
TMS320C67x DSP Library
Programmer’s Reference Guide

Literature Number: SPRU657C
January 2010

iiiRead This First

Preface

Read This First

About This Manual

Welcome to the TMS320C67x digital signal processor (DSP) Library or
DSPLIB, for short. The DSPLIB is a collection of 64 high-level optimized DSP
functions for the TMS320C67x device. This source code library includes C-
callable functions (ANSI-C language compatible) for general signal process-
ing math and vector functions.

This document contains a reference for the DSPLIB functions and is organized
as follows:

� Overview − an introduction to the TI C67x DSPLIB

� Installation − information on how to install and rebuild DSPLIB

� DSPLIB Functions − a quick reference table listing of routines in the library

� DSPLIB Reference − a description of all DSPLIB functions complete with
calling convention, algorithm details, special requirements and imple-
mentation notes

� Information about performance, fractional Q format and customer support

How to Use This Manual

The information in this document describes the contents of the TMS320C67x
DSPLIB in several different ways.

� Chapter 1 provides a brief introduction to the TI C67x DSPLIB, shows the
organization of the routines contained in the library, and lists the features
and benefits of the DSPLIB.

� Chapter 2 provides information on how to install, use, and rebuild the TI
C67x DSPLIB.

� Chapter 3 provides a quick overview of all DSPLIB functions in table for-
mat for easy reference. The information shown for each function includes
the syntax, a brief description, and a page reference for obtaining more
detailed information.

Notational Conventions

iv

� Chapter 4 provides a list of the routines within the DSPLIB organized into
functional categories. The functions within each category are listed in al-
phabetical order and include arguments, descriptions, algorithms, bench-
marks, and special requirements.

� Appendix A describes performance considerations related to the C67x
DSPLIB and provides information about the Q format used by DSPLIB
functions.

� Appendix B provides information about software updates and customer
support.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface.

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of syntax that
are within parentheses describe the type of information that should be en-
tered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� The TMS320C67x is also referred to in this reference guide as the C67x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development tools,
and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature num-
ber SPRU189) describes the C6000 CPU architecture, instruction set, pipe-
line, and interrupts for these digital signal processors.

Trademarks

vRead This First

TMS320C6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital signal
processors. This book includes information on the internal data and program
memories, the external memory interface (EMIF), the host port interface (HPI),
multichannel buffered serial ports (McBSPs), direct memory access (DMA),
enhanced DMA (EDMA), expansion bus, clocking and phase-locked loop
(PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198) de-
scribes ways to optimize C and assembly code for the TMS320C6000 DSPs
and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker, and oth-
er tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives for the
C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the C6000 C compiler and the assembly optimizer. This
C compiler accepts ANSI standard C source code and produces assembly lan-
guage source code for the C6000 generation of devices. The assembly opti-
mizer helps you optimize your assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401) de-
scribes the application programming interfaces (APIs) used to configure and
control all on-chip peripherals.

TMS320C62x Image/Video Processing Library (literature number
SPRU400) describes the optimized image/video processing functions includ-
ing many C-callable, assembly-optimized, general-purpose image/video
processing routines.

Trademarks

TMS320C6000, TMS320C62x, TMS320C67x, and Code Composer Studio
are trademarks of Texas Instruments.

Other trademarks are the property of their respective owners.

vi

Contents

vii

Contents

1 Introduction 1-1.
Provides a brief introduction to the TI C67x DSPLIB, shows the organization of the routines con-
tained in the library, and lists the features and benefits of the DSPLIB.

1.1 Introduction to the TI C67x DSPLIB 1-2.
1.2 Features and Benefits 1-5.

2 Installing and Using DSPLIB 2-1.
Provides information on how to install, use, and rebuild the TI C67x DSPLIB.

2.1 How to Install the DSP Library 2-2.
2.2 Using DSPLIB 2-3.

2.2.1 DSPLIB Arguments and Data Types 2-3.
DSPLIB Types 2-3.
DSPLIB Arguments 2-3.

2.2.2 Calling a DSPLIB Function From C 2-4.
Code Composer Studio Users 2-4.

2.2.3 Calling a DSP Function From Assembly 2-4.
2.2.4 How DSPLIB is Tested − Allowable Error 2-4.
2.2.5 How DSPLIB Deals With Overflow and Scaling Issues 2-5.
2.2.6 Interrupt Behavior of DSPLIB Functions 2-5.

2.3 How to Rebuild DSPLIB 2-5.

3 DSPLIB Function Tables 3-1.
Provides tables containing all DSPLIB functions, a brief description of each, and a page refer-
ence for more detailed information.

3.1 Arguments and Conventions Used 3-2.
3.2 DSPLIB Functions 3-3.
3.3 DSPLIB Function Tables 3-4.

3.3.1 Single-Precision Functions 3-4.
3.3.2 Double-Precision Functions 3-7.

Contents

viii

4 DSPLIB Reference 4-1.
Provides a list of the single- and double-precision functions within the DSPLIB organized into
functional categories.

4.1 Single-Precision Functions 4-2.
4.1.1 Adaptive Filtering 4-2.

DSPF_sp_lms 4-2.
4.1.2 Correlation 4-4.

DSPF_sp_autocor 4-4.
4.1.3 FFT 4-5.

DSPF_sp_bitrev_cplx 4-5.
DSPF_sp_cfftr4_dif 4-9.
DSPF_sp_cfftr2_dit 4-13.
DSPF_sp_fftSPxSP 4-17.
DSPF_sp_ifftSPxSP 4-25.
DSPF_sp_icfftr2_dif 4-34.

4.1.4 Filtering and Convolution 4-38.
DSPF_sp_fir_cplx 4-38.
DSPF_sp_fir_gen 4-40.
DSPF_sp_fir_r2 4-42.
DSPF_sp_fircirc 4-43.
DSPF_sp_biquad 4-45.
DSPF_sp_iir 4-47.
DSPF_sp_iirlat 4-49.
DSPF_sp_convol 4-50.

4.1.5 Math 4-52.
DSPF_sp_dotp_sqr 4-52.
DSPF_sp_dotprod 4-53.
DSPF_sp_dotp_cplx 4-54.
DSPF_sp_maxval 4-56.
DSPF_sp_maxidx 4-57.
DSPF_sp_minval 4-58.
DSPF_sp_vecrecip 4-60.
DSPF_sp_vecsum_sq 4-61.
DSPF_sp_w_vec 4-62.
DSPF_sp_vecmul 4-63.

4.1.6 Matrix 4-64.
DSPF_sp_mat_mul 4-64.
DSPF_sp_mat_trans 4-66.
DSPF_sp_mat_mul_cplx 4-67.

4.1.7 Miscellaneous 4-69.
DSPF_sp_blk_move 4-69.
DSPF_blk_eswap16 4-70.
DSPF_blk_eswap32 4-72.

Contents

ixContents

DSPF_blk_eswap64 4-74.
DSPF_fltoq15 4-76.
DSPF_sp_minerr 4-77.
DSPF_q15tofl 4-78.

4.2 Double-Precision Functions 4-80.
4.2.1 Adaptive Filtering 4-80.

DSPF_dp_lms 4-80.
4.2.2 Correlation 4-82.

DSPF_dp_autocor 4-82.
4.2.3 FFT 4-83.

DSPF_dp_bitrev_cplx 4-83.
DSPF_dp_cfftr4_dif 4-87.
DSPF_dp_cfftr2 4-91.
DSPF_dp_icfftr2 4-96.

4.2.4 Filtering and Convolution 4-101.
DSPF_dp_fir_cplx 4-101.
DSPF_dp_fir_gen 4-103.
DSPF_dp_fir_r2 4-104.
DSPF_dp_fircirc 4-106.
DSPF_dp_biquad 4-108.
DSPF_dp_iir 4-109.
DSPF_dp_iirlat 4-111.
DSPF_dp_convol 4-112.

4.2.5 Math 4-114.
DSPF_dp_dotp_sqr 4-114.
DSPF_dp_dotprod 4-115.
DSPF_dp_dotp_cplx 4-116.
DSPF_dp_maxval 4-117.
DSPF_dp_maxidx 4-119.
DSPF_dp_minval 4-120.
DSPF_dp_vecrecip 4-121.
DSPF_dp_vecsum_sq 4-122.
DSPF_dp_w_vec 4-123.
DSPF_dp_vecmul 4-124.

4.2.6 Matrix 4-126.
DSPF_dp_mat_mul 4-126.
DSPF_dp_mat_trans 4-128.
DSPF_dp_mat_mul_cplx 4-129.

4.2.7 Miscellaneous 4-131.
DSPF_dp_blk_move 4-131.

Contents

x

A Performance/Fractional Q Formats A-1.
Describes performance considerations related to the C67x DSPLIB and provides information
about the Q format used by DSPLIB functions.

A.1 Performance Considerations A-2.
A.2 Fractional Q Formats A-3.

A.2.1 Q.15 Format A-3.
A.3 Overview of IEEE Standard Single- and Double-Precision Formats A-4.

B Software Updates and Customer Support B-1.
Provides information about software updates and customer support.

B.1 DSPLIB Software Updates B-2.
B.2 DSPLIB Customer Support B-2.
B.3 Known Issues B-2.

C Glossary C-1.

Figures

xiContents

Figures

A−1 Single-Precision Floating-Point Fields A-5.
A−2 Double-Precision Floating-Point Fields A-7.

Tables

2−1 DSPLIB Data Types 2-4.
3−1 Argument Conventions 3-2.
3−2 Adaptive Filtering 3-4.
3−3 Correlation 3-4.
3−4 FFT 3-4.
3−5 Filtering and Convolution 3-5.
3−6 Math 3-6.
3−7 Matrix 3-6.
3−8 Miscellaneous 3-7.
A−1 Q.15 Bit Fields A-3.
A−2 IEEE Floating-Point Notations A-5.
A−3 Special Single-Precision Values A-6.
A−4 Hex and Decimal Representation for Selected Single-Precision Values A-6.
A−5 Special Double-Precision Values A-7.
A−6 Hex and Decimal Representation for Selected Double-Precision Values A-8.

xii

1-1

Introduction

This chapter provides a brief introduction to the TI C67x™ DSP Library
(DSPLIB), shows the organization of the routines contained in the library, and
lists the features and benefits of the DSPLIB.

Topic Page

1.1 Introduction to the TI C67x DSPLIB 1-2.

1.2 Features and Benefits 1-5.

Chapter 1

Introduction to the TI C67x DSPLIB

 1-2

1.1 Introduction to the TI C67x DSPLIB

The TI C67x DSPLIB is an optimized DSP Function Library for C programmers
using TMS320C67x devices. It includes C-callable, assembly-optimized gen-
eral-purpose signal-processing routines. These routines are typically used in
computationally intensive real-time applications where optimal execution
speed is critical. By using these routines, you can achieve execution speeds
considerably faster than equivalent code written in standard ANSI C language.
In addition, by providing ready-to-use DSP functions, TI DSPLIB can signifi-
cantly shorten your DSP application development time.

The TI DSPLIB includes commonly used DSP routines. Source code is pro-
vided that allows you to modify functions to match your specific needs.

The routines contained in the library are first classified in to single- and double-
precision functions and then they are organized into seven different functional
categories.

� Single-precision funtions:

� Adaptive filtering

� DSPF_sp_lms

� Correlation

� DSPF_sp_autocor

� FFT

� DSPF_sp_bitrev_cplx

� DSPF_sp_cfftr4_dif

� DSPF_sp_cfftr2_dit

� DSPF_sp_fftSPxSP

� DSPF_sp_ifftSPxSP

� DSPF_sp_icfftr2_dif

� Filtering and convolution

� DSPF_sp_fir_cplx

� DSPF_sp_fir_gen

� DSPF_sp_fir_r2

� DSPF_sp_fircirc

� DSPF_sp_biquad

� DSPF_sp_iir

� DSPF_sp_iirlat

� DSPF_sp_convol

Introduction to the TI C67x DSPLIB

1-3Introduction

� Math

� DSPF_sp_dotp_sqr

� DSPF_sp_dotprod

� DSPF_sp_dotp_cplx

� DSPF_sp_maxval

� DSPF_sp_maxidx

� DSPF_sp_minval

� DSPF_sp_vecrecip

� DSPF_sp_vecsum_sq

� DSPF_sp_w_vec

� DSPF_sp_vecmul

� Matrix

� DSPF_sp_mat_mul

� DSPF_sp_mat_trans

� DSPF_sp_mat_mul_cplx

� Miscellaneous

� DSPF_sp_blk_move

� DSPF_sp_blk_eswap16

� DSPF_sp_blk_eswap32

� DSPF_sp_blk_eswap64

� DSPF_fltoq15

� DSPF_sp_minerr

� DSPF_q15tofl

� Double-precision funtions:

� Adaptive filtering

� DSPF_dp_lms

� Correlation

� DSPF_dp_autocor

� FFT

� DSPF_dp_bitrev_cplx

� DSPF_dp_cfftr4_dif

� DSPF_dp_cfftr2

� DSPF_dp_icfftr2

Introduction to the TI C67x DSPLIB

 1-4

� Filtering and convolution

� DSPF_dp_fir_cplx

� DSPF_dp_fir_gen

� DSPF_dp_fir_r2

� DSPF_dp_fircirc

� DSPF_dp_biquad

� DSPF_dp_iir

� DSPF_dp_iirlat

� DSPF_dp_convol

� Math

� DSPF_dp_dotp_sqr

� DSPF_dp_dotprod

� DSPF_dp_dotp_cplx

� DSPF_dp_maxval

� DSPF_dp_maxidx

� DSPF_dp_minval

� DSPF_dp_vecrecip

� DSPF_dp_vecsum_sq

� DSPF_dp_w_vec

� DSPF_dp_vecmul

� Matrix

� DSPF_dp_mat_mul

� DSPF_dp_mat_trans

� DSPF_dp_mat_mul_cplx

� Miscellaneous

� DSPF_dp_blk_move

Features and Benefits

1-5Introduction

1.2 Features and Benefits

� Hand-coded assembly-optimized routines

� C and linear assembly source code

� C-callable routines, fully compatible with the TI C6x compiler

� Fractional Q.15-format operands supported on some benchmarks

� Benchmarks (time and code)

� Tested against the C model

 1-6

2-1

Installing and Using DSPLIB

This chapter provides information on how to install, use, and rebuild the TI
C67x DSPLIB.

Topic Page

2.1 How to Install the DSP Library 2-2.

2.2 Using DSPLIB 2-3.

2.3 How to Rebuild DSPLIB 2-5.

Chapter 2

How to Install the DSP Library

 2-2

2.1 How to Install the DSP Library

Note: Please read the README.TXT file for specific details of the release.

1) Unzip the C67xDSPLIB_v200.exe file to a temp directory.

2) Double click the file to launch the Install Shield Wizard,

3) Answer all remaining questions presented in the Install Shield dialogue
boxes.

You may change the install directory if necessary.

The installation program will install the C67x DSP Library with the following di-
rectory structure:

c6700

 |

 +−− lib

 |

 +−− include

 |

 +−− bin

 |

 +−− support

 |

 +−− examples

Using DSPLIB

2-3Installing and Using DSPLIB

2.2 Using DSPLIB

2.2.1 DSPLIB Arguments and Data Types

DSPLIB Types

Table 2−1 shows the data types handled by the DSPLIB.

Table 2−1. DSPLIB Data Types

Name
Size
(bits) Type Minimum Maximum

short 16 Integer −32768 32767

int 32 Integer −2147483648 2147483647

long 40 Integer −549755813888 549755813887

pointer 32 Address 0000:0000h FFFF:FFFFh

Q.15 16 Fraction −1.0 0.9999694824...

IEEE float 32 Floating point 1.17549435e−38 3.40282347e+38

IEEE double 64 Floating point 2.2250738585072014e−308 1.7976931348623157e+308

DSPLIB Arguments

TI DSPLIB functions typically operate over vector operands for greater effi-
ciency. Even though these routines can be used to process smaller arrays, or
even scalars (unless a minimum size requirement is noted), they will be slower
for these cases.

� Vector stride is always equal to 1: Vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

� Complex elements are assumed to be stored in consecutive memory loca-
tions with Real data followed by Imaginary data.

� In-place computation is not allowed, unless specifically noted: Source and
destination arrays should not overlap.

Using DSPLIB

 2-4

2.2.2 Calling a DSPLIB Function From C

In addition to correctly installing the DSPLIB software, you must follow these
steps to include a DSPLIB function in your code:

� Include the function header file corresponding to the DSPLIB function

� Link your code with dsp67x.lib

� Use a correct linker command file for the platform you use. Remember
most functions in dsp67x.lib are written assuming little-endian mode of op-
eration.

For example, if you want to call the single precision Autocorrelation DSPLIB
function, you would add:

#include <dspf_sp_autocor.h>

in your C file and compile and link using

cl6x main.c –z –o autocor_drv.out –lrts6700.lib −
ldsp67x.lib

Code Composer Studio Users

Assuming your C_DIR environment is correctly set up (as mentioned in
section 2.1), you would have to add DSPLIB under the Code Composer Studio
environment by choosing dsp67x.lib from the menu Project → Add Files to
Project. Also, you should make sure that you link with the run-time support li-
brary, rts6700.lib.

2.2.3 Calling a DSP Function From Assembly

The C67x DSPLIB functions were written to be used from C. Calling the func-
tions from assembly language source code is possible as long as the calling
function conforms to the Texas Instruments C6x C compiler calling conven-
tions. Here, the corresponding .h67 header files located in the ‘include’ directo-
ry must be included using the ‘.include’ directive. For more information, refer to
section 8 (Runtime Environment) of the TMS320C6000 Optimizing C Compil-
er User’s Guide (SPRU187).

2.2.4 How DSPLIB is Tested − Allowable Error

DSPLIB is tested under the Code Composer Studio environment against a ref-
erence C implementation. Because of floating point calculation order change
for these two implementations, they differ in the results with an allowable toler-
ance for that particular kernel. Thus every kernel’s test routine (in the driver
file) has error tolerance variable defined that gives the maximum value that is
acceptable as the error difference.

How to Rebuild DSPLIB

2-5Installing and Using DSPLIB

For example:

#define R_TOL (1e−05)

Here, 0.00001 is the maximum difference allowed for output array “r” forrefer-
ence C code and any other implementation (like serial assembly, intrinsic C, or
hand-optimized asm).

The error tolerance is therefore different for different functions.

2.2.5 How DSPLIB Deals With Overflow and Scaling Issues

The DSPLIB functions implement the same functionality of the reference C
code. The user is expected to conform to the range requirements specified in
the API function, and in addition, take care to restrict the input range in such a
way that the outputs do not overflow.

2.2.6 Interrupt Behavior of DSPLIB Functions

Most DSPLIB functions are interrupt-tolerant but not interruptible. The cycle
count formula provided for each function can be used to estimate the number
of cycles during which interrupts cannot be taken.

2.3 How to Rebuild DSPLIB

If you would like to rebuild DSPLIB (for example, because you modified the
source file contained in the archive), you will have to use the mk6x utility as
follows:

 mk6x dsp67x.src −l dsp67x.lib

3-1

DSPLIB Function Tables

This chapter provides tables containing all DSPLIB functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic Page

3.1 Arguments and Conventions Used 3-2.

3.2 DSPLIB Functions 3-3.

3.3 DSPLIB Function Tables 3-4.

Chapter 3

Arguments and Conventions Used

 3-2

3.1 Arguments and Conventions Used

The following convention has been followed when describing the arguments
for each individual function:

Table 3−1. Argument Conventions

Argument Description

x,y Argument reflecting input data vector

r Argument reflecting output data vector

nx,ny,nr Arguments reflecting the size of vectors x,y, and r, respectively. For
functions in the case nx = ny = nr, only nx has been used across.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

w Argument reflecting FFT coefficient vector (FFT routines only)

DSPLIB Functions

3-3DSPLIB Function Tables

3.2 DSPLIB Functions

The routines included in the DSP library — both single- and double-precision
function — are organized into seven functional categories and are listed below
in alphabetical order.

� Adaptive filtering

� Correlation

� FFT

� Filtering and convolution

� Math

� Matrix

� Miscellaneous

DSPLIB Function Tables

 3-4

3.3 DSPLIB Function Tables

3.3.1 Single-Precision Functions

Table 3−2. Adaptive Filtering

Functions Description Page

float DSPF_sp_lms (float *x, float *h, float *desired, float
*r, float adaptrate, float error, int nh, int nr)

LMS adaptive filter 4-2

Table 3−3. Correlation

Functions Description Page

void DSPF_sp_autocor (float *r, float*x, int nx, int nr) Autocorrelation 4-4

Table 3−4. FFT

Functions Description Page

void DSPF_sp_bitrev_cplx (double *x, short *index, int nx) Complex bit reverse 4-5

void DSPF_sp_cfftr4_dif (float *x, float *w, short n) Complex radix 4 FFT using DIF 4-9

void DSPF_sp_cfftr2_dit (float *x, float *w, short n) Complex radix 2 FFT using DIT 4-13

void DSPF_sp_fftSPxSP (int N, float *ptr_x, float *ptr_w,
float *ptr_y, unsigned char *brev, int n_min, int offset, int
n_max)

Cache optimized mixed radix FFT
with digit reversal

4-17

void DSPF_sp_ifftSPxSP (int N, float *ptr_x, float *ptr_w,
float *ptr_y, unsigned char *brev, int n_min, int offset, int
n_max)

Cache optimized mixed radix
inverse FFT with complex input

4-25

void DSPF_sp_icfftr2_dif (float *x, float *w, short n) Complex radix 2 inverse FFT
using DIF

4-34

DSPLIB Function Tables

3-5DSPLIB Function Tables

Table 3−5. Filtering and Convolution

Functions Description Page

void DSPF_sp_fir_cplx (float *x, float *h, float *r, int nh,
int nr)

Complex FIR filter (radix 2) 4-38

void DSPF_sp_fir_gen (float *x, float *h, float *r, int nh,
int nr)

FIR filter (general purpose) 4-40

void DSPF_sp_fir_r2 (float *x, float *h, float *r, int nh,
int nr)

FIR filter (radix 2) 4-42

void DSPF_sp_fircirc (float x[], float h[], float r[], int index,
int csize, int nh, int nr)

FIR filter with circularly addressed
input

4-43

void DSPF_sp_biquad (float x[], float b[], float a[], float
delay[], float r[], int nx)

Biquad filter (IIR of second order) 4-45

void DSPF_sp_iir (float *r1, float *x, float *r2, float *h2,
float *h1, int nr)

IIR filter (used in VSELP vocoder) 4-47

void DSPF_sp_iirlat (float *x, int nx, float *k, int nk, float
*b, float *r)

All-pole IIR lattice filter 4-49

void DSPF_sp_convol (float *x, float *h, float *r, int nh,
int nr)

Convolution 4-50

DSPLIB Function Tables

 3-6

Table 3−6. Math

Functions Description Page

float DSPF_sp_dotp_sqr (float G, float *x, float *y, float *r,
int nx)

Vector dot product and square 4-52

float DSPF_sp_dotprod (float*x, float*y, int nx) Vector dot product 4-53

void DSPF_sp_dotp_cplx (float *x, float *y, int n, float *re,
float *im)

Complex vector dot product 4-54

float DSPF_sp_maxval (float *x, int nx) Maximum value of a vector 4-56

int DSPF_sp_maxidx (float *x, int nx) Index of the maximum element of
a vector

4-57

float DSPF_sp_minval (float *x, int nx) Minimum value of a vector 4-58

void DSPF_sp_vecrecip (float *x, float *r, int n) Vector reciprocal 4-60

float DSPF_sp_vecsum_sq (float *x, int n) Sum of squares 4-61

void DSPF_sp_w_vec (float *x, float *y, float m, float *r,
int nr)

Weighted vector sum 4-62

void DSPF_sp_vecmul (float *x, float *y, float *r, int n) Vector multiplication 4-63

Table 3−7. Matrix

Functions Description Page

void DSPF_sp_mat_mul (float *x, int r1, int c1, float *y, int
c2, float *r)

Matrix multiplication 4-64

void DSPF_sp_mat_trans (float *x, int rows, int cols,
float *r)

Matrix transpose 4-66

void DSPF_sp_mat_mul_cplx (float *x, int r1, int c1, float
*y, int c2, float *r)

Complex matrix multiplication 4-67

DSPLIB Function Tables

3-7DSPLIB Function Tables

Table 3−8. Miscellaneous

Functions Description Page

void DSPF_sp_blk_move (float*x, float*r, int nx) Move a block of memory 4-69

void DSPF_blk_eswap16 (void *x, void *r, int nx) Endianswap a block of 16-bit
values

4-70

void DSPF_blk_eswap32 (void *x, void *r, int nx) Endian-swap a block of 32-bit
values

4-72

void DSPF_blk_eswap64 (void *x, void *r, int nx) Endian-swap a block of 64-bit
values

4-74

void DSPF_fltoq15 (float *x, short *r, int nx) Float to Q15 conversion 4-76

float DSPF_sp_minerr (float *GSP0_TABLE,float
*errCoefs, int *max_index)

Minimum energy error search 4-77

void DSPF_q15tofl (short *x, float *r, int nx) Q15 to float conversion 4-78

3.3.2 Double-Precision Functions

Table 3−9. Adaptive Filtering

Functions Description Page

double DSPF_dp_lms (double *x, double *h, double *de-
sired, double *r, double adaptrate, double error, int nh,
int nr)

LMS adaptive filter 4-80

Table 3−10. Correlation

Functions Description Page

void DSPF_dp_autocor (double *r, double*x, int nx, int nr) Autocorrelation 4-82

Table 3−11.FFT

Functions Description Page

void DSPF_dp_bitrev_cplx (double *x, short *index, int n) Complex bit reverse 4-83

void DSPF_dp_cfftr4_dif (double *x, double *w, short n) Complex radix 4 FFT using DIF 4-87

void DSPF_dp_cfftr2 (short n, double *x, double *w, short
n_min)

Cache optimized radix 2 FFT
with complex input

4-91

void DSPF_dp_icfftr2 (short n, double *x, double *w, short
n_min)

Cache optimized radix 2 Inverse
FFT with complex input

4-96

DSPLIB Function Tables

 3-8

Table 3−12. Filtering and Convolution

Functions Description Page

void DSPF_dp_fir_cplx (double *x, double *h, double *r,
int nh, int nr)

Complex FIR filter (radix 2) 4-101

void DSPF_dp_fir_gen (double *x, double *h, double *r, int
nh, int nr)

FIR filter (general purpose) 4-103

void DSPF_dp_fir_r2 (double *x, double *h, double *r, int
nh, int nr)

FIR filter (radix 2) 4-104

void DSPF_dp_fircirc (double *x, double *h, double *r, int
index, int csize, int nh, int nr)

FIR filter with circularly addressed
input

4-106

void DSPF_dp_biquad (double *x, double *b, double *a,
double *delay, double *r, int nx)

Biquad filter (IIR of second order) 4-108

void DSPF_dp_iir (double *r1, double *x, double *r2,
double *h2, double *h1, int nr)

IIR filter (used in VSELP vocoder) 4-109

void DSPF_dp_iirlat (double *x, int nx, double *k, int nk,
double *b, double *r)

All-pole IIR lattice filter 4-111

void DSPF_dp_convol (double *x, double *h, double *r, int
nh, int nr)

Convolution 4-112

DSPLIB Function Tables

3-9DSPLIB Function Tables

Table 3−13. Math

Functions Description Page

double DSPF_dp_dotp_sqr (double G, double *x, double
*y, double *r, int nx)

Vector dot product and square 4-114

double DSPF_dp_dotprod (double*x, double*y, int nx) Vector dot product 4-115

void DSPF_dp_dotp_cplx (double *x, double *y, int n,
double *re, double *im)

Complex vector dot product 4-116

double DSPF_dp_maxval (double *x, int nx) Maximum value of a vector 4-117

int DSPF_dp_maxidx (double *x, int nx) Index of the maximum element of
a vector

4-119

double DSPF_dp_minval (double *x, int nx) Minimum value of a vector 4-120

void DSPF_dp_vecrecip (double *x, double *r, int n) Vector reciprocal 4-121

double DSPF_dp_vecsum_sq (double *x, int n) Sum of squares 4-122

void DSPF_dp_w_vec (double *x, double *y, double m,
double *r, int nr)

Weighted vector sum 4-123

void DSPF_dp_vecmul (double *x, double *y, double *r,
int n)

Vector multiplication 4-124

Table 3−14. Matrix

Functions Description Page

void DSPF_dp_mat_mul (double *x, int r1, int c1, double
*y, int c2, double *r)

Matrix multiplication 4-126

void DSPF_dp_mat_trans (double *x, int rows, int col,
double *r)

Matrix transpose 4-128

void DSPF_dp_mat_mul_cplx (double *x, int r1, int c1,
double *y, int r2, double *r)

Complex matrix multiplication 4-129

Table 3−15. Miscellaneous

Functions Description Page

void DSPF_dp_blk_move (double*x, double*r, int nx) Move a block of memory 4-131

 3-10

4-1

DSPLIB Reference

This chapter provides a list of the single- and double-precision functions within
the DSP library (DSPLIB) organized into functional categories. The functions
within each category are listed in alphabetical order and include arguments,
descriptions, algorithms, benchmarks, and special requirements.

