Transmit Register Section 3.9

24h ICMDR I2C Mode Register Section 3.10

28h ICIVR I2C Interrupt Vector Register Section 3.11

2Ch ICEMDR I2C Extended Mode Register Section 3.12

30h ICPSC I2C Prescaler Register Section 3.13

34h - 38h ICPIDn I2C Peripheral ID Registers Section 3.14

End of Table 3-1

Figure 3-1 I2C Own Address Register (ICOAR)

31 10 9 0

Reserved OADDR

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-2 I2C Own Address Register Field Descriptions

Bit Field Description

31-10 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

9-0 OADDR Value = 0-3FFh

Own slave address. Provides the slave address of the I2C.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address of the I2C.

Bits 9-7 are ignored.

In 10-bit addressing mode (XA = 1 in ICMDR): bits 9-0 provide the 10-bit slave address of the I2C.

End of Table 3-2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.3 I2C Interrupt Mask Register (ICIMR)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-3
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

3.3 I2C Interrupt Mask Register (ICIMR)
The I2C interrupt mask register (ICIMR) is used by the CPU to individually enable or
disable I2C interrupt requests. The ICIMR register is shown in Figure 3-2 and described
Table 3-3.

Figure 3-2 I2C Interrupt Mask Register (ICIMR)

31 7 6 5 4 3 2 1 0

Reserved AAS SCD ICXRDY ICRDRDY ARDY NACK AL

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-3 I2C Interrupt Mask Register Field Descriptions

Bit Field Description

31-7 Reserved These reserved bit location are always read as zeroes. A value written to this field has no effect.

6 AAS Address-as-slave interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

5 SCD Stop condition detected interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

4 ICXRDY Transmit-data-ready interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

3 ICRDRDY Receive-data-ready interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

2 ARDY Register-access-ready interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

1 NACK No-acknowledgment interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

0 AL Arbitration-lost interrupt enable bit
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

End of Table 3-3

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.4 I2C Interrupt Status Register (ICSTR)

3-4 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.4 I2C Interrupt Status Register (ICSTR)
The I2C interrupt status register (ICSTR) is used by the CPU to determine which
interrupt has occurred and to read status information. The ICSTR register is shown in
Figure 3-3 and described in Table 3-4.

Figure 3-3 I2C Interrupt Status Register (ICSTR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8

Reserved SDIR NACKSNT BB RSFULL XSMT AAS AD0

R-0 R/W1C-0 R/W1C-0 R/W1C-0 R-0 R-1 R-0 R-0

7 6 5 4 3 2 1 0

Reserved SCD ICXRDY ICRDRDY ARDY NACK AL

R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0

LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

Table 3-4 I2C Interrupt Status Register Field Descriptions (Part 1 of 3)

Bit Field Description

31-15 Reserved These reserved bit location are always read as zeroes. A value written to this field has no effect.

14 SDIR Slave direction bit. In digital-loopback mode (DLB), the SDIR bit is cleared to 0.
0 = I2C is acting as a master-transmitter/receiver or a slave-receiver. SDIR is cleared by one of the following events:

» A STOP or a START condition.
» SDIR is manually cleared. To clear this bit, write a 1 to it.

1 = I2C is acting as a slave-transmitter.

13 NACKSNT No-acknowledgment sent bit. NACKSNT bit is used when the I2C is in the receiver mode. One instance in which NACKSNT is
affected is when the NACK mode is used (see the description for NACKMOD in Section 3.10).

0 = NACK is not sent. NACKSNT is cleared by one of the following events:
» It is manually cleared. To clear this bit, write a 1 to it.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 = NACK is sent. A no-acknowledge bit was sent during the acknowledge cycle on the I2C-bus.

12 BB Bus busy bit. BB bit indicates whether the I2C-bus is busy or is free for another data transfer. In the master mode, BB is controlled
by the software.

0 = Bus is free. BB is cleared by one of the following events:
» The I2C receives or transmits a STOP bit (bus free).
» BB is manually cleared. To clear this bit, write a 1 to it.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 = Bus is busy. When the STT bit in ICMDR is set to 1, a restart condition is generated. BB is set by one of the following events:
» The I2C has received or transmitted a START bit on the bus.
» SCL is in a low state and the IRS bit in ICMDR is 0.

11 RSFULL Receive shift register full bit. RSFULL indicates an overrun condition during reception. Overrun occurs when the receive shift
register (ICRSR) is full with new data but the previous data has not been read from the data receive register (ICDRR). The new data
will not be copied to ICDRR until the previous data is read. As new bits arrive from the SDA pin, they overwrite the bits in ICRSR.

0 = No overrun is detected. RSFULL is cleared by one of the following events:
» ICDRR is read.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 = Overrun is detected.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.4 I2C Interrupt Status Register (ICSTR)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-5
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

10 XSMT Underflow occurs when the transmit shift register (ICXSR) is empty but the data transmit register (ICDXR) has not been loaded
since the last ICDXR-to-ICXSR transfer. The next ICDXR-to-ICXSR transfer will not occur until new data is in ICDXR. If new data is
not transferred in time, the previous data may be re-transmitted on the SDA pin.

0 = Underflow is detected.
1 = No underflow is detected. XSMT is set by one of the following events:

» Data is written to ICDXR.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

9 AAS Addressed-as-slave bit.
0 = The AAS bit has been cleared by a repeated START condition or by a STOP condition.
1 = AAS is set by one of the following events:

» I2C has recognized its own slave address or an address of all zeros (general call).
» The first data word has been received in the free data format (FDF = 1 in ICMDR).

