
TMS320C620x/C670x DSP
Program and Data Memory Controller/

Direct Memory Access (DMA) Controller
Reference Guide

Literature Number: SPRU577A
September 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

iiiRead This FirstSPRU577A

Preface

Read This First

About This Manual

This document describes the program memory modes, program and data
memory organizations, and the program and data memory controller in the
TMS320C620x/C670x digital signal processors (DSPs) of the
TMS320C6000 DSP family.

This document also describes the operation of the direct memory access
(DMA) controller and the DMA and CPU data access performance to the inter-
nal memory, the peripherals, and the external memory.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

� Registers in this document are shown in figures and described in tables.

� Each register figure shows a rectangle divided into fields that represent
the fields of the register. Each field is labeled with its bit name, its
beginning and ending bit numbers above, and its read/write properties
below. A legend explains the notation used for the properties.

� Reserved bits in a register figure designate a bit that is used for future
device expansion.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support
tools. Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the TMS320C6000 CPU architecture,
instruction set, pipeline, and interrupts for these digital signal processors.

Trademarks

iv SPRU577A

TMS320C6000 DSP Peripherals Overview Reference Guide (literature
number SPRU190) describes the peripherals available on the
TMS320C6000 DSPs.

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the TMS320C62x and TMS320C67x DSPs, develop-
ment tools, and third-party support.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C6000 DSPs and includes application program examples.

TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) introduces the Code Composer Studio integrated develop-
ment environment and software tools.

Code Composer Studio Application Programming Interface Reference
Guide (literature number SPRU321) describes the Code Composer
Studio application programming interface (API), which allows you to
program custom plug-ins for Code Composer.

TMS320C6x Peripheral Support Library Programmer’s Reference
(literature number SPRU273) describes the contents of the
TMS320C6000 peripheral support library of functions and macros. It
lists functions and macros both by header file and alphabetically,
provides a complete description of each, and gives code examples to
show how they are used.

TMS320C6000 Chip Support Library API Reference Guide (literature
number SPRU401) describes a set of application programming interfaces
(APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C62x, C64x, C67x, TMS320C6000,
TMS320C62x, TMS320C64x, TMS320C67x, and VelociTI are trademarks of
Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

Contents

vContentsSPRU577A

Contents

1 TMS320C620x/C670x Internal Memory 1-1.
Describes the program memory modes, program and data memory organizations, and the pro-
gram and data memory controller in the TMS320C620x/C670x digital signal processors (DSPs)
of the TMS320C6000 DSP family.

1.1 Program Memory Controller 1-2.
1.2 Internal Program Memory 1-3.

1.2.1 Internal Program Memory Modes 1-6.
1.2.2 Memory Mapped Operation 1-8.
1.2.3 Cache Operation 1-9.
1.2.4 Cache Architecture 1-9.
1.2.5 Bootload Operation 1-11.
1.2.6 DMA Controller Access to Program Memory 1-12.
1.2.7 Illegal Access to Program Memory 1-12.

1.3 Data Memory Controller 1-13.
1.3.1 Data Memory Access 1-13.

1.4 Internal Data Memory 1-14.
1.4.1 TMS320C6201/C6204/C6205 DSP 1-14.
1.4.2 TMS320C6701 DSP 1-15.
1.4.3 TMS320C6202(B) DSP 1-18.
1.4.4 TMS320C6203(B) DSP 1-19.
1.4.5 Data Alignment 1-20.
1.4.6 Dual CPU Accesses to Internal Memory 1-20.
1.4.7 DMA Accesses to Internal Memory 1-23.
1.4.8 Illegal Access to Data Memory 1-23.
1.4.9 Data Endianness 1-23.

1.5 Peripheral Bus 1-26.
1.5.1 Byte and Halfword Access 1-26.
1.5.2 CPU Wait States 1-27.
1.5.3 Arbitration Between the CPU and the DMA Controller 1-27.

Contents

vi SPRU577A

2 Direct Memory Access (DMA) Controller 2-1.
Describes the operation of the direct memory access (DMA) controller in the digital signal
processors (DSPs) of the TMS320C6000 DSP family.

2.1 Overview 2-2.
2.2 DMA Terminology 2-4.
2.3 Initiating a Block Transfer 2-6.

2.3.1 Register Access Protocol 2-6.
2.3.2 DMA Autoinitialization 2-7.
2.3.3 DMA Channel Reload Registers 2-8.

2.4 Synchronization: Triggering DMA Transfers 2-9.
2.4.1 Latching of DMA Channel Event Flags 2-11.
2.4.2 Automated Event Clearing 2-11.
2.4.3 Synchronization Control 2-12.

2.5 Address Generation 2-14.
2.5.1 Basic Address Adjustment 2-14.
2.5.2 Address Adjustment with the Global Index Registers 2-14.
2.5.3 Element Size, Alignment, and Endianness 2-15.
2.5.4 Using a Frame Index to Reload Addresses 2-15.
2.5.5 Transferring a Large Single Block 2-16.
2.5.6 Sorting 2-17.

2.6 Split-Channel Operation 2-19.
2.7 Resource Arbitration and Priority Configuration 2-21.

2.7.1 Priority Between DMA Channels 2-21.
2.7.2 Switching Channels 2-22.

2.8 DMA Channel Condition Determination 2-23.
2.9 DMA Controller Structure 2-25.

2.9.1 TMS320C6201/C6701/C6202 DMA Structure 2-25.
2.9.2 TMS320C6202B/C6203(B)/C6204/C6205 DMA Structure 2-28.
2.9.3 Operation 2-31.
2.9.4 Performance 2-31.

2.10 DMA Action Complete Pins 2-31.
2.11 Emulation 2-32.
2.12 DMA Controller Registers 2-32.

2.12.1 DMA Auxiliary Control Register (AUXCTL) 2-33.
2.12.2 DMA Channel Primary Control Registers (PRICTL0−3) 2-34.
2.12.3 DMA Channel Secondary Control Registers (SECCTL0−3) 2-40.
2.12.4 DMA Channel Source Address Registers (SRC0−3) 2-45.
2.12.5 DMA Channel Destination Address Registers (DST0−3) 2-45.
2.12.6 DMA Channel Transfer Counter Registers (XFRCNT0−3) 2-46.
2.12.7 DMA Global Count Reload Registers (GBLCNTA−B) 2-48.
2.12.8 DMA Global Index Registers (GBLIDXA−B) 2-49.
2.12.9 DMA Global Address Registers (GBLADDRA−D) 2-51.

Contents

viiContentsSPRU577A

3 DMA and CPU Data Access Performance 3-1.
Describes the DMA and CPU data access performance to the internal memory, the peripherals,
and the external memory. Provides the necessary information to understand how the different
data requestors affect one another, as well as the amount of time required to perform data
accesses. Also provides guidelines on how to maximize the available bandwidth.

3.1 Accessing Data 3-2.
3.1.1 Internal Data Memory 3-2.
3.1.2 Peripheral Bus 3-3.
3.1.3 External Memory Interface (EMIF) 3-3.
3.1.4 Resource Contention 3-6.
3.1.5 DMA Synchronization 3-10.
3.1.6 Transferring To/From Same Resource 3-11.
3.1.7 DMA Port Crossing 3-12.

3.2 Bandwidth Calculation 3-13.
3.2.1 Simple Bandwidth Calculation Example Using Timing Information 3-13.
3.2.2 Complex Bandwidth Calculation Example 3-15.

3.3 Bandwidth Optimization 3-20.
3.3.1 Maximize DMA Bursts 3-20.
3.3.2 Minimizing CPU/DMA Conflict 3-21.

A Revision History A-1.
Lists the changes made since the previous version of this document.

Figures

viii SPRU577A

Figures

1−1 TMS320C620x/C670x DSP Block Diagram 1-2.
1−2 Program Memory Controller Block Diagram (C6201/C6204/C6205/C6701 DSP) 1-4.
1−3 Program Memory Controller Block Diagram (C6202(B)/C6203(B) DSP) 1-5.
1−4 Logical Mapping of Cache Address (C6201/C6204/C6205/C6701 DSP) 1-10.
1−5 Logical Mapping of Cache Address (C6202(B)/C6203(B) DSP) 1-10.
1−6 Data Memory Controller Interconnect to Other Banks (C6201/C6204/C6205 DSP) 1-15. . . .
1−7 Data Memory Controller Interconnect to Other Blocks (C6701 DSP) 1-17.
1−8 Data Memory Controller Interconnect to Other Blocks (C6202(B) DSP) 1-18.
1−9 Data Memory Controller Interconnect to Other Blocks (C6203(B) DSP) 1-19.
1−10 Conflicting Internal Memory Accesses to the Same Block

(C6201/C6202(B)/C6203(B)/C6204/C6205 DSP) 1-21.
1−11 Conflicting Internal Memory Accesses to the Same Block (C6701 DSP) 1-22.
2−1 DMA Controller Interconnect to TMS320C6000 Memory-Mapped Modules 2-3.
2−2 Synchronization Flags 2-13.
2−3 Generation of DMA Interrupt for Channel n From Conditions 2-24.
2−4 DMA Controller Data Bus Block Diagram (C6201/C6701/C6202 DSP) 2-25.
2−5 DMA Controller Data Bus Block Diagram (C6202B/C6203(B)/C6204/C6205 DSP) 2-28. . . .
2−6 Shared FIFO Resource Problem 2-30.
2−7 DMA Auxiliary Control Register (AUXCTL) 2-33.
2−8 DMA Channel Primary Control Register (PRICTL) 2-34.
2−9 DMA Channel Secondary Control Register (SECCTL) 2-40.
2−10 DMA Channel Source Address Register (SRC) 2-45.
2−11 DMA Channel Destination Address Register (DST) 2-45.
2−12 DMA Channel Transfer Counter Register (XFRCNT) 2-47.
2−13 DMA Global Count Reload Register (GBLCNT) 2-48.
2−14 DMA Global Index Register (GBLIDX) 2-50.
2−15 DMA Global Address Register (GBLADDR) 2-51.
3−1 Data Paths 3-2.
3−2 1/2× Rate SBSRAM Read Cycle Timing Diagram 3-7.
3−3 Combining External Peripherals 3-20.
3−4 Converting a 16-Bit Peripheral to 32-Bit 3-21.