Topic Page

4.1 Single-Precision Functions 4-2.

4.2 Double-Precision Functions 4-80.

Chapter 4

DSPF_sp_lms

4-2

4.1 Single-Precision Functions

4.1.1 Adaptive Filtering

Single-precision floating-point LMS algorithmDSPF_sp_lms

Function float DSPF_sp_lms (float *x, float *h, float *desired, float *r, float adapt rate,
 float error, int nh, int nr)

Arguments

x Pointer to input samples

h Pointer to the coefficient array

desired Pointer to the desired output array

r Pointer to filtered output array

adapt rate Adaptation rate

error Initial error

nh Number of coefficients

nr Number of output samples

Description The DSPF_sp_lms implements an LMS adaptive filter. Given an actual input
signal and a desired input signal, the filter produces an output signal, the final
coefficient values, and returns the final output error signal.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

float DSPF_sp_lms(float *x,float *h,float *y, int nh,
 float *d,float ar, short nr, float error)

{

 int i,j;

 float sum;

 for (i = 0; i < nr; i++)

 {

 for (j = 0; j < nh; j++)

 {

 h[j] = h[j] + (ar*error*x[i+j−1]);

 }

DSPF_sp_lms

4-3 DSPLIB Reference

 sum = 0.0f;

 for (j = 0; j < nh; j++)

 {

 sum += h[j] * x[i+j];

 }

 y[i] = sum;

 error = d[i] − sum;

 }

 return error;

}

Special Requirements
� The inner-loop counter must be a multiple of 6 and ≥6.

� Little endianness is assumed.

� Extraneous loads are allowed in the program.

� The coefficient array is assumed to be in reverse order; i.e., h(nh−1),
h(nh−2), ..., h(0) will hold coefficients h0, h1, ..., hnh−1, respectively.

� The x[−1] value is assumed to be 0.

Implementation Notes
� The inner loop is unrolled six times to allow update of six coefficients in the

kernel.

� The outer loop has been unrolled twice to enable use of LDDW for loading
the input coefficients.

� LDDW instruction is used to load the coefficients.

� Register sharing is used to make optimal use of available registers.

� The outer loop instructions are scheduled in parallel with epilog and prolog
wherever possible.

� The error term needs to be computed in the outer loop before a new itera-
tion of the inner loop can start. As a result the prolog cannot be placed in
parallel with epilog (after the loop kernel).

� Pushing and popping variables from the stack does not really add any
overhead except increase stack size. This is because the pops and
pushes are done in the delay slots of the outer loop instructions.

� Endianness: This code is little endian.

DSPF_sp_autocor

4-4

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (nh + 35) nr + 21
e.g., for nh = 36 and nr = 64
cycles = 4565

Code size
(in bytes)

1376

4.1.2 Correlation

Single-precision autocorrelationDSPF_sp_autocor

Function void DSPF_sp_autocor (float * restrict r, const float * restrict x, int nx, int nr)

Arguments

r Pointer to output array of autocorrelation of length nr.

x Pointer to input array of length nx+nr. Input data must be
padded with nr consecutive zeros at the beginning.

nx Length of autocorrelation vector.

nr Length of lags.

Description This routine performs the autocorrelation of the input array x. It is assumed that
the length of the input array, x, is a multiple of 2 and the length of the output
array, r, is a multiple of 4. The assembly routine computes 4 output samples
at a time. It is assumed that input vector x is padded with nr no of zeros in the
beginning.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_autocor(float * restrict r, const float *
 restrict x, int nx, int nr)

 {

 int i,k;

 float sum;

 for (i = 0; i < nr; i++)

 {

 sum = 0;

DSPF_sp_bitrev_cplx

4-5 DSPLIB Reference

 for (k = nr; k < nx+nr; k++)

 sum += x[k] * x[k−i];

 r[i] = sum ;

 }

 }

Special Requirements
� The value of nx is a multiple of 2 and greater than or equal to 4.

� The value of nr is a multiple of 4 and greater than or equal to 4.

� The value of nx is greater than or equal to nr.

� The x array is double-word aligned.

Implementation Notes
� The inner loop is unrolled twice and the outer loop is unrolled four times.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (nx/2) * nr + (nr/2) * 5 + 10 − (nr * nr)/4 + nr
For nx=64 and nr=64, cycles=1258
For nx=60 and nr=32, cycles=890

Code size
(in bytes)

512

4.1.3 FFT

Bit reversal for single-precision complex numbersDSPF_sp_bitrev_cplx

Function void DSPF_sp_bitrev_cplx (double *x, short *index, int nx)

Arguments

x Complex input array to be bit reversed. Contains 2*nx floats.

index Array of size ~sqrt(nx) created by the routine bitrev_index to
allow the fast implementation of the bit reversal.

nx Number of elements in array x[]. Must be power of 2.

DSPF_sp_bitrev_cplx

4-6

Description This routine performs the bit-reversal of the input array x[], where x[] is a float
array of length 2*nx containing single-precision floating-point complex pairs of
data. This routine requires the index array provided by the program below. This
index should be generated at compile time, not by the DSP. TI retains all rights,
title and interest in this code and only authorizes the use of the bit-reversal
code and related table generation code with TMS320 family DSPs manufac-
tured by TI.

/* −− */
/* This routine calculates the index for bit reversal of */
/* an array of length nx. The length of the index table is */
/* 2^(2*ceil(k/2)) where nx = 2^k. */
/* */
/* In other words, the length of the index table is: */
/* − for even power of radix: sqrt(nx) */
/* − for odd power of radix: sqrt(2*nx) */
/* −− */
void bitrev_index(short *index, int nx)
{
 int i, j, k, radix = 2;
 short nbits, nbot, ntop, ndiff, n2, raddiv2;
 nbits = 0;
 i = nx;
 while (i > 1)
 {
 i = i >> 1;
 nbits++;
 }
 raddiv2 = radix >> 1;
 nbot = nbits >> raddiv2;
 nbot = nbot << raddiv2 − 1;
 ndiff = nbits & raddiv2;
 ntop = nbot + ndiff;
 n2 = 1 << ntop;
 index[0] = 0;
 for (i = 1, j = n2/radix + 1; i < n2 − 1; i++)
 {
 index[i] = j − 1;
 for (k = n2/radix; k*(radix−1) < j; k /= radix)
 j −= k*(radix−1);
 j += k;
 }
 index[n2 − 1] = n2 − 1;
}

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_bitrev_cplx(double* x, short* index, int nx)

{

 int i;

 short i0, i1, i2, i3;

 short j0, j1, j2, j3;

DSPF_sp_bitrev_cplx

4-7 DSPLIB Reference

 double xi0, xi1, xi2, xi3;

 double xj0, xj1, xj2, xj3;

 short t;

 int a, b, ia, ib, ibs;

 int mask;

 int nbits, nbot, ntop, ndiff, n2, halfn;

 nbits = 0;

 i = nx;

 while (i > 1)

 {

 i = i >> 1;

 nbits++;

 }

 nbot = nbits >> 1;

 ndiff = nbits & 1;

 ntop = nbot + ndiff;

 n2 = 1 << ntop;

 mask = n2 − 1;

 halfn = nx >> 1;

 for (i0 = 0; i0 < halfn; i0 += 2)

 {

 b = i0 & mask;

 a = i0 >> nbot;

 if (!b) ia = index[a];

 ib = index[b];

 ibs = ib << nbot;

 j0 = ibs + ia;

 t = i0 < j0;

 xi0 = x[i0];

 xj0 = x[j0];

 if (t)

 {

 x[i0] = xj0;

 x[j0] = xi0;

 }

 i1 = i0 + 1;

DSPF_sp_bitrev_cplx

4-8

 j1 = j0 + halfn;

 xi1 = x[i1];

 xj1 = x[j1];

 x[i1] = xj1;

 x[j1] = xi1;

 i3 = i1 + halfn;

 j3 = j1 + 1;

 xi3 = x[i3];

 xj3 = x[j3];

 if (t)

 {

 x[i3] = xj3;

 x[j3] = xi3;

 }

 }

}

Special Requirements
� The value of nx must be a power of 2.

� The table from bitrev_index is already created.

� The x array is actually an array of 2*nx floats. It is assumed to be double-
word aligned.

Implementation Notes
� LDDW is used to load in one complex number at a time (both the real and

the imaginary parts).

� There are 12 stores in 10 cycles but all of them are to locations already
loaded. No use of the write buffer is made.

� If nx ≤ 4K one can use the char (8-bit) data type for the index variable. This
would require changing the LDH when loading index values in the assem-
bly routine to LDB. This would further reduce the size of the index table by
half its size.

� Endianness: Little endian configuration used.

� Interruptibility: This code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles (5/2)nx + 26
e.g., nx = 256, cycles = 666

Code size
(in bytes)

608

DSPF_sp_cfftr4_dif

4-9 DSPLIB Reference

Single-precision floating-point decimation in frequency radix-4 FFT
with complex input

DSPF_sp_cfftr4_dif

Function void DSPF_sp_cfftr4_dif (float* x, float* w, short n)

Arguments

x Pointer to an array holding the input and output floating-point
array which contains n complex points.

w Pointer to an array holding the coefficient floating-point array
which contains 3*n/4 complex numbers.

n Number of complex points in x, a power of 4 such that n <=
16K.

Description This routine implements the DIF (decimation in frequency) complex radix 4
FFT with digit-reversed output and normal order input. The number of points,
n, must be a power of 4 {4, 16, 64, 256, 1024, ...}. This routine is an in-place
routine in the sense that the output is written over the input. It is not an in-place
routine in the sense that the input is in normal order and the output is in digit-re-
versed order.

There must be n complex points (2*n values), and 3*n/4 complex coefficients
(3*n/2 values).

Each real and imaginary input value is interleaved in the x array {rx0, ix0, rx1,
ix2, ...} and the complex numbers are in normal order. Each real and imaginary
output value is interleaved in the x array and the complex numbers are in digit-
reversed order {rx0, ix0, ...}. The real and imaginary values of the coefficients
are interleaved in the w array {rw0, −iw0, rw1, −iw1, ...} and the complex num-
bers are in normal order.

Note that the imaginary coefficients are negated {cos(d*0), sin(d*0), cos(d*1),
sin(d*1), ...} rather than {cos(d*0), −sin(d*0), cos(d*1), −sin(d*1), ...} where d =
2*PI/n. The value of w(n,k) is usually written w(n,k) = e^−j(2*PI*k/n) =
cos(2*PI*k/n) − sin(2*PI*k/n). The routine can be used to implement an inverse
FFT by performing the complex conjugate on the input complex numbers (ne-
gating the imaginary value), and dividing the result by n. Another method to
use the FFT to perform an inverse FFT, is to swap the real and imaginary val-
ues of the input and the result, and divide the result by n. In either case, the
input is still in normal order and the output is still in digit-reversed order. Note
that you can not make the radix 4 FFT into an inverse FFT by using the com-
plex conjugate of the coefficients as you can do with the complex radix 2 FFT.

If you label the input locations from 0 to (n−1) (normal order), the digit-reversed
locations can be calculated by reversing the order of the bit pairs of the labels.

DSPF_sp_cfftr4_dif

4-10

For example, for a 1024 point FFT, the digit-reversed location for
617d = 1001101001b = 10 01 10 10 01 is
422d = 0110100110b = 01 10 10 01 10 and vice versa.

The twiddle factor array w can be generated by the gen_twiddle function pro-
vided in support\fft\tw_r4fft.c. The .exe file for this function, bin\tw_r4fft.exe,
can be used to dump the twiddle factor array into a file.

The function bit_rev in support\fft\bit_rev.c can be used to bit reverse the out-
put array in order to convert it to normal order.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_cfftr4_dif(float* x, float* w, short n)

{

 short n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;

 float r1, r2, r3, r4, s1, s2, s3, s4, co1, co2, co3, si1,
si2, si3;

 n2 = n;

 ie = 1;

 for(k=n; k>1; k>>=2)

 {

 n1 = n2;

 n2 >>= 2;

 ia1 = 0;

 for(j=0; j<n2; j++)

 {

 ia2 = ia1 + ia1;

 ia3 = ia1 + ia2;

 co1 = w[ia1*2];

 si1 = w[ia1*2 + 1];

 co2 = w[ia2*2];

 si2 = w[ia2*2 + 1];

 co3 = w[ia3*2];

 si3 = w[ia3*2 + 1];

 ia1 += ie;

 for(i0=j; i0<n; i0+=n1)

 {

 i1 = i0 + n2;

DSPF_sp_cfftr4_dif

4-11 DSPLIB Reference

 i2 = i1 + n2;

 i3 = i2 + n2;

 r1 = x[i0*2] + x[i2*2];

 r3 = x[i0*2] − x[i2*2];

 s1 = x[i0*2+1] + x[i2*2+1];

 s3 = x[i0*2+1] − x[i2*2+1];

 r2 = x[i1*2] + x[i3*2];

 r4 = x[i1*2] − x[i3*2];

 s2 = x[i1*2+1] + x[i3*2+1];

 s4 = x[i1*2+1] − x[i3*2+1];

 x[i0*2] = r1 + r2;

 r2 = r1 − r2;

 r1 = r3 − s4;

 r3 = r3 + s4;

 x[i0*2+1] = s1 + s2;

 s2 = s1 − s2;

 s1 = s3 + r4;

 s3 = s3 − r4;

 x[i1*2] = co1*r3 + si1*s3;

 x[i1*2+1] = co1*s3 − si1*r3;

 x[i2*2] = co2*r2 + si2*s2;

 x[i2*2+1] = co2*s2 − si2*r2;

 x[i3*2] = co3*r1 + si3*s1;

 x[i3*2+1] = co3*s1 − si3*r1;

 }

 }

 ie <<= 2;

 }

}

Special Requirements There are no special alignment requirements.

Implementation Notes
� The two inner loops are executed as one loop with conditional instructions.

The variable wcntr is used to determine when the load pointers and coeffi-
cient offsets need to be reset.

� The first 8 cycles of the inner loop prolog are conditionally scheduled in
parallel with the outer loop. This increases the code size by 12 words, but
improves the cycle time.

DSPF_sp_cfftr4_dif

4-12

� A load counter, lcntr, is used so that extraneous loads are not performed.

� If more registers were available, the inner loop could probably be as small
as 11 cycles (22 ADDSP/SUBSP instructions). The inner loop was ex-
tended to 14 cycles to allow more variables to share registers and thus
only need 32 registers.

� The store variable, scntr, is used to determine when the store pointer
needs to be reset.

� The variable n2b is used as the outer-loop counter. We are finished when
n2b = 0.

� LDDW instructions are not used so that the real and imaginary values can
be loaded to separate register files and so that the load and store pointers
can use the same offset, n2.

� The outer loop resets the inner loop count to n by multiplying ie by n2b,
which is equivalent to ie multiplied by n2, which is always n. The product
is always the same since the outer loop shifts n2 to the right by 2 and shifts
ie to the left by 2.

� The twiddle factor array w can be generated by the tw_r4fft function pro-
vided in dsplib\support\fft\tw_r4fft.c. The exe file for this function,
dsplib\bin\tw_r4fft.exe, can be used dump the twiddle factor array into a
file.

� The function bit_rev in dsplib\support\fft can be used to bit reverse the out-
put array to convert it into normal order.

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (14*n/4 + 23)*log4(n) + 20
e.g., if n = 256, cycles = 3696.

Code size
(in bytes)

1184

DSPF_sp_cfftr2_dit

4-13 DSPLIB Reference

Single-precision floating-point radix-2 FFT with complex inputDSPF_sp_cfftr2_dit

Function void DSPF_sp_cfftr2_dit (float * x, float * w, short n)

Arguments

x Pointer to complex data input.

w Pointer to complex twiddle factor in bit-reverse order.

n Length of FFT in complex samples, power of 2 such that n ≥
32 and n<=32K.

Description This routine performs the decimation-in-time (DIT) radix-2 FFT of the input
array x. x has N complex floating-point numbers arranged as successive real
and imaginary number pairs. Input array x contains N complex points (N*2 ele-
ments). The coefficients for the FFT are passed to the function in array w which
contains N/2 complex numbers (N elements) as successive real and imagi-
nary number pairs. The FFT coefficients w are in N/2 bit-reversed order The
elements of input array x are in normal order The assembly routine performs
4 output samples (2 real and 2 imaginary) for a pass through inner loop.

How to Use

void main(void)
 {
 gen_w_r2(w, N); // Generate coefficient table
 bit_rev(w, N>>1); // Bit−reverse coefficient table
 DSPF_sp_cfftr2_dit(x, w, N);
 // input in normal order, output in
 // order bit−reversed
 // coefficient table in bit−reversed
 // order
 }

Note that (bit-reversed) coefficients for higher order FFT (1024 point) can be
used unchanged as coefficients for a lower order FFT (512, 256, 128 ... ,2) The
routine can be used to implement inverse FFT by any one of the following
methods:

1) Inputs (x) are replaced by their complex-conjugate values.
Output values are divided by N.

2) FFT coefficients (w) are replaced by their complex conjugates.
Output values are divided by N.

3) Swap real and imaginary values of input.

4) Swap real and imaginary values of output.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

DSPF_sp_cfftr2_dit

4-14

void DSPF_sp_cfftr2_dit(float* x, float* w, short n)

{

 short n2, ie, ia, i, j, k, m;

 float rtemp, itemp, c, s;

 n2 = n;

 ie = 1;

 for(k=n; k > 1; k >>= 1)

 {

 n2 >>= 1;

 ia = 0;

 for(j=0; j < ie; j++)

 {

 c = w[2*j];

 s = w[2*j+1];

 for(i=0; i < n2; i++)

 {

 m = ia + n2;

 rtemp = c * x[2*m] + s * x[2*m+1];

 itemp = c * x[2*m+1] − s * x[2*m];

 x[2*m] = x[2*ia] − rtemp;

 x[2*m+1] = x[2*ia+1] − itemp;

 x[2*ia] = x[2*ia] + rtemp;

 x[2*ia+1] = x[2*ia+1] + itemp;

 ia++;

 }

 ia += n2;

 }

 ie <<= 1;

 }

}

The following C code is used to generate the coefficient table (non-bit
reversed).

#include <math.h>

/* generate real and imaginary twiddle
 table of size n/2 complex numbers */

gen_w_r2(float* w, int n)

DSPF_sp_cfftr2_dit

4-15 DSPLIB Reference

{

 int i;

 float pi = 4.0*atan(1.0);

 float e = pi*2.0/n;

 for(i=0; i < (n>>1); i++)

 {

 w[2*i] = cos(i*e);

 w[2*i+1] = sin(i*e);

 }

}

The following C code is used to bit reverse the coefficients.

bit_rev(float* x, int n)

{

 int i, j, k;

 float rtemp, itemp;

 j = 0;

 for(i=1; i < (n−1); i++)

 {

 k = n >> 1;

 while(k <= j)

 {

 j −= k;

 k >>= 1;

 }

 j += k;

 if(i < j)

 {

 rtemp = x[j*2];

 x[j*2] = x[i*2];

 x[i*2] = rtemp;

 itemp = x[j*2+1];

 x[j*2+1] = x[i*2+1];

 x[i*2+1] = itemp;

 }

DSPF_sp_cfftr2_dit

4-16

 }

}

Special Requirements
� The value of n is an integral power of 2 such that n ≥32 and n <=32K.

� The FFT Coefficients w are in bit-reversed order

� The elements of input array x are in normal order

� The imaginary coefficients of w are negated as {cos(d*0), sin(d*0),
cos(d*1), sin(d*1) ...} as opposed to the normal sequence of {cos(d*0),
−sin(d*0), cos(d*1), −sin(d*1) ...} where d = 2*PI/n.

� The x and w arrays are double-word aligned.

Implementation Notes
� The two inner loops are combined into one inner loop whose loop count

is n/2.

� The prolog has been completely merged with the epilog. But this gives rise
to a problem which has not been overcome. The problem is that the mini-
mum trip count is 32. The safe trip count is at least 16 bound by the size
of the epilog. In addition because of merging the prolog and the epilog a
data dependency via memory is caused which forces n to be at least 32.

� The bit-reversed twiddle factor array w can be generated by using the
tw_r2fft function provided in the dsplib\support\fft directory or by running
tw_r2fft.exe provided in dsplib\bin. The twiddle factor array can also be
generated by using gen_w_r2 and bit_rev algorithms as described above.

� The function bit_rev in dsplib\support\fft can be used to bit reverse the out-
put array to convert it into normal order.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (2 * n * log(base−2) n) + 42
For n = 64, Cycles = 810

Code size
(in bytes)

1248

DSPF_sp_fftSPxSP

4-17 DSPLIB Reference

Single-precision floating-point mixed radix forwards FFT with
complex input

DSPF_sp_fftSPxSP

Function void DSPF_sp_fftSPxSP (int N, float * ptr_x, float * ptr_w, float * ptr_y,
 unsigned char * brev, int n_min, int offset, int n_max)

Arguments

N Length of fft in complex samples, power of 2 such that N ≥ 8
and N ≤ 8192.

ptr_x Pointer to complex data input.

ptr_w Pointer to complex twiddle factor (see below).

ptr_y Pointer to complex output data.

brev Pointer to bit reverse table containing 64 entries.

n_min Smallest fft butterfly used in computation used for
decomposing fft into subffts, see notes.

offset Index in complex samples of sub-fft from start of main fft.

n_max Size of main fft in complex samples.