8 AD0 Address 0 bit.
0 = AD0 has been cleared by a START or STOP condition.
1 = An address of all zeros (general call) is detected.

7-6 Reserved These reserved bit location are always read as zeroes. A value written to this field has no effect.

5 SCD Stop condition detected bit. SCD indicates when a STOP condition has been detected on the I2C bus. The STOP condition could
be generated by the I2C or by another I2C device connected to the bus.

0 = No STOP condition has been detected. SCD is cleared by one of the following events:
» By reading the INCODE bits in ICICR as 110b.
» SCD is manually cleared. To clear this bit, write a 1 to it.

1 = A STOP condition has been detected.

4 ICXRDY Transmit-data-ready interrupt flag bit. ICXRDY indicates that the data transmit register (ICDXR) is ready to accept new data
because the previous data has been copied from ICDXR to the transmit shift register (ICXSR). The CPU can poll ICXRDY or use the
XRDY interrupt request.

0 = ICDXR is not ready. ICXRDY is cleared by one of the following events:
» Data is written to ICDXR.
» ICXRDY is manually cleared. To clear this bit, write a 1 to it.

1 I= CDXR is ready. Data has been copied from ICDXR to ICXSR. ICXRDY is forced to 1 when the I2C is reset.

3 ICRDRDY Receive-data-ready interrupt flag bit. ICRRDY indicates that the data receive register (ICDRR) is ready to be read because data has
been copied from the receive shift register (ICRSR) to ICDRR. The CPU can poll ICRRDY or use the RRDY interrupt request.

0 = ICDRR is not ready. ICRRDY is cleared by one of the following events:
» ICDRR is read.
» ICRRDY is manually cleared. To clear this bit, write a 1 to it.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 = ICDRR is ready. Data has been copied from ICRSR to ICDRR.

2 ARDY Register-access-ready interrupt flag bit (only applicable when the I2C is in the master mode). ARDY indicates that the I2C registers
are ready to be accessed because the previously programmed address, data, and command values have been used. The CPU can
poll ARDY or use the ARDY interrupt request.

0 = The registers are not ready to be accessed. ARDY is cleared by one of the following events:
» The I2C starts using the current register contents.
» ARDY is manually cleared. To clear this bit, write a 1 to it.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 = The registers are ready to be accessed.
» In the nonrepeat mode (RM = 0 in ICMDR): If STP = 0 in ICMDR, ARDY is set when the internal data counter counts down to 0.

If STP = 1, ARDY is not affected (instead, the I2C generates a STOP condition when the counter reaches 0).
» In the repeat mode (RM = 1): ARDY is set at the end of each data word transmitted from ICDXR.

Table 3-4 I2C Interrupt Status Register Field Descriptions (Part 2 of 3)

Bit Field Description

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.5 I2C Clock Divider Registers (ICCLKL and ICCLKH)

3-6 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.5 I2C Clock Divider Registers (ICCLKL and ICCLKH)
When the I2C is a master, the module clock is divided down for use as the master clock
on the SCL pin. As shown in Figure 3-4, the shape of the master clock depends on two
divide-down values, ICCL and ICCH.

The frequency of the master clock can be calculated as:

Figure 3-4 Roles of the Clock Divide-Down Values (ICCL and ICCH)

1 NACK No-acknowledgment interrupt flag bit. NACK applies when the I2C is a transmitter (master or slave). NACK indicates whether the
I2C has detected an acknowledge bit (ACK) or a no-acknowledge bit (NACK) from the receiver. The CPU can poll NACK or use the
NACK interrupt request.

0 = ACK received/NACK is not received. NACK is cleared by one of the following events:
» An acknowledge bit (ACK) has been sent by the receiver.
» NACK is manually cleared. To clear this bit, write a 1 to it.
» The CPU reads the interrupt source register (ICISR) when the register contains the code for a NACK interrupt.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1= NACK bit is received. The hardware detects that a no-acknowledge (NACK) bit has been received.

Note: While the I2C performs a general call transfer, NACK is 1, even if one or more slaves send acknowledgment.

0 AL Arbitration-lost interrupt flag bit (only applicable when the I2C is a master-transmitter). AL primarily indicates when the I2C has
lost an arbitration contest with another master-transmitter. The CPU can poll AL or use the AL interrupt request.

0 = Arbitration is not lost. AL is cleared by one of the following events:
» AL is manually cleared. To clear this bit, write a 1 to it.
» The CPU reads the interrupt source register (ICISR) when the register contains the code for an AL interrupt.
» The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when the DSP is reset).

1 = Arbitration is lost. AL is set by one of the following events:
» The I2C senses that it has lost an arbitration with two or more competing transmitters that started a transmission almost

simultaneously.
» The I2C attempts to start a transfer while the BB (bus busy) bit is set to 1.

When AL is set to 1, the MST and STP bits of ICMDR are cleared, and the I2C becomes a slave-receiver.

End of Table 3-4

Table 3-4 I2C Interrupt Status Register Field Descriptions (Part 3 of 3)

Bit Field Description

master clock frequency
module clock frequency

(ICCL6) + (ICCH6)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.5 I2C Clock Divider Registers (ICCLKL and ICCLKH)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-7
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

3.5.1 I2C Clock Low-Time Divider Register (ICCLKL)
The I2C clock low-time divider register (ICCLKL) is shown in Figure 3-5 and described
in Table 3-5. For each master clock cycle, ICCL determines the amount of time the
signal is low. ICCLKL must be configured while the I2C is still in reset (IRS = 0 in
ICMDR).
.