Tables

ixTablesSPRU577A

Tables

1−1 TMS320C620x/C670x DSP Internal Memory Configurations 1-3.
1−2 TMS320C620x/C670x DSP Cache Architectures 1-4.
1−3 Internal Program Memory Mode Summary 1-7.
1−4 Internal Program RAM Address Mapping in Memory Mapped Mode 1-8.
1−5 Internal Program RAM Address Mapping in Cache Mode

(TMS320C6202(B)/C6203(B) DSP) 1-9.
1−6 Data Memory Organization (C6201/C6204/C6205 DSP) 1-14.
1−7 Internal Data RAM Address Mapping (C6201/C6204/C6205 DSP) 1-15.
1−8 Data Memory Organization (C6701 DSP) 1-16.
1−9 Internal Data RAM Address Mapping (C6701 DSP) 1-17.
1−10 Internal Data RAM Address Mapping (C6202(B) DSP) 1-18.
1−11 Internal Data RAM Address Mapping (C6203(B) DSP) 1-19.
1−12 Register Contents After Little-Endian or Big-Endian Data Loads

(C620x/C670x DSP) 1-24.
1−13 Register Contents After Little-Endian or Big-Endian Data Loads

(C6701 DSP only) 1-25.
1−14 Memory Contents After Little-Endian or Big-Endian Data Stores

(C620x/C670x DSP) 1-25.
1−15 Memory Contents After Little-Endian or Big-Endian Data Stores 1-26.
2−1 Synchronization Events 2-10.
2−2 Sorting Example in Order of DMA Transfers 2-17.
2−3 Sorting in Order of First by Address 2-18.
2−4 DMA Channel Secondary Control Register (SECCTL) Condition Descriptions 2-24.
2−5 DMA Controller Registers 2-32.
2−6 DMA Auxiliary Control Register (AUXCTL) Field Descriptions 2-33.
2−7 DMA Channel Primary Control Register (PRICTL) Field Descriptions 2-34.
2−8 DMA Channel Secondary Control Register (SECCTL) Field Descriptions 2-40.
2−9 DMA Channel Source Address Register (SRC) Field Descriptions 2-45.
2−10 DMA Channel Destination Address Register (DST) Field Descriptions 2-45.
2−11 DMA Channel Transfer Counter Register (XFRCNT) Field Descriptions 2-47.
2−12 DMA Global Count Reload Register (GBLCNT) Field Descriptions 2-48.
2−13 DMA Global Index Register (GBLIDX) Field Descriptions 2-50.
2−14 DMA Global Address Register (GBLADDR) Field Descriptions 2-51.
3−1 CPU Stalls For Peripheral Register Accesses 3-3.
3−2 EMIF Data Access Completion Timings in CLKOUT1 (CPU Clock) Cycles 3-5.
3−3 CPU Stalls for Single External Data Accesses 3-5.
3−4 External Switching Time between Accesses by Different Requestors 3-7.

Tables

x SPRU577A

3−5 Additional Switching Time between External DMA Accesses 3-8.
3−6 CLKOUT1 (CPU Clock) Cycles Between External Frame Bursts 3-9.
3−7 Burst Interruption by McBSP/Host Service 3-10.
3−8 DMA Synchronization Timings 3-10.
3−9 Burst Size for Shared Resource 3-11.
3−10 Additional Switching Time for External-to-External Transfers 3-12.
3−11 Switching Time for Internal-to-Internal Transfers 3-12.
3−12 Timing Parameter Descriptions for Simple Bandwidth Calculation Example 3-13.
3−13 Timing Parameter Descriptions For Complex Bandwidth Calculation Example 3-16.
3−14 DMA Channel Selection Priority 3-18.
A−1 Document Revision History A-1.

1-1TMS320C620x/C670x Internal MemorySPRU577A

TMS320C620x/C670x Internal Memory

This chapter describes the program memory modes, program and data memory
organizations, and the program and data memory controller in the
TMS320C620x/C670x digital signal processors (DSPs) of the
TMS320C6000 DSP family.

Topic Page

1.1 Program Memory Controller 1-2.

1.2 Internal Program Memory 1-3.

1.3 Data Memory Controller 1-13.

1.4 Internal Data Memory 1-14.

1.5 Peripheral Bus 1-26.

Chapter 1

Program Memory Controller

TMS320C620x/C670x Internal Memory1-2 SPRU577A

1.1 Program Memory Controller

The program memory controller, shown in Figure 1−1, performs the following
tasks:

� Performs CPU and DMA requests to internal program memory and the
necessary arbitration.

� Performs CPU requests to external memory through the external memory
interface (EMIF).

� Manages the internal program memory when it is configured as cache.

Figure 1−1. TMS320C620x/C670x DSP Block Diagram

EMIF

Other
 Peripherals

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In−Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Internal Program Memory

1-3TMS320C620x/C670x Internal MemorySPRU577A

1.2 Internal Program Memory

The TMS320C6201/C6204/C6205/C6701 internal program memory is user-
configurable as cache or memory-mapped program space. It contains
64K bytes of RAM or, equivalently, 2K 256-bit fetch packets or 16K 32-bit
instructions. The CPU, through the program memory controller, has a single-
cycle throughput, 256-bit-wide connection to internal program memory.

In the TMS320C6202(B)/C6203(B) DSP, the memory/cache program space is
expanded to the sizes shown in Table 1−1. In addition, the C6202(B)/C6203(B)
DSP provides another block of memory that operates as a memory-mapped
block. These two blocks can be accessed independently. This allows the CPU
to perform program fetch from one block of program memory, without interfering
with a DMA transfer from the other block.

Table 1−1 and Table 1−2 compare the internal memory and cache configura-
tions available on the current C620x/C670x devices. Figure 1−2 shows a block
diagram of the connections between the C6201/C6204/C6205/C6701 CPU,
program memory controller (PMEMC), and memory blocks. Figure 1−3 shows
a block diagram of the connections between the CPU, PMEMC, and memory
blocks in the C6202/C6202B/C6203(B) DSP. For the C6202(B)/C6203(B)
DSP, there are two program memory controllers, PMEM1 and PMEM0. The
PMEM1 controller handles all accesses to program memory block 1 (SRAM
and cache), as well as all cache operations and external accesses. The
PMEM0 controller always accesses program memory block 0 (SRAM only).
The addresses shown in Figure 1−2 and Figure 1−3 are for operation in
memory map mode 1.

Table 1−1. TMS320C620x/C670x DSP Internal Memory Configurations

Device CPU
Internal Memory
Architecture

Total Memory
(Bytes)

Program Memory
(Bytes)

Data Memory
(Bytes)

C6201 6200 Harvard 128K 64K (map/cache) 64K (map)

C6701 6700 Harvard 128K 64K (map/cache) 64K (map)

C6202(B) 6200 Harvard 384K 128K (map)
128K (map/cache)

128K (map)

C6203(B) 6200 Harvard 896K 256K (map)
128K (map/cache)

512K (map)

C6204 6200 Harvard 128K 64K (map/cache) 64K (map)

C6205 6200 Harvard 128K 64K (map/cache) 64K (map)

Internal Program Memory

TMS320C620x/C670x Internal Memory1-4 SPRU577A

Table 1−2. TMS320C620x/C670x DSP Cache Architectures

Cache Space Size (Bytes) Associativity Line Size (Bytes)

C6201 program 64K Direct mapped 32

C6701 program 64K Direct mapped 32

C6202(B) program 128K Direct mapped 32

C6203(B) program 128K Direct mapped 32

C6204 program 64K Direct mapped 32

C6205 program 64K Direct mapped 32

Figure 1−2. Program Memory Controller Block Diagram (C6201/C6204/C6205/C6701 DSP)
P

rogram
 D

ata

P
rogram

 A
ddress

C
ontrol

256

Program memory
controller
(PMEMC)

C62x/C67x CPU

Program fetch

DMA bus

controller

External
memory
interface

256 cached or
mapped

Cached/Mapped†

(64K bytes)

0000 0000h

0000 FFFFh

† Addresses shown in Map 1 mode (section 1.2.2)

Internal Program Memory

1-5TMS320C620x/C670x Internal MemorySPRU577A

Figure 1−3. Program Memory Controller Block Diagram (C6202(B)/C6203(B) DSP)

P
rogram

 D
ata

P
rogram

 A
ddress

C
ontrol

256

Program memory
controller
(PMEMC)

C62x CPU

Program fetch

DMA
bus

controller

External
memory
interface

256256

C6203(B)
Address Range:
0000 0000h to
0003 FFFFh

C6202(B)
Address Range:
0000 0000h to
0001 FFFFh

Block 0 Mapped†

(128K bytes − C6202(B))
(256K bytes − C6203(B))

Block 1 Cached/Mapped†

(128K bytes − C6202(B))
(128K bytes − C6203(B))

C6202(B)
Address Range:
0002 0000h to
0003 FFFFh

C6203(B)
Address Range:
0004 0000h to
0005 FFFFh

† Addresses shown in Map 1 mode (section 1.2.2)

Internal Program Memory

TMS320C620x/C670x Internal Memory1-6 SPRU577A

1.2.1 Internal Program Memory Modes

The cached/mapped block of the internal program memory can be used in any
of four modes as selected by the program cache control (PCC) field in the CPU
control status register (CSR), as shown in Table 1−3. The modes are:

� Mapped: In mapped mode, program fetches from the cached/mapped
block of the internal program memory address return the fetch packet at
that address. In the other modes, CPU accesses to this address range
return undefined data. Mapped mode is the default state of the internal
program memory at reset. The CPU cannot access internal program
memory through the data memory controller. (See section 1.2.2 for a
detailed description of the memory mapped operations.)

� Cache enabled: In cache enabled mode, any initial program fetch at an
address causes a cache miss. In a cache miss, the fetch packet is loaded
from the external memory interface (EMIF) and stored in the internal cache
memory, one 32-bit instruction at a time. While the fetch packet is being
loaded, the CPU is halted. The number of wait states incurred depends on
the type of external memory used, the state of that memory, and any conten-
tion for the EMIF with other requests, such as the DMA controller or a CPU
data access. Any subsequent read from a cached address causes a cache
hit, and that fetch packet is sent to the CPU from the internal program
memory without any wait states. Changing from program memory mode to
cache enabled mode flushes the program cache. This mode transition is the
only means to flush the cache.

� Cache freeze: During a cache freeze, the cache retains its current state.
A program read of a frozen cache is identical to a read of an enabled cache
except that on a cache miss the data read from the external memory inter-
face is not stored in the cache. Cache freeze ensures that critical program
data is not overwritten in the cache.

� Cache bypass: When the cache is bypassed, any program read fetches
data from external memory. The data is not stored in the cache memory.
As in cache freeze, the cache retains its state in cache bypass. This mode
ensures that external program data is being fetched.

Internal Program Memory

1-7TMS320C620x/C670x Internal MemorySPRU577A

Table 1−3. Internal Program Memory Mode Summary

PCC Field Memory Mode Description

000 Mapped Cache disabled (default state at reset)

001 − Reserved

010 Cache enabled Cache accessed and updated on reads

011 Cache freeze Cache accessed but not updated on reads

100 Cache bypass Cache not accessed or updated on reads

101−111 − Reserved

Note:

If the operation mode of the PMEMC is changed, use the following assembly
routine to ensure correct operation of the PMEMC. This routine enables the
cache. To change the PMEMC operation mode to a state other than cache
enable, modify line 4 of the routine to correspond the the value of PCC that
is to be moved into B5. For example, to put the cache into mapped mode
0000h should be moved into B5. The CPU registers used in this example
have no significance. Any of the registers A0−A15 or B0−B15 can be used
in the program. You must ensure that no interrupts occur during the execu-
tion of this assembly routine to prevent unexpected modification of the CSR.

.align 32
MVC .S2 CSR,B5 ;copy control status register

|| MVK .S1 0xff1f,A5
AND .L1x A5,B5,A5 ;clear PCC field of CSR value

|| MVK S2 0x0040,B5 ;set cache enable mask
OR .L2x A5,B5,B5 ;set cache enable bit
MVC .S2 B5,CSR ;update CSR to enable cache
NOP 4
NOP

Internal Program Memory

TMS320C620x/C670x Internal Memory1-8 SPRU577A

1.2.2 Memory Mapped Operation

When the PCC field in CSR is programmed for mapped mode, all of the internal
program RAM is mapped into internal program space. Table 1−4 shows the
address space for the internal program RAM for the map mode selected at
device reset.