Description The benchmark performs a mixed radix forwards fft using a special sequence
of coefficients generated in the following way:

/* generate vector of twiddle factors for optimized
algorithm */
void tw_gen(float * w, int N)
{
 int j, k;
 double x_t, y_t, theta1, theta2, theta3;
 const double PI = 3.141592654;
 for (j=1, k=0; j <= N>>2; j = j<<2)
 {
 for (i=0; i < N>>2; i+=j)
 {
 theta1 = 2*PI*i/N;
 x_t = cos(theta1);
 y_t = sin(theta1);
 w[k] = (float)x_t;
 w[k+1] = (float)y_t;
 theta2 = 4*PI*i/N;
 x_t = cos(theta2);
 y_t = sin(theta2);
 w[k+2] = (float)x_t;
 w[k+3] = (float)y_t;
 theta3 = 6*PI*i/N;
 x_t = cos(theta3);
 y_t = sin(theta3);
 w[k+4] = (float)x_t;

DSPF_sp_fftSPxSP

4-18

 w[k+5] = (float)y_t;
 k+=6;
 }
 }
}

This redundant set of twiddle factors is size 2*N float samples. The function
is accurate to about 130dB of signal to noise ratio to the DFT function below:

void dft(int N, float x[], float y[])
{
 int k,i, index;
 const float PI = 3.14159654;
 float * p_x;
 float arg, fx_0, fx_1, fy_0, fy_1, co, si;
 for(k = 0; k<N; k++)
 {
 p_x = x;
 fy_0 = 0;
 fy_1 = 0;
 for(i=0; i<N; i++)
 {
 fx_0 = p_x[0];
 fx_1 = p_x[1];
 p_x += 2;
 index = (i*k) % N;
 arg = 2*PI*index/N;
 co = cos(arg);
 si = −sin(arg);
 fy_0 += ((fx_0 * co) − (fx_1 * si));
 fy_1 += ((fx_1 * co) + (fx_0 * si));
 }
 y[2*k] = fy_0;
 y[2*k+1] = fy_1;
 }
}

The function takes the table and input data and calculates the fft producing the
frequency domain data in the Y array. As the fft allows every input point to effect
every output point in a cache based system such as the c6711, this causes
cache thrashing. This is mitigated by allowing the main fft of size N to be divid-
ed into several steps, allowing as much data reuse as possible. For example
the following function:

DSPF_sp_fftSPxSP(1024, &x[0],&w[0],y,brev,4, 0,1024);

is equivalent to:

DSPF_sp_fftSPxSP(1024,&x[2*0], &w[0] , y,brev,256, 0,1024;
DSPF_sp_fftSPxSP(256, &x[2*0], &w[2*768],y,brev,4, 0,1024;
DSPF_sp_fftSPxSP(256, &x[2*256],&w[2*768],y,brev,4, 256,1024;
DSPF_sp_fftSPxSP(256, &x[2*512],&w[2*768],y,brev,4, 512,1024;
DSPF_sp_fftSPxSP(256, &x[2*768],&w[2*768],y,brev,4, 768,1024;

DSPF_sp_fftSPxSP

4-19 DSPLIB Reference

Notice how the first fft function is called on the entire 1K data set it covers the
first pass of the fft until the butterfly size is 256. The following 4 ffts do 256 pt
ffts 25% of the size. These continue down to the end when the butterfly is of
size 4. They use an index to the main twiddle factor array of 0.75*2*N. This is
because the twiddle factor array is composed of successively decimated ver-
sions of the main array. N not equal to a power of 4 can be used, i.e. 512. In
this case to decompose the fft the following would be needed :

sp_fftSPxSP_asm(512, &x_asm[0],&w[0],y_asm,brev,2, 0,512);

is equivalent to:

sp_fftSPxSP_asm(512, &x_asm[2*0], &w[0] , y_asm,brev,128,
0,512)
sp_fftSPxSP_asm(128, &x_asm[2*0], &w[2*384],y_asm,brev,4,
0,512)
sp_fftSPxSP_asm(128, &x_asm[2*128],&w[2*384],y_asm,brev,4,
128,512)
sp_fftSPxSP_asm(128, &x_asm[2*256],&w[2*384],y_asm,brev,4,
256,512)
sp_fftSPxSP_asm(128, &x_asm[2*384],&w[2*384],y_asm,brev,4,
384,512)

The twiddle factor array is composed of log4(N) sets of twiddle factors, (3/4)*N,
(3/16)*N, (3/64)*N, etc. The index into this array for each stage of the fft is cal-
culated by summing these indices up appropriately. For multiple ffts they can
share the same table by calling the small ffts from further down in the twiddle
factor array. In the same way as the decomposition works for more data reuse.
Thus, the above decomposition can be summarized for a general N, radix “rad”
as follows:

sp_fftSPxSP_asm(N, &x[0], &w[0], y,brev,N/4,0, N)
sp_fftSPxSP_asm(N/4,&x[0], &w[2*3*N/4],y,brev,rad,0, N)
sp_fftSPxSP_asm(N/4,&x[2*N/4], &w[2*3*N/4],y,brev,rad,N/4, N)
sp_fftSPxSP_asm(N/4,&x[2*N/2], &w[2*3*N/4],y,brev,rad,N/2, N)
sp_fftSPxSP_asm(N/4,&x[2*3*N/4],&w[2*3*N/4],y,brev,rad,3*N/4,
N)

As discussed previously, N can be either a power of 4 or 2. If N is a power of
4, then rad = 4, and if N is a power of 2 and not a power of 4, then rad = 2. “rad”
is used to control how many stages of decomposition are performed. It is also
used to determine whether a radix-4 or radix-2 decomposition should be per-
formed at the last stage. Hence when “rad” is set to “N/4” the first stage of the
transform alone is performed and the code exits. To complete the FFT, four
other calls are required to perform N/4 size FFTs. In fact, the ordering of these
4 FFTs amongst themselves does not matter and hence from a cache perspec-
tive, it helps to go through the remaining 4 FFTs in exactly the opposite order
to the first. This is illustrated as follows:

DSPF_sp_fftSPxSP

4-20

sp_fftSPxSP_asm(N, &x[0], &w[0], y,brev,N/4,0, N)
sp_fftSPxSP_asm(N/4,&x[2*3*N/4],&w[2*3*N/4],y,brev,rad,3*N/4,
N)
sp_fftSPxSP_asm(N/4,&x[2*N/2], &w[2*3*N/4],y,brev,rad,N/2, N)
sp_fftSPxSP_asm(N/4,&x[2*N/4], &w[2*3*N/4],y,brev,rad,N/4, N)
sp_fftSPxSP_asm(N/4,&x[0], &w[2*3*N/4],y,brev,rad,0, N)

In addition this function can be used to minimize call overhead, by completing
the FFT with one function call invocation as shown below:

sp_fftSPxSP_asm(N, &x[0], &w[0], y, brev, rad, 0, N)

Algorithm This is the C equivalent of the assembly code without restrictions: Note that
the assembly code is hand optimized and restrictions may apply.

void DSPF_sp_fftSPxSP(int N, float *ptr_x, float *ptr_w,
 float *ptr_y,

 unsigned char *brev, int n_min, int offset, int n_max)

{

 int i, j, k, l1, l2, h2, predj;

 int tw_offset, stride, fft_jmp;

 float x0, x1, x2, x3,x4,x5,x6,x7;

 float xt0, yt0, xt1, yt1, xt2, yt2, yt3;

 float yt4, yt5, yt6, yt7;

 float si1,si2,si3,co1,co2,co3;

 float xh0,xh1,xh20,xh21,xl0,xl1,xl20,xl21;

 float x_0, x_1, x_l1, x_l1p1, x_h2 , x_h2p1, x_l2,
x_l2p1;

 float xl0_0, xl1_0, xl0_1, xl1_1;

 float xh0_0, xh1_0, xh0_1, xh1_1;

 float *x,*w;

 int k0, k1, j0, j1, l0, radix;

 float * y0, * ptr_x0, * ptr_x2;

 radix = n_min;

 stride = N; /* N is the number of complex samples */

 tw_offset = 0;

 while (stride > radix)

 {

 j = 0;

 fft_jmp = stride + (stride>>1);

 h2 = stride>>1;

 l1 = stride;

DSPF_sp_fftSPxSP

4-21 DSPLIB Reference

 l2 = stride + (stride>>1);

 x = ptr_x;

 w = ptr_w + tw_offset;

 for (i = 0; i < N; i += 4)

 {

 co1 = w[j];

 si1 = w[j+1];

 co2 = w[j+2];

 si2 = w[j+3];

 co3 = w[j+4];

 si3 = w[j+5];

 x_0 = x[0];

 x_1 = x[1];

 x_h2 = x[h2];

 x_h2p1 = x[h2+1];

 x_l1 = x[l1];

 x_l1p1 = x[l1+1];

 x_l2 = x[l2];

 x_l2p1 = x[l2+1];

 xh0 = x_0 + x_l1;

 xh1 = x_1 + x_l1p1;

 xl0 = x_0 − x_l1;

 xl1 = x_1 − x_l1p1;

 xh20 = x_h2 + x_l2;

 xh21 = x_h2p1 + x_l2p1;

 xl20 = x_h2 − x_l2;

 xl21 = x_h2p1 − x_l2p1;

 ptr_x0 = x;

 ptr_x0[0] = xh0 + xh20;

 ptr_x0[1] = xh1 + xh21;

 ptr_x2 = ptr_x0;

 x += 2;

 j += 6;

 predj = (j − fft_jmp);

 if (!predj) x += fft_jmp;

 if (!predj) j = 0;

DSPF_sp_fftSPxSP

4-22

 xt0 = xh0 − xh20;

 yt0 = xh1 − xh21;

 xt1 = xl0 + xl21;

 yt2 = xl1 + xl20;

 xt2 = xl0 − xl21;

 yt1 = xl1 − xl20;

 ptr_x2[l1] = xt1 * co1 + yt1 * si1;

 ptr_x2[l1+1] = yt1 * co1 − xt1 * si1;

 ptr_x2[h2] = xt0 * co2 + yt0 * si2;

 ptr_x2[h2+1] = yt0 * co2 − xt0 * si2;

 ptr_x2[l2] = xt2 * co3 + yt2 * si3;

 ptr_x2[l2+1] = yt2 * co3 − xt2 * si3;

 }

 tw_offset += fft_jmp;

 stride = stride>>2;

 }/* end while */

 j = offset>>2;

 ptr_x0 = ptr_x;

 y0 = ptr_y;

 /*l0 = _norm(n_max) − 17; get size of fft */

 l0=0;

 for(k=30;k>=0;k−−)

 if((n_max & (1 << k)) == 0)

 l0++;

 else

 break;

 l0=l0−17;

 if (radix <= 4) for (i = 0; i < N; i += 4)

 {

 /* reversal computation */

 j0 = (j) & 0x3F;

 j1 = (j >> 6);

 k0 = brev[j0];

 k1 = brev[j1];

 k = (k0 << 6) + k1;

 k = k >> l0;

DSPF_sp_fftSPxSP

4-23 DSPLIB Reference

 j++; /* multiple of 4 index */

 x0 = ptr_x0[0]; x1 = ptr_x0[1];

 x2 = ptr_x0[2]; x3 = ptr_x0[3];

 x4 = ptr_x0[4]; x5 = ptr_x0[5];

 x6 = ptr_x0[6]; x7 = ptr_x0[7];

 ptr_x0 += 8;

 xh0_0 = x0 + x4;

 xh1_0 = x1 + x5;

 xh0_1 = x2 + x6;

 xh1_1 = x3 + x7;

 if (radix == 2) {

 xh0_0 = x0;

 xh1_0 = x1;

 xh0_1 = x2;

 xh1_1 = x3;

 }

 yt0 = xh0_0 + xh0_1;

 yt1 = xh1_0 + xh1_1;

 yt4 = xh0_0 − xh0_1;

 yt5 = xh1_0 − xh1_1;

 xl0_0 = x0 − x4;

 xl1_0 = x1 − x5;

 xl0_1 = x2 − x6;

 xl1_1 = x3 − x7;

 if (radix == 2) {

 xl0_0 = x4;

 xl1_0 = x5;

 xl1_1 = x6;

 xl0_1 = x7;

 }

 yt2 = xl0_0 + xl1_1;

 yt3 = xl1_0 − xl0_1;

 yt6 = xl0_0 − xl1_1;

 yt7 = xl1_0 + xl0_1;

 if (radix == 2) {

 yt7 = xl1_0 − xl0_1;

DSPF_sp_fftSPxSP

4-24

 yt3 = xl1_0 + xl0_1;

 }

 y0[k] = yt0; y0[k+1] = yt1;

 k += n_max>>1;

 y0[k] = yt2; y0[k+1] = yt3;

 k += n_max>>1;

 y0[k] = yt4; y0[k+1] = yt5;

 k += n_max>>1;

 y0[k] = yt6; y0[k+1] = yt7;

 }

}

Special Requirements
� The value of N must be a power of 2 and N ≥ 8 N ≤ 8192 points.

� Complex time data x and twiddle factors w are aligned on double-word
boundaries. Real values are stored in even word positions and imaginary
values in odd positions.

� All data is in single-precision floating-point format. The complex frequency
data will be returned in linear order.

Implementation Notes
� A special sequence of coeffs. used as generated above produces the fft.

This collapses the inner 2 loops in the traditional Burrus and Parks imple-
mentation Fortran code.

� The revised FFT uses a redundant sequence of twiddle factors to allow a
linear access through the data. This linear access enables data and in-
struction level parallelism.

� The data produced by the DSPF_sp_fftSPxSP fft is in normal form, the
whole data array is written into a new output buffer.

� The DSPF_sp_fftSPxSP butterfly is bit reversed, i.e. the inner 2 points of
the butterfly are crossed over, this has the effect of making the data come
out in bit reversed rather than DSPF_sp_fftSPxSP digit-reversed order.
This simplifies the last pass of the loop. ia simple table is used to do the
bit reversal out of place.

unsigned char brev[64] = {
0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38,
0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c,
0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a,
0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e,
0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39,
0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d,
0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b,
0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f
};

DSPF_sp_ifftSPxSP

4-25 DSPLIB Reference

� The special sequence of twiddle factors w can be generated using the
tw_fftSPxSP_C67 function provided in the dsplib\sup-
port\fft\tw_fftSPxSP_C67.c file or by running tw_fftSPxSP_C67.exe in
dsplib\bin.

� The brev table required for this function is provided in the file dsplib\sup-
port\fft\brev_table.h.

� Endianness: Configuration is little endian.

� Interruptibility: An interruptible window of 1 cycle is available between
the two outer loops.

Benchmarks

Cycles cycles = 3 * ceil(log4(N)−1) * N + 21 * ceil(log4(N)−1) + 2*N
+ 44
e.g., N = 1024, cycles = 14464
e.g., N = 512, cycles = 7296
e.g., N = 256, cycles = 2923
e.g., N = 128, cycles = 1515
e.g., N = 64, cycles = 598

Code size
(in bytes)

1440

Single-precision floating-point mixed radix inverse FFT with
complex input

DSPF_sp_ifftSPxSP

Function void DSPF_sp_ifftSPxSP (int n, float * ptr_x, float * ptr_w, float * ptr_y,
 unsigned char * brev, int n_min, int offset, int n_max)

Arguments

n Length of ifft in complex samples, power of 2 such that n ≥ 8
and n ≤ 8192.

ptr_x Pointer to complex data input (normal order).

ptr_w Pointer to complex twiddle factor (see below).

ptr_y Pointer to complex output data (normal order).

brev Pointer to bit reverse table containing 64 entries.

n_min Smallest ifft butterfly used in computation used for
decomposing ifft into subiffts, see notes.

offset Index in complex samples of sub-ifft from start of main ifft.

n_max Size of main ifft in complex samples.

DSPF_sp_ifftSPxSP

4-26

Description The benchmark performs a mixed radix forwards ifft using a special sequence
of coefficients generated in the following way:

/*generate vector of twiddle factors for optimized algorithm*/
 void tw_gen(float * w, int N)
 {
 int j, k;
 double x_t, y_t, theta1, theta2, theta3;
 const double PI = 3.141592654;
 for (j=1, k=0; j <= N>>2; j = j<<2)
 {
 for (i=0; i < N>>2; i+=j)
 {
 theta1 = 2*PI*i/N;
 x_t = cos(theta1);
 y_t = sin(theta1);
 w[k] = (float)x_t;
 w[k+1] = (float)y_t;
 theta2 = 4*PI*i/N;
 x_t = cos(theta2);
 y_t = sin(theta2);
 w[k+2] = (float)x_t;
 w[k+3] = (float)y_t;
 theta3 = 6*PI*i/N;
 x_t = cos(theta3);
 y_t = sin(theta3);
 w[k+4] = (float)x_t;
 w[k+5] = (float)y_t;
 k+=6;
 }
 }
 }

This redundant set of twiddle factors is size 2*N float samples. The function
is accurate to about 130dB of signal to noise ratio to the IDFT function below:

void idft(int n, float x[], float y[])
{
 int k,i, index;
 const float PI = 3.14159654;
 float * p_x;
 float arg, fx_0, fx_1, fy_0, fy_1, co, si;
 for(k = 0; k<n; k++)
 {
 p_x = x;
 fy_0 = 0;
 fy_1 = 0;
 for(i=0; i<n; i++)
 {
 fx_0 = p_x[0];
 fx_1 = p_x[1];
 p_x += 2;
 index = (i*k) % n;
 arg = 2*PI*index/n;
 co = cos(arg);
 si = sin(arg);

DSPF_sp_ifftSPxSP

4-27 DSPLIB Reference

 fy_0 += ((fx_0 * co) − (fx_1 * si));
 fy_1 += ((fx_1 * co) + (fx_0 * si));
 }
 y[2*k] = fy_0/n;
 y[2*k+1] = fy_1/n;
 }
 }

The function takes the table and input data and calculates the ifft producing the
frequency domain data in the Y array. the output is scaled by a scaling factor
of 1/N. As the ifft allows every input point to effect every output point in a cache
based system such as the c6711, this causes cache thrashing. This is miti-
gated by allowing the main ifft of size N to be divided into several steps, allow-
ing as much data reuse as possible. For example the following function:

sp_ifftSPxSP_asm(1024, &x[0],&w[0],y,brev,4, 0,1024)

is equivalent to:

sp_ifftSPxSP(1024,&x[2*0],&w[0],y,brev,256,0,1024)
sp_ifftSPxSP(256,&x[2*0],&w[2*768],y,brev,4,0,1024)
sp_ifftSPxSP(256,&x[2*256],&w[2*768],y,brev,4,256,1024)
sp_ifftSPxSP(256,&x[2*512],&w[2*768],y,brev,4,512,1024)
sp_ifftSPxSP(256,&x[2*768],&w[2*768],y,brev,4,768,1024)

Notice how the first ifft function is called on the entire 1K data set it covers the
first pass of the ifft until the butterfly size is 256. The following 4 iffts do 256 pt
iffts 25% of the size. These continue down to the end when the butterfly is of
size 4. They use an index to the main twiddle factor array of 0.75*2*N. This is
because the twiddle factor array is composed of successively decimated ver-
sions of the main array. N not equal to a power of 4 can be used, i.e. 512. In
this case to decompose the ifft the following would be needed :

sp_ifftSPxSP_asm(512, &x[0],&w[0],y,brev,2, 0,512)

is equivalent to:

sp_ifftSPxSP(512, &x[2*0], &w[0] , y,brev,128, 0,512)
sp_ifftSPxSP(128, &x[2*0], &w[2*384],y,brev,4, 0,512)
sp_ifftSPxSP(128, &x[2*128],&w[2*384],y,brev,4, 128,512)
sp_ifftSPxSP(128, &x[2*256],&w[2*384],y,brev,4, 256,512)
sp_ifftSPxSP(128, &x[2*384],&w[2*384],y,brev,4, 384,512)

The twiddle factor array is composed of log4(N) sets of twiddle factors, (3/4)*N,
(3/16)*N, (3/64)*N, etc. The index into this array for each stage of the ifft is cal-
culated by summing these indices up appropriately. For multiple iffts they can
share the same table by calling the small iffts from further down in the twiddle
factor array. In the same way as the decomposition works for more data reuse.
Thus, the above decomposition can be summarized for a general N radix “rad”
as follows:

DSPF_sp_ifftSPxSP

4-28

sp_ifftSPxSP(N, &x[0], &w[0], y,brev,N/4,0, N)
sp_ifftSPxSP(N/4,&x[0], &w[2*3*N/4],y,brev,rad,0, N)
sp_ifftSPxSP(N/4,&x[2*N/4], &w[2*3*N/4],y,brev,rad,N/4, N)
sp_ifftSPxSP(N/4,&x[2*N/2], &w[2*3*N/4],y,brev,rad,N/2, N)
sp_ifftSPxSP(N/4,&x[2*3*N/4],&w[2*3*N/4],y,brev,rad,3*N/4,N)

As discussed previously, N can be either a power of 4 or 2. If N is a power of
4, then rad = 4, and if N is a power of 2 and not a power of 4, then rad = 2. “rad”
is used to control how many stages of decomposition are performed. It is also
used to determine whether a radix-4 or radix-2 decomposition should be per-
formed at the last stage. Hence when “rad” is set to “N/4” the first stage of the
transform alone is performed and the code exits. To complete the FFT, four
other calls are required to perform N/4 size FFTs. In fact, the ordering of these
4 FFTs amongst themselves does not matter and hence from a cache perspec-
tive, it helps to go through the remaining 4 FFTs in exactly the opposite order
to the first. This is illustrated as follows:

sp_ifftSPxSP(N, &x[0], &w[0], y,brev,N/4,0, N)
sp_ifftSPxSP(N/4,&x[2*3*N/4],&w[2*3*N/4],y,brev,rad,3*N/4,N)
sp_ifftSPxSP(N/4,&x[2*N/2], &w[2*3*N/4],y,brev,rad,N/2, N)
sp_ifftSPxSP(N/4,&x[2*N/4], &w[2*3*N/4],y,brev,rad,N/4, N)
sp_ifftSPxSP(N/4,&x[0], &w[2*3*N/4],y,brev,rad,0, N)

In addition this function can be used to minimize call overhead, by completing
the FFT with one function call invocation as shown below:

sp_ifftSPxSP_asm(N, &x[0], &w[0], y, brev, rad, 0,N)

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSPF_sp_ifftSPxSP(int n, float ptr_x[], float ptr_w[],
 float ptr_y[], unsigned char brev[], int n_min,
 int offset, int n_max)

{

 int i, j, k, l1, l2, h2, predj;

 int tw_offset, stride, fft_jmp;

 float x0, x1, x2, x3,x4,x5,x6,x7;

 float xt0, yt0, xt1, yt1, xt2, yt2, yt3;

 float yt4, yt5, yt6, yt7;

 float si1,si2,si3,co1,co2,co3;

 float xh0,xh1,xh20,xh21,xl0,xl1,xl20,xl21;

 float x_0, x_1, x_l1, x_l1p1, x_h2 , x_h2p1, x_l2, x_l2p1;

 float xl0_0, xl1_0, xl0_1, xl1_1;

 float xh0_0, xh1_0, xh0_1, xh1_1;

 float *x,*w;

DSPF_sp_ifftSPxSP

4-29 DSPLIB Reference

 int k0, k1, j0, j1, l0, radix;

 float * y0, * ptr_x0, * ptr_x2;

 radix = n_min;

 stride = n; /* n is the number of complex samples */

 tw_offset = 0;

 while (stride > radix)

 {

 j = 0;

 fft_jmp = stride + (stride>>1);

 h2 = stride>>1;

 l1 = stride;

 l2 = stride + (stride>>1);

 x = ptr_x;

 w = ptr_w + tw_offset;

 for (i = 0; i < n; i += 4)

 {

 co1 = w[j];

 si1 = w[j+1];

 co2 = w[j+2];

 si2 = w[j+3];

 co3 = w[j+4];

 si3 = w[j+5];

 x_0 = x[0];

 x_1 = x[1];

 x_h2 = x[h2];

 x_h2p1 = x[h2+1];

 x_l1 = x[l1];

 x_l1p1 = x[l1+1];

 x_l2 = x[l2];

 x_l2p1 = x[l2+1];

 xh0 = x_0 + x_l1;

 xh1 = x_1 + x_l1p1;

 xl0 = x_0 − x_l1;

 xl1 = x_1 − x_l1p1;

 xh20 = x_h2 + x_l2;

 xh21 = x_h2p1 + x_l2p1;

DSPF_sp_ifftSPxSP

4-30

 xl20 = x_h2 − x_l2;

 xl21 = x_h2p1 − x_l2p1;

 ptr_x0 = x;

 ptr_x0[0] = xh0 + xh20;

 ptr_x0[1] = xh1 + xh21;

 ptr_x2 = ptr_x0;

 x += 2;

 j += 6;

 predj = (j − fft_jmp);

 if (!predj) x += fft_jmp;

 if (!predj) j = 0;

 xt0 = xh0 − xh20;

 yt0 = xh1 − xh21;

 xt1 = xl0 − xl21;

 yt2 = xl1 − xl20;

 xt2 = xl0 + xl21;

 yt1 = xl1 + xl20;

 ptr_x2[l1] = xt1 * co1 − yt1 * si1;

 ptr_x2[l1+1] = yt1 * co1 + xt1 * si1;

 ptr_x2[h2] = xt0 * co2 − yt0 * si2;

 ptr_x2[h2+1] = yt0 * co2 + xt0 * si2;

 ptr_x2[l2] = xt2 * co3 − yt2 * si3;

 ptr_x2[l2+1] = yt2 * co3 + xt2 * si3;

 }

 tw_offset += fft_jmp;

 stride = stride>>2;

 }/* end while */

 j = offset>>2;

 ptr_x0 = ptr_x;

 y0 = ptr_y;

 /*l0 = _norm(n_max) − 17; get size of fft */

 l0=0;

 for(k=30;k>=0;k−−)

 if((n_max & (1 << k)) == 0)

 l0++;

 else

DSPF_sp_ifftSPxSP

4-31 DSPLIB Reference

 break;

 l0=l0−17;

 if (radix <= 4) for (i = 0; i < n; i += 4)

 {

 /* reversal computation */

 j0 = (j) & 0x3F;

 j1 = (j >> 6);

 k0 = brev[j0];

 k1 = brev[j1];

 k = (k0 << 6) + k1;

 k = k >> l0;

 j++; /* multiple of 4 index */

 x0 = ptr_x0[0]; x1 = ptr_x0[1];

 x2 = ptr_x0[2]; x3 = ptr_x0[3];

 x4 = ptr_x0[4]; x5 = ptr_x0[5];

 x6 = ptr_x0[6]; x7 = ptr_x0[7];

 ptr_x0 += 8;

 xh0_0 = x0 + x4;

 xh1_0 = x1 + x5;

 xh0_1 = x2 + x6;

 xh1_1 = x3 + x7;

 if (radix == 2)

 {

 xh0_0 = x0;

 xh1_0 = x1;

 xh0_1 = x2;

 xh1_1 = x3;

 }

 yt0 = xh0_0 + xh0_1;

 yt1 = xh1_0 + xh1_1;

 yt4 = xh0_0 − xh0_1;

 yt5 = xh1_0 − xh1_1;

 xl0_0 = x0 − x4;

 xl1_0 = x1 − x5;

 xl0_1 = x2 − x6;

 xl1_1 = x7 − x3;

DSPF_sp_ifftSPxSP

4-32

 if (radix == 2)

 {

 xl0_0 = x4;

 xl1_0 = x5;

 xl1_1 = x6;

 xl0_1 = x7;

 }

 yt2 = xl0_0 + xl1_1;

 yt3 = xl1_0 + xl0_1;

 yt6 = xl0_0 − xl1_1;

 yt7 = xl1_0 − xl0_1;

 y0[k] = yt0/n_max; y0[k+1] = yt1/n_max;

 k += n_max>>1;

 y0[k] = yt2/n_max; y0[k+1] = yt3/n_max;

 k += n_max>>1;

 y0[k] = yt4/n_max; y0[k+1] = yt5/n_max;

 k += n_max>>1;

 y0[k] = yt6/n_max; y0[k+1] = yt7/n_max;

 }

}

Special Requirements
� The value of N must be a power of 2 and N ≥ 8, N ≤ 8192 points.

� Complex time data x and twiddle factors w are aligned on double-word
boundaries. Real values are stored in even word positions and imaginary
values in odd positions.

� All data is in single-precision floating-point format. The complex frequency
data will be returned in linear order.

� The x array must be padded with 16 words at the end.

Implementation Notes
� A special sequence of coeffs. used as generated above produces the ifft.

This collapses the inner 2 loops in the traditional Burrus and Parks imple-
mentation Fortran code.

� The revised FFT uses a redundant sequence of twiddle factors to allow a
linear access through the data. This linear access enables data and in-
struction level parallelism.

DSPF_sp_ifftSPxSP

4-33 DSPLIB Reference

� The data produced by the DSPF_sp_ifftSPxSP ifft is in normal form, the
whole data array is written into a new output buffer.

� The DSPF_sp_ifftSPxSP butterfly is bit reversed, i.e., the inner 2 points
of the butterfly are crossed over, this has the effect of making the data
come out in bit reversed rather than DSPF_sp_ifftSPxSP digit reversed or-
der. This simplifies the last pass of the loop. ia simple table is used to do
the bit reversal out of place.

unsigned char brev[64] = {
0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38,
0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c,
0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a,
0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e,
0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39,
0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d,
0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b,
0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f
};

� The special sequence of twiddle factors w can be generated using the
tw_fftSPxSP_C67 function provided in the dsplib\support\
fft\tw_fftSPxSP_C67.c file or by running tw_fftSPxSP_C67.exe in
dsplib\bin.

� The brev table required for this function is provided in the file dsplib\sup-
port\fft\brev_table.h.

� Endianness: Configuration is little endian.

� Interruptibility: This code is intended to be interrupt-tolerant but not inter-
ruptible. However, a bug in the assembly code for Rev 2.0 and earlier of
the library causes this function to not be interrupt tolerant. Therefore, in
order to safely use this function you must disable interrupts prior to the call
and then restore interrupts after.