3.5.2 I2C Clock High-Time Divider Register (ICCLKH)
The I2C clock high-time divider register (ICCLKH) is shown in Figure 3-6 and
described in Table 3-6. For each master clock cycle, ICCH determines the amount of
time the signal is high. ICCLKH must be configured while the I2C is still in reset
(IRS = 0 in ICMDR).
.

Figure 3-5 I2C Clock Low-Time Divider Register (ICCLKL)

31 16 15 0

Reserved iCCL

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-5 I2C Clock Low-Time Divider Register Field Descriptions

Bit Field Description

31-16 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

15-0 ICCL Value = 0-FFFFh

Clock low-time divide-down value of 1-65536. The period of the module clock is multiplied by (ICCL + 6) to produce the
low-time duration of the master clock on the SCL pin.

End of Table 3-5

Figure 3-6 I2C Clock High-Time Divider Register (ICCLKH)

31 16 15 0

Reserved iCCH

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-6 I2C Clock High-Time Divider Register Field Descriptions

Bit Field Description

31-16 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

15-0 ICCH Value = 0-FFFFh

Clock high-time divide-down value of 1-65536. The period of the module clock is multiplied by (ICCH + 6) to produce the
high-time duration of the master clock on the SCL pin.

End of Table 3-6

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.6 I2C Data Count Register (ICCNT)

3-8 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.6 I2C Data Count Register (ICCNT)
The I2C data count register (ICCNT) is used to indicate how many data words to
transfer when the I2C is configured as a master-transmitter (MST = 1 and TRX = 1 in
ICMDR) and the repeat mode is off (RM = 0 in ICMDR). In the repeat mode (RM = 1),
ICCNT is not used. The ICCNT register is shown in Figure 3-7 and described in
Table 3-7.

The value written to ICCNT is copied to an internal data counter. The internal data
counter is decremented by 1 for each data word transferred (ICCNT remains
unchanged). If a STOP condition is requested (STP = 1 in ICMDR), the I2C terminates
the transfer with a STOP condition when the countdown is complete (that is, when the
last data word has been transferred).
.

3.7 I2C Data Receive Register (ICDRR)
The I2C data receive register (ICDRR) is used by the DSP to read the receive data. The
ICDRR can receive a data value of up to 8 bits; data values with fewer than 8 bits are
right-aligned in the D bits and the remaining D bits are undefined. The number of data
bits is selected by the bit count bits (BC) of ICMDR. The I2C receive shift register
(ICRSR) shifts in the received data from the SDA pin. Once data is complete, the I2C
copies the contents of ICRSR into ICDRR. The CPU and the EDMA controller cannot
access ICRSR. The ICDRR register is shown in Figure 3-8 and described in Table 3-8.
.

Figure 3-7 I2C Data Count Register (ICCNT)

31 16 15 0

Reserved ICDC

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-7 I2C Data Count Register Field Descriptions

Bit Field Description

31-16 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

15-0 ICDC Value = 0-FFFFh

Data count value. When RM = 0 in ICMDR, ICDC indicates the number of data words to transfer in the nonrepeat mode. When
RM = 1 in ICMDR, the value in ICCNT is a don't care. If STP = 1 in ICMDR, a STOP condition is generated when the internal data
counter counts down to 0.

0 = The start value loaded to the internal data counter is 65536.
1h-FFFFh = The start value loaded to internal data counter is 1-65535.

End of Table 3-7

Figure 3-8 I2C Data Count Register (ICCNT)

31 8 7 0

Reserved D

R-0 R-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.8 I2C Slave Address Register (ICSAR)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-9
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

3.8 I2C Slave Address Register (ICSAR)
The I2C slave address register (ICSAR) contains a 7-bit or 10-bit slave address. When
the I2C is not using the free data format (FDF = 0 in ICMDR), it uses this address to
initiate data transfers with a slave or slaves. When the address is non-zero, the address
is for a particular slave. When the address is 0, the address is a general call to all slaves.
If the 7-bit addressing mode is selected (XA = 0 in ICMDR), only bits 6-0 of ICSAR are
used; bits 9-7 are ignored. The ICSAR register is shown in Figure 3-9 and described in
Table 3-9.
.

Table 3-8 I2C Data Count Register Field Descriptions

Bit Field Description

31-8 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

7-0 D Value = 0-FFh

Receive data.

End of Table 3-8

Figure 3-9 I2C Slave Address Register (ICSAR)

31 10 9 0

Reserved SADDR

R-0 R/W-3FFH

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-9 I2C Slave Address Register Field Descriptions

Bit Field Description

31-10 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

9-0 SADDR Value = 0-3FFh

Slave address. Provides the slave address of the I2C.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address that the I2C transmits when it is in the
master-transmitter mode. Bits 9-7 are ignored.

In 10-bit addressing mode (XA = 1 in ICMDR): Bits 9-0 provide the 10-bit slave address that the I2C transmits when it is in the
master-transmitter mode.