Table 1−4. Internal Program RAM Address Mapping in Memory Mapped Mode

Device Block† Map 0 Map 1

C6201 −−− 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

C6202(B) Block 0

Block 1

0140 0000h – 0141 FFFFh

0142 0000h – 0143 FFFFh

0000 0000h – 0001 FFFFh

0002 0000h – 0003 FFFFh

C6203(B) Block 0

Block 1

0140 0000h – 0143 FFFFh

0144 0000h – 0145 FFFFh

0000 0000h – 0003 FFFFh

0004 0000h – 0005 FFFFh

C6204 −−− 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

C6205 −−− 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

C6701 −−− 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

† C6201/C6204/C6205/C6701 DSP has only one block of internal program memory.

In mapped mode, both the CPU and the DMA can access all locations in the
RAM. Any access outside of the address space that the internal RAM is
mapped to is forwarded to the EMIF. If the CPU and DMA attempt to access
the same block of RAM at the same time, then the DMA is stalled until the CPU
completes its accesses to that block. After the CPU access is complete, the
DMA is allowed to access the RAM.

For the C6202(B)/C6203(B) DSP, the DMA can only access one of the two
blocks of RAM at a time. The CPU and DMA can access the internal RAM with-
out interference as long as each accesses a different block. The DMA cannot
cross between block 0 and block 1 in a single transfer. Separate DMA transfers
must be used to cross block boundaries.

Internal Program Memory

1-9TMS320C620x/C670x Internal MemorySPRU577A

1.2.3 Cache Operation

When the PCC field in CSR is programmed for one of the cache modes, all
internal program memory in the C6201/C6204/C6205/C6701 device is used
as a cache. For the C6202(B)/C6203(B) device, block 1 operates as a cache
while block 0 remains mapped into internal program space. Table 1−5 shows
the addresses occupied by the C6202/C6202B/C6203(B) RAM that is not
used for cache, for each map mode.

Table 1−5. Internal Program RAM Address Mapping in Cache Mode
(TMS320C6202(B)/C6203(B) DSP)

Device Block Map 0 Map 1

C6202(B) 0 0140 0000h – 0141 FFFFh 0000 0000h – 0001 FFFFh

C6203(B) 0 0140 0000h – 0143 FFFFh 0000 0000h – 0003 FFFFh

Any CPU or DMA access to the memory range that was occupied by the cache
RAM returns undefined results. For the C6202(B)/C6203(B) DSP, as in the
map mode simultaneous accesses to block 0 by the CPU and DMA stalls the
DMA until the CPU has completed its access. It is necessary to ensure that all
DMA accesses to block 1 have completed before the cache is enabled.

1.2.4 Cache Architecture

The C620x/C670x cache is a direct mapped architecture. The width of the
cache (line size) is 256 bits, or eight 32-bit instructions. Each line in the cache
is one fetch packet. Therefore, for the C6201/C6204/C6205/C6701 DSP,
the 64K byte cache contains 2K fetch packets (2K lines). For the
C6202(B)/C6203(B) DSP, the 128K-byte cache contains 4K fetch packets
(4K lines).

Internal Program Memory

TMS320C620x/C670x Internal Memory1-10 SPRU577A

1.2.4.1 Cache Usage of CPU Address

How the cache uses the fetch packet address from the CPU is shown in
Figure 1−4 for the C6201/C6204/C6205/C6701 DSP and in Figure 1−5 for the
C6202(B)/C6203(B) DSP.

Figure 1−4. Logical Mapping of Cache Address (C6201/C6204/C6205/C6701 DSP)

31 26 25 16 15 5 4 0

Outside external range.
assumed to be 0

Tag Block offset
Fetch packet alignment.

Assumed 0

Figure 1−5. Logical Mapping of Cache Address (C6202(B)/C6203(B) DSP)

31 26 25 17 16 5 4 0

Outside external range.
assumed to be 0

Tag Block offset
Fetch packet alignment.

Assumed 0

� Fetch packet alignment: The five LSBs of the address are assumed to
be 0 because all program fetch requests are aligned on fetch packet
boundaries (eight words or 32 bytes).

� Tag block offset: The device characteristics are as follows:

� For the C6201/C6204/C6205/C6701 DSP, any external address
maps to only one of the 2K lines. Any two fetch packets that are
separated by an integer multiple of 64K bytes map to the same line.
Thus bits 15−5 of the CPU address create the 11-bit block offset that
determines the specific line, of the 2K lines, to which any particular
fetch packet maps.

� For the C6202(B)/C6203(B) DSP, any external address maps to only
one of the 4K lines. Any two fetch packets that are separated by an
integer multiple of 128K bytes map to the same line. Thus bits 16−5 of
the CPU address create the 12-bit block offset that determines the
specific line, of the 4K lines, to which any particular fetch packet maps.

Internal Program Memory

1-11TMS320C620x/C670x Internal MemorySPRU577A

� Tag: The cache assumes a maximum external address space of
64M bytes (from 0000 0000h−03FF FFFFh). The following bits of the
address correspond to the tag that determines the original location of the
fetch packet in external memory space:

� For C6201/C6204/C6205/C6701 DSP, bits 25−16. The cache has a
separate 2K × 11 tag RAM that holds all the tags.

� For C6202(B)/C6203(B) DSP, bits 25−17. The cache has a separate
4K × 10 tag RAM that holds all the tags.

Each address location in the tag RAM contains the tag, plus a valid bit that is
used to record line validity information.

1.2.4.2 Cache Invalidation

The tag RAM contains a valid bit for each line of the cache. When a program
enables the cache, the PMEMC clears the valid bit for each tag entry. This
invalidates the entire contents of the program cache and prepares it for use.

Programs can change the current cache mode by writing to the PCC field in
the CSR. The PMEMC only invalidates its contents when it transitions out of
the mapped-memory mode. In other words, the PMEMC invalidates the
cache’s contents when programs write 010b to PCC and the PCC previous
value was 000b.

The PMEMC halts the CPU while it initializes its tags. On the 6202(B) and
C6203(B) DSPs, the PMEMC allows DMA accesses to proceed to Block 0
during this initialization.

1.2.4.3 Line Replacement

A cache miss is detected when the tag corresponding to the block offset of the
fetch packet address requested by the CPU does not correspond to the tag
field of the fetch packet address or if the valid bit at the block offset location is
clear. If enabled, the cache loads the fetch packet into the corresponding line,
sets the valid bit, sets the tag to bits of the requested address, and delivers this
fetch packet to the CPU after all eight instructions are available.

1.2.5 Bootload Operation

At reset, the program memory system is in mapped mode, allowing the DMA
controller to boot load code into the internal program memory.

Internal Program Memory

TMS320C620x/C670x Internal Memory1-12 SPRU577A

1.2.6 DMA Controller Access to Program Memory

The DMA controller can read and write to internal program memory when the
memory is configured in mapped mode. Only 32-bit word accesses can be
made to the program memory via the DMA. The CPU always has priority over
the DMA controller for access to internal program memory regardless of the
value of the PRI bit for that DMA channel. DMA controller accesses are post-
poned until the CPU stops making requests. To avoid losing future requests
that occur after arbitration and while a DMA controller access is in progress,
the CPU incurs one wait state per DMA controller access to the same program
memory block. The maximum throughput to the DMA is one access every
other cycle. In cache mode, a DMA controller write is ignored by the program
memory controller, and a read returns an undefined value. For both DMA
reads and writes in cache modes, the DMA controller is signaled that its
request has finished. While the CPU is executing from external memory,
IPRAM block 1 cannot be accessed using the DMA. The PMEM1 memory
controller is used by the CPU to fetch instructions from the EMIF; therefore,
while performing a fetch from external memory, DMA access to PMEM1 is
limited.

1.2.7 Illegal Access to Program Memory

An access to a section of memory that does not return a ready indication is not
allowed. Possible requestors are: CPU program fetches, CPU loads and
stores, programmed DMA channels or HPI/PCI/XBUS host mastering of the
DMA through the auxiliary DMA. This type of access can create a stall
indefinitely. When a requestor has created a program memory stall, other
requestors are unable to access this program memory space. For
C6202/C6203 DSP, if an access generates a program memory block 0 stall,
other requestors may still access program memory block 1 and vice versa.

Data Memory Controller

1-13TMS320C620x/C670x Internal MemorySPRU577A

1.3 Data Memory Controller

As shown in Figure 1−1 (page 1-2), the data memory controller connects:

� The CPU and direct memory access (DMA) controller to internal data
memory and performs the necessary arbitration.

� The CPU to the external memory interface (EMIF).

� The CPU to the on-chip peripherals through the peripheral bus controller.

The peripheral bus controller performs arbitration between the CPU and DMA
for the on-chip peripherals.

1.3.1 Data Memory Access

The data memory controller services all CPU and DMA controller data
requests to internal data memory. The directions of data flow and the master
(requester) and slave (resource) relationships between the modules are
described in section 1.4 and illustrated in Figure 1−6, Figure 1−7, Figure 1−8,
and Figure 1−9. These figures show:

� The CPU requests data reads and writes to:

� Internal data memory
� On-chip peripherals through the peripheral bus controller
� EMIF

� The DMA controller requests reads and writes to internal data memory.

� The CPU cannot access internal program memory through the data
memory controller.

The CPU sends requests to the data memory controller through the two
address buses (DA1 and DA2). Store data is transmitted through the CPU data
store buses (ST1 and ST2). Load data is received through the CPU data load
buses (LD1 and LD2). The CPU data requests are mapped, based on address,
to the internal data memory, internal peripheral space (through the peripheral
bus controller), or the external memory interface. The data memory controller
also connects the DMA controller to the internal data memory and performs
arbitration between the CPU and DMA controller.

See Chapter 3, DMA and CPU Data Access Performance, for a description of
data access performance to the internal data memory, the EMIF, and the periph-
eral bus.

Internal Data Memory

TMS320C620x/C670x Internal Memory1-14 SPRU577A

1.4 Internal Data Memory

The following sections describe the memory organization of each C620x and
C670x device.

1.4.1 TMS320C6201/C6204/C6205 DSP

The 64K bytes of internal data RAM are organized as two blocks of 32K bytes
located from address 8000 0000h to 8000 7FFFh and 8000 8000h to
8000 FFFFh, as shown in Table 1−6, Figure 1−6, and Table 1−7. The DMA
controller or side A and side B of the CPU can simultaneously access any
portion of the internal memory without conflict, when using different blocks.
Both blocks are organized as four 4K banks of 16-bit halfwords. Since
accesses to different blocks never cause performance penalties, it is not
necessary to consider the address within a block if simultaneous accesses
occur to different blocks. Both CPU and DMA can simultaneously access data
that resides in different banks within the same block without a performance
penalty. The two CPU data ports, A and B, can simultaneously access
neighboring 16-bit data elements inside the block without a resource conflict.
To avoid performance penalties, it is necessary to give attention to address
LSBs when the two accesses involve data in the same block. With this memory
configuration, the maximum data access each cycle is three 32-bit accesses
made by CPU data port A, B, and the DMA controller to different banks.