Benchmarks

Cycles cycles = 3 * ceil(log4(N)−1) * N + 21*ceil(log4(N)−1) + 2*N +
44
e.g., N = 1024, cycles = 14464
e.g., N = 512, cycles = 7296
e.g., N = 256, cycles = 2923
e.g., N = 128, cycles = 1515
e.g., N = 64, cycles = 598

Code size
(in bytes)

1472

DSPF_sp_icfftr2_dif

4-34

Single-precision inverse, complex, radix-2,
decimation-in-frequency FFT

DSPF_sp_icfftr2_dif

Function void DSPF_sp_icfftr2_dif (float* x, float* w, short n)

Arguments

x Input and output sequences (dim−n) (input/output) x has n
complex numbers (2*n SP values). The real and imaginary
values are interleaved in memory. The input is in bit-reversed
order and output is in normal order.

w FFT coefficients (dim−n/2) (input) w has n/2 complex
numbers (n SP values). FFT coefficients must be in
bit-reversed order. The real and imaginary values are
interleaved in memory.

n FFT size (input).

Description This routine is used to compute the inverse, complex, radix-2, decimation-in-
frequency Fast Fourier Transform of a single-precision complex sequence of
size n, and a power of 2. The routine requires bit-reversed input and bit-re-
versed coefficients (twiddle factors) and produces results that are in normal
order.

Final scaling by 1/N is not done in this function.

How To Use
void main(void)
{
 gen_w_r2(w, N); // Generate coefficient table
 bit_rev(w, N>>1); // Bit−reverse coefficient table
 DSPF_sp_cfftr2_dit(x, w, N);
 // radix−2 DIT forward FFT
 // input in normal order, output in
 // order bit−reversed
 // coefficient table in bit−reversed
 // order
 DSPF_sp_icfftr2_dif(x, w, N);
 // Inverse radix 2 FFT
 // input in bit−reversed order,
 // order output in normal
 // coefficient table in bit−reversed
 // order
 divide(x, N); // scale inverse FFT output
 // result is the same as original
 // input
}

DSPF_sp_icfftr2_dif

4-35 DSPLIB Reference

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSPF_sp_icfftr2_dif(float* x, float* w, short n)

{

 short n2, ie, ia, i, j, k, m;

 float rtemp, itemp, c, s;

 n2 = 1;

 ie = n;

 for(k=n; k > 1; k >>= 1)

 {

 ie >>= 1;

 ia = 0;

 for(j=0; j < ie; j++)

 {

 c = w[2*j];

 s = w[2*j+1];

 for(i=0; i < n2; i++)

 {

 m = ia + n2;

 rtemp = x[2*ia] − x[2*m];

 x[2*ia] = x[2*ia] + x[2*m];

 itemp = x[2*ia+1] − x[2*m+1];

 x[2*ia+1] = x[2*ia+1] + x[2*m+1];

 x[2*m] = c*rtemp − s*itemp;

 x[2*m+1] = c*itemp + s*rtemp;

 ia++;

 }

 ia += n2;

 }

 n2 <<= 1;

 }

}

DSPF_sp_icfftr2_dif

4-36

The following C code is used to generate the coefficient table (non-bit re-
versed):

#include <math.h>

/* generate real and imaginary twiddle

 table of size n/2 complex numbers */

gen_w_r2(float* w, int n)

{

 int i;

 float pi = 4.0*atan(1.0);

 float e = pi*2.0/n;

 for(i=0; i < (n>>1); i++)

 {

 w[2*i] = cos(i*e);

 w[2*i+1] = sin(i*e);

 }

}

The following C code is used to bit-reverse the coefficients:

bit_rev(float* x, int n)

{

 int i, j, k;

 float rtemp, itemp;

 j = 0;

 for(i=1; i < (n−1); i++)

 {

 k = n >> 1;

 while(k <= j)

 {

 j −= k;

 k >>= 1;

 }

 j += k;

 if(i < j)

 {

 rtemp = x[j*2];

 x[j*2] = x[i*2];

DSPF_sp_icfftr2_dif

4-37 DSPLIB Reference

 x[i*2] = rtemp;

 itemp = x[j*2+1];

 x[j*2+1] = x[i*2+1];

 x[i*2+1] = itemp;

 }

 }

}

The following C code is used to perform the final scaling of the IFFT:

/* divide each element of x by n */

divide(float* x, int n)

{

 int i;

 float inv = 1.0 / n;

 for(i=0; i < n; i++)

 {

 x[2*i] = inv * x[2*i];

 x[2*i+1] = inv * x[2*i+1];

 }

}

Special Requirements
� Both input x and coefficient w should be aligned on double-word boundary.

� The x value should be padded with 4 words.

� The value of n should be greater than 8.

Implementation Notes
� Loading input x as well as coefficient w in double word.

� MPY was used to perform an MV. EX. mpy x, 1, y <=> mv x, y

� Because the data loads are 1 iteration ahead of the coefficient loads,
counter i was copied so that the actual count could live longer for the coeffi-
cient loads.

� Two inner loops are collapsed into one loop.

� Prolog and epilog are done in parallel with the outermost loop.

� Since the twiddle table is in bit-reversed order, it turns out that the same
twiddle table will also work for smaller IFFTs. This means that if you need
to do both 512 and 1024 point IFFTs in the same application, you only need
to have the 1024 point twiddle table. The 512 point FFT will use the first
half of the 1024 point twiddle table.

DSPF_sp_fir_cplx

4-38

� The bit-reversed twiddle factor array w can be generated by using the
gen_twiddle function provided in the support\fft directory or by running
tw_r2fft.exe provided in bin\. The twiddle factor array can also be gener-
ated using the gen_w_r2 and bit_rev algorithms, as described above.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*n*log2(n) + 37
e.g., IF n = 64, cycles = 805
e.g., IF n = 128, cycles = 1829

Code size
(in bytes)

1600

4.1.4 Filtering and Convolution

Single-precision complex finite impulse response filterDSPF_sp_fir_cplx

Function void DSPF_sp_fir_cplx (const float * restrict x, const float * restrict h, float *
restrict r, int nh, int nr)

Arguments

x[2*(nr+nh−1)] Pointer to complex input array. The input data pointer x
must point to the (nh)th complex element; i.e., element
2*(nh−1).

h[2*nh] Pointer to complex coefficient array (in normal order).

r[2*nr] Pointer to complex output array.

nh Number of complex coefficients in vector h.

nr Number of complex output samples to calculate.

Description This function implements the FIR filter for complex input data. The filter has
nr output samples and nh coefficients. Each array consists of an even and odd
term with even terms representing the real part and the odd terms the imagi-
nary part of the element. The coefficients are expected in normal order.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

DSPF_sp_fir_cplx

4-39 DSPLIB Reference

void DSPF_sp_fir_cplx(const float * x, const float * h,
 float * restrict r, int nh, int nr)

{

 int i,j;

 float imag, real;

 for (i = 0; i < 2*nr; i += 2)

 {

 imag = 0;

 real = 0;

 for (j = 0; j < 2*nh; j += 2)

 {

 real += h[j] * x[i−j] − h[j+1] * x[i+1−j];

 imag += h[j] * x[i+1−j] + h[j+1] * x[i−j];

 }

 r[i] = real;

 r[i+1] = imag;

 }

}

Special Requirements
� The value of nr is a multiple of 2 and greater than or equal to 2.

� The value of nh is greater than or equal to 5.

� The x and h arrays are double-word aligned.

� The x array points to 2*(nh−1)th input element.

Implementation Notes
� The outer loop is unrolled twice.

� Outer loop instructions are executed in parallel with inner loop.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2 * nh * nr + 33
For nh=24 and nr=64, cycles=3105
For nx=32 and nr=64, cycles=4129

Code size
(in bytes)

640

DSPF_sp_fir_gen

4-40

Single-precision generic FIR filterDSPF_sp_fir_gen

Function void DSPF_sp_fir_gen (const float *x, const float *h, float * restrict r, int nh,
int nr)

Arguments

x Pointer to array holding the input floating-point array.

h Pointer to array holding the coefficient floating-point array.

r Pointer to output array

nh Number of coefficients.

nr Number of output values.

Description This routine implements a block FIR filter. There are nh filter coefficients, nr
output samples, and nh+nr−1 input samples. The coefficients need to be
placed in the h array in reverse order {h(nh−1), ... , h(1), h(0)} and the array
x starts at x(−nh+1) and ends at x(nr−1). The routine calculates y(0) through
y(nr−1) using the following formula:

r(n) = h(0)*x(n) + h(1)*x(n−1) + ... + h(nh−1)*x(n−nh+1)
where n = {0, 1, ... , nr−1}.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_fir_gen(const float *x, const float *h,
 float * restrict r,

 int nh, int nr)

{

 int i, j;

 float sum;

 for(i=0; i < nr; i++)

 {

 sum = 0;

 for(j=0; j < nh; j++)

 {

 sum += x[i+j] * h[i];

 }

 r[j] = sum;

 }

}

DSPF_sp_fir_gen

4-41 DSPLIB Reference

Special Requirements
� The x and h arrays are double−word aligned.

� Little endianness is assumed for LDDW instructions.

� The number of coefficients must be greater than or equal to 4.

� The number of outputs must be greater than or equal to 4

Implementation Notes
� LDDW instructions are used to load two SP floating-point values simulta-

neously for the x and h arrays.

� The outer loop is unrolled four times.

� The inner loop is unrolled two times and software pipelined.

� The variables prod1, prod3, prod5, and prod7 share A9.
The variables prod0, prod2, prod4, and prod6 share B6.
The variables sum1, sum3, sum5, and sum7 share A7.
The variables sum0, sum2, sum4, and sum6 share B7.
This multiple assignment is possible since the variables are always read
just once on the first cycle that they are available.

� The first eight cycles of the inner loop prolog are conditionally scheduled
in parallel with the outer loop. This increases the code size by 14 words,
but improves the cycle time.

� A load counter is used so that an epilog is not needed. No extraneous
loads are performed.

� Endianness: This code is little endian.

� Interruptibility: This code is intended to be interrupt-tolerant but not inter-
ruptible. However, a bug in the assembly code for Rev 2.0 and earlier of
the library causes this function to not be interrupt tolerant. Therefore, in
order to safely use this function you must disable interrupts prior to the call
and then restore interrupts after.

Benchmarks

Cycles (4*floor((nh−1)/2)+14)*(ceil(nr/4)) + 8
e.g., nh=10, nr=100, cycles=758 cycles

Code size
(in bytes)

640

DSPF_sp_fir_r2

4-42

Single-precision complex finite impulse response filterDSPF_sp_fir_r2

Function void DSPF_sp_fir_r2 (const float * restrict x, const float * restrict h, float *
restrict r, int nh, int nr)

Arguments

x[nr+nh−1] Pointer to input array of size nr+nh−1.

h[nh] Pointer to coefficient array of size nh (in reverse order).

r[nr] Pointer to output array of size nr.

nh Number of coefficients.

nr Number of output samples.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[].
The real data input is stored in vector x[]. The filter output result is stored in
vector r[]. The filter calculates nr output samples using nh coefficients. The co-
efficients are expected to be in reverse order.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_fir_r2(const float * x, const float * h,
 float *restrict r, int nh, int nr)

{

 int i, j;

 float sum;

 for (j = 0; j < nr; j++)

 {

 sum = 0;

 for (i = 0; i < nh; i++)

 sum += x[i + j] * h[i];

 r[j] = sum;

 }

}

Special Requirements
� The value of nr is a multiple of 2 and greater than or equal to 2.

� The value of nh is a multiple of 2 and greater than or equal to 8.

� The x and h arrays are double-word aligned.

� Coefficients in array h are expected to be in reverse order.

� The x and h arrays should be padded with 4 words at the end.

DSPF_sp_fircirc

4-43 DSPLIB Reference

Implementation Notes
� The outer loop is unrolled four times and inner loop is unrolled twice.

� Outer loop instructions are executed in parallel with inner loop.

� Endianness: This code is little endian.

� Interruptibility: This code is intended to be interrupt-tolerant but not inter-
ruptible. However, a bug in the assembly code for Rev 2.0 and earlier of
the library causes this function to not be interrupt tolerant. Therefore, in
order to safely use this function you must disable interrupts prior to the call
and then restore interrupts after.

Benchmarks

Cycles (nh * nr)/2 + 34, if nr multiple of 4
(nh * nr)/2 + 45, if nr not multiple of 4
For nh=24 and nr=64, cycles=802
For nh=30 and nr=50, cycles=795

Code size
(in bytes)

960

Single-precision circular FIR algorithmDSPF_sp_fircirc

Function void DSPF_sp_fircirc (float *x, float *h, float *r, int index, int csize, int nh,
 int nr)

Arguments

x[] Input array (circular buffer of 2^(csize+1) bytes). Must be
aligned at 2^(csize+1) byte boundary.

h[nh] Filter coefficients array. Must be double-word aligned.

r[nr] Output array

index Offset by which to start reading from the input array. Must be
a multiple of 2.

csize Size of circular buffer x[] is 2^(csize+1) bytes. Must be 2 ≤
csize ≤ 31.

nh Number of filter coefficients. Must be a multiple of 2 and ≥ 4.

nr Size of output array. Must be a multiple of 4.

Description This routine implements a circularly addressed FIR filter. nh is the number of
filter coefficients. nr is the number of the output samples.

DSPF_sp_fircirc

4-44

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_fircirc (float x[], float h[], float r[],
 int index, int csize, int nh, int nr)

{

 int i, j;

 //Circular Buffer block size = ((2^(csize + 1)) / 4)

 //floating point numbers

 int mod = (1 << (csize − 1));

 float r0;

 for (i = 0; i < nr; i++)

 {

 r0 = 0;

 for (j = 0; j < nh; j++)

 {

 //Operation ”% mod” is equivalent to ”& (mod −1)”

 //r0 += x[(i + j + index) % mod] * h[j];

 r0 += x[(i + j + index) & (mod − 1)] * h[j];

 }

 r[i] = r0;

 }

}

Special Requirements
� The circular input buffer x[] must be aligned at a 2^(csize+1) byte bound-

ary. csize must lie in the range 2 ≤ csize ≤ 31.

� The number of coefficients (nh) must be a multiple of 2 and greater than
or equal to 4.

� The number of outputs (nr) must be a multiple of 4 and greater than or
equal to 4.

� The index (offset to start reading input array) must be a multiple of 2 and
less than or equal to (2^(csize−1) − 6).

� The coefficient array is assured to be in reverse order; that is, h(nh−1) to
h(0) hold coefficients h0, h1, h2, etc.

Implementation Notes
� LDDW instructions are used to load two SP floating-point values simulta-

neously for the x and h arrays.

DSPF_sp_biquad

4-45 DSPLIB Reference

� The outer loop is unrolled four times.

� The inner loop is unrolled two times.

� The variables prod1, prod3, prod5 and prod7 share A9.
The variables prod0, prod2, prod4 and prod6 share B6.
The variables sum1, sum3, sum5 and sum7 share A7.
The variables sum0, sum2, sum4 and sum6 share B8.
This multiple assignment is possible since the variables are always read
just once on the first cycle that they are available.

� A load counter is used so that an epilog is not needed. No extraneous
loads are performed.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (2*nh + 10) nr/4 + 18
For nh = 30 & nr=100, cycles = 1768

Code size
(in bytes)

512

Single-precision 2nd order IIR (biquad) filterDSPF_sp_biquad

Function void DSPF_sp_biquad (float *x, float *b, float *a, float *delay, float *r, int
nx)

Arguments

x Pointer to input samples.

b Pointer to nr coefs b0, b1, b2.

a Pointer to dr coefs a1, a2.

delay Pointer to filter delays.

r Pointer to output samples.

nx Number of input/output samples.

Description This routine implements a DF 2 transposed structure of the biquad filter. The
transfer function of a biquad can be written as:

DSPF_sp_biquad

4-46

H(Z) �
b(0) � b(1)z � (� 1) � b(2)z � (� 2)

1 � a(1)z � (� 1) � a(2)z � (� 2)

Algorithm

void DSPF_sp_biquad(float *x, float *b, float *a,
 float *delay, int nx)

{

 int i;

 float a1, a2, b0, b1, b2, d0, d1, x_i;

 a1 = a[0];

 a2 = a[1];

 b0 = b[0];

 b1 = b[1];

 b2 = b[2];

 d0 = delay[0];

 d1 = delay[1];

 for (i = 0; i < nx; i++)

 {

 x_i = x[i];

 r[i] = b0 * x_i + d0;

 d0 = b1 * x_i − a1 * r[i] + d1;

 d1 = b2 * x_i − a2 * r[i];

 }

 delay[0] = d0;

 delay[1] = d1;

}

Special Requirements
� The coefficient pointers are double-word aligned.

� The value of nx should be a multiple of 3.

Implementation Notes
� Unrolling the loop three times implies that the order of the filter has been

increased by 2. This is because the output at time instant n is dependent
on the outputs at instants n−3 and n−4. This is mathematically equivalent
to multiplying the transfer function’s numerator and denominator by
(1 + k1 * z^−1) (1 + k2 * z^−1), where k1 is a1 and k2 is
(a2 − a1 * a1) / a1. Hence, two new poles are introduced: one at −a1 and
the other at −(a2 − a1 * a1) / a1.Thus, use of this function requires that
modulii of a1 and (a2 − a1 * a1) / a1 be less than 1.

DSPF_sp_iir

4-47 DSPLIB Reference

� Register sharing has been used to optimize on the use of registers.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4 * nx + 76
For nx = 60, cycles = 316
For nx = 90, cycles = 436

Code size
(in bytes)

1312

Single-precision IIR filter (used in the VSELP vocoder)DSPF_sp_iir

Function void DSPF_sp_iir (float* restrict r1, const float* x, float* restrict r2, const float*
h2, const float* h1, int nr)

Arguments

r1[nr+4] Delay element values (i/p and o/p).

x[nr + 4] Pointer to the input array.

r2[nr] Pointer to the output array.

h1[5] Moving average filter coefficients.

h2[5] Auto-regressive filter coefficients.

nr Number of output samples.

Description The IIR performs an auto-regressive moving-average (ARMA) filter with 4
auto-regressive filter coefficients and 5 moving-average filter coefficients for
nr output samples. The output vector is stored in two locations. This routine
is used as a high pass filter in the VSELP vocoder. The 4 values in the r1 vector
store the initial values of the delays.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSPF_sp_iir (float* restrict r1,
 const float* x,
 float* restrict r2,
 const float* h2,
 const float* h1,
 int nr
)

{

DSPF_sp_iir

4-48

 int i, j;

 float sum;

 for (i = 0; i < nr; i++)

 {

 sum = h2[0] * x[4+i];

 for (j = 1; j <= 4; j++)

 sum += h2[j] * x[4+i−j] − h1[j] * r1[4+i−j];

 r1[4+i] = sum;

 r2[i] = r1[4+i];

 }

}

Special Requirements

� The value of nr must be a multiple of 2.

� Extraneous loads are allowed in the program.

� Due to unrolling modulus(h1[1]) < 1 must be true.

Implementation Notes

� The inner loop is completely unrolled so that two loops become one loop.

� The outer loop is unrolled twice to break the dependency bound of 8
cycles.

� The values of the r1 array are not loaded each time to calculate the value
of the sum variable. Instead, the 4 values of the r1 array required are main-
tained in registers so that memory operations are significantly reduced.

� Unrolling by 2 implies calculation of constants before the start of the loop.
Due to shortage of registers these constants are stored in the stack and
later retrieved each time they are required.

� The stack must be placed in L2 to reduce overhead due to external
memory access stalls.

� Endianness: The code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 6 * nr + 59
e.g., for nr = 64, cycles = 443

Code size
(in bytes)

1152

DSPF_sp_iirlat

4-49 DSPLIB Reference

Single-precision all-pole IIR lattice filterDSPF_sp_iirlat

Function void DSPF_sp_iirlat (float *x, int nx, const float * restrict k, int nk, float *
restrict b, float * r)

Arguments

x[nx] Input vector.

nx Length of input vector.

k[nk] Reflection coefficients.

nk Number of reflection coefficients/lattice stages. Must be a
multiple of 2 and ≥ 6.

b[nk+1] Delay line elements from previous call. Should be initialized
to all zeros prior to the first call.

r[nx] Output vector

Description This routine implements a real all-pole IIR filter in lattice structure (AR lattice).
The filter consists of nk lattice stages. Each stage requires one reflection coef-
ficient k and one delay element b. The routine takes an input vector x[] and re-
turns the filter output in r[]. Prior to the first call of the routine the delay elements
in b[] should be set to zero. The input data may have to be pre-scaled to avoid
overflow or achieve better SNR. The reflections coefficients lie in the range
−1.0 < k < 1.0. The order of the coefficients is such that k[nk−1] corresponds
to the first lattice stage after the input and k[0] corresponds to the last stage.

Algorithm

void DSPF_sp_iirlat(float * x, int nx,
 const float * restrict k, int nk,
 float * restrict b, float * r)

{

 float rt; // output //

 int i, j;

 for (j = 0; j < nx; j++)

 {

 rt = x[j];

 for (i = nk − 1; i >= 0; i−−)

 {

 rt = rt − b[i] * k[i];

 b[i + 1] = b[i] + rt * k[i];

 }

DSPF_sp_convol

4-50

 b[0] = rt;

 r[j] = rt;

 }

}

Special Requirements

� The value of nk is a multiple of 2 and ≥ 6.

� Extraneous loads are allowed (80 bytes) before the start of array.

� The arrays k and b are double-word aligned.

Implementation Notes

� The loop has been unrolled by four times.

� Register sharing has been used to optimize on the use of registers.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (6*floor((nk+1)/4) + 29)* nx + 25
For nk = 10, nx = 100 cycles = 4125

Code size
(in bytes)

1024

Single-precision convolutionDSPF_sp_convol

Function void DSPF_sp_convol (float *x, float *h, float *r, int nh, int nr)

Arguments

x Pointer to real input vector of size = nr+nh−1 a typically
contains input data (x) padded with consecutive nh − 1 zeros
at the beginning and end.

h pointer to real input vector of size nh in forward order. h
typically contains the filter coefs.

r Pointer to real output vector of size nr.

nh Number of elements in vector b. Note: nh ≤ nr nh is typically
noted as m in convol formulas. nh must be a multiple of 2.

nr Number of elements in vector r. nr must be a multiple of 4.

DSPF_sp_convol

4-51 DSPLIB Reference

Description This function calculates the full-length convolution of real vectors x and h using
time-domain techniques. The result is placed in real vector r. It is assumed that
input vector x is padded with nh−1 no of zeros in the beginning and end. It is
assumed that the length of the input vector h, nh, is a multiple of 2 and the
length of the output vector r, nr, is a multiple of 4. nh is greater than or equal
to 4 and nr is greater than or equal to nh. The routine computes 4 output sam-
ples at a time.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_convol(float *x, float *h, float *r, short nh,
 short nr)

{

 short ocntr, icntr;

 float acc ;

 for (ocntr = nr ; ocntr > 0 ; ocntr−−)

 {

 acc = 0 ;

 for (icntr = nh ; icntr > 0 ; icntr−−)

 {

 acc += x[nr−ocntr+nh−icntr]*h[(icntr−1)];

 }

 r[nr−ocntr] = acc;

 }

}

Special Requirements

� The value of nh is a multiple of 2 and greater than or equal to 4.

� The value of nr is a multiple of 4.

� The x and h arrays are assumed to be aligned on a double-word boundary.

Implementation Notes

� The inner loop is unrolled twice and the outer loop is unrolled four times.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (nh/2)*nr + (nr/2)*5 + 9
For nh=24 and nr=64, cycles=937
For nh=20 and nr=32, cycles=409

Code size
(in bytes)

480

DSPF_sp_dotp_sqr

4-52

4.1.5 Math

Single-precision dot product and sum of squareDSPF_sp_dotp_sqr

Function float DSPF_sp_dotp_sqr (float G, const float * x, const float * y, float * restrict
r, int nx)

Arguments

G Sum of y-squared initial value.

x[nx] Pointer to first input array.

y[nx] Pointer to second input array.

r Pointer to output for accumulation of x[]*y[].

nx Length of input vectors.

Description This routine computes the dot product of x[] and y[] arrays,adding it to the value
in the location pointed to by r. Additionally, it computes the sum of the squares
of the terms in the y array, adding it to the argument G. The final value of G is
given as the return value of the function.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

float DSPF_sp_dotp_sqr(float G, const float * x,
 const float * y, float *restrict r, int nx)

{

 int i;

 for (i = 0; i < nx; i++)

 {

 *r += x[i] * y[i]; /* Compute Dot Product */

 G += y[i] * y[i]; /* Compute Square */

 }

 return G;

}

Special Requirements There are no special alignment requirements.

Implementation Notes

� Multiple assignment was used to reduce loop carry path.

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

DSPF_sp_dotprod

4-53 DSPLIB Reference

Benchmarks

Cycles nx + 23
For nx=64, cycles=87.
For nx=30, cycles=53

Code size
(in bytes)

288

Dot product of 2 single-precision float vectorsDSPF_sp_dotprod

Function float DSPF_sp_dotprod (const float *x, const float *y, const int nx)

Arguments

x Pointer to array holding the first floating-point vector.

y Pointer to array holding the second floating-point vector.

nx Number of values in the x and y vectors.

Description This routine calculates the dot product of 2 single-precision float vectors.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

float DSPF_sp_dotprod(const float *x, const float *y,
 const int nx)

{

 int i;

 float sum = 0;

 for (i=0; i < nx; i++)

 {

 sum += x[i] * y[i];

 }

 return sum;

}

Special Requirements

� The x and y arrays must be double-word aligned.

� A memory pad of 4 bytes is required at the end of each array if the number
of inputs is odd.

� The value of nx must be > 0.

DSPF_sp_dotp_cplx

4-54

Implementation Notes

� LDDW instructions are used to load two SP floating-point values at a time
for the x and y arrays.

� The loop is unrolled once and software pipelined. However, by condition-
ally adding to the dot product odd numbered array sizes are also per-
mitted.

� Since the ADDSP and MPYSP instructions take 4 cycles, A8, B8, A0, and
B0 multiplex different variables to save on register usage. This multiple as-
signment is possible since the variables are always read just once on the
first cycle that they are available.

� The loop is primed to reduce the prolog by 4 cycles (14 words) with no in-
crease in cycle time.

� The load counter is used as the loop counter which requires a 3-cycle
(6 word) epilog to finish the calculations. This does not increase the cycle
time.

� Endianness: This code is little endian.

� Interruptibility: This code is intended to be interrupt-tolerant but not inter-
ruptible. However, a bug in the assembly code for Rev 2.0 and earlier of
the library causes this function to not be interrupt tolerant. Therefore, in
order to safely use this function you must disable interrupts prior to the call
and then restore interrupts after.

Benchmarks

Cycles nx/2 + 25
e.g., for nx = 512, cycles = 281

Code size
(in bytes)

256

Complex single-precision floating-point dot productDSPF_sp_dotp_cplx

Function void DSPF_sp_dotp_cplx (const float *x, const float *y, int n, float *restrict
re, float * restrict im)

Arguments

x Pointer to array holding the first floating-point vector.

y Pointer to array holding the second floating-point vector.