End of Table 3-9

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.9 I2C Data Transmit Register (ICDXR)

3-10 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.9 I2C Data Transmit Register (ICDXR)
The CPU writes transmit data to the I2C data transmit register (ICDXR). The ICDXR
can accept a data value of up to 8 bits. When writing a data value with fewer than 8 bits,
the CPU must make sure that the value is right-aligned in the D bits. The number of
data bits is selected by the bit count bits (BC) of ICMDR. Once data is written to
ICDXR, the I2C copies the contents of ICDXR into the I2C transmit shift register
(ICXSR). The ICXSR shifts out the transmit data from the SDA pin. The CPU and the
EDMA controller cannot access ICXSR. The ICDXR register is shown in Figure 3-10
and described in Table 3-10.
.

3.10 I2C Mode Register (ICMDR)
The I2C mode register (ICMDR) contains the control bits of the I2C. The ICMDR
register is shown in shown in Figure 3-11 and described in Table 3-11.

Figure 3-10 I2C Data Transmit Register (ICDXR)

31 8 7 0

Reserved D

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-10 I2C Data Transmit Register Field Descriptions

Bit Field Description

31-8 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

7-0 D Value = 0-FFh

Transmit data.

End of Table 3-10

Figure 3-11 I2C Mode Register (ICMDR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8

NACKMOD FREE STT Reserved STP MST TRX XA

R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 0

RM DLB IRS STB FDF BC

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.10 I2C Mode Register (ICMDR)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-11
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

Table 3-11 I2C Mode Register Field Descriptions (Part 1 of 2)

Bit Field Description

31-16 Reserved These reserved bit location are always read as zeroes. A value written to this field has no effect.

15 NACKMOD No-acknowledge (NACK) mode bit (only applicable when the I2C is a receiver).
0 = In slave-receiver mode: The I2C sends an acknowledge (ACK) bit to the transmitter during the each acknowledge cycle on the

bus. The I2C only sends a no-acknowledge (NACK) bit if you set the NACKMOD bit.
In master-receiver mode: The I2C sends an ACK bit during each acknowledge cycle until the internal data counter counts down

to 0. When the counter reaches 0, the I2C sends a NACK bit to the transmitter. To have a NACK bit sent earlier, you must set the
NACKMOD bit.

1 = In either slave-receiver or master-receiver mode: The I2C sends a NACK bit to the transmitter during the next acknowledge
cycle on the bus. Once the NACK bit has been sent, NACKMOD is cleared.

To send a NACK bit in the next acknowledge cycle, you must set NACKMOD before the rising edge of the last data bit.

14 FREE This emulation mode bit is used to determine the state of the I2C when a breakpoint is encountered in the high-level language
debugger.

0 = When I2C is master: If SCL is low when the breakpoint occurs, the I2C stops immediately and keeps driving SCL low, whether
the I2C is the transmitter or the receiver. If SCL is high, the I2C waits until SCL becomes low and then stops.

When I2C is slave: A breakpoint forces the I2C to stop when the current transmission/reception is complete.
1 = The I2C runs free; that is, it continues to operate when a breakpoint occurs.

13 STT START condition bit (only applicable when the I2C is a master). The RM, STT, and STP bits determine when the I2C starts and stops
data transmissions (see Table 3-12). Note that the STT and STP bits can be used to terminate the repeat mode.

0 = In master mode, STT is automatically cleared after the START condition has been generated.
In slave mode, if STT is 0, the I2C does not monitor the bus for commands from a master. As a result, the I2C performs no data

transfers.
1 = In master mode, setting STT to 1 causes the I2C to generate a START condition on the I2C-bus.
In slave mode, if STT is 1, the I2C monitors the bus and transmits/receives data in response to commands from a master.

12 Reserved These reserved bit location are always read as zeroes. A value written to this field has no effect.

11 STP STOP condition bit (only applicable when the I2C is a master). The RM, STT, and STP bits determine when the I2C starts and stops
data transmissions (see Table 3-12). Note that the STT and STP bits can be used to terminate the repeat mode.

0 = STP is automatically cleared after the STOP condition has been generated.
1 = STP has been set by the DSP to generate a STOP condition when the internal data counter of the I2C counts down to 0.

10 MST Master mode bit. MST determines whether the I2C is in the slave mode or the master mode. MST is automatically changed from 1
to 0 when the I2C master generates a STOP condition (see Table 3-13).

0 = Slave mode. The I2C is a slave and receives the serial clock from the master.
1 = Master mode. The I2C is a master and generates the serial clock on the SCL pin.

9 TRX Transmitter mode bit. When relevant, TRX selects whether the I2C is in the transmitter mode or the receiver mode. Table 3-13
summarizes when TRX is used and when it is a don't care.

0 = Receiver mode. The I2C is a receiver and receives data on the SDA pin.
1 = Transmitter mode. The I2C is a transmitter and transmits data on the SDA pin.

8 XA Expanded address enable bit.
0 = 7-bit addressing mode (normal address mode). The I2C transmits 7-bit slave addresses (from bits 6-0 of ICSAR), and its own

slave address has 7 bits (bits 6-0 of ICOAR).
1 = 10-bit addressing mode (expanded address mode). The I2C transmits 10-bit slave addresses (from bits 9-0 of ICSAR), and its

own slave address has 10 bits (bits 9-0 of ICOAR).

7 RM Repeat mode bit (only applicable when the I2C is a master-transmitter). The RM, STT, and STP bits determine when the I2C starts
and stops data transmissions (see Table 3-12). If the I2C is configured in slave mode, the RM bit is don't care.

0 = Nonrepeat mode. The value in the data count register (ICCNT) determines how many data words are received/transmitted by
the I2C.