Table 1−6. Data Memory Organization (C6201/C6204/C6205 DSP)

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 0)

80000000
80000008

�

�

�

80007FF0

80000001
80000009

�

�

�

80007FF1

80000002
8000000A

�

�

�

80007FF2

80000003
8000000B

�

�

�

80007FF3

80000004
8000000C

�

�

�

80007FF4

80000005
8000000D

�

�

�

80007FF5

80000006
8000000E

�

�

�

80007FF6

80000007
8000000F

�

�

�

80007FF7

Last address
(Block 0)

80007FF8 80007FF9 80007FFA 80007FFB 80007FFC 80007FFD 80007FFE 80007FFF

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 1)

80008000
80008008

�

�

�

8000FFF0

80008001
80008009

�

�

�

8000FFF1

80008002
8000800A

�

�

�

8000FFF2

80008003
8000800B

�

�

�

8000FFF3

80008004
8000800C

�

�

�

8000FFF4

80008005
8000800D

�

�

�

8000FFF5

80008006
8000800E

�

�

�

8000FFF6

80008007
8000800F

�

�

�

8000FFF7

Last address
(Block 1)

8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory

1-15TMS320C620x/C670x Internal MemorySPRU577A

Figure 1−6. Data Memory Controller Interconnect to Other Banks (C6201/C6204/C6205 DSP)

Block 0
(32K bytes)(32K bytes)

Block 1

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

DMA
controller

Peripheral
bus

controller

External
memory
interface

16

16

16

16

Data memory controller
(DMEMC)

323232

16

16

16

16

Side ASide B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

80
00

 F
F

F
F

h

80
00

 7
F

F
F

h

80
00

 8
00

0h

80
00

 0
00

0h

Table 1−7. Internal Data RAM Address Mapping (C6201/C6204/C6205 DSP)

Block Address

Block 0 8000 0000h – 8000 7FFFh

Block 1 8000 8000h – 8000 FFFFh

1.4.2 TMS320C6701 DSP

The 64K bytes of internal data RAM are organized as two blocks of 32K bytes
located from address 8000 0000h to 8000 7FFFh and 8000 8000h to
8000 FFFFh, as shown in Table 1−8, Figure 1−7, and Table 1−9. Side A and
side B of the CPU or the DMA controller can simultaneously access any portion
of the internal data memory without conflict, when using different blocks. Since
accesses to different blocks never cause performance penalties, it is not
necessary to consider the address within a block if simultaneous accesses

Internal Data Memory

TMS320C620x/C670x Internal Memory1-16 SPRU577A

occur to different blocks. It is only necessary to give attention to the address
when the two accesses occur in the same block. Both blocks are organized
as eight 2K banks of 16-bit halfwords. Both the CPU and DMA controller can
still simultaneously access data that resides in different banks within the same
block without performance penalty. The two CPU data ports, A and B, can
simultaneously access neighboring 16-bit data elements inside the same
block without a resource conflict. To avoid performance penalties, it is neces-
sary to give attention to address LSBs when two accesses involve data in the
same block. With this memory configuration, the maximum data access each
cycle is two 64-bit CPU accesses (LDDW only) and a 32-bit DMA access.

Table 1−8. Data Memory Organization (C6701 DSP)

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 0)

80000000 80000001 80000002 80000003 80000004 80000005 80000006 80000007

Last address
(Block 0)

80007FF0 80007FF1 80007FF2 80007FF3 80007FF4 80007FF5 80007FF6 80007FF7

Bank 4 Bank 5 Bank 6 Bank 7

First address
(Block 0)

80000008 80000009 8000000A 8000000B 8000000C 8000000D 8000000E 8000000F

Last address
(Block 0)

80007FF8 80007FF9 80007FFA 80007FFB 80007FFC 80007FFD 80007FFE 80007FFF

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 1)

80008000 80008001 80008002 80008003 80008004 80008005 80008006 80008007

Last address
(Block 1)

8000FFF0 8000FFF1 8000FFF2 8000FFF3 8000FFF4 8000FFF5 8000FFF6 8000FFF7

Bank 4 Bank 5 Bank 6 Bank 7

First address
(Block 1)

80008008 80008009 8000800A 8000800B 8000800C 8000800D 8000800E 8000800F

Last address
(Block 1)

8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory

1-17TMS320C620x/C670x Internal MemorySPRU577A

Figure 1−7. Data Memory Controller Interconnect to Other Blocks (C6701 DSP)

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 1

Bank 2

Bank 0

16

16

16

16

Bank 3

Bank 2

Bank 1

Bank 0

16

16

16

16

Block 0
(32K bytes)(32K bytes)

Block 1

Bank 7

Bank 6

Bank 5

Bank 4

DMA
controller

Peripheral
bus

controller

External
memory
interface

16

16

16

16

Data memory controller
(DMEMC)

323232

16

16

16

16

Side ASide B

C67x CPU

32 64 6432

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

D
C

B
A

0
1

2
3

4
5

6
7

9
8

F
E

D
C

B
A

0
1

2
3

4
5

6
7

9
8

F
E

80
00

 F
F

F
F

h

80
00

 7
F

F
F

h

80
00

 8
00

0h

80
00

 0
00

0h

Table 1−9. Internal Data RAM Address Mapping (C6701 DSP)

Block Address

Block 0 8000 0000h – 8000 7FFFh

Block 1 8000 8000h – 8000 FFFFh

Internal Data Memory

TMS320C620x/C670x Internal Memory1-18 SPRU577A

1.4.3 TMS320C6202(B) DSP

The C6202(B) data memory controller (DMEMC) contains 128K bytes of RAM
organized in two blocks of four banks each. Each bank is 16 bits wide. The
DMEMC for the C6202(B) operates identically to the C6201 DMEMC, the DMA
controller or side A or side B of the CPU can simultaneously access two differ-
ent banks without conflict. Figure 1−8 shows a block diagram of the connec-
tions between the C6202(B) CPU, DMEMC, and memory blocks. Table 1−10
shows the memory range occupied by each block of internal data RAM.

Figure 1−8. Data Memory Controller Interconnect to Other Blocks (C6202(B) DSP)

Block 1
(64K bytes)(64K bytes)

Block 0

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

controller
DMA bus

controller
bus

Peripheral

interface
memory
External

16

16

16

16

(DMEMC)
Data memory controller

323232

16

16

16

16

Data path AData path B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
01

 0
00

0h

80
01

 F
F

F
F

h

80
00

 F
F

F
F

h

80
00

 0
00

0h

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

Table 1−10. Internal Data RAM Address Mapping (C6202(B) DSP)

Block Address

Block 0 8000 0000h – 8000 FFFFh

Block 1 8001 0000h – 8001 FFFFh

Internal Data Memory

1-19TMS320C620x/C670x Internal MemorySPRU577A

1.4.4 TMS320C6203(B) DSP

The C6203(B) data memory controller (DMEMC) contains 512K bytes of RAM
organized in two blocks of four banks each. Each bank is 16 bits wide. The
DMEMC for the C6203(B) operates identically to the C6201 DMEMC, the DMA
controller or side A or side B of the CPU can simultaneously access two different
banks without conflict. Figure 1−9 shows a block diagram of the connections
between the C6203(B) CPU, DMEMC, and memory blocks. Table 1−11 shows
the memory range occupied by each block of internal data RAM.

Figure 1−9. Data Memory Controller Interconnect to Other Blocks (C6203(B) DSP)

Block 1
(256K bytes)(256K bytes)

Block 0

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

controller
DMA bus

controller
bus

Peripheral

interface
memory
External

16

16

16

16

(DMEMC)
Data memory controller

323232

16

16

16

16

Data path AData path B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
00

 0
00

0h

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

80
03

 F
F

F
F

h

80
04

 0
00

0h

80
07

 F
F

F
F

h

Table 1−11. Internal Data RAM Address Mapping (C6203(B) DSP)

Block Address

Block 0 8000 0000h – 8003 FFFFh

Block 1 8004 0000h – 8007 FFFFh

Internal Data Memory

TMS320C620x/C670x Internal Memory1-20 SPRU577A

1.4.5 Data Alignment

The following data alignment restrictions apply:

Doublewords: (C6701 DSP only) Doublewords are aligned on even 8-byte
(doubleword) boundaries, and always start at a byte address where the three
LSBs are 0. Doublewords are used only on loads triggered by the LDDW
instruction. Store operations do not use doublewords.

Words: Words are aligned on even 4-byte (word) boundaries, and always start
at a byte address where the two LSBs are 0. A word access requires two
adjacent 16-bit-wide banks.

Halfwords: Halfwords are aligned on even 2-byte (halfword) boundaries, and
always start at byte addresses where the LSB is 0. Halfword accesses require
the entire 16-bit-wide bank.

Bytes: There are no alignment restrictions on byte accesses.

1.4.6 Dual CPU Accesses to Internal Memory

Both the CPU and DMA can read and write 8-bit bytes, 16-bit halfwords, and
32-bit words. The data memory controller performs arbitration individually for
each 16-bit bank. Although arbitration is performed on 16-bit-wide banks, the
banks have byte enables to support byte-wide accesses. However, a byte
access prevents the entire 16 bits containing the byte from simultaneously
being used by another access.

As long as multiple requesters access data in separate banks, all accesses are
performed simultaneously with no penalty. Also, when two memory accesses
involve separate 32K-byte memory blocks, there are no memory conflicts,
regardless of the address. For multiple data accesses within the same block,
the memory organization also allows simultaneous multiple memory accesses
as long as they involve different banks. In one CPU cycle, two simultaneous
accesses to two different internal memory banks occur without wait states.
Two simultaneous accesses to the same internal memory bank stall the entire
CPU pipeline for one CPU clock, providing two accesses in two CPU clocks.
These rules apply regardless of whether the accesses are loads or stores.

Internal Data Memory

1-21TMS320C620x/C670x Internal MemorySPRU577A

Loads and stores from the same execute packet are seen by the data memory
controller during the same CPU cycle. Loads and stores from future or
previous CPU cycles do not cause wait states for the internal data memory
accesses in the current cycle. Thus, internal data memory access causes a
wait state only when a conflict occurs between instructions in the same
execute packet accessing the same 16-bit wide bank. This conflict is an
internal memory conflict. The data memory controller stalls the CPU for one
CPU clock, serializes the accesses, and performs each access separately. In
prioritizing the two accesses, any load occurs before any store access. A load
in parallel with a store always has priority over the store. If both the load and
the store access the same resource (for example, the EMIF, or peripheral bus,
internal memory block), the load always occurs before the store. If both
accesses are stores, the access from DA1 takes precedence over the access
from DA2. If both accesses are loads, the access from DA2 takes precedence
over the access from DA1. Figure 1−10 and Figure 1−11 show what access
conditions cause internal memory conflicts when the CPU makes two data
accesses (on DA1 and DA2).

Figure 1−10. Conflicting Internal Memory Accesses to the Same Block
(C6201/C6202(B)/C6203(B)/C6204/C6205 DSP)

DA1 Byte Halfword Word

DA2 2−0 000 001 010 011 100 101 110 111 000 010 100 110 000 100

Byte 000

001

010

011

100

101

110

111

Halfword 000

010

100

110

Word 000

100

Note: Conflicts are shown in shaded areas.

Internal Data Memory

TMS320C620x/C670x Internal Memory1-22 SPRU577A

Figure 1−11.Conflicting Internal Memory Accesses to the Same Block (C6701 DSP)

DA1 Byte Halfword Word
Double
word

D
A
2 3−0

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
0
0
0

0
0
1
0

0
1
0
0

0
1
1
0

1
0
0
0

1
0
1
0

1
1
0
0

1
1
1
0

0
0
0
0

0
1
0
0

1
0
0
0

1
1
0
0

0
0
0
0

1
0
0
0

0000

0001

0010

0011

0100

0101

0110

B 0111

y
t 1000t
e 1001

1010

1011

1100

1101

1110

1111

0000

0010

H
a

0100
a
l
f

0110
f
w 1000w
o
r

1010
r
d 1100

1110

W
0000

W
o 0100o
r
d

1000
d

1100

D
W

0000
W

1000

Note: Conflicts are shown in shaded areas.