DSPF_sp_dotp_cplx

4-55 DSPLIB Reference

n Number of values in the x and y vectors.

re Pointer to the location storing the real part of the result.

im Pointer to the location storing the imaginary part of the
result.

Description This routine calculates the dot product of 2 single-precision complex float vec-
tors. The even numbered locations hold the real parts of the complex numbers
while the odd numbered locations contain the imaginary portions.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_dotp_cplx(const float* x, const float* y, int n,
 float* restrict re, float* restrict im)

{

 float real=0, imag=0;

 int i=0;

 for(i=0; i<n; i++)

 {

 real+=(x[2*i]*y[2*i] − x[2*i+1]*y[2*i+1]);

 imag+=(x[2*i]*y[2*i+1] + x[2*i+1]*y[2*i]);

 }

 *re=real;

 *im=imag;

}

Special Requirements

� Since single assignment of registers is not used, interrupts should be dis-
abled before this function is called.

� Loop counter must be even and > 0.

� The x and y arrays must be double-word aligned.

Implementation Notes

� LDDW instructions are used to load two SP floating-point values at a time
for the x and y arrays.

� A load counter avoids all extraneous loads.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

DSPF_sp_maxval

4-56

Benchmarks

Cycles 2*N + 22
e.g., for N = 512, cycles = 1046

Code size
(in bytes)

352

Maximum element of single-precision vectorDSPF_sp_maxval

Function float DSPF_sp_maxval (const float* x, int nx)

Arguments

x Pointer to input array.

nx Number of inputs in the input array.

Description This routine finds out the maximum number in the input array. This code re-
turns the maximum value in the array.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

float DSPF_sp_maxval(const float* x, int nx)

{

 int i,index;

 float max;

 *((int *)&max) = 0xff800000;

 for (i = 0; i < nx; i++)

 if (x[i] > max)

 {

 max = x[i];

 index = i;

 }

 return max;

}

Special Requirements

� The value of nx should be a multiple of 2 and ≥ 2.

� The x array should be double-word aligned.

Implementation Notes

� The loop is unrolled six times.

DSPF_sp_maxidx

4-57 DSPLIB Reference

� Six maximums are maintained in each iteration.

� One of the maximums is calculated using SUBSP in place of CMPGTSP.

� NAN (not a number in single-precision format) in the input are disre-
garded.

� Endianness: This code is little endian.

� Interruptibility: This code is intended to be interrupt-tolerant but not inter-
ruptible. However, a bug in the assembly code for Rev 2.0 and earlier of
the library causes this function to not be interrupt tolerant. Therefore, in
order to safely use this function you must disable interrupts prior to the call
and then restore interrupts after.

Benchmarks

Cycles 3*ceil(nx/6) + 35
For nx=60, cycles=65
For nx=34, cycles=53

Code size
(in bytes)

448

Index of maximum element of single-precision vectorDSPF_sp_maxidx

Function int DSPF_sp_maxidx (const float* x, int nx)

Arguments

x Pointer to input array.

nx Number of inputs in the input array.

Description This routine finds out the index of maximum number in the input array. This
function returns the index of the greatest value.

Algorithm

int DSPF_sp_maxidx(const float* x, int nx)

{

 int index, i;

 float max;

 *((int *)&max) = 0xff800000;

 for (i = 0; i < nx; i++)

DSPF_sp_minval

4-58

 if (x[i] > max)

 {

 max = x[i];

 index = i;

 }

 return index;

}

Special Requirements

� The value of nx is a multiple of 3.

� The value is nx ≥ 3, and nx ≤ 2^16−1.

Implementation Notes

� The loop is unrolled three times.

� Three maximums are maintained in each iteration.

� MPY instructions are used for move.

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*nx/3 + 13
For nx=60, cycles=53
For nx=30, cycles=33

Code size
(in bytes)

256

Minimum element of single-precision vectorDSPF_sp_minval

Function float DSPF_sp_minval (const float* x, int nx)

Arguments

x Pointer to input array.

nx Number of inputs in the input array.

Description This routine finds out and returns the minimum number in the input array.

DSPF_sp_minval

4-59 DSPLIB Reference

Algorithm

float DSPF_sp_minval(const float* x, int nx)

{

 int i,index;

 float min;

 *((int *)&min) = 0x7f800000;

 for (i = 0; i < nx; i++)

 if (x[i] < min)

 {

 min = x[i];

 index = i;

 }

 return min;

}

Special Requirements

� The value of nx should be a multiple of 2 and ≥ 2.

� The x array should be double-word aligned.

� NAN (not a number in single-precision format) in the input are disre-
garded.

Implementation Notes

� The loop is unrolled six times.

� Six minimums are maintained in each iteration. One of the minimums is
calculated using SUBSP in place of CMPGTSP

� NAN (not a number in single-precision format) in the input are disre-
garded.

� Endianness: This code is little endian.

� Interruptibility: This code is intended to be interrupt-tolerant but not inter-
ruptible. However, a bug in the assembly code for Rev 2.0 and earlier of
the library causes this function to not be interrupt tolerant. Therefore, in
order to safely use this function you must disable interrupts prior to the call
and then restore interrupts after.

Benchmarks

Cycles 3*ceil(nx/6) + 35
For nx=60 cycles=65
For nx=34 cycles=53

Code size
(in bytes)

448

DSPF_sp_vecrecip

4-60

Single-precision vector reciprocalDSPF_sp_vecrecip

Function void DSPF_sp_vecrecip (const float *x, float * restrict r, int n)

Arguments

x Pointer to input array.

r Pointer to output array.

n Number of elements in array.

Description The sp_vecrecip module calculates the reciprocal of each element in the array
x and returns the output in array r. It uses 2 iterations of the Newton-Raphson
method to improve the accuracy of the output generated by the RCPSP in-
struction of the C67x. Each iteration doubles the accuracy. The initial output
generated by RCPSP is 8 bits. So after the first iteration it is 16 bits and after
the second it is the full 23 bits. The formula used is:

r[n+1] = r[n](2 − v*r[n])
where v = the number whose reciprocal is to be found.
x[0], the seed value for the algorithm, is given by RCPSP.

Algorithm This is the C equivalent of the assembly code without restrictions.

void DSPF_sp_vecrecip(const float* x, float* restrict r,
 int n)

{

 int i;

 for(i = 0; i < n; i++)

 r[i] = 1 / x[i];

}

Special Requirements There are no alignment requirements.

Implementation Notes

� The inner loop is unrolled four times to allow calculation of four reciprocals
in the kernel. However, the stores are executed conditionally to allow n to
be any number > 0.

� Register sharing is used to make optimal use of available registers.

� No extraneous loads occur except for the case when n ≤ 4 where a pad
of 16 bytes is required.

� Endianness: This code is little endian.

DSPF_sp_vecsum_sq

4-61 DSPLIB Reference

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 8*floor((n−1)/4) + 53
e.g., for n = 100, cycles = 245

Code size
(in bytes)

512

Single-precision sum of squaresDSPF_sp_vecsum_sq

Function float DSPF_sp_vecsum_sq (const float *x, int n)

Arguments

x Pointer to first input array.

n Number of elements in arrays.

Description This routine performs a sum of squares of the elements of the array x and re-
turns the sum.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

float DSPF_sp_vecsum_sq(const float *x,int n)

{

 int i;

 float sum=0;

 for(i = 0; i < n; i++)

 sum += x[i]*x[i];

 return sum;

}

Special Requirements

� The x array must be double-word aligned.

� Since loads of 8 floats beyond the array occur, a pad must be provided.

Implementation Notes

� The inner loop is unrolled twice. Hence, two registers are used to hold the
sum of squares. ADDSPs are staggered.

DSPF_sp_w_vec

4-62

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles floor((n−1)/2) + 26
e.g., for n = 200, cycles = 125

Code size
(in bytes)

384

Single-precision weighted sum of vectorsDSPF_sp_w_vec

Function void DSPF_sp_w_vec (const float* x, const float * y, float m, float * restrict
r, int nr)

Arguments

x Pointer to first input array.

y Pointer to second input array.

m Weight factor.

r Output array pointer.

nr Number of elements in arrays.

Description This routine is used to obtain the weighted vector sum. Both the inputs and out-
put are single-precision floating-point numbers.

Algorithm This is the C equivalent of the assembly code without restrictions.

void DSPF_sp_w_vec(const float * x,const float * y, float m
 float * restrict r,int nr)

{

 int i;

 for (i = 0; i < nr; i++)

 r[i] = (m * x[i]) + y[i];

}

Special Requirements

� The x and y arrays must be double-word aligned.

� The value of nr must be > 0.

DSPF_sp_vecmul

4-63 DSPLIB Reference

Implementation Notes

� The inner loop is unrolled twice.

� No extraneous loads occur except for odd values of n.

� Write buffer fulls occur unless the array r is in cache.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*floor((n−1)/2) + 19
e.g., for n = 200, cycles = 219

Code size
(in bytes)

384

Single-precision vector multiplicationDSPF_sp_vecmul

Function void DSPF_sp_vecmul (const float *x, const float *y, float * restrict r, int n)

Arguments

x Pointer to first input array.

y Pointer to second input array.

r Pointer to output array.

n Number of elements in arrays.

Description This routine performs an element by element floating-point multiply of the vec-
tors x[] and y[] and returns the values in r[].

Algorithm This is the C equivalent of the assembly code without restrictions.

void DSPF_sp_vecmul(const float * x, const float * y,

 float * restrict r, int n)

 {

 int i;

 for(i = 0; i < n; i++)

 r[i] = x[i] * y[i];

 }

DSPF_sp_mat_mul

4-64

Special Requirements The x and y arrays must be double-word aligned.

Implementation Notes

� The inner loop is unrolled twice to allow calculation of 2 outputs in the ker-
nel. However the stores are executed conditionally to allow n to be any
number > 0.

� No extraneous loads occur except for the case when n is odd where a pad
of 4 bytes is required.

� Endianness: This code is little endian.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*floor((n−1)/2) + 18
e.g., for n = 200, cycles = 216

Code size
(in bytes)

192

4.1.6 Matrix

Single-precision matrix multiplicationDSPF_sp_mat_mul

Function void DSPF_sp_mat_mul (float *x, int r1, int c1, float *y, int c2, float *r)

Arguments

x Pointer to r1 by c1 input matrix.

r1 Number of rows in x.

c1 Number of columns in x. Also number of rows in y.

y Pointer to c1 by c2 input matrix.

c2 Number of columns in y.

r Pointer to r1 by c2 output matrix.

Description This function computes the expression r = x * y for the matrices x and y. The
column dimension of x must match the row dimension of y. The resulting matrix
has the same number of rows as x and the same number of columns as y. The
values stored in the matrices are assumed to be single-precision floating-point
values. This code is suitable for dense matrices. No optimizations are made
for sparse matrices.

DSPF_sp_mat_mul

4-65 DSPLIB Reference

Algorithm

void DSPF_sp_mat_mul(float *x, int r1, int c1, float *y, int
c2, float *r)

{

 int i, j, k;

 float sum;

 // Multiply each row in x by each column in y.

 // The product of row m in x and column n in y is placed

 // in position (m,n) in the result.

 for (i = 0; i < r1; i++)

 for (j = 0; j < c2; j++)

 {

 sum = 0;

 for (k = 0; k < c1; k++)

 sum += x[k + i*c1] * y[j + k*c2];

 r[j + i*c2] = sum;

 }

}

Special Requirements

� The x, y, and r data are stored in distinct arrays. That is, in-place process-
ing is not allowed.

� All r1, c1, c2 are assumed to be > 1

� Five floats are always loaded extra from the locations:

y[c1’ * c2’], y[c1’ * c2’ + 1],
x[r1 * c1’], x[r1’ * c1’] and x[2 * c1]
where
r1’ = r1 + (r1&1)
c2’ = c2 + (c2&1)
c1’ = c1 + 1 + 2*(c1&1)

� If (r1&1) means r1 is odd, one extra row of x[] matrix is loaded

� If (c2&1) means c2 is odd, one extra col of y[] matrix is loaded

Implementation Notes

� All three loops are unrolled two times

� All the prolog stages of the innermost loop (k loop) are collapsed

DSPF_sp_mat_trans

4-66

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (0.5 * r1’ * c1 * c2’) + (6 * c2’ * r1’) + (4 * r1’) + 22
where
r1’ = r1 + (r1&1)
c2’ = c2 + (c2&1)
For r1 = 12, c1 = 14 and c2 = 18, cycles = 2890

Code size
(in bytes)

992

Single-precision matrix transposeDSPF_sp_mat_trans

Function void DSPF_sp_mat_trans (const float *restrict x, int rows, int cols, float
*restrict r)

Arguments

x Input matrix containing rows*cols floating-point numbers.

rows Number of rows in matrix x. Also number of columns in
matrix r.

cols Number of columns in matrix x. Also number of rows in
matrix r.

r Output matrix containing cols*rows floating-point numbers.

Description This function transposes the input matrix x[] and writes the result to matrix r[].

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_mat_trans(const float *restrict x, int rows,
 int cols, float *restrict r)

{

 int i,j;

 for(i=0; i<cols; i++)

 for(j=0; j<rows; j++)

 r[i * rows + j] = x[i + cols * j];

}

Special Requirements The number of rows and columns is > 0.

DSPF_sp_mat_mul_cplx

4-67 DSPLIB Reference

Implementation Notes

� The loop is unrolled twice.

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2 * rows * cols + 7
For rows=10 and cols=20, cycles=407
For rows=15 and cols=20, cycles=607

Code size
(in bytes)

128

Complex matrix multiplicationDSPF_sp_mat_mul_cplx

Function void DSPF_sp_mat_mul_cplx (const float* x, int r1, int c1, const float* y, int
c2, float* restrict r)

Arguments

x[2*r1*c1] Input matrix containing r1*c1 complex floating-point numbers
having r1 rows and c1 columns of complex numbers.

r1 Number of rows in matrix x.

c1 Number of columns in matrix x. Also number of rows in
matrix y.

y[2*c1*c2] Input matrix containing c1*c2 complex floating-point
numbers having c1 rows and c2 columns of complex
numbers.

c2 Number of columns in matrix y.

r[2*r1*c2] Output matrix of c1*c2 complex floating-point numbers
having c1 rows and c2 columns of complex numbers.
Complex numbers are stored consecutively with real values
are stored in even word positions and imaginary values in
odd positions.

Description This function computes the expression “r = x * y” for the matrices x and y. The
columnar dimension of x must match the row dimension of y. The resulting ma-
trix has the same number of rows as x and the same number of columns as
y. Each element of Matrices are assumed to be complex numbers with real val-
ues are stored in even word positions and imaginary values in odd positions.

DSPF_sp_mat_mul_cplx

4-68

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_mat_mul_cplx(const float* x, int r1, int c1,

 const float* y, int c2, float* restrict r)

{

 float real, imag;

 int i, j, k;

 for(i = 0; i < r1; i++)

 {

 for(j = 0; j < c2; j++)

 {

 real=0;

 imag=0;

 for(k = 0; k < c1; k++)

 {

 real += (x[i*2*c1 + 2*k]*y[k*2*c2 + 2*j]

 −x[i*2*c1 + 2*k + 1] * y[k*2*c2 + 2*j + 1]);

 imag+=(x[i*2*c1 + 2*k] * y[k*2*c2 + 2*j + 1]

 + x[i*2*c1 + 2*k + 1] * y[k*2*c2 + 2*j]);

 }

 r[i*2*c2 + 2*j] = real;

 r[i*2*c2 + 2*j + 1] = imag;

 }

 }

}

Special Requirements

� Use values c1 ≥ 4, and r1, r2 ≥ 1

� The x array should be padded with 6 words.

� The x and y arrays should be double-word aligned.

Implementation Notes

� Innermost loop is unrolled twice.

� Two inner loops are collapsed into one loop.

� Outermost loop is executed in parallel with inner loops.

DSPF_sp_blk_move

4-69 DSPLIB Reference

� Real values are stored in even word positions and imaginary values in odd
positions.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*r1*c1*c2’ + 33 WHERE c2’=2*ceil(c2/2)
When r1=3, c1=4, c2=4, cycles = 129
When r1=4, c1=4, c2=5, cycles = 225

Code size
(in bytes)

800

4.1.7 Miscellaneous

Single-precision block moveDSPF_sp_blk_move

Function void DSPF_sp_blk_move (const float * x, float *restrict r, int nx)

Arguments

x[nx] Pointer to source data to be moved.

r[nx] Pointer to destination array.

nx Number of floats to move.

Description This routine moves nx floats from one memory location pointed to by x to
another pointed to by r.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_sp_blk_move(const float * x, float *restrict r, int
nx)

{

 int i;

 for (i = 0 ; i < nx; i++)

 r[i] = x[i];

}

Special Requirements

DSPF_blk_eswap16

4-70

� The value of nx is greater than 0.

� If nx is odd then x and r should be padded with 1 word.

� The x and r arrays are double-word aligned.

Implementation Notes

� The loop is unrolled twice.

� Cache touching is used to remove the Write Buffer Full problem.

� Endianness: This implementation is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*ceil(nx/2)+7
For nx=64, cycles=71
For nx=25, cycles=33

Code size
(in bytes)

128

Endian swap a block of 16-bit valuesDSPF_blk_eswap16

Function void DSPF_blk_eswap16 (void *restrict x, void *restrict r, int nx)

Arguments

x[nx] Pointer to source data.

r[nx] Pointer to destination array.

nx Number of shorts (16-bit values) to swap.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each half-word of the r[] array is reversed. This is meant to facili-
tate moving big-endian data to a little-endian system or vice versa. When the
r pointer is non-NULL, the endian swap occurs out-of-place, similar to a block
move. When the r pointer is NULL, the endian swap occurs in place, allowing
the swap to occur without using any additional storage.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_blk_eswap16(void *restrict x, void *restrict r,
 int nx)

DSPF_blk_eswap16

4-71 DSPLIB Reference

{

 int i;

 char *_src, *_dst;

 if (r)

 {

 _src = (char *)x;

 _dst = (char *)r;

 }

 else

 {

 _src = (char *)x;

 _dst = (char *)x;

 }

 for (i = 0; i < nx; i++)

 {

 char t0, t1;

 t0 = _src[i*2 + 1];

 t1 = _src[i*2 + 0];

 _dst[i*2 + 0] = t0;

 _dst[i*2 + 1] = t1;

 }

 }

Special Requirements

� The value of nx is greater than 0 and multiple of 8.

� The value of nx is padded with 2 words.

� The x and r arrays should be word aligned.

� Input array x and output array r do not overlap, except in the special case
r==NULL so that the operation occurs in place.

Implementation Notes

� The loop is unrolled eight times.

� Endianness: This implementation is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

DSPF_blk_eswap32

4-72

Benchmarks

Cycles 0.625 * nx + 12
For nx=64, cycles=52
For nx=32, cycles=32

Code size
(in bytes)

256

Endian swap a block of 32-bit valuesDSPF_blk_eswap32

Function void DSPF_blk_eswap32 (void *restrict x, void *restrict r, int nx)

Arguments

x[nx] Pointer to source data.

r[nx] Pointer to destination array.

nx Number of floats (32-bit values) to swap.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each word of the r[] array is reversed. This is meant to facilitate
moving big-endian data to a little-endian system or vice versa. When the r
pointer is non-NULL, the endian swap occurs out-of-place, similar to a block
move. When the r pointer is NULL, the endian swap occurs in place, allowing
the swap to occur without using any additional storage.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_blk_eswap32(void *restrict x, void *restrict r,
 int nx)

{

 int i;

 char *_src, *_dst;

 if (r)

 {

 _src = (char *)x;

 _dst = (char *)r;

 }

 else

 {

DSPF_blk_eswap32

4-73 DSPLIB Reference

 _src = (char *)x;

 _dst = (char *)x;

 }

 for (i = 0; i < nx; i++)

 {

 char t0, t1, t2, t3;

 t0 = _src[i*4 + 3];

 t1 = _src[i*4 + 2];

 t2 = _src[i*4 + 1];

 t3 = _src[i*4 + 0];

 _dst[i*4 + 0] = t0;

 _dst[i*4 + 1] = t1;

 _dst[i*4 + 2] = t2;

 _dst[i*4 + 3] = t3;

 }

}

Special Requirements

� The value of nx is greater than 0 and multiple of 2.

� The x and r arrays should be word aligned.

� Input array x and Output array r do not overlap, except in the special case
“r==NULL” so that the operation occurs in place.

Implementation Notes

� The loop is unrolled twice.

� Multiply instructions are used for shifting left and right.

� Endianness: This implementation is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 1.5 * nx + 14
For nx=64 cycles=110
For nx=32 cycles=62

Code size
(in bytes)

224

DSPF_blk_eswap64

4-74

Endian swap a block of 64-bit valuesDSPF_blk_eswap64

Function void DSPF_blk_eswap64 (void *restrict x, void *restrict r, int nx)

Arguments

x[nx] Pointer to source data.

r[nx] Pointer to destination array.

nx Number of doubles (64-bit values) to swap.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each double word of the r[] array is reversed. This is meant to facili-
tate moving big-endian data to a little-endian system or vice versa. When the
r pointer is non-NULL, the endian swap occurs out-of-place, similar to a block
move. When the r pointer is NULL, the endian swap occurs in place, allowing
the swap to occur without using any additional storage.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_blk_eswap64(void *restrict x, void *restrict r,
 int nx)

{

 int i;

 char *_src, *_dst;

 if (r)

 {

 _src = (char *)x;

 _dst = (char *)r;

 }

 else

 {

 _src = (char *)x;

 _dst = (char *)x;

 }

 for (i = 0; i < nx; i++)

 {

 char t0, t1, t2, t3, t4, t5, t6, t7;

 t0 = _src[i*8 + 7];

 t1 = _src[i*8 + 6];

DSPF_blk_eswap64

4-75 DSPLIB Reference

 t2 = _src[i*8 + 5];

 t3 = _src[i*8 + 4];

 t4 = _src[i*8 + 3];

 t5 = _src[i*8 + 2];

 t6 = _src[i*8 + 1];

 t7 = _src[i*8 + 0];

 _dst[i*8 + 0] = t0;

 _dst[i*8 + 1] = t1;

 _dst[i*8 + 2] = t2;

 _dst[i*8 + 3] = t3;

 _dst[i*8 + 4] = t4;

 _dst[i*8 + 5] = t5;

 _dst[i*8 + 6] = t6;

 _dst[i*8 + 7] = t7;

 }

}

Special Requirements

� The value of nx is greater than 0.

� The x and r arrays should be word aligned.

� Input array x and Output array r do not overlap, except in the special case
“r==NULL” so that the operation occurs in place.

Implementation Notes

� Multiply instructions are used for shifting left and right.

� Endianness: This implementation is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 3 * nx + 14
For nx=64, cycles=206
For nx=32, cycles=110

Code size
(in bytes)

224

DSPF_fltoq15

4-76

IEEE single-precision floating-point-to-Q15 formatDSPF_fltoq15

Function void DSPF_fltoq15 (const float* restrict x, short* restrict r, int nx)

Arguments

x[nx] Input array containing values of type float.

r[nx] Output array contains Q15 equivalents of x[nx].

nx Number of elements in both arrays.

Description Convert the IEEE floating-point numbers stored in vector x[] into Q.15 format
numbers stored in vector r[]. Results will be rounded towards negative infinity.
All values that exceed the size limit will be saturated to 0x7fff if value is positive
and 0x8000 if value is negative.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_fltoq15

(

 const float* restrict x,

 short* restrict r,

 int nx

)

{

 int i, a;

 for(i = 0; i < nx; i++)

 {

 a = floor(32768 * x[i]);

 // saturate to 16-bit //

 if (a>32767) a = 32767;

 if (a<−32768) a = −32768;

 r[i] = (short) a;

 }

}

Special Requirements

� No special alignment requirements.

� The value of nx must be > 0.

DSPF_sp_minerr

4-77 DSPLIB Reference

Implementation Notes

� SSHL has been used to saturate the output of the instruction SPINT.

� There are no write buffer fulls because one STH occurs per cycle.

� Endianness: This implementation is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles nx + 17
e.g., nx = 512, cycles = 529

Code size
(in bytes)

384

VSELP vocoder code book search algorithmDSPF_sp_minerr

Function float DSPF_sp_minerr (const float* GSP0_TABLE, const float* errCoefs, int
*restrict max_index)

Arguments

GSP0_TABLE[256*9] GSP0 terms array.

errCoefs[9] Array of error coefficients. Must be double-word
aligned.

max_index Index to GSP0_TABLE[max_index], the first ele-
ment of the 9-element vector that resulted in the
maximum dot product.

Description Performs a dot product on 256 pairs of 9 element vectors and searches for the
pair of vectors which produces the maximum dot product result. This is a large
part of the VSELP vocoder codebook search. The function stores the index to
the first element of the 9-element vector that resulted in the maximum dot prod-
uct in the memory location Pointed by max_index. The maximum dot product
value is returned by the function.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

float DSPF_sp_minerr(const float* GSP0_TABLE,
 const float* errCoefs, int *restrict max_index)

{

DSPF_q15tofl

4-78

 float val, maxVal = −50;

 int i, j;

 for (i = 0; i < GSP0_NUM; i++)

 {

 for (val = 0, j = 0; j < GSP0_TERMS; j++)

 val += GSP0_TABLE[i*GSP0_TERMS+j] * errCoefs[j];

 if (val > maxVal)

 {

 maxVal = val;

 *max_index = i*GSP0_TERMS;

 }

 }

 return (maxVal);

}

Special Requirements errCoefs must be double-word aligned.

Implementation Notes

� The inner loop is totally unrolled.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 1188

Code size
(in bytes)

736

Q15 format to single-precision IEEE floating-point formatDSPF_q15tofl

Function void DSPF_q15tofl (const short *x, float * restrict r, int nx)

Arguments

x Input array containing shorts in Q15 format.

r Output array containing equivalent floats.

nx Number of values in the x vector.

DSPF_q15tofl

4-79 DSPLIB Reference

Description This routine converts data in the Q15 format into IEEE single-precision floating
point.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_q15tofl(const short *x, float * restrict r, int nx)

{

 int i;

 for (i = 0; i < nx; i++)

 r[i] = (float)x[i] / 0x8000;

}

Special Requirements

� The x array must be double-word aligned.

� The value of nx must be > 0.

� Extraneous loads are allowed in the program.

Implementation Notes

� LDDW instructions are used to load four short values at a time.

� The loop is unrolled once and software pipelined. However, by condition-
ally storing odd numbered array sizes are also permitted.

� To avoid write buffer fulls on the 671x the output array is brought into cache
inside the kernel. Thus, the store happens to addresses already in L1D.
Thus, no use of the write buffer is made.