1 = Repeat mode. Data words are continuously received/transmitted by the IC until the STP bit is manually set to 1, regardless of
the value in ICCNT.

6 DLB Digital loopback mode bit (only applicable when the I2C is a master-transmitter). This bit disables or enables the digital loopback
mode of the I2C. The effects of this bit are shown in Figure 3-12. Note that DLB mode in the free data format mode (DLB = 1 and
FDF = 1) is not supported.

0 = Digital loopback mode is disabled.
1 = Digital loopback mode is enabled. In this mode, the MST bit must be set to 1 and data transmitted out of ICDXR is received in

ICDRR after n DSP cycles by an internal path, where:
n = ((I2C input clock frequency/module clock frequency) × 8)

The transmit clock is also the receive clock. The address transmitted on the SDA pin is the address in ICOAR.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.10 I2C Mode Register (ICMDR)

3-12 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

5 IRS I2C reset bit. Note that if IRS is reset during a transfer, it can cause the I2C bus to hang. For more information, see Section ‘‘2.15 I2C
Bus Hang Caused by Reset’’ on page 2-12.

0 = The I2C is in reset/disabled. When this bit is cleared to 0, all status bits (in ICSTR) are set to their default values. SDA and SCL
are in a high-impedance state.

1 = The I2C is enabled.

4 STB START byte mode bit (only applicable when the I2C is a master). As described in version 2.1 of the Philips I2C-bus specification, the
START byte can be used to help a slave that needs extra time to detect a START condition. When the I2C is a slave, the I2C ignores
a START byte from a master, regardless of the value of the STB bit.

0 = The I2C is not in the START byte mode.
1 = The I2C is in the START byte mode. When you set the START condition bit (STT), the I2C begins the transfer with more than

just a START condition. Specifically, it generates:
1. A START condition
2. A START byte (0000 0001b)
3. A dummy acknowledge clock pulse
4. A repeated START condition

The I2C sends the slave address that is in ICSAR.

3 FDF Free data format mode bit. Note that DLB mode in the free data format mode (DLB = 1 and FDF = 1) is not supported (see
Table 3-13).

0 = Free data format mode is disabled. Transfers use the 7-/10-bit addressing format selected by the XA bit.
1 = Free data format mode is enabled.

2-0 BC Bit count bits. BC defines the number of bits (1 to 8) in the next data word that is to be received or transmitted by the I2C. The
number of bits selected with BC must match the data size of the other device. Note that when BC = 0, a data word has 8 bits.

If the bit count is less than 8, receive data is right aligned in the D bits of ICDRR and the remaining D bits are undefined. Also,
transmit data written to ICDXR must be right aligned.

0 = 8 bits per data word
1h = 1 bit per data word
2h = 2 bits per data word
3h = 3 bits per data word
4h = 4 bits per data word
5h = 5 bits per data word
6h = 6 bits per data word
7h = 7 bits per data word

End of Table 3-11

Table 3-11 I2C Mode Register Field Descriptions (Part 2 of 2)

Bit Field Description

Table 3-12 Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits

ICMDR Bit

RM STT STP Bus Activity(1) Description

0 0 0 None No activity

0 0 1 P STOP condition

0 1 0 S-A-D..(n)..D START condition, slave address, n data words (n = value in ICCNT)

0 1 1 S-A-D..(n)..D-P START condition, slave address, n data words, STOP condition (n = value in ICCNT)

1 0 0 None No activity

1 0 1 P STOP condition

1 1 0 S-A-D-D-D.. Repeat mode transfer: START condition, slave address, continuous data transfers until
STOP condition or next START condition

1 1 1 None Reserved bit combination (No activity)

End of Table 3-12

1. A = Address; D = Data word; P = STOP condition; S = START condition

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.10 I2C Mode Register (ICMDR)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-13
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

Figure 3-12 Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit

Table 3-13 How the MST and FDF Bits Affect the Role of TRX Bit

ICMDR Bit

MST FDF I2C State Function of TRX Bit

0 0 In slave mode but not free
data format mode

TRX is a don't care. Depending on the command from the master, the I2C responds as a receiver
or a transmitter.

0 1 In slave mode and free data
format mode

The free data format mode requires that the transmitter and receiver be fixed. TRX identifies the
role of the I2C:

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 0 In master mode but not
free data format mode

TRX identifies the role of the I2C:
TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 1 In master mode and free
data format mode

The free data format mode requires that the transmitter and receiver be fixed. TRX identifies the
role of the I2C:

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

End of Table 3-13

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.11 I2C Interrupt Vector Register (ICIVR)

3-14 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.11 I2C Interrupt Vector Register (ICIVR)
The I2C interrupt vector register (ICIVR) is used by the CPU to determine which event
generated the I2C interrupt. Reading ICIVR clears the interrupt flag; if other interrupts
are pending, a new interrupt is generated. If there are more than one interrupt flag,
reading ICIVR clears the highest priority interrupt flag. Note that you must read (clear)
ICIVR before doing another start; otherwise, ICIVR could contain an incorrect (old
interrupt flags) value. The ICIVR register is shown in Figure 3-13 and described in
Table 3-14.
.

3.12 I2C Extended Mode Register (ICEMDR)
The I2C extended mode register (ICEMDR) is used to indicate which condition
generates a transmit data-ready interrupt. The ICEMDR register is shown in
Figure 3-14 and described in Table 3-15.
.