Internal Data Memory

1-23TMS320C620x/C670x Internal MemorySPRU577A

1.4.7 DMA Accesses to Internal Memory

The DMA controller can accesss any portion of one block of internal data
memory while the CPU is simultaneously accessing any portion of another
block. If both the CPU and the DMA controller are accessing the same block,
and portions of both accesses are to the same 16-bit bank, the DMA operation
can take place first or last, depending on the CPU/DMA priority settings.
Figure 1−10 and Figure 1−11 can be used to determine DMA versus CPU
conflicts. Assume that one axis represents the DMA access and the other
represents the CPU access from one CPU data port. Then, perform this
analysis again for the other data port. If both comparisons yield no conflict,
then there is no CPU/DMA internal memory conflict. If either comparison yields
a conflict, then there is a CPU/DMA internal memory conflict. In this case, the
priority is resolved by the PRI bit of the DMA channel. If the DMA channel is
configured as higher priority than the CPU (PRI = 1), any CPU accesses are
postponed until the DMA accesses finish and the CPU incurs a 1-CPU-clock
wait state. If both CPU ports and the DMA access the same memory block, the
number of wait states increases to two. If the DMA has multiple consecutive
requests to the block required by the CPU, the CPU is held off until all DMA
accesses to the necessary blocks finish. In contrast, if the CPU has higher
priority (PRI = 0), then the DMA access is postponed until the both CPU data
ports stop accessing that bank. In this configuration, a DMA access request
never causes a wait state.

1.4.8 Illegal Access to Data Memory

An access to a section of memory that does not return a ready indication is not
allowed. Possible requestors are: CPU program fetches, CPU loads and
stores, programmed DMA channels or HPI/PCI/XBUS host mastering of the
DMA through the auxiliary DMA. This type of access can create a stall indefi-
nitely. When a requestor has created a data memory stall, other requestors are
unable to access this data memory space.

1.4.9 Data Endianness

Two standards for data ordering in byte-addressable microprocessors exist:

� Little-endian ordering, in which bytes are ordered from right to left, the
most significant byte having the highest address.

� Big-endian ordering, in which bytes are ordered from left to right, the most
significant byte having the lowest address.

Internal Data Memory

TMS320C620x/C670x Internal Memory1-24 SPRU577A

Both the CPU and the DMA controller support a programmable endianness.
This endianness is selected by the LENDIAN pin on the device. LENDIAN = 1
selects little-endian and LENDIAN = 0 selects big-endian. Byte ordering within
word and halfword data resident in memory is identical for little-endian and big-
endian data. Table 1−12 shows which bits of a data word in memory are loaded
into which bits of a destination register for all possible CPU data loads from big-
or little-endian data. The data in memory is assumed to be the same data that
is in the register results from the LDW instruction in the first row. Table 1−13
and Table 1−14 show which bits of a register are stored in which bits of a
destination memory word for all possible CPU data stores from big- and little-
endian data. The data in the source register is assumed to be the same data
that is in the memory results from the STW instruction in the first row.

Table 1−12. Register Contents After Little-Endian or Big-Endian Data Loads
(C620x/C670x DSP)

Instruction Address Bits (1−0)
Big-Endian
Register Result

Little-Endian
Register Result

LDW 00 BA98 7654h BA98 7654h

LDH 00 FFFF BA98h 0000 7654h

LDHU 00 0000 BA98h 0000 7654h

LDH 10 0000 7654h FFFF BA98h

LDHU 10 0000 7654h 0000 BA98h

LDB 00 FFFF FFBAh 0000 0054h

LDBU 00 0000 00BAh 0000 0054h

LDB 01 FFFF FF98h 0000 0076h

LDBU 01 0000 0098h 0000 0076h

LDB 10 0000 0076h FFFF FF98h

LDBU 10 0000 0076h 0000 0098h

LDB 11 0000 0054h FFFF FFBAh

LDBU 11 0000 0054h 00000 0BAh

Note: The contents of the word in data memory at location xxxx xx00 is BA98 7654h.

Internal Data Memory

1-25TMS320C620x/C670x Internal MemorySPRU577A

Table 1−13. Register Contents After Little-Endian or Big-Endian Data Loads
(C6701 DSP only)

Instruction Address Bits (2−0)
Big-Endian
Memory Result

Little-Endian
Memory Result

LDDW 000 FEDC BA98
7654 3210h

FEDC BA98
7654 3210h

LDW 000 FEDC BA98h 7654 3210h

LDW 100 7654 3210h FEDC BA98h

Note: The contents of the doubleword in data memory at location xxxx x000 before the ST
instruction executes is FEDC BA98 7654 3210h.

Table 1−14. Memory Contents After Little-Endian or Big-Endian Data Stores
(C620x/C670x DSP)

Instruction Address Bits (1−0)
Big-Endian
Memory Result

Little-Endian
Memory Result

STW 00 BA98 7654h BA98 7654h

STH 00 7654 1970h 0112 7654h

STH 10 0112 7654h 7654 1970h

STB 00 5412 1970h 0112 1954h

STB 01 0154 1970h 0112 5470h

STB 10 0112 5470h 0154 1970h

STB 11 0112 1954h 5412 1970h

Note: The contents of the word in data memory at location xxxx xx00 before the ST instruction
executes is 0112 1970h. The contents of the source register is BA98 7654h.

Peripheral Bus

TMS320C620x/C670x Internal Memory1-26 SPRU577A

1.5 Peripheral Bus

The peripherals are controlled by the CPU and the DMA controller through
accesses of control registers. The CPU and the DMA controller access these
registers through the peripheral data bus. The DMA controller directly
accesses the peripheral bus controller, whereas the CPU accesses it through
the data memory controller.

1.5.1 Byte and Halfword Access

The peripheral bus controller converts all peripheral bus accesses to word
accesses. However, on read accesses both the CPU and the DMA controller
can extract the correct portions of the word to perform byte and halfword
accesses properly. Any side-effects caused by a peripheral control register
read occur regardless of which bytes are read. In contrast, for byte or halfword
writes, the values the CPU and the DMA controller only provide correct values
in the enabled bytes. The values that are always correct are shown in
Table 1−15. Undefined results are written to the nonenabled bytes. If you are
not concerned about the values in the disabled bytes, this is acceptable. Other-
wise, access the peripheral registers only via word accesses.

Table 1−15. Memory Contents After Little-Endian or Big-Endian Data Stores

Access Type Address Bits (1−0)
Big-Endian
Register

Little-Endian
Memory Result

Word 00 XXXX XXXX XXXX XXXX

Halfword 00 XXXX ???? ???? XXXX

Halfword 10 ???? XXXX XXXX ????

Byte 00 XX?? ???? ???? ??XX

Byte 01 ??XX ???? ???? XX??

Byte 10 ???? XX?? ??XX ????

Byte 11 ???? ??XX XX?? ????

Note: X indicates nibbles correctly written,
? indicates nibbles with undefined value after write.

Peripheral Bus

1-27TMS320C620x/C670x Internal MemorySPRU577A

1.5.2 CPU Wait States

Isolated peripheral bus controller accesses from the CPU cause six CPU wait
states. These wait states are inserted to allow pipeline registers to break up
the paths between traversing the on-chip distances between the CPU and
peripherals as well as for arbitration time.

1.5.3 Arbitration Between the CPU and the DMA Controller

As shown in Figure 1−6, Figure 1−7, Figure 1−8, and Figure 1−9, the peripheral
bus controller performs arbitration between the CPU and the DMA controller
for the peripheral bus. Like internal data access, the PRI bits in the DMA
controller determine the priority between the CPU and the DMA controller. If
a conflict occurs between the CPU (via the data memory controller) the lower
priority requester is held off until the higher priority requester completes all
accesses to the peripheral bus controller. The peripheral bus is arbitrated as
a single resource, so the lower priority resource is blocked from accessing all
peripherals, not just the one accessed by the higher priority requester.

2-1Direct Memory Access (DMA) ControllerSPRU577A

Direct Memory Access (DMA) Controller

This chapter describes the operation of the direct memory access (DMA)
controller in the digital signal processors (DSPs) of the TMS320C6000 DSP
family.

Topic Page

2.1 Overview 2-2.

2.2 DMA Terminology 2-4.

2.3 Initiating a Block Transfer 2-6.

2.4 Synchronization: Triggering DMA Transfers 2-9.

2.5 Address Generation 2-14.

2.6 Split-Channel Operation 2-18.

2.7 Resource Arbitration and Priority Configuration 2-20.

2.8 DMA Channel Condition Determination 2-22.

2.9 DMA Controller Structure 2-24.

2.10 DMA Action Complete Pins 2-30.

2.11 Emulation 2-31.

2.12 DMA Controller Registers 2-31.

Chapter 2

Overview

Direct Memory Access (DMA) Controller2-2 SPRU577A

2.1 Overview

The DMA controller transfers data between regions in the memory map with-
out intervention by the CPU. The DMA controller allows movement of data to
and from internal memory, internal peripherals, or external devices to occur in
the background of CPU operation. The DMA controller has four independent
programmable channels, allowing four different contexts for DMA operation. In
addition, a fifth (auxiliary) channel allows the DMA controller to service
requests from the host port interface (HPI). Requests are sent to one of these
possible resources:

� Expansion bus (C6202/C6203/C6204 DSP only)
� Host port interface (C6201/C6701 DSP only)
� PCI (C6205 DSP only)
� External memory interface
� Internal program memory, block 0
� Internal program memory, block 1 (C6202/C6203 DSP only)
� Internal peripheral bus
� Internal data memory

The source address is assumed to point to one of these spaces throughout a
block transfer. This constraint also applies to the destination address.

Figure 2−1 shows the C6000 DSP block diagram with the DMA.

Overview

2-3Direct Memory Access (DMA) ControllerSPRU577A

Figure 2−1. DMA Controller Interconnect to TMS320C6000 Memory-Mapped Modules

EMIF

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us
Other

Peripherals

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In−Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

DMA Terminology

Direct Memory Access (DMA) Controller2-4 SPRU577A

2.2 DMA Terminology

The following definitions help in understanding some of the terms used in this
chapter:

� Read transfer: The DMA controller reads a data element from a source
location in memory.

� Write transfer: The DMA controller writes the data element that was read
during a read transfer to its destination in memory.

� Element transfer: This form refers to the combined read and write trans-
fer for a single data element.

� Frame transfer: Each DMA channel has an independently programmable
number of elements per frame. In completing a frame transfer, the DMA
controller moves all elements in a single frame.

� Block transfer: Each DMA channel also has an independently program-
mable number of frames per block. In completing a block transfer, the
DMA controller moves all frames that it has been programmed to move.

� Transmit element transfer: In split-channel mode, data elements are
read from the source address, and written to the split destination address.

� Receive element transfer: In split-channel mode, data elements are read
from the split source address, and written to the destination address.

The DMA controller has the following features:

� Background operation: The DMA controller operates independently of
the CPU.

� High throughput: Elements can be transferred at the CPU clock rate.

� Four channels: The DMA controller can keep track of the contexts of four
independent block transfers.

� Auxiliary channel: This channel allows the host port to make requests into
the CPU’s memory space. The auxiliary channel requests may be priori-
tized relative to other channels and the CPU.

� Split-channel operation: A single channel can be used to perform both
the receive and transmit element transfers from or to a peripheral simulta-
neously, effectively acting like two DMA channels.