� No write buffer fulls occur because of cache touching.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 3*floor((nx−1)/4) + 20
e.g., for nx = 512, cycles = 401

Code size
(in bytes)

448

DSPF_dp_lms

4-80

4.2 Double-Precision Functions

4.2.1 Adaptive Filtering

Double-precision floating-point LMS algorithmDSPF_dp_lms

Function double DSPF_dp_lms (double *x, double *h, double *desired, double *r,
double adapt rate, double error, int nh, int nr)

Arguments

x Pointer to input samples.

h Pointer to the coefficient array.

desired Pointer to the desired output array.

r Pointer to filtered output array.

adapt rate Adaptation rate.

error Initial error.

nh Number of coefficients.

nr Number of output samples.

Description The dp_lms implements an LMS adaptive filter. Given an actual input signal
and a desired input signal, the filter produces an output signal, the final coeffi-
cient values and returns the final output error signal.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

 double DSPF_dp_lms(double *x, double *h, double *y,
 int nh, double *d, double ar, int nr, double error)

 {

 int i,j;

 double sum;

 for (i = 0; i < nr; i++)

 {

 for (j = 0; j < nh; j++)

 {

 h[j] = h[j] + (ar*error*x[i+j−1]);

 }

DSPF_dp_lms

4-81 DSPLIB Reference

 sum = 0.0f;

 for (j = 0; j < nh; j++)

 {

 sum += h[j] * x[i+j];

 }

 y[i] = sum;

 error = d[i] − sum;

 }

 return error;

 }

Special Requirements

� The inner-loop counter must be a multiple of 2 and ≥ 2.

� Little endianness is assumed.

� Extraneous loads are allowed in the program.

� The coefficient array is assumed to be in reverse order, i.e., h(nh−1) to h(0)
hold coeffs. h0, h1, h2, etc.

Implementation Notes

� The inner loop is unrolled Two times to allow update of two coefficients in
the kernel.

� The error term needs to be computed in the outer loop before a new itera-
tion of the inner loop can start. As a result the prolog cannot be placed in
parallel with epilog (after the loop kernel).

� Register sharing is used to make optimal use of available registers.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (4*nh + 47) nr + 27
e.g., for nh = 24 and nr = 36

Code size
(in bytes)

640

DSPF_dp_autocor

4-82

4.2.2 Correlation

Double-precision autocorrelationDSPF_dp_autocor

Function void DSPF_dp_autocor (double * restrict r, const double* restrict x, int nx,
int nr)

Arguments

r Pointer to output array of autocorrelation of length nr.

x Pointer to input array of length nx+nr. Input data must be
padded with nr consecutive zeros at the beginning.

nx Length of autocorrelation vector.

nr Length of lags.

Description This routine performs the autocorrelation of the input array x. It is assumed that
the length of the input array, x, is a multiple of 2 and the length of the output
array, r, is a multiple of 4. The assembly routine computes 4 output samples
at a time. It is assumed that input vector x is padded with nr no of zeros in the
beginning.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

 void DSPF_dp_autocor(double * restrict r, const double
 * restrict x, int nx, int nr)

 {

 int i,k;

 double sum;

 for (i = 0; i < nr; i++)

 {

 sum = 0;

 for (k = nr; k < nx+nr; k++)

 sum += x[k] * x[k−i];

 r[i] = sum ;

 }

 }

Special Requirements

� The value nx is a multiple of 2 and greater than or equal to 4.

DSPF_dp_bitrev_cplx

4-83 DSPLIB Reference

� The value of nr is a multiple of 4 and greater than or equal to 4.

� The value of nx is greater than or equal to nr

Implementation Notes

� The inner loop is unrolled twice and the outer loop is unrolled four times.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*nx*nr + 5/2*nr + 32
For nx=32 and nr=64, cycles=4258
For nx=24 and nr=32, cycles=1648

Code size
(in bytes)

576

4.2.3 FFT

Bit reversal for double-precision complex numbersDSPF_dp_bitrev_cplx

Function void DSPF_dp_bitrev_cplx (double *x, short *index, int nx)

Arguments

x Complex input array to be bit reversed. Contains 2*nx
doubles.

index Array of size ~sqrt(nx) created by the routine bitrev_index
to allow the fast implementation of the bit reversal.

nx Number of elements in array x[]. Must be power of 2.

Description This routine performs the bit reversal of the input array x[], where x[] is a double
array of length 2*nx containing double-precision floating-point complex pairs
of data. This routine requires the index array provided by the program below.
This index should be generated at compile time not by the DSP. TI retains all
rights, title and interest in this code and only authorizes the use of the bit-rever-
sal code and related table-generation code with TMS320 family DSPs
manufactured by TI.

 /* −−− */

 /* This routine calculates the index for bit reversal of */

DSPF_dp_bitrev_cplx

4-84

 /* an array of length nx. The length of the index table is */

 /* 2^(2*ceil(k/2)) where nx = 2^k. */

 /* */

 /* In other words, the length of the index table is: */

 /* − for even power of radix: sqrt(nx) */

 /* − for odd power of radix: sqrt(2*nx) */

 /* −−− */

 void bitrev_index(short *index, int nx)

 {

 int i, j, k, radix = 2;

 short nbits, nbot, ntop, ndiff, n2, raddiv2;

 nbits = 0;

 i = nx;

 while (i > 1)

 {

 i = i >> 1;

 nbits++;

 }

 raddiv2 = radix >> 1;

 nbot = nbits >> raddiv2;

 nbot = nbot << raddiv2 − 1;

 ndiff = nbits & raddiv2;

 ntop = nbot + ndiff;

 n2 = 1 << ntop;

 index[0] = 0;

 for (i = 1, j = n2/radix + 1; i < n2 − 1; i++)

 {

 index[i] = j − 1;

 for (k = n2/radix; k*(radix−1) < j; k /= radix)

 j −= k*(radix−1);

 j += k;

 }

 index[n2 − 1] = n2 − 1;

 }

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

DSPF_dp_bitrev_cplx

4-85 DSPLIB Reference

 void dp_bitrev_cplx(double* x, short* index,
int nx)

 {

 int i;

 short i0, i1, i2;

 short j0, j1, j2;

 double xi0r, xi0i, xi1r, xi1i, xi2r, xi2i;

 double xj0r, xj0i, xj1r, xj1i, xj2r, xj2i;

 short t;

 int a, b, ia, ib, ibs;

 int mask;

 int nbits, nbot, ntop, ndiff, n2, halfn;

 nbits = 0;

 i = nx;

 while (i > 1)

 {

 i = i >> 1;

 nbits++;

 }

 nbot = nbits >> 1;

 ndiff = nbits & 1;

 ntop = nbot + ndiff;

 n2 = 1 << ntop;

 mask = n2 − 1;

 halfn = nx >> 1;

 for (i0 = 0; i0 < halfn; i0 += 2)

 {

 b = i0 & mask;

 a = i0 >> nbot;

 if (!b) ia = index[a];

 ib = index[b];

 ibs = ib << nbot;

 j0 = ibs + ia;

 t = i0 < j0;

 xi0r = x[2*i0];

DSPF_dp_bitrev_cplx

4-86

 xi0i = x[2*i0+1];

 xj0r = x[2*j0];

 xj0i = x[2*j0+1];

 if (t)

 {

 x[2*i0] = xj0r;

 x[2*i0+1] = xj0i;

 x[2*j0] = xi0r;

 x[2*j0+1] = xi0i;

 }

 i1 = i0 + 1;

 j1 = j0 + halfn;

 xi1r = x[2*i1];

 xi1i = x[2*i1+1];

 xj1r = x[2*j1];

 xj1i = x[2*j1+1];

 x[2*i1] = xj1r;

 x[2*i1+1] = xj1i;

 x[2*j1] = xi1r;

 x[2*j1+1] = xi1i;

 i2 = i1 + halfn;

 j2 = j1 + 1;

 xi2r = x[2*i2];

 xi2i = x[2*i2+1];

 xj2r = x[2*j2];

 xj2i = x[2*j2+1];

 if (t)

 {

 x[2*i2] = xj2r;

 x[2*i2+1] = xj2i;

 x[2*j2] = xi2r;

 x[2*j2+1] = xi2i;

 }

 }

 }

DSPF_dp_cfftr4_dif

4-87 DSPLIB Reference

Special Requirements

� The value of nx must be a power of 2.

� The table from bitrev_index is already created.

� The x array is actually an array of 2*nx doubles.

Implementation Notes

� The index table can be generated using the bitrev_index function provided
in the dsplib\support\fft directory.

� If nx ≤ 4K one can use the char (8-bit) data type for the “index” variable.
This would require changing the LDH when loading index values in the as-
sembly routine to LDB. This would further reduce the size of the Index
Table by half its size.

� Endianness: Little endian configuration used.

� Interruptibility: This code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 5*nx + 33
e.g., nx = 128, cycles = 673

Code size
(in bytes)

736

Double-precision floating-point decimation in frequency radix-4
FFT with complex input

DSPF_dp_cfftr4_dif

Function void DSPF_dp_cfftr4_dif (double* x, double* w, short n)

Arguments

x Pointer to an array holding the input and output floating-
point array which contains n complex points.

w Pointer to an array holding the coefficient floating-point
array which contains 3*n/4 complex numbers.

n Number of complex points in x.

Description This routine implements the DIF (decimation in frequency) complex radix 4
FFT with digit-reversed output and normal order input. The number of points,
n, must be a power of 4 {4, 16, 64, 256, 1024, ...}. This routine is an in-place
routine in the sense that the output is written over the input. It is not an in-place
routine in the sense that the input is in normal order and the output is in digit-re-
versed order.

DSPF_dp_cfftr4_dif

4-88

There must be n complex points (2*n values), and 3*n/4 complex coefficients
(3*n/2 values). Each real and imaginary input value is interleaved in the x array
{rx0, ix0, rx1, ix2, ...} and the complex numbers are in normal order. Each real
and imaginary output value is interleaved in the x array and the complex num-
bers are in digit-reversed order {rx0, ix0, ...}. The real and imaginary values of
the coefficients are interleaved in the w array {rw0, -iw0, rw1, -iw1, ...} and the
complex numbers are in normal order.

Note that the imaginary coefficients are negated.

{cos(d*0), sin(d*0), cos(d*1), sin(d*1), ...} rather than
{cos(d*0), −sin(d*0), cos(d*1), −sin(d*1), ...}

where d = 2*PI/n. The value of w(n,k) is usually written w(n,k) =
e^−j(2*PI*k/n) = cos(2*PI*k/n) − sin(2*PI*k/n).

The routine can be used to implement an inverse FFT by performing the com-
plex conjugate on the input complex numbers (negating the imaginary value),
and dividing the result by n.

Another method to use the FFT to perform an inverse FFT, is to swap the real
and imaginary values of the input and the result and divide the result by n. In
either case, the input is still in normal order and the output is still in digit-re-
versed order.

Note that you can not make the radix 4 FFT into an inverse FFT by using the
complex conjugate of the coefficients as you can do with the complex ra-
dix 2 FFT.

If you label the input locations from 0 to (n-1) (normal order), the digit-reversed
locations can be calculated by reversing the order of the bit pairs of the labels.
For example, for a 1024 point FFT, the digit reversed location for
617d = 1001101001b = 10 01 10 10 01 is
422d = 0110100110b = 01 10 10 01 10 and vice versa.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_cfftr4_dif(double* x, double* w, short n)

{

 short n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;

 double r1, r2, r3, r4, s1, s2, s3, s4, co1, co2, co3;

 double si1, si2, si3;

n2 = n;

 ie = 1;

DSPF_dp_cfftr4_dif

4-89 DSPLIB Reference

 for(k=n; k>1; k>>=2)

 {

 n1 = n2;

 n2 >>= 2;

 ia1 = 0;

 for(j=0; j<n2; j++)

 {

 ia2 = ia1 + ia1;

 ia3 = ia1 + ia2;

 co1 = w[ia1*2];

 si1 = w[ia1*2 + 1];

 co2 = w[ia2*2];

 si2 = w[ia2*2 + 1];

 co3 = w[ia3*2];

 si3 = w[ia3*2 + 1];

 ia1 += ie;

 for(i0=j; i0<n; i0+=n1)

 {

 i1 = i0 + n2;

 i2 = i1 + n2;

 i3 = i2 + n2;

 r1 = x[i0*2] + x[i2*2];

 r3 = x[i0*2] - x[i2*2];

 s1 = x[i0*2+1] + x[i2*2+1];

 s3 = x[i0*2+1] - x[i2*2+1];

 r2 = x[i1*2] + x[i3*2];

 r4 = x[i1*2] - x[i3*2];

 s2 = x[i1*2+1] + x[i3*2+1];

 s4 = x[i1*2+1] - x[i3*2+1];

 x[i0*2] = r1 + r2;

 r2 = r1 - r2;

 r1 = r3 - s4;

 r3 = r3 + s4;

 x[i0*2+1] = s1 + s2;

 s2 = s1 - s2;

DSPF_dp_cfftr4_dif

4-90

 s1 = s3 + r4;

 s3 = s3 - r4;

 x[i1*2] = co1*r3 + si1*s3;

 x[i1*2+1] = co1*s3 - si1*r3;

 x[i2*2] = co2*r2 + si2*s2;

 x[i2*2+1] = co2*s2 - si2*r2;

 x[i3*2] = co3*r1 + si3*s1;

 x[i3*2+1] = co3*s1 - si3*r1;

 }

 }

 ie <<= 2;

 }

}

Special Requirements There are no special alignment requirements.

Implementation Notes

� All the three loops are executed as one loop with conditional instructions.

� The outer-loop counter is used as load counter to prevent extraneous
loads

� If more registers were available, the inner loop could probably be as small
as 28 cycles The loop was extended to 56 cycles to allow more variables
to share registers.

� The pointer for X and W are maintained on both register sides to avoid
crosspath Conflicts.

� Variable that is used as inner-loop counter.

� The variable, K, is used as the outer-loop counter. We are finished when
n2b = 0.

� The twiddle factor array w can be generated by the tw_r4fft function pro-
vided in dsplib\support\fft\tw_r4fft.c. The exe file for this function,
dsplib\bin\tw_r4fft.exe, can be used dump the twiddle factor array into a
file.

� The function bit_rev in dsplib\support\fft can be used to bit-reverse the out-
put array to convert it into normal order.

� Endianness: This code is little endian.

DSPF_dp_cfftr2

4-91 DSPLIB Reference

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 14*n*log4(n) + 46
e.g., if n = 256, cycles = 14382.

Code size
(in bytes)

1344

Double-precision cache optimized radix-2 forward FFT with complex
input

DSPF_dp_cfftr2

Function void DSPF_dp_cfftr2 (int n, double * x, double * w, int n_min)

Arguments

x Input and output sequences (dim-n) (input/output).

x has n complex numbers (2*n DP values).

The real and imaginary values are interleaved in memory.

The input is in normal order and output is in bit-reversed
order.

w FFT coefficients (dim-n) (input).

w has n complex numbers (n DP values).

FFT coefficients are in a special sequence so that FFT
can be called on smaller input sets multiple times to avoid
cache thrashing.

The real and imaginary values are interleaved in memory.

n FFT size which is a power of 2 and > 4 (input).

Description This routine is used to compute the complex, radix-2, fast fourier transform of
a double-precision complex sequence of size n, and a power of 2 in a cache-
friendly way. The routine requires normal order input and normal order coeffi-
cients (twiddle factors) in a special sequence and produces results that are in
bit-reversed order.

The input can be broken into smaller parts and called multiple times to avoid
cache thrashing.

How to use

void main(void)

{

DSPF_dp_cfftr2

4-92

 gen_w_r2(w, N); // Generate coefficient table

 // in normal order

 // Function is given in C-CODE section

 dp_cfftr2(N, x, w, 1); // input in normal order, output

 // in order bit-reversed

 bit_rev(x, N) // Bit reverse the output if

 // normal order output is needed

 // Function is given in C-CODE section

 }

Main fft of size N can be divided into several steps (where number of steps is
a power of 2), allowing as much data reuse as possible.

For example the following function:

dp_cfftr2(N, x, w, 1);

is equivalent to:

dp_cfftr2(N, x, w, N/4);
dp_cfftr2(N/4, &x[2 * 0 * (N/4)], &w[N + N/2], 1);
dp_cfftr2(N/4, &x[2 * 1 * (N/4)], &w[N + N/2], 1);
dp_cfftr2(N/4, &x[2 * 2 * (N/4)], &w[N + N/2], 1);
dp_cfftr2(N/4, &x[2 * 3 * (N/4)], &w[N + N/2], 1);

Notice how the first fft function is called on the entire data set. It covers the first
pass of the fft until the butterfly size is N/4. The following 4 ffts do N/4 point ffts,
25% of the original size. These continue down to the end when the butterfly
is of size 2. We use an index of 2* 3/4 *N to the main twiddle factor array for
the last 4 calls. This is because the twiddle factor array is composed of succes-
sively decimated versions of the main array. The twiddle factor array is com-
posed of log2(N) sets of twiddle factors of size N, N/2, N/4, N/8 etc. The index
into this array for each stage of the fft can be calculated by summing these
indices up appropriately. For example, if we are dividing the input into 2 parts
then index into this array should be N, if we are dividing into 4 parts then index
into this array should be N+N/2, if we are dividing into 8 parts index should be
N+N/2+N/4. For multiple ffts they can share the same table by calling the small
ffts from further down in the twiddle factor array, in the same way as the decom-
position works for more data reuse. The functions for creating this special se-
quence of twiddle factors and bit-reversal are provided in the C CODE section.
In general if divide the input into NO_OF_DIV parts we can call the function
as follows:

// Divide the input into NO_OF_DIV parts

dp_cfftr2(N, x, w, N/NO_OF_DIV);

DSPF_dp_cfftr2

4-93 DSPLIB Reference

// Find out the index into twiddle factor array

for(w_index=0,j = NO_OF_DIV; j > 1 ; j >>= 1)

{

 w_index += j;

}

w_index = N * w_index / NO_OF_DIV;

// Call the Function a subset of inputs

for(i=0; i<NO_OF_DIV; i++)

{

 dp_cfftr2(N/NO_OF_DIV, &x[2*i*(N/NO_OF_DIV)], &w[w_in-
dex], 1);

}

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSPF_dp_cfftr2(int n, double * x, double * w, int
n_min)

{

 int n2, ie, ia, i, j, k, m;

 double rtemp, itemp, c, s;

 n2 = n;

 ie = 1;

 for(k = n; k > n_min; k >>= 1)

 {

 n2 >>= 1;

 ia = 0;

 for(j=0; j < ie; j++)

 {

 for(i=0; i < n2; i++)

 {

 c = w[2*i];

 s = w[2*i+1];

 m = ia + n2;

 rtemp = x[2*ia] - x[2*m];

 x[2*ia] = x[2*ia] + x[2*m];

 itemp = x[2*ia+1] - x[2*m+1];

DSPF_dp_cfftr2

4-94

 x[2*ia+1] = x[2*ia+1] + x[2*m+1];

 x[2*m] = c*rtemp - s*itemp;

 x[2*m+1] = c*itemp + s*rtemp;

 ia++;

 }

 ia += n2;

 }

 ie <<= 1;

 w = w + k;

 }

}

The following C code is used to generate the coefficient table.

#include <math.h>

/* generate real and imaginary twiddle

 table of size n complex numbers (or 2*n numbers) */

void gen_w_r2(double* w, int n)

{

 int i, j=1;

 double pi = 4.0*atan(1.0);

 double e = pi*2.0/n;

 for(j=1; j < n; j <<= 1)

 {

 for(i=0; i < (n>>1); i += j)

 {

 *w++ = cos(i*e);

 *w++ = -sin(i*e);

 }

 }

}

The following C code is used to bit-reverse the output.

bit_rev(double* x, int n)

{

 int i, j, k;

 double rtemp, itemp;

DSPF_dp_cfftr2

4-95 DSPLIB Reference

 j = 0;

 for(i=1; i < (n-1); i++)

 {

 k = n >> 1;

 while(k <= j)

 {

 j -= k;

 k >>= 1;

 }

 j += k;

 if(i < j)

 {

 rtemp = x[j*2];

 x[j*2] = x[i*2];

 x[i*2] = rtemp;

 itemp = x[j*2+1];

 x[j*2+1] = x[i*2+1];

 x[i*2+1] = itemp;

 }

 }

}

Special Requirements

� Both input x and coefficient w should be aligned on double-word boundary.

� The value of n should be greater than 4 and a power of 2.

Implementation Notes

� Outer loop instructions are executed in parallel with the inner loop epilog.

� The special sequence of twiddle factor array w can be generated using the
gen_w_r2 function provided in the previous section.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4 * n * lg(n) + 16 * lg(n) + 34
e.g., IF n = 64, cycles = 1666
e.g., IF n = 32, cycles = 754

Code size
(in bytes)

1408

DSPF_dp_icfftr2

4-96

Double-precision cache optimized radix-2 inverse FFT with complex
input

DSPF_dp_icfftr2

Function void DSPF_dp_icfftr2 (int n, double * x, double * w, int n_min)

Arguments

x Input and output sequences (dim-n) (input/output).

x has n complex numbers (2*n DP values).

The real and imaginary values are interleaved in memory.

The input is in normal order and output is in bit-reversed
order.

w FFT coefficients (dim-n) (input).

w has n complex numbers (n DP values).

FFT coefficients are in a special sequence so that FFT
can be called on smaller input sets multiple times to avoid
cache thrashing.

The real and imaginary values are interleaved in memory.

n FFT size which is a power of 2 and > 4 (input).

Description This routine is used to compute the inverse complex radix-2, fast fourier trans-
form of a double-precision complex sequence of size n, and a power of 2 in
a cache-friendly way. The routine requires normal order input and normal or-
der coefficients (twiddle factors) in a special sequence and produces results
that are in bit-reversed order.

The input can be broken into smaller parts and called multiple times to avoid
cache thrashing.

How to use

void main(void)

{

 gen_w_r2(w, N); // Generate coefficient table

 // in normal order

 // Function is given in C-CODE section

 dp_icfftr2(N, x, w, 1); // input in normal order, output

 // in order bit-reversed

 bit_rev(x, N) // Bit reverse the output if

 // normal order output is needed

 // Function is given in C-CODE section

DSPF_dp_icfftr2

4-97 DSPLIB Reference

divide(x, N); // scale inverse FFT output

// result is the same as original

// input

}

Main Inverse fft of size N can be divided into several steps (where number of
steps is a power of 2), allowing as much data reuse as possible.

For example the following function

dp_icfftr2(N, x, w, 1);

is equivalent to:

dp_icfftr2(N, x, w, N/4);
dp_icfftr2(N/4, &x[2 * 0 * (N/4)], &w[N + N/2], 1);
dp_icfftr2(N/4, &x[2 * 1 * (N/4)], &w[N + N/2], 1);
dp_icfftr2(N/4, &x[2 * 2 * (N/4)], &w[N + N/2], 1);
dp_icfftr2(N/4, &x[2 * 3 * (N/4)], &w[N + N/2], 1);

Notice how the first icfft function is called on the entire data set. It covers the
first pass of the fft until the butterfly size is N/4. The following 4 ffts do N/4 point
ffts, 25% of the original size. These continue down to the end when the butterfly
is of size 2. We use an index of 2* 3/4 *N to the main twiddle factor array for
the last 4 calls. This is because the twiddle factor array is composed of succes-
sively decimated versions of the main array. The twiddle factor array is com-
posed of log2(N) sets of twiddle factors of size N, N/2, N/4, N/8 etc. The index
into this array for each stage of the fft can be calculated by summing these
indices up appropriately. For example, if we are dividing the input into 2 parts
then index into this array should be N, if we are dividing into 4 parts then index
into this array should be N+N/2, if we are dividing into 8 parts index should be
N+N/2+N/4. For multiple iffts they can share the same table by calling the small
iffts from further down in the twiddle factor array, in the same way as the de-
composition works for more data reuse. The functions for creating this special
sequence of twiddle factors and bit-reversal are provided in the C CODE sec-
tion. In general if divide the input into NO_OF_DIV parts we can call the func-
tion as follows:

// Divide the input into NO_OF_DIV parts
dp_icfftr2(N, x, w, N/NO_OF_DIV);
// Find out the index into twiddle factor array
for(w_index=0,j = NO_OF_DIV; j > 1 ; j >>= 1)
{
 w_index += j;
}
w_index = N * w_index / NO_OF_DIV;
// Call the Function a subset of inputs
for(i=0; i<NO_OF_DIV; i++)
{

DSPF_dp_icfftr2

4-98

 dp_icfftr2(N/NO_OF_DIV, &x[2*i*(N/NO_OF_DIV)],
 &w[w_index], 1);
}

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSPF_dp_icfftr2(int n, double * x, double * w, int
n_min)

{

 int n2, ie, ia, i, j, k, m;

 double rtemp, itemp, c, s;

 n2 = n;

 ie = 1;

 for(k = n; k > n_min; k >>= 1)

 {

 n2 >>= 1;

 ia = 0;

 for(j=0; j < ie; j++)

 {

 for(i=0; i < n2; i++)

 {

 c = w[2*i];

 s = w[2*i+1];

 m = ia + n2;

 rtemp = x[2*ia] - x[2*m];

 x[2*ia] = x[2*ia] + x[2*m];

 itemp = x[2*ia+1] - x[2*m+1];

 x[2*ia+1] = x[2*ia+1] + x[2*m+1];

 x[2*m] = c*rtemp + s*itemp;

 x[2*m+1] = c*itemp - s*rtemp;

 ia++;

 }

 ia += n2;

 }

 ie <<= 1;

 w = w + k;

 }

DSPF_dp_icfftr2

4-99 DSPLIB Reference

}

The following C code is used to generate the coefficient table.

#include <math.h>

/* generate real and imaginary twiddle

 table of size n complex numbers (or 2*n numbers) */

void gen_w_r2(double* w, int n)

{

 int i, j=1;

 double pi = 4.0*atan(1.0);

 double e = pi*2.0/n;

 for(j=1; j < n; j <<= 1)

 {

 for(i=0; i < (n>>1); i += j)

 {

 *w++ = cos(i*e);

 *w++ = -sin(i*e);

 }

 }

}

The following C code is used to bit-reverse the output.

bit_rev(double* x, int n)

{

 int i, j, k;

 float rtemp, itemp;

 j = 0;

 for(i=1; i < (n-1); i++)

 {

 k = n >> 1;

 while(k <= j)

 {

 j -= k;

 k >>= 1;

 }

 j += k;

DSPF_dp_icfftr2

4-100

 if(i < j)

 {

 rtemp = x[j*2];

 x[j*2] = x[i*2];

 x[i*2] = rtemp;

 itemp = x[j*2+1];

 x[j*2+1] = x[i*2+1];

 x[i*2+1] = itemp;

 }

 }

}

The following C code is used to perform the final scaling of the IFFT:

/* divide each element of x by n */

divide(double* x, int n)

{

 int i;

 double inv = 1.0 / n;

 for(i=0; i < n; i++)

 {

 x[2*i] = inv * x[2*i];

 x[2*i+1] = inv * x[2*i+1];

 }

 }

Special Requirements

� Both input x and coefficient w should be aligned on double-word boundary.