Figure 3-13 I2C Interrupt Vector Register (ICIVR)

31 3 2 0

Reserved INTCODE

R-0 R-0

Legend: R = Read only; -n = value after reset

Table 3-14 I2C Interrupt Vector Register Field Descriptions

Bit Field Description

31-3 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

2-0 INTCODE Value = 0-7h

Interrupt code bits. The binary code in INTCODE indicates which event generated an I2C interrupt.
0 = None
1h = Arbitration-lost interrupt (AL)
2h = No-acknowledgment interrupt (NACK)
3h = Register-access-ready interrupt (ARDY)
4h = Receive-data-ready interrupt (ICRRDY)
5h = Transmit-data-ready interrupt (ICXRDY)
6h = Stop condition detected interrupt (SCD)
7h = Address-as-slave interrupt (AAS)

End of Table 3-14

Figure 3-14 I2C Extended Mode Register (ICEMDR)

31 2 1 0

Reserved IGNACK BCM

R-0 R/W-0 R/W-1

LEGEND: R/W = Read/Write; R= Read only; -n = value after reset

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.13 I2C Prescaler Register (ICPSC)

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide 3-15
Submit Documentation Feedback

Chapter 3—Registerswww.ti.com

3.13 I2C Prescaler Register (ICPSC)
The I2C prescaler register (ICPSC) is used for dividing down the I2C input clock to
obtain the desired module clock for the operation of the I2C. The ICPSC register is
shown in Figure 3-15 and described in Table 3-16.

The IPSC bits must be initialized while the I2C is in reset (IRS = 0 in ICMDR). The
prescaled frequency takes effect only when the IRS bit is changed to 1. Changing the
IPSC value while IRS = 1 has no effect.
.

Table 3-15 I2C Extended Mode Register Field Descriptions

Bit Field Description

31-2 Reserved These reserved bit location are always read as 0s. A value written to this field has no effect.

1 IGNACK Ignore NACK mode.
0 = The master transmitter operates normally, discontinue the data transfer, and set the ARDY and NACK status bits when a

NACK signal is received from the slave.
1 = The master transmitter ignores a NACK received from the slave.

0 BCM Backward compatibility mode bit. Determines which condition generates a transmit data ready interrupt.

The BCM bit has an effect only when the I2C is operating as a slave-transmitter.
0 = The transmit data ready interrupt is generated when the master requests more data by sending an acknowledge signal

after the transmission of the last data.
1 = The transmit data ready interrupt is generated when the data in ICDXR is copied to ICXSR.

End of Table 3-15

Figure 3-15 I2C Prescaler Register (ICPSC)

31 8 7 0

Reserved IPSC

R-0 R/W-0

Legend: R = Read only; R/W = Read/Write; -n = value after reset

Table 3-16 I2C Prescaler Register Field Descriptions

Bit Field Description

31-8 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

7-0 IPSC Value = 0-FFh

I2C prescaler divide-down value. IPSC determines how much the I2C input clock is divided to create the I2C module clock:
I2C clock frequency = I2C input clock frequency/(IPSC + 1)

Note: IPSC must be initialized while the I2C is in reset (IRS = 0 in ICMDR).

End of Table 3-16

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

3.14 I2C Peripheral Identification Registers (ICPID1 and ICPID2)

3-16 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Chapter 3—Registers www.ti.com

3.14 I2C Peripheral Identification Registers (ICPID1 and ICPID2)
The I2C peripheral identification registers (ICPIDn) contain identification data (class,
revision, and type) for the peripheral. The ICPID1 register is shown in Figure 3-16 and
described in Table 3-17. The ICPID2 register is shown in Figure 3-17and described in
Table 3-18.

Figure 3-16 I2C Peripheral Identification Register 1 (ICPID1)

31 16 15 8 7 0

Reserved CLASS REVISION

R-0 R-44h R-15h

Legend: R = Read only; -n = value after reset

Table 3-17 I2C Peripheral Identification Register 1 Field Descriptions

Bit Field Description

31-16 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

15-8 CLASS Identifies the peripheral class.

7-0 IPSC Value = 0-FFh

Identifies the I2C revision level. This value should be incremented each time the design is revised.

End of Table 3-17

Figure 3-17 I2C Peripheral Identification Register 2 (ICPID2)

31 16 15 0

Reserved TYPE

R-0 R-2206h

Legend: R = Read only; -n = value after reset

Table 3-18 I2C Peripheral Identification Register 2 Field Descriptions

Bit Field Description

31-16 Reserved Value = 0

These reserved bit location are always read as zeroes. A value written to this field has no effect.

15-0 TYPE Identifies the peripheral type.

End of Table 3-18

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide A-1
Submit Documentation Feedback

Appendix A

I2C Lockup Issue

DSPs can use a memory device connected with an I2C interface as a source for boot
code. A reset of the DSP while it is reading from the memory device can cause the I2C
interface to enter a state which will prevent the DSP from accessing the attached
memory device. Once the I2C interface enters this state it will not recover, even if
additional DSP resets are issued. This condition will prevent the DSP from booting
until the power is removed from the system or from the I2C device. This failure mode
is possible as part of the normal behavior of the I2C interface as described in the I2C
specification. To prevent a system from entering this unrecoverable state, a hardware
workaround is needed to force the I2C interface into a usable condition. This appendix
describes the problem and a hardware workaround that can be used to fix the issue.

The I2C interface consists of two bidirectional lines, SDA and SCL, which are pulled to
a positive supply voltage with external resistors. The output stages for these signals are
open-drain or open-collector, allowing multiple devices to share the same I2C
interfaces. These devices can be either a master-type device or a slave-type device.