� Multiframe transfer: Each block transfer can consist of multiple frames
of a programmable size.

DMA Terminology

2-5Direct Memory Access (DMA) ControllerSPRU577A

� Programmable priority: Each channel has independently programmable
priorities versus the CPU.

� Programmable address generation: Each channel’s source and destina-
tion address registers can have configurable indexes for each read and
write transfer. The address can remain constant, increment, decrement, or
be adjusted by a programmable value. The programmable value allows an
index for the last transfer in a frame distinct from that used for the preceding
transfers.

� Full 32-bit address range: The DMA controller can access any region in
the memory map:

� On-chip data memory

� On-chip program memory when it is mapped into memory space
rather than being used as cache

� On-chip peripherals

� External memory via the EMIF

� Expansion memory via the expansion bus

� Programmable width transfers: Each channel can be independently
configured to transfer either bytes, 16-bit halfwords, or 32-bit words.

� Autoinitialization: Once a block transfer is complete, a DMA channel can
automatically reinitialize itself for the next block transfer.

� Event synchronization: Each read, write, or frame transfer may be initiated
by selected events.

� Interrupt generation: On completion of each frame transfer or block trans-
fer, as well as on various error conditions, each DMA channel can send an
interrupt to the CPU.

Initiating a Block Transfer

Direct Memory Access (DMA) Controller2-6 SPRU577A

2.3 Initiating a Block Transfer

Each DMA channel can be started independently, either manually through
direct CPU access or automatically through autoinitialization. Each DMA
channel can be stopped or paused independently through direct CPU access.
The status of a DMA channel can be observed by reading the STATUS field in
the DMA channel primary control register (PRICTL).

Once the value of START has been modified, the primary control register
should not be modified again until the value of STATUS is equal to START.

Manual start operation: To start DMA operation for a particular channel, once
the desired values are written to all other DMA control registers the desired
value should be written to PRICTL with START = 01b. Writing this value to a
DMA channel that has already been started has no effect. Once started, the
value on STATUS is 01b.

Pause operation: Once started, a DMA channel can be paused by writing
START = 10b. When paused, the DMA channel completes any write transfers
whose read transfer requests have completed. Also, if the DMA channel has all
of the necessary read synchronizations one additional element transfer is
allowed to finish. Once paused, the value on STATUS becomes 10b after the
DMA has completed all pending write transfers.

Stop operation: The DMA controller can be stopped by writing START = 00b.
Stop operation is identical to pause operation. Once a DMA transfer is com-
pleted, unless autoinitialization is enabled, the DMA channel returns to the
stopped state and STATUS becomes 00b after the DMA has completed all
pending write transfers.

2.3.1 Register Access Protocol

The following steps should be followed when setting up a DMA transfer:

1) Set up DMA channel primary control register (PRICTL) with START = 00b.

2) Set up DMA channel secondary control register (SECCTL) with:

WSYNCCLR = 1

RSYNCCLR = 1

3) Set up DMA channel source address register (SRC), DMA channel des-
tination address register (DST), and DMA global count reload register
(GBLCNT).

4) Start the DMA channel by writing a 01b or 11b to the START field of
PRICTL.

Note: The STATUS field in PRICTL should equal 00b before configuring
the DMA channel.

Initiating a Block Transfer

2-7Direct Memory Access (DMA) ControllerSPRU577A

2.3.2 DMA Autoinitialization

The DMA controller can automatically reinitialize itself after completion of a block
transfer. Some of the DMA control registers can be preloaded for the next block
transfer through selected DMA global data registers. Using this capability, some
of the parameters of the DMA channel can be set well in advance of the next block
transfer. Autoinitialization allows:

Continuous operation: The CPU is given a long slack time, during which it can
reconfigure the DMA controller for a subsequent transfer. Normally, the CPU
would have to reinitialize the DMA controller immediately after completion of the
last write transfer in the current block transfer and before the first read synchro-
nization for the next block transfer. With the reload registers, it can reinitialize
these values for the next block transfer anytime after the current block transfer
begins.

Repetitive operation: This operation is a special case of continuous opera-
tion. Once a block transfer finishes, the DMA controller repeats the previous
block transfer. In this case, the CPU does not preload the reload registers with
new values for each block transfer. Instead, the CPU loads the registers only
before the first block transfer.

Enabling autoinitialization: By writing START = 11b in PRICTL, autoinitial-
ization is enabled. In this case, after completion of a block transfer, the
selected DMA channel registers are reloaded and the DMA channel is
restarted . If restarting after a pause, START must be rewritten as 11b for
autoinitialization to be enabled.

Switching from autoinitialization to nonautoinitialization: It is possible to
switch from an autoinitialized transfer to a nonautoinitialized transfer to com-
plete DMA activity on a particular channel. To switch modes, the active channel
should be paused by restoring PRICTL with START = 10b, then restarted in
the new mode by restoring PRICTL with START = 01b.

If the active channel is operating in split-channel mode, then it is necessary to
ensure that the switch from autoinitialization to nonautoinitialization does not
occur at a frame boundary. If the channel is paused with the transmit source
in frame n and the receive destination in frame n − 1; then the channel must
be restarted with autoinitialization (START = 11b), then repaused before the
switching of modes occurs. This is to ensure that both transmit and receive
data streams both complete the same number of frames.

Initiating a Block Transfer

Direct Memory Access (DMA) Controller2-8 SPRU577A

2.3.3 DMA Channel Reload Registers

For autoinitialization, the successive block transfers are assumed to be similar.
Thus, the reload values are selectable only for those registers that are modified
during a block transfer: the transfer counter and address registers. The DMA
channel transfer counter register (XFRCNT) and the DMA channel source and
destination address registers (SRC and DST) have associated reload registers,
as selected by the associated reload fields, DSTRLD and SRCRLD, in PRICTL.

It is possible to not reload the source or destination address register in autoin-
itialization mode. This capability allows a register to maintain its value during
a block transfer. Thus, you do not have to dedicate a DMA global data register
to a value that was static during a block transfer. A single channel can use the
same value for multiple channel registers. For example, in split-channel mode,
the source and destination address can be the same. On the other hand, multiple
channels can use the same reload registers. For example, two channels can
have the same global count reload register.

Upon completion of a block transfer, the channel registers are reloaded with
the value from the associated reload register value. In the case of XFRCNT,
the reload occurs after the end of each frame transfer, not just after the end
of the entire block transfer. The reload value for the DMA channel transfer
counter is necessary whenever multiframe transfers are configured, not just
when autoinitialization is enabled.

As discussed in section 2.9.1.2, Shared FIFO, the DMA controller can allow
read transfers to get ahead of write transfers, and it provides the necessary
buffering to facilitate this capability. To support this, the reload that is necessary
at the end of blocks and frames occurs independently for the read (source) and
write (destination) portions of the DMA channel. Similarly, in the case of
split-channel mode operation described in section 2.6, the source and
destination addresses are independently reloaded when the associated
transmit or receive element transfers are completed.

The DMA channel transfer counter reload can be rewritten only after the next-to-
last frame in the current block transfer is completed. Otherwise, the new reload
values would affect subsequent frame boundaries in the current block transfer.
However, if the frame size is the same for the current and next block transfers,
this restriction is not relevant. See section 2.12.6 for more explanation of the
DMA channel transfer counter.

You cannot switch from a non-XBUS or non-PCI src/dst address to an XBUS
or PCI src/dst address during autoinitialization. Similarly, you cannot switch
from an XBUS or PCI to a non-XBUS or non-PCI src/dst address.

Synchronization: Triggering DMA Transfers

2-9Direct Memory Access (DMA) ControllerSPRU577A

2.4 Synchronization: Triggering DMA Transfers

Synchronization allows DMA transfers to be triggered by events such as inter-
rupts from internal peripherals or external pins. Three types of synchronization
can be enabled for each channel:

� Read synchronization: Each read transfer waits for the selected event
to occur before proceeding.

� Write synchronization: Each write transfer waits for the selected event
to occur before proceeding.

� Frame synchronization: Each frame transfer waits for the selected event
to occur before proceeding.

Up to 31 events are available and may be selected by the RSYNC and WSYNC
fields in the DMA channel primary control register (PRICTL). If the frame syn-
chronization bit is set (FS = 1) in PRICTL, then the event selected by RSYNC
field enables an entire frame, and WSNYC field must be cleared to 00000b.
If a channel is set up to operate in split-channel mode (SPLIT � 00b), RSYNC
and WSYNC must be set to nonzero values. If the value of these fields is
cleared to 00000b, no synchronization is necessary. In this case, the read,
write, or frame transfers occur as soon as the resource is available to that
channel. The association between values in the RSYNC and WSYNC fields
and events is shown in Table 2−1.

Synchronization: Triggering DMA Transfers

Direct Memory Access (DMA) Controller2-10 SPRU577A

Table 2−1. Synchronization Events

Event Number (Binary) Event Acronym Event Description

00000 None No synchronization

00001 TINT0 Timer 0 interrupt

00010 TINT1 Timer 1 interrupt

00011 SD_INT EMIF SDRAM timer interrupt

00100 EXT_INT4 External interrupt pin 4

00101 EXT_INT5 External interrupt pin 5

00110 EXT_INT6 External interrupt pin 6

00111 EXT_INT7 External interrupt pin 7

01000 DMA_INT0 DMA channel 0 interrupt

01001 DMA_INT1 DMA channel 1 interrupt

01010 DMA_INT2 DMA channel 2 interrupt

01011 DMA_INT3 DMA channel 3 interrupt

01100 XEVT0 McBSP 0 transmit event

01101 REVT0 McBSP 0 receive event

01110 XEVT1 McBSP 1 transmit event

01111 REVT1 McBSP 1 receive event

10000 DSPINT Host processor to DSP interrupt

10001 XEVT2 McBSP 2 transmit event

10010 REVT2 McBSP 2 receive event

10011−11111 Reserved

Synchronization: Triggering DMA Transfers

2-11Direct Memory Access (DMA) ControllerSPRU577A

2.4.1 Latching of DMA Channel Event Flags

The DMA channel secondary control register (SECCTL) contains status and
clear fields for read (RSYNC) and write (WSYNC) synchronization events.
Care must be taken if software is used to poll and clear the status/conditions
in SECCTL during a synchronized DMA transfer. To avoid inadvertently setting
an extra RSYNC/WSYNC event during a synchronized DMA transfer, you
should only write zeros to the STAT and CLR fields.

Latching of DMA Synchronization Events: A low-to-high transition (or high-to-
low transition when selected by WSPOL or RSPOL) of the selected event is
latched by each DMA channel. The occurrence of this transition causes the
associated STAT field to be set in SECCTL. If no synchronization is selected, the
STAT bit is always read as 1. A single event can trigger multiple actions.

Clearing and Setting of Events: By clearing pending events before starting
a block transfer, you can force the DMA channel to wait for the next event. Con-
versely, by setting events before starting a block transfer, you can force the
synchronization events necessary for the first element transfer. You can clear
or set events (and the related STAT bit) by writing 1 to the corresponding CLR
or STAT field, respectively. Writing a 0 to either of these bits has no effect. Also,
the CLR bits are always read as 0 and have no associated storage. Separate
bits for setting or clearing are provided to allow clearing of some bits without
setting others and vice versa. Manipulation of events has priority over any
simultaneous automated setting or clearing of events.