� The value of n should be greater than 4 and a power of 2.

Implementation Notes

� Outer loop instructions are executed in parallel with the inner loop epilog.

� The special sequence of twiddle factor array w can be generated using the
gen_w_r2 function provided in the previous section.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

DSPF_dp_fir_cplx

4-101 DSPLIB Reference

Benchmarks

Cycles 4 * n * lg(n) + 16 * lg(n) + 34
e.g., IF n = 64, cycles = 1666
e.g., IF n = 32, cycles = 754

Code size
(in bytes)

1408

4.2.4 Filtering and Convolution

Double-precision complex finite impulse response filterDSPF_dp_fir_cplx

Function void DSPF_dp_fir_cplx (const double * restrict x, const double * restrict h,
double * restrict r, int nh, int nr)

Arguments

x[2*(nr+nh-1)] Pointer to complex input array.

The input data pointer x must point to the (nh)th complex
element, i.e., element 2*(nh-1).

h[2*nh] Pointer to complex coefficient array (in normal order).

r[2*nr] Pointer to complex output array.

nh Number of complex coefficients in vector h.

nr Number of complex output samples to calculate.

Description This function implements the FIR filter for complex input data.

The filter has nr output samples and nh coefficients. Each array consists of an
even and odd term with even terms representing the real part and the odd
terms the imaginary part of the element. The coefficients are expected in nor-
mal order.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_fir_cplx(const double * x, const double * h,
 double * restrict r, int nh, int nr)

{

 int i,j;

 double imag, real;

DSPF_dp_fir_cplx

4-102

 for (i = 0; i < 2*nr; i += 2)

 {

 imag = 0;

 real = 0;

 for (j = 0; j < 2*nh; j += 2)

 {

 real += h[j] * x[i-j] - h[j+1] * x[i+1-j];

 imag += h[j] * x[i+1-j] + h[j+1] * x[i-j];

 }

 r[i] = real;

 r[i+1] = imag;

 }

}

Special Requirements

� nr is a multiple of 2 and greater than or equal to 2.

� nh is greater than or equal to 4.

� x points to 2*(nh-1)th input element.

Implementation Notes

� The outer loop is unrolled twice.

� Outer loop instructions are executed in parallel with inner loop.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 8*nh*nr + 5*nr + 30
For nh=24 and nr=48, cycles=9486
For nh=16 and nr=36, cycles=4818

Code size
(in bytes)

608

DSPF_dp_fir_gen

4-103 DSPLIB Reference

Double-precision generic FIR filterDSPF_dp_fir_gen

Function void DSPF_dp_fir_gen (const double *x, const double *h, double * restrict r,
int nh, int nr)

Arguments

x Pointer to array holding the input floating-point array.

h Pointer to array holding the coefficient floating-point array.

r Pointer to output array.

nh Number of coefficients.

nr Number of output values.

Description This routine implements a block FIR filter. There are “nh” filter coefficients, “nr”
output samples, and “nh+nr-1” input samples. The coefficients need to be
placed in the “h” array in reverse order {h(nh-1), ... , h(1), h(0)} and the array
“x” starts at x(-nh+1) and ends at x(nr-1). The routine calculates y(0) through
y(nr-1) using the following formula:

r(n) = h(0)*x(n) + h(1)*x(n-1) + ... + h(nh-1)*x(n-nh+1)

where n = {0, 1, ... , nr-1}.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_fir_gen(const double *x, const double *h,
 double * restrict r, int nh, int nr)

{

 int i, j;

 double sum;

 for(i=0; i < nr; i++)

 {

 sum = 0;

 for(j=0; j < nh; j++)

 {

 sum += x[i+j] * h[j];

 }

 r[i] = sum;

 }

}

DSPF_dp_fir_r2

4-104

Special Requirements

� Little endianness is assumed for LDDW instructions.

� The number of coefficients must be greater than or equal to 4.

� The number of outputs must be greater than or equal to 4

Implementation Notes

� The outer loop is unrolled 4 times.

� The inner loop is unrolled 2 times and software pipelined.

� Register sharing is used to make optimum utilization of available registers

� Outer loop instructions and Prolog for next stage are scheduled in parallel
with last iteration of kernel

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (16*floor((nh+1)/2)+10)*(ceil(nr/4)) + 32
for nh=26, nr=42, cycles=2430 cycles.

Code size
(in bytes)

672

Double-precision complex finite impulse response filterDSPF_dp_fir_r2

Function void DSPF_dp_fir_r2 (const double * restrict x, const double * restrict h, double
* restrict r, int nh, int nr)

Arguments

x[nr+nh-1] Pointer to Input array of size nr+nh-1.

h[nh] Pointer to coefficient array of size nh (in reverse order).

r[nr] Pointer to output array of size nr.

nh Number of coefficients.

nr Number of output samples.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[].
The real data input is stored in vector x[]. The filter output result is stored in
vector r[]. The filter calculates nr output samples using nh coefficients. The co-
efficients are expected to be in reverse order.

DSPF_dp_fir_r2

4-105 DSPLIB Reference

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_fir_r2(const double * x, const double * h,
 double *restrict r, int nh, int nr)

{

 int i, j;

 double sum;

 for (i = 0; i < nr; i++)

 {

 sum = 0;

 for (j = 0; j < nh; j++)

 sum += x[i + j] * h[j];

 r[i] = sum;

 }

}

Special Requirements

� nr is a multiple of 2 and greater than or equal to 2.

� nh is a multiple of 2 and greater than or equal to 8.

� Coefficients in array h are expected to be in reverse order.

� x and h should be padded with 4 words at the end.

Implementation Notes

� The outer loop is unrolled four times and inner loop is unrolled twice.

� Register sharing is used to make optimum utilization of available registers.

� Outer loop instructions are executed in parallel with inner loop.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (8*nh + 10)*ceil(nr/4) + 32
For nh=24 and nr=62, cycles=3264

Code size
(in bytes)

672

DSPF_dp_fircirc

4-106

Double-precision circular FIR algorithmDSPF_dp_fircirc

Function void DSPF_dp_fircirc (double *x, double *h, double *r, int index, int csize, int
nh, int nr)

Arguments

x[] Input array (circular buffer of 2^(csize+1) bytes). Must be
aligned at 2^(csize+1) byte boundary.

h[nh] Filter coefficients array. Must be double-word aligned.

r[nr] Output array.

index Offset by which to start reading from the input array. Must
be a multiple of 2.

csize Size of circular buffer x[] is 2^(csize+1) bytes. Must be 2 ≤
csize ≤ 31.

nh Number of filter coefficients. Must be a multiple of 2 and
≥ 4.

nr Size of output array. Must be a multiple of 4.

Description This routine implements a circularly addressed FIR filter. The variable nh is the
number of filter coefficients. The variable nr is the number of output samples.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_fircirc (double x[], double h[], double r[],
 int index, int csize, int nh, int nr)

{

 int i, j;

 //Circular Buffer block size = ((2^(csize + 1)) / 8)

 //floating point numbers

 int mod = (1 << (csize - 2));

 double r0;

 for (i = 0; i < nr; i++)

 {

 r0 = 0;

 for (j = 0; j < nh; j++)

 {

 //Operation ”% mod” is equivalent to ”& (mod -1)”

DSPF_dp_fircirc

4-107 DSPLIB Reference

 //r0 += x[(i + j + index) % mod] * h[j];

 r0 += x[(i + j + index) & (mod - 1)] * h[j];

 }

 r[i] = r0;

 }

}

Special Requirements

� The circular input buffer x[] must be aligned at a 2^(csize+1) byte bound-
ary. csize must lie in the range 2 <= csize <= 31.

� The number of coefficients (nh) must be a multiple of 2 and greater than
or equal to 4.

� The number of outputs (nr) must be a multiple of 4 and greater than or
equal to 4.

� The index (offset to start reading input array) must be a multiple of 2 and
less than or equal to (2^(csize-2) - 6)

� The coefficient array is assumed to be in reverse order; that is, h(nh-1) to
h(0) hold coeffs. h0, h1, h2 etc.

Implementation Notes

� The outer loop is unrolled 4 times.

� The inner loop is unrolled 2 times.

� Register sharing is due to make optimal utilization of the available regis-
ters.

� Outer loop instructions and prolog for next stage are scheduled in the last
cycle of Kernel.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (2*nh + 2) nr + 38
For nh = 36 & nr=64, cycles = 4774

Code size
(in bytes)

640

DSPF_dp_biquad

4-108

Double-precision second order IIR (biquad) filterDSPF_dp_biquad

Function void DSPF_dp_biquad (double *x, double *b, double *a, double *delay, double
*r, int nx)

Arguments

x Pointer to input samples.

b Pointer to nr coefs b0, b1, b2.

a Pointer to dr coefs a1, a2.

delay Pointer to filter delays.

r Pointer to output samples.

nx Number of input/output samples.

Description This routine implements a DF 2 transposed structure of the biquad filter. The
transfer function of a biquad can be written as:

H(Z) �
b(0) � b(1)z � (� 1) � b(2)z � (� 2)

1 � a(1)z � (� 1) � a(2)z � (� 2)

Algorithm

void DSPF_dp_biquad(double *x, double *b, double *a,
 double *delay, double *r, int nx)

{

 int i;

 double a1, a2, b0, b1, b2, d0, d1, x_i;

 a1 = a[0];

 a2 = a[1];

 b0 = b[0];

 b1 = b[1];

 b2 = b[2];

 d0 = delay[0];

 d1 = delay[1];

 for (i = 0; i < nx; i++)

 {

 x_i = x[i];

 r[i] = b0 * x_i + d0;

 d0 = b1 * x_i - a1 * r[i] + d1;

DSPF_dp_iir

4-109 DSPLIB Reference

 d1 = b2 * x_i - a2 * r[i];

 }

 delay[0] = d0;

 delay[1] = d1;

}

Special Requirements The value of nx is ≥ 4.

Implementation Notes

� Register sharing has been used to optimize on the use of registers.

� x[i] is loaded on both sides to avoid crosspath conflict

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 16 * nx + 49
For nx = 64, cycles = 1073
For nx = 48, cycles = 817

Code size
(in bytes)

576

Double-precision IIR filter (used in the VSELP vocoder)DSPF_dp_iir

Function void DSPF_dp_iir (double* restrict r1, const double* x, double* restrict r2,
const double* h2, const double* h1, int nr)

Arguments

r1[nr+4] Delay element values (i/p and o/p).

x[nr] Pointer to the input array.

r2[nr+4] Pointer to the output array.

h2[5] Auto-regressive filter coefficients.

h1[5] Moving average filter coefficients.

nr Number of output samples.

Description The IIR performs an auto-regressive moving-average (ARMA) filter with 4
auto-regressive filter coefficients and 5 moving-average filter coefficients for
nr output samples. The output vector is stored in two locations. This routine
is used as a high pass filter in the VSELP vocoder. The 4 values in the r1 vector
store the initial values of the delays.

DSPF_dp_iir

4-110

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

 void DSPF_dp_iir (double* restrict r1,
 const double* x,
 double* restrict r2,
 const double* h2,
 const double* h1,
 int nr
)

 {

 int i, j;

 double sum;

 for (i = 0; i < nr; i++)

 {

 sum = h2[0] * x[4+i];

 for (j = 1; j <= 4; j++)

 sum += h2[j] * x[4+i-j] - h1[j] * r1[4+i-j];

 r1[4+i] = sum;

 r2[i] = r1[4+i];

 }

 }

Special Requirements

� The value of nr must be > 0.

� Extraneous loads are allowed in the program.

Implementation Notes

� The inner loop is completely unrolled so that two loops become one loop.

� Register sharing is used to make optimum utilization of available registers.

� Endianness: The code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 24*nr + 48
e.g., for nr = 32, cycles = 816

Code size
(in bytes)

608

DSPF_dp_iirlat

4-111 DSPLIB Reference

Double-precision all-pole IIR lattice filterDSPF_dp_iirlat

Function void DSPF_dp_iirlat (double *x, int nx, const double * restrict k, int nk, double
* restrict b, double * r)

Arguments

x[nx] Input vector.

nx Length of input vector.

k[nk] Reflection coefficients.

nk Number of reflection coefficients/lattice stages. Must be a
multiple of 2 and ≥ 6.

b[nk+1] Delay line elements from previous call. Should be
initialized to all zeros prior to the first call.

r[nx] Output vector.

Description This routine implements a real all-pole IIR filter in lattice structure (AR lattice).
The filter consists of nk lattice stages. Each stage requires one reflection coef-
ficient k and one delay element b. The routine takes an input vector x[] and re-
turns the filter output in r[]. Prior to the first call of the routine the delay elements
in b[] should be set to zero. The input data may have to be pre-scaled to avoid
overflow or achieve better SNR. The reflections coefficients lie in the range
−1.0 < k < 1.0. The order of the coefficients is such that k[nk-1] corresponds
to the first lattice stage after the input and k[0] corresponds to the last stage.

Algorithm

void DSPF_dp_iirlat(double * x, int nx,
 const double * restrict k, int nk,
 double * restrict b, double * r)

{

 double rt; // output //

 int i, j;

 for (j = 0; j < nx; j++)

 {

 rt = x[j];

 for (i = nk - 1; i >= 0; i--)

 {

 rt = rt - b[i] * k[i];

 b[i + 1] = b[i] + rt * k[i];

DSPF_dp_convol

4-112

 }

 b[0] = rt;

 r[j] = rt;

 }

}

Special Requirements

� nk is a multiple of 2 and ≥ 6.

� Extraneous loads are allowed (80 bytes) before the start of array.

Implementation Notes

� The loop has been unrolled by 4 times.

� Register sharing has been used to optimize on the use of registers.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (24*Ceil(nk/4) + 19)* nx + 33
For nk = 14, nx = 64 cycles = 7393

Code size
(in bytes)

832

Double-precision convolutionDSPF_dp_convol

Function void DSPF_dp_convol (double *x, double *h, double *r, int nh, int nr)

Arguments

x Pointer to real input vector of size = nr+nh-1 a typically
contains input data (x) padded with consecutive nh − 1
zeros at the beginning and end.

h Pointer to real input vector of size nh in forward order. h
typically contains the filter coefs.

r Pointer to real output vector of size nr.

nh Number of elements in vector b. Note: nh ≤ nr nh is
typically noted as m in convol formulas. nh must be a
multiple of 2.

nr Number of elements in vector r. nr must be a multiple of 4.

DSPF_dp_convol

4-113 DSPLIB Reference

Description This function calculates the full-length convolution of real vectors x and h using
time-domain techniques. The result is placed in real vector r. It is assumed that
input vector x is padded with nh-1 no of zeros in the beginning and end. It is
assumed that the length of the input vector h, nh, is a multiple of 2 and the
length of the output vector r, nr, is a multiple of 4. nh is greater than or equal
to 4 and nr is greater than or equal to nh. The routine computes 4 output sam-
ples at a time.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_convol(double *x, double *h, double *r,
 short nh, short nr)

{

short octr, ictr;

double acc ;

for (octr = nr ; octr > 0 ; octr--)

{

 acc = 0 ;

 for (ictr = nh ; ictr > 0 ; ictr--)

 {

 acc += x[nr-octr+nh-ictr]*h[(ictr-1)];

 }

 r[nr-octr] = acc;

}

}

Special Requirements

� nh is a multiple of 2 and greater than or equal to 4

� nr is a multiple of 4

Implementation Notes

� The inner loop is unrolled twice and the outer loop is unrolled four times.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*(nh*nr) + 5/2*nr + 32
For nh=24 and nr=48, cycles=2456
For nh=20 and nr=32, cycles=1392

Code size
(in bytes)

544

DSPF_dp_dotp_sqr

4-114

4.2.5 Math

Double-precision dot product and sum of squareDSPF_dp_dotp_sqr

Function double DSPF_dp_dotp_sqr (double G, const double * x, const double * y,
double * restrict r, int nx)

Arguments

x[nx] Pointer to first input array.

y[nx] Pointer to second input array.

r Pointer to output for accumulation of x[]*y[].

nx Length of input vectors.

Description This routine computes the dot product of x[] and y[] arrays, adding it to the val-
ue in the location pointed to by r. Additionally, it computes the sum of the
squares of the terms in the y array,adding it to the argument G. The final value
of G is given as the return value of the function.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

double DSPF_dp_dotp_sqr(double G, const double * x, const
 double * y, double *restrict r, int nx)

{

 int i;

 for (i = 0; i < nx; i++)

 {

 *r += x[i] * y[i]; /* Compute Dot Product */

 G += y[i] * y[i]; /* Compute Square */

 }

 return G;

}

Special Requirements There are no special alignment requirements.

Implementation Notes

� Multiple assignment was used to reduce loop carry path.

� Endianness: This code is little endian .

DSPF_dp_dotprod

4-115 DSPLIB Reference

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4*nx + 26
For nx=64, cycles=282.
For nx=30, cycles=146

Code size
(in bytes)

244

Dot product of 2 double-precision float vectorsDSPF_dp_dotprod

Function double DSPF_dp_dotprod (const double *x, const double *y, const int nx)

Arguments

x Pointer to array holding the first floating-point vector.

y Pointer to array holding the second floating-point vector.

nx Number of values in the x and y vectors.

Description This routine calculates the dot product of 2 double-precision float vectors.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

double DSPF_dp_dotprod(const double *x, const double *y,
 const int nx)

{

 int i;

 double sum = 0;

 for (i=0; i < nx; i++)

 {

 sum += x[i] * y[i];

 }

 return sum;

}

Special Requirements

� A memory pad of 4 bytes is required at the end of each array if the number
of inputs is odd.

DSPF_dp_dotp_cplx

4-116

� The value of nx must be > 0.

Implementation Notes

� The loop is unrolled once and software pipelined. However, by condition-
ally adding to the dot product odd numbered array sizes are also per-
mitted.

� Multiple assignments are used to reduce loop carry path

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4*ceil(nx/2) + 33
e.g., for nx = 256, cycles = 545

Code size
(in bytes)

256

Complex double-precision floating-point dot productDSPF_dp_dotp_cplx

Function void DSPF_dp_dotp_cplx (const double *x, const double *y, int n, double *re-
strict re, double * restrict im)

Arguments

x Pointer to array holding the first floating-point vector.

y Pointer to array holding the second floating-point vector.

n Number of values in the x and y vectors.

re Pointer to the location storing the real part of the result.

im Pointer to the location storing the imaginary part of the
result.

Description This routine calculates the dot product of two double-precision complex float
vectors. The even numbered locations hold the real parts of the complex num-
bers while the odd numbered locations contain the imaginary portions.

Algorithm This is the C equivalent for the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void dp_dotp_cplx(const double* x, const double* y, int n,

DSPF_dp_maxval

4-117 DSPLIB Reference

 double* restrict re, double* restrict im)

{

 double real=0, imag=0;

 int i=0;

 for(i=0; i<n; i++)

 {

 real+=(x[2*i]*y[2*i] − x[2*i+1]*y[2*i+1]);

 imag+=(x[2*i]*y[2*i+1] + x[2*i+1]*y[2*i]);

 }

 *re=real;

 *im=imag;

}

Special Requirements The value of nx must be > 0.

Implementation Notes

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 8*N + 29
e.g., for N = 128, cycles = 1053

Code size
(in bytes)

352

Maximum element of double-precision vectorDSPF_dp_maxval

Function double DSPF_dp_maxval (const double* x, int nx)

Arguments

x Pointer to input array.

nx Number of Inputs in the input array.

Description This routine finds out the maximum number in the input array. This code re-
turns the maximum value in the array.

DSPF_dp_maxval

4-118

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

double DSPF_dp_maxval(const double* x, int nx)

{

 int i;

 double max;

 *((int *)&max) = 0x00000000;

 *((int *)&max+1) = 0xfff00000;

 for (i = 0; i < nx; i++)

 if (x[i] > max)

 {

 max = x[i];

 }

 return max;

}

Special Requirements

� The value of nx should be a multiple of 2 and ≥ 2.

� NAN (not a number in double-precision format) in the input is disregarded.

Implementation Notes

� The loop is unrolled six times.

� Six maximums are maintained in each iteration.

� NAN (not a number in -precision format) in the input are disregarded.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 7*ceil(nx/6) + 31
For nx=60, cycles=101
For nx=34, cycles=73

Code size
(in bytes)

672

DSPF_dp_maxidx

4-119 DSPLIB Reference

Index of maximum element of double-precision vectorDSPF_dp_maxidx

Function int DSPF_dp_maxidx (const double* x, int nx)

Arguments

x Pointer to input array.

nx Number of Inputs in the input array.

Description This routine finds out the index of maximum number in the input array. This
function returns the index of the greatest value.

Algorithm

 int DSPF_dp_maxidx(const double* x, int nx)

 {

 int index, i;

 double max;

*((int *)&max) = 0x00000000;

 *((int *)&max+1) = 0xfff00000;

 for (i = 0; i < nx; i++)

 if (x[i] > max)

 {

 max = x[i];

 index = i;

 }

 return index;

 }

Special Requirements

� The value of nx is a multiple of 3.

� The range is nx ≥ 3, and nx ≤ 2^16−1.

Implementation Notes

� The loop is unrolled three times.

� Three maximums are maintained in each iteration.

� MPY instructions are used for move.

� Endianness: This code is little endian.

DSPF_dp_minval

4-120

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4*nx/3 + 22
For nx=60, cycles=102
For nx=30, cycles=62

Code size
(in bytes)

448

Minimum element of double-precision vectorDSPF_dp_minval

Function double DSPF_dp_minval (const double* x, int nx)

Arguments

x Pointer to input array.

nx Number of Inputs in the input array.

Description This routine finds out and returns the minimum number in the input array.

Algorithm

 double DSPF_dp_minval(const double* x, int nx)

 {

 int i;

 float min;

 *((int *)&min) = 0x00000000;

*((int *)&min+1) = 0x7ff00000;

 for (i = 0; i < nx; i++)

 if (x[i] < min)

 {

 min = x[i];

 }

 return min;

 }

Special Requirements

� The value of nx should be a multiple of 2 and ≥ 2.

DSPF_dp_vecrecip

4-121 DSPLIB Reference

� NAN (not a number in double-precision format) in the input are disre-
garded.

Implementation Notes

� The loop is unrolled six times.

� Six minimums are maintained in each iteration.

� NAN (not a number in double-precision format) in the input are disre-
garded.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 7*ceil(nx/6) + 31
For nx=60 cycles=101
For nx=34 cycles=73

Code size
(in bytes)

640

Double-precision vector reciprocalDSPF_dp_vecrecip

Function void DSPF_dp_vecrecip (const double *x, double * restrict r, int n)

Arguments

x Pointer to input array.

r Pointer to output array.

n Number of elements in array.

Description The dp_vecrecip module calculates the reciprocal of each element in the array
x and returns the output in array r. It uses 3 iterations of the Newton-Raphson
method to improve the accuracy of the output generated by the RCPDP in-
struction of the C67x. Each iteration doubles the accuracy. The initial output
generated by RCPDP is 8 bits. So after the first iteration it is 16 bits and after
the second it is the 23 bits and after third it is full 52 bits. The formula used is:

r[n+1] = r[n](2 − v*r[n])

where v = the number whose reciprocal is to be found.

DSPF_dp_vecsum_sq

4-122

x[0], the seed value for the algorithm, is given by RCPDP.

Algorithm This is the C equivalent of the assembly code without restrictions.

void DSPF_dp_vecrecip(const double* x, double* restrict r,
int n)

 {

 int i;

 for(i = 0; i < n; i++)

 r[i] = 1 / x[i];

 }

Special Requirements There are no alignment requirements.

Implementation Notes

� The inner loop is unrolled four times to allow calculation of four reciprocals
in the kernel. However, the stores are executed conditionally to allow n to
be any number > 0.

� Register sharing is used to make optimal use of available registers.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 78*ceil(n/4) + 24
e.g., for n = 54, cycles = 1116

Code size
(in bytes)

448

Double-precision sum of squaresDSPF_dp_vecsum_sq

Function double DSPF_dp_vecsum_sq (const double *x, int n)

Arguments

x Pointer to input array.

n Number of elements in array.

Description This routine performs a sum of squares of the elements of the array x and re-
turns the sum.

DSPF_dp_w_vec

4-123 DSPLIB Reference

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

double DSPF_dp_vecsum_sq(const double *x,int n)

{

 int i;

 double sum=0;

 for(i = 0; i < n; i++)

 sum += x[i]*x[i];

 return sum;

}

Special Requirements Since loads of 4 doubles beyond the array occur, a pad must be provided.

Implementation Notes

� The inner loop is unrolled twice. Hence, two registers are used to hold the
sum of squares. ADDDPs are staggered.

� Endianness: This code is endian neutral.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4*Ceil(n/2) + 33
e.g., for n = 100, cycles = 233

Code size
(in bytes)

288

Double-precision weighted sum of vectorsDSPF_dp_w_vec

Function void DSPF_dp_w_vec (const double* x, const double* y, double m, double *
restrict r, int nr)

Arguments

x Pointer to first input array.

y Pointer to second input array.

m Weight factor.

r Output array pointer.

nr Number of elements in arrays.

DSPF_dp_vecmul

4-124

Description This routine is used to obtain the weighted vector sum.

Both the inputs and output are double-precision floating-point numbers.

Algorithm This is the C equivalent of the assembly code without restrictions.

void DSPF_dp_w_vec(const double * x,const double * y,
 double m, double * restrict r,int nr)

{

 int i;

 for (i = 0; i < nr; i++)

 r[i] = (m * x[i]) + y[i];

}

Special Requirements The value of nr must be > 0.

Implementation Notes

� The inner loop is unrolled twice.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4*Ceil(n/2) + 32
e.g., for n = 100, cycles = 232

Code size
(in bytes)

352

Double-precision vector multiplicationDSPF_dp_vecmul

Function void DSPF_dp_vecmul (const double *x, const double *y, double * restrict r,
int n)

Arguments

x Pointer to first input array.

y Pointer to second input array.

r Pointer to output array.

n Number of elements in arrays.

DSPF_dp_vecmul

4-125 DSPLIB Reference

Description This routine performs an element by element double-precision floating-point
multiplication of the vectors x[] and y[] and returns the values in r[].

Algorithm This is the C equivalent of the assembly code without restrictions.

void DSPF_dp_vecmul(const double * x, const double * y,
 double * restrict r, int n)

 {

 int i;

 for(i = 0; i < n; i++)

 r[i] = x[i] * y[i];

 }

Special Requirements The value of n > 0.

Implementation Notes

� The inner loop is unrolled twice to allow calculation of 2 outputs in the ker-
nel. However the stores are executed conditionally to allow n to be any
number > 0.