Master devices initiate data transfers and generate the clock signals to permit transfers.
Once a master device has initiated a transfer and gained control of the bus through the
arbitration process it continues to control the bus until the end of an access. Under
certain conditions if a reset to the controlling master device occurs during a transfer,
the bus can remain in a locked state which does not allow the transfer to be completed
and does not allow any other master device to gain control. This condition, inherent to
the I2C specification, must be considered when designing a system dependent on I2C
accesses.

This appendix presents a brief overview of the I2C bus and describes the condition that
can halt accesses. The scenario of a single I2C master device connected to a slave device
is described as well as a strategy to recover from the locked condition. This is followed
by a discussion of the additional complications found in a multi-master environment.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

A-2 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Appendix A—I2C Lockup Issue www.ti.com

In the simplest environment, a single master device will be connected to one or more
slave devices. The example, shown in Figure A-1 is a processor attached to a memory
device using the I2C interface.
Figure A-1 Example I2C Interface

To initiate a transfer the master device will generate a start condition. The start
condition is defined as a high-to-low transition on the SDA line while SCL is high.
Once the master has initiated a transfer with a start condition, the bus is considered
busy until the master generates a stop condition. The stop condition is defined as a
low-to-high transition of the SDA line while the SCL is high. Once the transfer is
initiated by the start condition, the SDA line must remain stable while SCL is high. SDA
will only transition when SCL is low until the master releases the bus with a stop
condition.

The start condition is followed by a series of byte transfers consisting of eight bits
followed by a single acknowledge bit. The first byte contains the slave device address
and a read/write bit. Once the slave device has received the correct address and the
read/write bit, it will drive the SDA signal low as an acknowledgement that it has
received the information correctly. The bytes that follow the device address vary in
function from device to device. In the case of a sequential write to a slave memory
device, the device address will be followed by a word address byte and a series of data
bytes. Again, each byte transmitted from the master is acknowledged by the slave by
driving the ninth bit low. When the master is done transmitting data it will send the
stop condition releasing the bus.

During a write cycle the slave will only drive the SDA low during the acknowledge
(ACK). During a read cycle the slave will drive the data byte one bit at a time in
response to the read command. There is a period of time during which the slave device
will drive eight consecutive bits based on the clock provided by the master. When the
master drives the clock low, it will drive the next bit onto the SDA line. When the
master stops driving SCK, the pull-up resistor will return it to a high state signaling the

SDA

SCK

Processor
(Master)

Memory
(Slave)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide A-3
Submit Documentation Feedback

Appendix A—I2C Lockup Issuewww.ti.com

slave device to hold the SDA signal level. Once all eight bits are clocked onto the SDA,
the master can end the access by generating a stop condition freeing the bus. Figure A-2
shows a normal read cycle. The period when the slave is driving SDA is indicated by the
red lines.

Figure A-2 Normal Read Cycle

If a reset to the master device occurs during the data transfer of a read cycle, there is the
possibility of the bus ending in a state that will prevent any master from regaining
control. Consider the situation shown in Figure A-3.

Figure A-3 Bus-Hang Read Cycle

The master initiates a read in the normal fashion but a reset occurs while the SCK is
high and the slave is driving the SDA low. The slave device will continue to drive SDA
low waiting for the master to provide the next clock however the master has been reset
and is no longer attempting to complete the read cycle. In addition, if the master
attempts to access the bus after its reset has been released it will fail to arbitrate for
control.

Arbitration for the I2C bus is performed on the SDA line. The master will attempt to
generate a start condition beginning with both the SDA and the SCK lines high.
Remember that the SDA and SCK lines are open-collector so the slave device will
continue to hold the SDA line in a low state. When the master detects that the SDA line
is not high, it will assume that some other device is in control of the bus and discontinue
its attempt to start an access. This state will continue indefinitely blocking all attempts
to access devices on the I2C interface.

SDA

SCK

Start
Condition

Stop
ConditionDevice Address

Read
bit

ACK from
Slave

Address
Byte

ACK from
Slave Data Byte

ACK from
Master

Normal Read

Slave Driven

Master Driven

SDA

SCK

Start
Condition Device Address

Read
bit

ACK from
Slave

Address
Byte

ACK from
Slave Data Byte

Read Resulting in Bus Hang
Master reset occurs

Slave continues to
drive bit low

Slave Driven

Master Driven

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

A-4 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Appendix A—I2C Lockup Issue www.ti.com

This state is especially debilitating if the I2C slave is a memory device used as a boot
memory. If the bus hang occurs during a reset, the processor acting as an I2C master
will not be able to read its boot code and will fail to initialize. The processor cannot
recover from this condition, even if additional resets are applied. To resolve this
condition, additional hardware attached to the I2C bus is required (see Figure A-4).
Figure A-4 I2C Master Bus Hang

The bus-hang recovery logic needs to have knowledge of the reset status of the
processor either through a RESETSTAT or a GPIO signal as well as the ability to
monitor and drive the SDA and SCK signals. This logic may be a state machine in a
programmable logic device or a software-driven solution in a microcontroller or
processor using GPIO pins, but it must meet the open-collector driver requirements for
the SDA and SCK signals to ensure the proper operation of the I2C.

Once the logic senses that the processor has entered reset, it should sample the SDA
signal to determine if it is stuck in a low state. In a single master environment, the SDA
should be pulled high as soon as the reset is applied to the master. If the logic senses that
the SDA is low during a reset state, it can take action to free the bus. The logic should
toggle SCK nine times ending in a high state.