2.4.2 Automated Event Clearing

The latched STAT for each synchronizing event is automatically cleared only
when any action associated with that event is completed. Events are cleared
as quickly as possible to reduce the minimum time between synchronizing
events. This capability effectively increases the rate at which events can be
recognized. This is described for each type of synchronization:

� Clearing read synchronization condition: The latched condition for
read synchronization is cleared when the DMA completes the request for
the associated read transfer.

� Clearing write synchronization condition: The latched condition for
write synchronization is cleared when the DMA completes the request for
the associated write transfer.

� Clearing frame synchronization condition: Frame synchronization
clears the RSYNCSTAT field when the DMA completes the request for the
first read transfer in the new frame.

Synchronization: Triggering DMA Transfers

Direct Memory Access (DMA) Controller2-12 SPRU577A

2.4.3 Synchronization Control

The DMA of the C6202/C6203/C6204/C6205 allows for more flexible control
over how external synchronization events are recognized. The polarity of
external events can be inverted to an active-low by setting WSPOL and/or
RSPOL to 1 in SECCTL. WSPOL affects write-synchronized transfers and
RSPOL affects read- and frame-synchronized transfers.

During a frame-synchronized transfer, by setting FSIG = 1 the DMA channel
may be configured to not recognize an external interrupt as a synchronization
event while performing a burst. The channel internally monitors its burst
status, and latches its synchronization event only when a frame transfer is not
in progress.

Figure 2−2 shows the scenario to produce the desired synchronizing event.
The figure illustrates both active-high and active-low operation, but the
following explanation pertains to active-low operation.

1) The transition of EXT_INTn from high to low while a burst is not in progress
triggers a synchronizing event.

2) The synchronizing event triggers a frame transfer, which gates off the
DMA synchronization event. During the synchronization event, transitions
on EXT_INTn are ignored.

3) Same as 1

4) Same as 2

5) After a read burst completes internally, a delay of 32 CPU clock cycles are
inserted before checking whether EXT_INTn is still active.

6) Because EXT_INTn is still active after the burst and delay, a new synchro-
nization event is registered inside the DMA.

7) The new DMA synchronization event triggers another burst.

Synchronization: Triggering DMA Transfers

2-13Direct Memory Access (DMA) ControllerSPRU577A

Figure 2−2. Synchronization Flags

Read Burst Read Burst Read Burst

631

7542

EXT_INTx (Active Low)

EXT_INTx (Active High)

DMA Frame In Progress

DMA Sync Event

The new synchronization modes are available to better interface to an external
FIFO that is serving as a data buffer. Since a synchronization event is often
triggered off of a flag indicating the amount of data currently inside the FIFO,
there is a high likelihood that a race-condition could occur. If the DMA were to
read from the FIFO (clearing the flag that generated the synchronization
event), and a new element were written to the FIFO immediately after, then the
flag could be reset and a new frame would be synchronized to start
immediately following the current burst. By setting the DMA to ignore events
during a current burst, this situation is avoided.

Another feature of this is that if the synchronization event stays active through-
out a burst, then it will be latched again following the burst. This, too, was done
for a more robust FIFO interface. This is due to the fact that the transition from
active to inactive of the FLAG can only occur during a burst. For example,
when the C6202 is reading from FIFO, the only way for the FIFO to go from
half-full (HF active) to less than half-full (HF inactive) is by reading from the
FIFO. If the flag were to stay active throughout the burst, then it is known that
the data source was able to provide another set of data to the FIFO before the
C6202 was able to read the frame.

After a frame is completed, the DMA waits 32 CPU clock cycles before check-
ing to determine if the flag is still active. If it is still active, the next frame will be
synchronized based on the active flag. This delay is needed to give the exter-
nal FIFO time to update its flags and give the flag time to propagate through
the internal registers before being registered inside the DMA. For example, a
FIFO typically takes approximately 1 to 3 FIFO clock cycles to update its flag
externally. Depending on the divide ratio of the output XFCLK, this can trans-
late to as long as 24 CPU cycles (for ×8 mode).

These new features are only used by the DMA when WSPOL, RSPOL, or
FSIG are properly configured. If all fields are cleared to 0 (default), the
C6202/C6203/C6204/C6205 DMA functions identically to the C6201 DMA.

Address Generation

Direct Memory Access (DMA) Controller2-14 SPRU577A

2.5 Address Generation

For each channel, the DMA controller performs address computation for each
read transfer and write transfer. The DMA controller allows creation of a variety
of data structures. For example, the DMA controller can traverse an array incre-
menting through every nth element. Also, it can be programmed to effectively
treat the various elements in a frame as though they were coming from separate
sources and group each source’s data together.

2.5.1 Basic Address Adjustment

The SRCDIR and DSTDIR fields in the DMA channel primary control register
(PRICTL) can do the following:

� set the index to increment by element size
� set the index to decrement by element size
� use a global index value
� not affect either the DMA channel source or destination address registers

By default, the SRCDIR and DSTDIR values are set to 00b to disable address
modification. If incrementing or decrementing is selected, the amount of the
address adjustment is determined by the size of the element size in bytes. For
example, if the source address is set to increment and 16-bit halfwords are
being transferred, then the address is incremented by 2 after each read transfer.

2.5.2 Address Adjustment with the Global Index Registers

The DMA global index register (GBLIDX) is selected by the INDEX field in the
DMA channel primary control register (PRICTL). Unlike basic address adjust-
ment, this mode allows different adjustment amounts depending upon wheth-
er the element transfer is the last in the current frame. The normal adjustment
value (ELEIDX) is contained in the 16 LSBs of the selected GBLIDX. The
adjustment value for the end of the frame (FRMIDX) is contained in the
16 MSBs of the selected GBLIDX. Both of these fields contain signed 16-bit
values that can range from −32768 to 32767.

Address Generation

2-15Direct Memory Access (DMA) ControllerSPRU577A

2.5.3 Element Size, Alignment, and Endianness

By using the ESIZE field in the DMA channel primary control register (PRICTL),
you can configure the DMA to transfer 8-bit bytes, 16-bit halfwords, or 32-bit
words on each transfer. The following registers and fields must be loaded with
properly aligned values:

� DMA channel source address register (SRC), DMA channel destination
address register (DST), and any associated reload registers.

� ELEIDX and FRMIDX in the DMA global index register (GBLIDX)

In the case of word transfers, these registers must contain values that are
multiples of 4 and thus are aligned on a word address. In the case of halfword
transfers, the values must be multiples of 2 and thus aligned on a halfword
address. If unaligned values are loaded, operation is undefined. There is no
alignment restriction for byte transfers. All accesses to program memory must be
32 bits in width. It is also necessary to be aware of the endianness when trying
to read a particular 8-bit or 16-bit field within a 32-bit register. For example, in
little-endian mode an address ending in 00b selects the least-significant byte;
whereas, in big-endian mode an address ending in 11b selects the
least-significant byte.

2.5.4 Using a Frame Index to Reload Addresses

In an autoinitialized, single-frame block transfer, the frame index (FRMIDX) in
the DMA global index register (GBLIDX) can be used in place of a reload
register to recompute the next address. If the following fields contain the
values listed, a single-frame transfer moves the 10 bytes from a static external
address to alternating locations (skipping one byte between each two bytes):

� In DMA channel primary control register (PRICTL):

� SRCDIR = 00b, the static source address

� DSTDIR = 11b, the programmable index value

� In DMA global index register (GBLIDX):

� ELEIDX = 10b, the 2-byte destination stride

� FRMIDX = −(9 × 2) = −18 = FFEEh, restart destination for the
transfer at the same location by moving 18 bytes.

Address Generation

Direct Memory Access (DMA) Controller2-16 SPRU577A

2.5.5 Transferring a Large Single Block

Element count (ELECNT) can be used in conjunction with frame count
(FRMCNT) to allow single-frame block transfers of more than 65535 bytes.
The product of ELECNT and FRMCNT forms a larger effective element count.
The following must be performed:

� If the address is to be adjusted using a programmable value (SRCDIR and/
or DSTDIR = 11b), frame index (FRMIDX) must equal element index
(ELEIDX) if the address adjustment is determined by a DMA global index
register (GBLIDX). This applies to both source and destination addresses.
If the address is not to be adjusted by a programmable value, this constraint
does not apply because the same address adjustment occurs by default at
element and frame boundaries.

� Frame synchronization must be disabled (FS = 0, in PRICTL). This
prevents requirements for synchronization in the middle of the large block.

� The number of elements in the first frame is Ei. The number of elements
in successive frames is ((F − 1) × Er). The effective element count is
(F − 1) × Er) + Ei

where:

F = Initial value of FRMCNT
Er = ELECNT reload value
Ei = Initial value of ELECNT

Thus, to transfer 128K + 1 elements, you could set:

F = 5
Er = 32K
Ei = 1

Address Generation

2-17Direct Memory Access (DMA) ControllerSPRU577A

2.5.6 Sorting

The following procedure is used to locate transfers in memory by ordinal loca-
tion within a frame (that is, the first transfer of the first frame followed by the
first transfer of the second frame):

� ELEMENT INDEX is set to F × S
� FRAME INDEX is set to −(((E − 1) × F) − 1) × S

where:

E = Initial value of ELECNT (the number of elements per frame), initial
value of the ELEMENT COUNT RELOAD
F = Initial value of FRMCNT (the total number of frames)
S = Element size in bytes

Consider a transfer with three frames (F = 3) of four halfword elements each
(E = 4, S = 2). This corresponds to ELEMENT INDEX = 3 × 2 = 6 and FRAME
INDEX = −(((4 − 1) × 3) − 1) × 2 = FFF0h. Assume that the source address is
not modified and the destination increments starting at 8000 0000h. Table 2−2
shows the data in the order in which it is transferred, and Table 2−3 shows how
the data appears in memory after transfers are finished.

Table 2−2. Sorting Example in Order of DMA Transfers

Frame Element Address (Hex) Postadjustment

0 0 8000 0000 +6

0 1 8000 0006 +6

0 2 8000 000C +6

0 3 8000 0012 −16

1 0 8000 0002 +6

1 1 8000 0008 +6

1 2 8000 000E +6

1 3 8000 0014 −16

2 0 8000 0004 +6

2 1 8000 000A +6

2 2 8000 0010 +6

2 3 8000 0016 −16

Address Generation

Direct Memory Access (DMA) Controller2-18 SPRU577A

Table 2−3. Sorting in Order of First by Address

Address (Hex) Frame Element

8000 0000 0 0

8000 0002 1 0

8000 0004 2 0

8000 0006 0 1

8000 0008 1 1

8000 000A 2 1

8000 000C 0 2

8000 000E 1 2

8000 0010 2 2

8000 0012 0 3

8000 0014 1 3

8000 0016 2 3

Split-Channel Operation

2-19Direct Memory Access (DMA) ControllerSPRU577A

2.6 Split-Channel Operation

Split-channel operation allows a single DMA channel to service both the input
(receive) and output (transmit) streams from an external or internal peripheral
with a fixed address. The DMA global address register (GBLADDR) selected
by the SPLIT field in the DMA channel primary control register (PRICTL) deter-
mines the address of the peripheral that is to be accessed for split transfer.
Split-channel operation consists of transmit element transfers and receive
element transfers. These transfers each consist of a read and a write transfer:

� Transmit element transfer

� Transmit read transfer: Data is read from the DMA channel source
address. The source address is then adjusted as configured. The trans-
fer count is then decremented. This event is not synchronized.

� Transmit write transfer: Data from the transmit read transfer is written
to the split destination address. This event is synchronized as indicated
by the WSYNC field in PRICTL. The DMA channel keeps track inter-
nally of the number of pending receive transfers.