� Endianness: This code is little endian.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 4*Ceil(n/2) + 13
e.g., for n = 100, cycles = 213

Code size
(in bytes)

256

DSPF_dp_mat_mul

4-126

4.2.6 Matrix

Double-precision matrix multiplicationDSPF_dp_mat_mul

Function void DSPF_dp_mat_mul (double *x, int r1, int c1, double *y, int c2, double *r)

Arguments

x Pointer to r1 by c1 input matrix.

r1 Number of rows in x.

c1 Number of columns in x. Also number of rows in y.

y Pointer to c1 by c2 input matrix.

c2 Number of columns in y.

r Pointer to r1 by c2 output matrix.

Description This function computes the expression r = x * y for the matrices x and y. The
column dimension of x must match the row dimension of y. The resulting matrix
has the same number of rows as x and the same number of columns as y.

The values stored in the matrices are assumed to be double-precision floating-
point values.

This code is suitable for dense matrices. No optimizations are made for sparse
matrices.

Algorithm

void DSPF_dp_mat_mul(double *x, int r1, int c1,
 double *y, int c2, double *r)

{

 int i, j, k;

 double sum;

 // Multiply each row in x by each column in y.

 // The product of row m in x and column n in y is placed

 // in position (m,n) in the result.

 for (i = 0; i < r1; i++)

 for (j = 0; j < c2; j++)

 {

 sum = 0;

DSPF_dp_mat_mul

4-127 DSPLIB Reference

 for (k = 0; k < c1; k++)

 sum += x[k + i*c1] * y[j + k*c2];

 r[j + i*c2] = sum;

 }

}

Special Requirements

� The x, y, and r data are stored in distinct arrays. That is, in-place process-
ing is not allowed.

� All r1, c1, c2 are assumed to be > 1.

� If r1 is odd, one extra row of x[] matrix is loaded.

� If c2 is odd, one extra col of y[] matrix is loaded.

� If c1 is odd, one extra col of x[] and one extra row of y[] array is loaded.

Implementation Notes

� All three loops are unrolled two times.

� All the prolog stages of the inner-most loop (k loop) are scheduled in
parallel with outer loop.

� Extraneous loads are allowed in program.

� Outer-most loop Instructions are scheduled in parallel with inner loop in-
structions.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles (2 * r1’ * c1 * c2’) + 18*(c2’/2 * r1’/2) + 40
where
r1’ = r1 + (r1&1)
c2’ = c2 + (c2&1)
For r1 = 12, c1 = 14 and c2 = 12, cycles = 4720

Code size
(in bytes)

960

DSPF_dp_mat_trans

4-128

Double-precision matrix transposeDSPF_dp_mat_trans

Function void DSPF_dp_mat_trans (const double *restrict x, int rows, int cols, double
*restrict r)

Arguments

x Input matrix containing rows*cols double-precision float-
ing-point numbers.

rows Number of rows in matrix x. Also number of columns in
matrix r.

cols Number of columns in matrix x. Also number of rows in
matrix r.

r Output matrix containing cols*rows double-precision
floating-point numbers.

Description This function transposes the input matrix x[] and writes the result to matrix r[].

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void dp_mat_trans(const double *restrict x, int rows,
 int cols, double *restrict r)

{

 int i,j;

 for(i=0; i<cols; i++)

 for(j=0; j<rows; j++)

 r[i * rows + j] = x[i + cols * j];

}

Special Requirements The number of rows and columns is > 0.

Implementation Notes

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2 * rows * cols + 15
For rows=10 and cols=20, cycles=415
For rows=15 and cols=20, cycles=615

Code size
(in bytes)

256

DSPF_dp_mat_mul_cplx

4-129 DSPLIB Reference

Complex matrix multiplicationDSPF_dp_mat_mul_cplx

Function void DSPF_dp_mat_mul_cplx (const double* x, int r1, int c1, const double* y,
int c2, double* restrict r)

Arguments

x[2*r1*c1] Input matrix containing r1*c1 complex floating-point num-
bers having r1 rows and c1 columns of complex numbers.

r1 Number of rows in matrix x.

c1 Number of columns in matrix x. Also number of rows in
matrix y.

y[2*c1*c2] Input matrix containing c1*c2 complex floating-point
numbers having c1 rows and c2 columns of complex
numbers.

c2 Number of columns in matrix y.

r[2*r1*c2] Output matrix of c1*c2 complex floating-point numbers
having c1 rows and c2 columns of complex numbers.
Complex numbers are stored consecutively with real
values stored in even positions and imaginary values in
odd positions.

Description This function computes the expression r = x * y for the matrices x and y. The
columnar dimension of x must match the row dimension of y. The resulting ma-
trix has the same number of rows as x and the same number of columns as
y.

Each element of the matrix is assumed to be complex numbers with real values
are stored in even positions and imaginary values in odd positions.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void DSPF_dp_mat_mul_cplx(const double* x, int r1, int c1,
 const double* y, int c2, double* restrict r)

{

 double real, imag;

 int i, j, k;

 for(i = 0; i < r1; i++)

 {

 for(j = 0; j < c2; j++)

 {

DSPF_dp_mat_mul_cplx

4-130

 real=0;

 imag=0;

 for(k = 0; k < c1; k++)

 {

 real += (x[i*2*c1 + 2*k]*y[k*2*c2 + 2*j]

 −x[i*2*c1 + 2*k + 1] * y[k*2*c2 + 2*j + 1]);

 imag+=(x[i*2*c1 + 2*k] * y[k*2*c2 + 2*j + 1]

 + x[i*2*c1 + 2*k + 1] * y[k*2*c2 + 2*j]);

 }

 r[i*2*c2 + 2*j] = real;

 r[i*2*c2 + 2*j + 1] = imag;

 }

 }

}

Special Requirements

� The values r1, r2 ≥ 1, c1 should be a multiple of 2 and ≥ 2.

� The x array should be padded with 6 words

Implementation Notes

� Inner-most loop is unrolled twice.

� Outer-most loop is executed in parallel with inner loops.

� Real values are stored in even word positions and imaginary values in odd
positions.

� Endianness: This code is little endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 8*r1*c1*c2’+ 18*(r1*c2)+40
where
c2’=2*ceil(c2/2)
When r1=3, c1=4, c2=4, cycles = 640
When r1=4, c1=4, c2=5, cycles = 1040

Code size
(in bytes)

832

DSPF_dp_blk_move

4-131 DSPLIB Reference

4.2.7 Miscellaneous

Move a block of memoryDSPF_dp_blk_move

Function void DSPF_dp_blk_move (const double * x, double *restrict r, int nx)

Arguments

x[nx] Pointer to source data to be moved.

r[nx] Pointer to destination array.

nx Number of floats to move.

Description This routine moves nx floats from one memory location pointed to by x to
another pointed to by r.

Algorithm This is the C equivalent of the assembly code. Note that the assembly code
is hand optimized and restrictions may apply.

void dp_blk_move(const double * x, double *restrict r,
 int nx)

{

 int i;

 for (i = 0 ; i < nx; i++)

 r[i] = x[i];

}

Special Requirements The value of nx is greater than 0.

Implementation Notes

� Endianness: This implementation is little-endian.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 2*nx+ 8
For nx=64, cycles=136
For nx=25, cycles=58

Code size
(in bytes)

96

A-1

Appendix A

Performance/Fractional Q Formats

This appendix describes performance considerations related to the C67x
DSPLIB and provides information about the Q format used by DSPLIB
functions.

Topic Page

A.1 Performance Considerations A-2.

A.2 Fractional Q Formats A-3.

A.3 Overview of IEEE Standard Single- and
Double-Precision Formats A.3.

Appendix A

Performance Considerations

 A-2

A.1 Performance Considerations

Although DSPLIB can be used as a first estimation of processor performance
for a specific function, you should be aware that the generic nature of DSPLIB
might add extra cycles not required for customer specific usage.

Benchmark cycles presented assume best-case conditions, typically assum-
ing all code and data are placed in internal data memory. Any extra cycles due
to placement of code or data in external data memory or cache-associated
effects (cache hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on
where the different sections of program and data are located in memory. You
should account for such differences when trying to explain why a routine is
taking more time than the reported DSPLIB benchmarks.

Fractional Q Formats

A-3Performance/Fractional Q Formats

A.2 Fractional Q Formats

Unless specifically noted, DSPLIB functions use IEEE floating point format.
But few of the functions make use of fixed-point Q0.15 format also. In a Qm.n
format, there are m bits used to represent the two’s complement integer por-
tion of the number, and n bits used to represent the two’s complement fraction-
al portion. m+n+1 bits are needed to store a general Qm.n number. The extra
bit is needed to store the sign of the number in the most-significant bit position.
The representable integer range is specified by (−2m,2m) and the finest frac-
tional resolution is 2−n.

For example, the most commonly used format is Q.15. Q.15 means that a
16-bit word is used to express a signed number between positive and negative
one. The most-significant binary digit is interpreted as the sign bit in any Q for-
mat number. Thus, in Q.15 format, the decimal point is placed immediately to
the right of the sign bit. The fractional portion to the right of the sign bit is stored
in regular two’s complement format.

A.2.1 Q.15 Format

Q.15 format places the sign bit at the leftmost binary digit, and the next 15 left-
most bits contain the two’s complement fractional component. The approxi-
mate allowable range of numbers in Q.15 representation is (−1,1) and the fin-
est fractional resolution is 2−15 = 3.05 × 10−5.

Table A−1. Q.15 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S Q14 Q13 Q12 Q11 Q10 Q9 … Q0

Overview of IEEE Standard Single- and Double-Precision Formats

 A-4

A.3 Overview of IEEE Standard Single- and Double-Precision Formats

Floating-point operands are classified as single precision (SP) and double pre-
cision (DP). Single-precision floating-point values are 32-bit values stored in
a single register. Double-precision floating-point values are 64-bit values
stored in a register pair. The register pair consists of consecutive even and odd
registers from the same register file. The least significant 32 bits are loaded
into the even register. The most significant 32 bits containing the sign bit and
exponent are loaded into the next register (which is always the odd register).
The register pair syntax places the odd register first, followed by a colon, then
the even register (that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

Instructions that use DP sources fall in two categories: instructions that read
the upper and lower 32-bit words on separate cycles, and instructions that
read both 32-bit words on the same cycle. All instructions that produce a
double-precision result write the low 32-bit word one cycle before writing the
high 32-bit word. If an instruction that writes a DP result is followed by an in-
struction that uses the result as its DP source and it reads the upper and lower
words on separate cycles, then the second instruction can be scheduled on
the same cycle that the high 32-bit word of the result is written. The lower result
is written on the previous cycle. This is because the second instruction reads
the low word of the DP source one cycle before the high word of the DP source.

IEEE floating-point numbers consist of normal numbers, denormalized num-
bers, NaNs (not a number), and infinity numbers. Denormalized numbers are
nonzero numbers that are smaller than the smallest nonzero normal number.
Infinity is a value that represents an infinite floating-point number. NaN values
represent results for invalid operations, such as (+infinity + (–infinity)).

Normal single-precision values are always accurate to at least six decimal
places, sometimes up to nine decimal places. Normal double-precision values
are always accurate to at least 15 decimal places, sometimes up to 17 decimal
places.

Table A−2 shows notations used in discussing floating-point numbers.

Overview of IEEE Standard Single- and Double-Precision Formats

A-5Performance/Fractional Q Formats

Table A−2. IEEE Floating-Point Notations

Symbol Meaning

s Sign bit

e Exponent field

f Fraction (mantissa) field

x Can have value of 0 or 1 (don’t care)

NaN Not-a-Number (SNaN or QNaN)

SnaN Signal NaN

QnaN Quiet NaN

NaN_out QNaN with all bits in the f field= 1

Inf Infinity

LFPN Largest floating-point number

SFPN Smallest floating-point number

LDFPN Largest denormalized floating-point number

SDFPN Smallest denormalized floating-point number

signed Inf +infinity or –infinity

signed NaN_out NaN_out with s = 0 or 1

Figure A−1 shows the fields of a single-precision floating-point number repre-
sented within a 32-bit register.

Figure A−1. Single-Precision Floating-Point Fields

31 30 23 22 0

s e f

Legend: s sign bit (0 positive, 1 negative)
e 8-bit exponent (0 < e < 255)
f 23-bit fraction
0 < f < 1*2–1 + 1*2–2 + ... + 1*2–23 or
0 < f < ((223)–1)/(223)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 255) and denormalized (e is 0). The following
formulas define how to translate the s, e, and f fields into a single-precision
floating-point number.

Overview of IEEE Standard Single- and Double-Precision Formats

 A-6

Normal

–1s * 2(e–127) * 1.f 0 < e < 255

Denormalized (Subnormal)

–1s * 2–126 * 0.f e = 0; f nonzero

Table A−3 shows the s, e, and f values for special single-precision floatingpoint
numbers.

Table A−3. Special Single-Precision Values

Symbol Sign (s) Exponent (e) Fraction (f)

+0 0 0 0

–0 1 0 0

+Inf 0 255 0

–Inf 1 255 0

NaN x 255 nonzero

QnaN x 255 1xx..x

SnaN x 255 0xx..x and nonzero

Table A−4 shows hex and decimal values for some single-precision floating-
point numbers.

Table A−4. Hex and Decimal Representation for Selected Single-Precision Values

Symbol Hex Value Decimal Value

NaN_out 0x7FFF FFFF QnaN

0 0x0000 0000 0.0

–0 0x8000 0000 –0.0

1 0x3F80 0000 1.0

2 0x4000 0000 2.0

LFPN 0x7F7F FFFF 3.40282347e+38

SFPN 0x0080 0000 1.17549435e–38

LDFPN 0x007F FFFF 1.17549421e–38

SDFPN 0x0000 0001 1.40129846e–45

Overview of IEEE Standard Single- and Double-Precision Formats

A-7Performance/Fractional Q Formats

Figure A−2 shows the fields of a double-precision floating-point number repre-
sented within a pair of 32-bit registers.

Figure A−2. Double-Precision Floating-Point Fields

31 30 20 19 0 31 0

s e f f

Odd register Even register

Legend: s sign bit (0 positive, 1 negative)
e 11-bit exponent (0 < e < 2047)
f 52-bit fraction
0 < f < 1*2–1 + 1*2–2 + ... + 1*2–52 or
0 < f < ((252)–1)/(252)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 2047) and denormalized (e is 0). The following
formulas define how to translate the s, e, and f fields into a double-precision
floating-point number.

Normal

–1s * 2(e–1023) * 1.f 0 < e < 2047

Denormalized (Subnormal)

–1s * 2–1022 * 0.f e = 0; f nonzero

Table A−5 shows the s, e, and f values for special double-precision floating-
point numbers.

Table A−5. Special Double-Precision Values

Symbol Sign (s) Exponent (e) Fraction (f)

+0 0 0 0

–0 1 0 0

+Inf 0 2047 0

–Inf 1 2047 0

NaN x 2047 nonzero

QnaN x 2047 1xx..x

SnaN Á x 2047 0xx..x and nonzero

Table A−6 shows hex and decimal values for some double-precision floating-
point numbers.

Overview of IEEE Standard Single- and Double-Precision Formats

 A-8

Table A−6. Hex and Decimal Representation for Selected Double-Precision Values

Symbol Hex Value Decimal Value

NaN_out 0x7FFF FFFF FFFF FFFF QnaN

0 0x0000 0000 0000 0000 0.0

–0 0x8000 0000 0000 0000 –0.0

1 0x3FF0 0000 0000 0000 1.0

2 0x4000 0000 0000 0000 2.0

LFPN 0x7FEF FFFF FFFF FFFF 1.7976931348623157e+308

SFPN 0x0010 0000 0000 0000 2.2250738585072014e–308

LDFPN 0x000F FFFF FFFF FFFF 2.2250738585072009e–308

SDFPN 0x0000 0000 0000 0001 4.9406564584124654e–324

B-1

Appendix A

Software Updates and Customer Support

This appendix provides information about software updates, customer support
and known issues.

Topic Page

B.1 DSPLIB Software Updates B-2.

B.2 DSPLIB Customer Support B-2.

B.3 Known Issues B-2.

Appendix B

DSPLIB Software Updates

 B-2

B.1 DSPLIB Software Updates

C67x DSPLIB software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the README.TXT available in the root directory of every release.

B.2 DSPLIB Customer Support

If you have questions or want to report problems or suggestions regarding the
C67x DSPLIB, contact Texas Instruments at dsph@ti.com.

B.3 Known Issues

These are the known issues as of Rev 2.0 of the C67x DSPLIB.

� There are some issues with how interrupts are handled in a few of the func-
tions. So when calling the following functions you should disable interrupts
before the call and restore interrupts after:

� DSPF_sp_minval
� DSPF_sp_maxval
� DSPF_sp_ifftSPxSP
� DSPF_sp_dotprod
� DSPF_sp_fir_gen
� DSPF_sp_fir_r2

Failure to disable interrupts before calling these specific functions can
cause corruption of the stack or sometimes a register which ultimately can
lead to the application crashing.

� The DSPF_dp_vecrecip function gives incorrect results for every two
alternate values of the input array.

� The DSPF_dp_biquad function results differ from the Matlab results.

� The DSPF_dp_mat_mul function in v2 of DSBLIB does not work for odd
rows and columns.

� The DSPF_sp_blk_move function corrupts the next two returning lines of
code.

C-1

Appendix A

Glossary

A
address: The location of program code or data stored; an individually acces-

sible memory location.

A-law companding: See compress and expand (compand).

API: See application programming interface.

application programming interface (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions, direc-
tives, and macros. The assembler substitutes absolute operation codes
for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then a
low voltage on the pin asserts it. If the pin is active high, then a high volt-
age asserts it.

B
bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left to
right within a word. More significant bytes in a word have lower numbered
addresses. Endian ordering is specific to hardware and is determined at
reset. See also little endian.

block: The three least significant bits of the program address. These corre-
spond to the address within a fetch packet of the first instruction being
addressed.

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

Appendix C

Glossary

 C-2

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
C6x DSP supports booting from external ROM or the host port interface
(HPI).

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
cache: A fast storage buffer in the central processing unit of a computer.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the genera-
tion of data- and program-memory addresses. The CPU includes the
central arithmetic logic unit (CALU), the multiplier, and the auxiliary regis-
ter arithmetic unit (ARAU).

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and then, after processing, is
reconstructed at the output by expansion. There are two distinct com-
panding schemes: A-law (used in Europe) and μ-law (used in the United
States).

control register: A register that contains bit fields that define the way a de-
vice operates.

Glossary

C-3Glossary

control register file: A set of control registers.

CSL: See chip support library.

D

device ID: Configuration register that identifies each peripheral component
interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA: See direct memory access.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to destina-
tion).

E

evaluation module (EVM): Board and software tools that allow the user to
evaluate a specific device.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

F

fast Fourier transform (FFT): An efficient method of computing the discrete
Fourier transform algorithm, which transforms functions between the
time domain and the frequency domain.

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

FFT: See fast fourier transform.

Glossary

 C-4

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the re-
quested fetch packet. The cache contains 512 frames.

G
global interrupt enable bit (GIE): A bit in the control status register (CSR)

that is used to enable or disable maskable interrupts.

H
HAL: Hardware abstraction layer of the CSL. The HAL underlies the service

layer and provides it a set of macros and constants for manipulating the
peripheral registers at the lowest level. It is a low-level symbolic interface
into the hardware providing symbols that describe peripheral registers/
bitfields and macros for manipulating them.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

HPI: See host port interface; see also HPI module.

I
index: A relative offset in the program address that specifies which of the

512 frames in the cache into which the current access is mapped.

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do not
reside within the ISFP, execution continues from execute packets in the
next fetch packet (the next ISFP).

Glossary

C-5Glossary

interrupt service routine (ISR): A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt service table (IST): A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

Internal peripherals: Devices connected to and controlled by a host device.
The C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port inter-
face (HPI), external memory-interface (EMIF), and runtime support tim-
ers.

IST: See interrupt service table.

L

least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

M

maskable interrupt: A hardware interrupt that can be enabled or disabled
through software.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

most significant bit (MSB): The highest order bit in a word.

μ-law companding: See compress and expand (compand).

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

Glossary

 C-6

N
nonmaskable interrupt (NMI): An interrupt that can be neither masked nor

disabled.

O
object file: A file that has been assembled or linked and contains machine

language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

P
peripheral: A device connected to and usually controlled by a host device.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program memory: Memory accessed through the C6x’s program fetch in-
terface.

PWR: Power; see PWR module.

PWR module: PWR is an API module that is used to configure the power-
down control registers, if applicable, and to invoke various power-down
modes.

R
random-access memory (RAM): A type of memory device in which the in-

dividual locations can be accessed in any order.

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and is
referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of mi-
croprogrammed complex instruction set computers. The result is a high-
er instruction throughput and a faster real-time interrupt service re-
sponse from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS: Real-time operating system.

Glossary

C-7Glossary

S

service layer: The top layer of the 2-layer chip support library architecture
providing high-level APIs into the CSL and BSL. The service layer is
where the actual APIs are defined and is the layer the user interfaces to.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

T

tag: The 18 most significant bits of the program address. This value corre-
sponds to the physical address of the fetch packet that is in that frame.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an API module used for configuring the timer reg-
isters.

W

word: A multiple of eight bits that is operated upon as a unit. For the C6x, a
word is 32 bits in length.

 C-8

Index

Index-1

Index

A
A-law companding, defined C-1
adaptive filtering functions 3-4, 3-7

DSPLIB reference 4-2, 4-80
address, defined C-1
API, defined C-1
application programming interface, defined C-1
argument conventions 3-2
arguments, DSPLIB 2-3
assembler, defined C-1
assert, defined C-1

B
big endian, defined C-1
bit, defined C-1
block, defined C-1
board support library, defined C-1
boot, defined C-2
boot mode, defined C-2
BSL, defined C-2
byte, defined C-2

C
cache, defined C-2
cache controller, defined C-2
central processing unit (CPU), defined C-2
chip support library, defined C-2
clock cycle, defined C-2
clock modes, defined C-2
code, defined C-2
coder-decoder, defined C-2
compiler, defined C-2

compress and expand (compand), defined C-2
control register, defined C-2
control register file, defined C-3
correlation functions 3-4, 3-7

DSPLIB reference 4-4, 4-82
CSL, defined C-3
customer support B-2

D
data types, DSPLIB, table 2-3
device ID, defined C-3
digital signal processor (DSP), defined C-3
direct memory access (DMA)

defined C-3
source, defined C-3
transfer, defined C-3

DMA, defined C-3
double-precision

floating-point fields A-7
hex and decimal representation A-8
values A-7

double-precision formats, overview A-4
double-precision functions 1-3

DSPLIB reference 4-80
DSP_w_vec, defined C-3
DSPLIB

argument conventions, table 3-2
arguments 2-3
arguments and data types 2-3
calling a function from Assembly 2-4
calling a function from C 2-4

Code Composer Studio users 2-4
customer support B-2
data types, table 2-3
double-precision formats A-4
double-precision functions

adaptive filtering 3-7

Index

Index-2

correlation 3-7
filtering and convolution 3-8
math 3-9
matrix 3-9
miscellaneous 3-9

features and benefits 1-5
fractional Q formats A-3
functional categories 1-2
functions 3-3
how DSPLIB deals with overflow and scal-

ing 2-5
how to install 2-2
how to rebuild DSPLIB 2-5
introduction 1-2
performance considerations A-2
Q.3.15 bit fields A-3
Q.3.15 format A-3
reference 4-1
single-precision formats A-4
single-precision functions

adaptive filtering 3-4
correlation 3-4
FFT (fast Fourier transform) 3-4
filtering and convolution 3-5
math 3-6
matrix 3-6
miscellaneous 3-7

software updates B-2
testing, how DSPLIB is tested 2-4
using DSPLIB 2-3

DSPLIB reference
double-precision functions 4-80

adaptive filtering 4-80
correlation 4-82
FFT 4-83
filtering and convolution 4-101
math 4-114
matrix 4-126
miscellaneous 4-131

single-precision functions 4-2
adaptive filtering 4-2
correlation 4-4
FFT 4-5
filtering and convolution 4-38
math 4-52
matrix 4-64
miscellaneous 4-69

E
evaluation module, defined C-3

external interrupt, defined C-3

external memory interface (EMIF), defined C-3

F
fetch packet, defined C-3

FFT (fast Fourier transform)
defined C-3
functions 3-4

FFT functions, DSPLIB reference 4-5, 4-83

filtering and convolution functions 3-5, 3-8
DSPLIB reference 4-38, 4-101

flag, defined C-4

floating-point fields
double-precision A-7
single-precision A-5

floating-point notations A-5

fractional Q formats A-3

frame, defined C-4

function
calling a DSPLIB function from Assembly 2-4
calling a DSPLIB function from C 2-4

Code Composer Studio users 2-4

functions
double-precision 1-3
DSPLIB 3-3
single-precision 1-2

G
GIE bit, defined C-4

H
HAL, defined C-4

host, defined C-4

host port interface (HPI), defined C-4

HPI, defined C-4

Index

Index-3

I
index, defined C-4
indirect addressing, defined C-4
installing DSPLIB 2-2
instruction fetch packet, defined C-4
internal interrupt, defined C-4
internal peripherals, defined C-5
interrupt, defined C-4
interrupt service fetch packet (ISFP), defined C-4
interrupt service routine (ISR), defined C-5
interrupt service table (IST), defined C-5
IST, defined C-5

K
known issues B-2

L
least significant bit (LSB), defined C-5
linker, defined C-5
little endian, defined C-5

M
maskable interrupt, defined C-5
math functions 3-6, 3-9

DSPLIB reference 4-52, 4-114
matrix functions 3-6, 3-9

DSPLIB reference 4-64, 4-126
memory map, defined C-5
memory-mapped register, defined C-5
miscellaneous functions 3-7, 3-9

DSPLIB reference 4-69, 4-131
most significant bit (MSB), defined C-5
m-law companding, defined C-5
multichannel buffered serial port (McBSP), defi-

ned C-5
multiplexer, defined C-5

N
nonmaskable interrupt (NMI), defined C-6

O
object file, defined C-6
off chip, defined C-6
on chip, defined C-6
overflow and scaling 2-5

P
performance considerations A-2
peripheral, defined C-6
program cache, defined C-6
program memory, defined C-6
PWR, defined C-6
PWR module, defined C-6

Q
Q.3.15 bit fields A-3
Q.3.15 format A-3

R
random-access memory (RAM), defined C-6
rebuilding DSPLIB 2-5
reduced-instruction-set computer (RISC), defi-

ned C-6
register, defined C-6
reset, defined C-6
routines, DSPLIB functional categories 1-2
RTOS, defined C-6

S
service layer, defined C-7
single-precision

floating-point fields A-5
hex and decimal representation A-6
values A-6

single-precision formats, overview A-4
single-precision functions 1-2

DSPLIB reference 4-2
software updates B-2
STDINC module, defined C-7
synchronous dynamic random-access memory

(SDRAM), defined C-7

Index

Index-4

synchronous-burst static random-access memory
(SBSRAM), defined C-7

syntax, defined C-7
system software, defined C-7

T
tag, defined C-7
testing, how DSPLIB is tested 2-4
timer, defined C-7

TIMER module, defined C-7

U
using DSPLIB 2-3

W
word, defined C-7

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