These clock pulses must meet all the specification timing requirements for the high and
low states. This will clock any remaining data bits from the slave memory device. Once
these bits have been transmitted on the SDA, the slave device should release SDA and
allow it to return to a high state. The recovery logic should sample SDA to ensure it has
been released. The I2C bus should now be ready to respond to any requests for data by
the processor.

SDA

SCK

Processor
(Master)

Memory
(Slave)

Bus-Hang
Recovery

Logic

Reset Status

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRUGV3—August 2011 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide A-5
Submit Documentation Feedback

Appendix A—I2C Lockup Issuewww.ti.com

The I2C interface with multiple master devices requires more complex logic to clear a
bus-hang condition. In addition to determining that a master has been reset, the logic
must also determine that a second master is not making a valid access to the bus (see
Figure A-5).
Figure A-5 Multiple Master Bus Hang

In this environment, a reset to one of the processors during a read can cause the same
bus-hang condition described above but detection of that condition is more
complicated. When a single master is present on the bus, it is clear that there should not
be any activity while that master is in reset. In this case, it is sufficient to sample the SDA
signal while the RESET to the master is active, as described above. If multiple master
devices are connected to the I2C, a second master can access a working I2C interface
while the first master is in reset. This would create the condition where SDA is low
while the first processor is in reset. In this environment, the logic must monitor the
reset status from both master devices to determine if either is in reset.

Once a reset has been detected, the logic should monitor the SDA signal and no further
action is needed. If the SDA signal is low and the SCK is toggling, another master is
accessing the slave device and the interface is not hung. Again, no further action is
needed. If the SDA signal is low and the SCK signal is high for too long the bus-hang
condition is present and the logic must take action to recover.

The period of time that defines a failure can vary, depending on the slave devices on the
bus and the speed of the I2C interface. Slave devices can only add wait time to accesses
by holding the SCK low so the average time that the SCK is high and the SDA is low
should depend on the frequency that the masters are using to drive the interface. Once
the slowest frequency is determined, the longest value for SCK high during an access
should be multiplied by four to determine the period of time that defines a bus-hang
condition. The logic should sample the SDA and SCK many times during the expected
clock period to detect a stall condition.

If a bus-hang condition is present, the logic should send nine clock pulses onto SCK
complete the in-process read from the slave memory. The slave should release SDA and
allow it to be pulled high. In multi-master environments, a stop sequence should be
generated after the nine clock pulses to release the bus for arbitration. This should clear
the bus-hang condition and allow the I2C master devices to access the memory.

SDA

SCK

Processor 1
(Master)

Memory
(Slave)

Bus-Hang
Recovery

Logic

Reset
Status

Processor 2
(Master)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

A-6 KeyStone Architecture Inter-IC Control Bus (I2C) User Guide SPRUGV3—August 2011
Submit Documentation Feedback

Appendix A—I2C Lockup Issue www.ti.com

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connctivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	Release History
	Contents
	List of Tables
	List of Figures
	Preface
	About This Manual
	Notational Conventions
	Related Documentation from Texas Instruments
	Trademarks

	Introduction
	1.1 Introduction
	1.2 Purpose of the Peripheral
	1.3 Features
	1.4 Functional Block Diagram
	1.5 Industry Standard(s) Compliance Statement

	Peripheral Architecture
	2.1 Peripheral Architecture
	2.2 Bus Structure
	2.3 Clock Generation
	2.4 Clock Synchronization
	2.5 Signal Descriptions
	2.5.1 Input and Output Voltage Levels
	2.5.2 Data Validity

	2.6 START and STOP Conditions
	2.7 Serial Data Formats
	2.7.1 7-Bit Addressing Format
	2.7.2 10-Bit Addressing Format
	2.7.3 Free Data Format
	2.7.4 Using a Repeated START Condition

	2.8 Operating Modes
	2.9 NACK Bit Generation
	2.10 Arbitration
	2.11 Reset Considerations
	2.11.1 Software Reset Considerations
	2.11.2 Hardware Reset Considerations

	2.12 Interrupt Support
	2.12.1 Interrupt Events and Requests
	2.12.2 Interrupt Multiplexing

	2.13 DMA Events Generated by the I2C Module
	2.14 Emulation Considerations
	2.15 I2C Bus Hang Caused by Reset

	Registers
	3.1 Register Overview
	3.2 I2C Own Address Register (ICOAR)
	3.3 I2C Interrupt Mask Register (ICIMR)
	3.4 I2C Interrupt Status Register (ICSTR)
	3.5 I2C Clock Divider Registers (ICCLKL and ICCLKH)
	3.5.1 I2C Clock Low-Time Divider Register (ICCLKL)
	3.5.2 I2C Clock High-Time Divider Register (ICCLKH)

	3.6 I2C Data Count Register (ICCNT)
	3.7 I2C Data Receive Register (ICDRR)
	3.8 I2C Slave Address Register (ICSAR)
	3.9 I2C Data Transmit Register (ICDXR)
	3.10 I2C Mode Register (ICMDR)
	3.11 I2C Interrupt Vector Register (ICIVR)
	3.12 I2C Extended Mode Register (ICEMDR)
	3.13 I2C Prescaler Register (ICPSC)
	3.14 I2C Peripheral Identification Registers (ICPID1 and ICPID2)

	I2C Lockup Issue