� Receive element transfer

� Receive read transfer: Data is read from the split source address.
This event is synchronized as indicated by the RSYNC field in
PRICTL.

� Receive write transfer: Data from the receive read transfer is written
to the destination address. The destination address is then adjusted
as configured. This event is not synchronized.

When a DMA channel is operating in split mode, only one element count and
one frame count are used for both the transmit and receive transfers. The end
of frame or end of block is set following the last transfer. When the channel
operating in split mode is servicing a McBSP, this will normally be the last
receive transfer because the transmit transfers will normally run ahead of the
receive transfers. The transfer counters will be modified after the transmit
transfer, so that if autoinitialization is enabled, the transfer counters may
indicate that another transfer has begun before the receive portion of the split-
mode transfer has completed. For split-channel operation to work properly,
both the RSYNC and WSYNC fields must be set to non-zero synchronization
events. Also, frame synchronization must be disabled in split-channel operation.

Split-Channel Operation

Direct Memory Access (DMA) Controller2-20 SPRU577A

The above sequence is maintained for all transfers. However, the transmit
transfers do not have to wait for all previous receive element transfers to finish
before proceeding. Therefore, it is possible for the transmit stream to get
ahead of the receive stream. The DMA channel transfer counter decrements
(or reinitializes) after the associated transmit transfer finishes. However,
reinitialization of the source address register occurs after all transmit element
transfers finish. This configuration works as long as transmit transfers do not
exceed eight or more transfers ahead of the receive transfers. If the transmit
transfers do get ahead of the receive transfers, transmit element transfers are
stopped, possibly causing synchronization events to be missed. For cases in
which receive or transmit element transfers are within seven or less transfers
of the other, the DMA channel maintains this information as internal status.

When a DMA channel is operating in split mode, only one element counter and
one frame counter are used for both the transmit and receive transfers. The
end of frame or end of block event is set following the last transfer. When the
channel operating in split mode is servicing a McBSP, this will normally be the
last receive transfer, because the transmit transfers will normally run ahead of
the receive transfers. The transfer counters are modified after the transmit
transfer, so that if autoinitialization is enabled, the transfer counters may indicate
that another transfer has begun before the receive portion of the split-mode
transfer has completed.

Resource Arbitration and Priority Configuration

2-21Direct Memory Access (DMA) ControllerSPRU577A

2.7 Resource Arbitration and Priority Configuration

Priority decides which of competing requesters have control of a resource with
multiple requests. The requesters include:

� DMA channels
� CPU program and data accesses

The resources include:

� Internal data memory
� Internal program memory
� Internal peripheral registers, which are accessed through the peripheral bus
� External memory, accessed through the external memory interface (EMIF)
� Expansion memory, accessed through the expansion bus

Two aspects of priority are programmable:

� DMA versus CPU priority: Each DMA channel can be independently
configured in high-priority mode by setting the PRI bit in the associated
DMA channel primary control register (PRICTL). The AUXPRI field in the
DMA auxiliary control register (AUXCTL) allows the same feature for the
auxiliary channel. When in high-priority mode, the associated channel’s
requests are sent to the appropriate resource with a signal indicating the
high priority status. By default, all these fields are 0, disabling the high-
priority mode. Each resource can use this signal in its own priority scheme
for resolving conflicts.

� Priority between DMA channels: The DMA controller has a fixed priority
scheme, with channel 0 having highest priority and channel 3 having lowest
priority. The auxiliary channel can be given a priority anywhere within this
hierarchy.

2.7.1 Priority Between DMA Channels

The fields in the DMA auxiliary control register (AUXCTL) affect the auxiliary
channel. The priority assigned to each DMA channel determines which DMA
channel performs a read or write transfer first, when two or more channels are
ready to perform transfers. A channel’s priority field should be modified only
when that channel is paused or stopped.

The priority of the auxiliary channel is configurable by programming the CHPRI
field in AUXCTL. By default, CHPRI contains 0000b at reset. This value sets
the auxiliary channel as highest priority, followed by channel 0, channel 1,
channel 2, and channel 3 having lowest priority.

Resource Arbitration and Priority Configuration

Direct Memory Access (DMA) Controller2-22 SPRU577A

For read and write transfers, arbitration between channels occurs indepen-
dently every CPU clock cycle. Any channel that is in the process of waiting for
synchronization of any kind can lose control of the DMA controller to a lower
priority channel. Once that synchronization is received, that channel can
regain control of the DMA controller from a lower priority channel. This rule is
applied independently to the transmit and receive portions of a split-channel
mode transfer. The transmit portion has higher priority than the receive portion.

If multiple DMA channels and the CPU are contending for the same resource,
the arbitration between DMA channels occurs first. Then, arbitration between
the highest priority DMA channel and the CPU occurs. Normally, if a channel
has lower priority than the CPU, all lower priority channels should also be lower
priority than the CPU. Similarly, if a channel has a higher priority than the CPU,
all higher priority channels should also be higher priority than the CPU. The
arbitration between the DMA controller and the CPU is performed by the
resource for which they are contending.

2.7.2 Switching Channels

A higher priority channel gains control of the DMA controller from a lower priority
channel once it has received the necessary read synchronization. In switching
channels, the current channel allows all data from requested reads to be
completed. The DMA controller determines which higher priority channel
gains control of the DMA controller read operation. That channel then starts
its read operation. Simultaneously, write transfers from the previous channel
are allowed to finish. The write transfer must complete before the higher priority
channel will be able to start its transfer. Arbitration of the higher priority channel
will occur as soon as the write from the lower priority channel completes. For
example, if the lower priority channel’s write is blocked by the CPU, the higher
priority channel will not be able to start until the CPU releases the contending
resource and the write is able to complete. This occurs even if the higher priority
channel is accessing a different resource. See Chapter 3, DMA and CPU Data
Access Performance, for more detail.

DMA Channel Condition Determination

2-23Direct Memory Access (DMA) ControllerSPRU577A

2.8 DMA Channel Condition Determination

Several condition status flags in the DMA channel secondary control register
(SECCTL) are available to inform you of significant events or potential
problems in DMA channel operation.

The SECCTL also provides the means to enable the DMA channels to interrupt
the CPU through their corresponding interrupt enable (IE) bit. If a condition flag
and its corresponding IE bit are set, that condition is enabled to contribute to
the status of the interrupt signal from the associated DMA channel to the CPU.
If the TCINT bit in the DMA channel primary control register (PRICTL) is set,
the logical OR of all enabled conditions forms the DMA_INTn signal. Other-
wise, the DMA_INTn remains inactive. This logic is shown in Figure 2−3. If
selected by the interrupt selector, a low-to-high transition on that DMA_INT
causes an interrupt condition to be latched by the CPU.

The SXCOND, WDROPCOND, and RDROPCOND bits in SECCTL are
treated as warning conditions. If these conditions are enabled and active, they
move the DMA channel from the running to the pause state, regardless of the
value of the TCINT bit.

If a conditions associated IE bit is set, that condition bit cannot be cleared
automatically. A zero must be written to the COND bit to clear the bit. If the
associated IE bit is not set, that condition bit can be cleared automatically. Writing
a 1 to a COND bit has no effect. Thus, you cannot manually force one of the
conditions.

Most bits in SECCTL are cleared at reset. The exception is the interrupt enable
for the block transfer complete event (BLOCK IE), which is set at reset. Thus,
by default, the block transfer complete condition is the only condition that can
contribute to the CPU interrupt. Other conditions can be enabled by setting the
associated IE bit.

Table 2−4 describes each of the condition flags in SECCTL. Depending upon
the system application, these conditions can represent errors. The last frame
condition (LASTCOND) can be used to change the reload register values for
autoinitialization. The frame index and element count reload are used every
frame. Thus, you must wait to change these values until all but the last frame
transfer in a block transfer finishes. Otherwise, the current block transfer is
affected.

DMA Channel Condition Determination

Direct Memory Access (DMA) Controller2-24 SPRU577A

Figure 2−3. Generation of DMA Interrupt for Channel n From Conditions

DMA_INTn

TCINT

RDROPCOND

RDROPIE

BLOCKCOND

BLOCKIE

LASTCOND

LASTIE

FRAMECOND

FRAMEIE

SXCOND

SXIE

ÁÁÁ
ÁÁÁ
ÁÁÁ

Á
Á

Á
ÁÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

WDROPCOND

WDROPIE

Table 2−4. DMA Channel Secondary Control Register (SECCTL) Condition Descriptions

Condition Cleared By

Bitfield Event Occurs if… If IE Enabled Otherwise

SX Split transmit
overrun receive

The split-channel operation is enabled
and transmit element transfers get
seven or more element transfers ahead
of receive element transfers.

A write of 0 to SXCOND

FRAME Frame complete After the last write transfer in each
frame is written to memory.

A write of 0 to
FRAMECOND

Two CPU clocks
later

LAST Last frame After all counter adjustments for the
next-to-last frame in a block transfer
finish.

A write of 0 to
LASTCOND

Two CPU clocks
later

BLOCK Block transfer
finished

After the last write transfer in a block
transfer is written to memory.

A write of 0 to
BLOCKCOND

Two CPU clocks
later

RDROP Dropped read
synchronization

A subsequent synchronization event
occurs before the last one is cleared.

A write of 0 to RDROPCOND

WDROP Dropped write
synchronization

A subsequent synchronization event
occurs before the last one is cleared.

A write of 0 to WDROPCOND

DMA Controller Structure

2-25Direct Memory Access (DMA) ControllerSPRU577A

2.9 DMA Controller Structure

The C6000 generation DMA consists of four user-programmable channels
and an auxiliary channel. Each channel is capable of bursting to high-speed
memories and can be used in split-channel mode for peripheral support. The
DMA of the C6201/C6701/C6202 devices accomplish this by providing a pair
of holding registers to each channel and a 9-deep shared FIFO. The DMA of
the C6202B/C6203(B)/C6204/C6205 devices was modified to improve
performance in certain instances; rather than a shared FIFO, each DMA
channel has a dedicated 9-deep FIFO available to use.

2.9.1 TMS320C6201/C6701/C6202 DMA Structure

Figure 2−4 shows the internal data movement paths of the
C6201/C6701/C6202 DMA controller, including data buses and internal
holding registers.

Figure 2−4. DMA Controller Data Bus Block Diagram (C6201/C6701/C6202 DSP)

Ch0 Holding

Ch1 Holding

Ch2 Holding

Ch3 Holding

Aux Holding

Burst FIFO

Expansion bus read
Data Memory read

Program Memory read
Peripheral bus read

Host write

EMIF write

Data Memory write
Program Memory write
Peripheral bus write
Host read

Expansion bus write

EMIF read

DMA Controller Structure

Direct Memory Access (DMA) Controller2-26 SPRU577A

2.9.1.1 Read and Write Buses

Each DMA channel can independently select one of these sources and
destinations:

� EMIF
� Expansion bus (C6202 DSP only)/host port interface (C6201/C6701 DSP)
� Internal data memory
� Internal program memory, block 0
� Internal program memory, block 1 (C6202 DSP only)
� Internal peripheral bus

Read and write buses from each source interface to the DMA controller.

The auxiliary channel also has read and write buses. However, since the auxiliary
channel provides address generation for the DMA, its buses have a different
naming convention. For example, data writes from the auxiliary channel
through the DMA controller are performed through the auxiliary write bus.
Similarly, data reads from the auxiliary channel through the DMA controller are
performed through the auxiliary read bus.

2.9.1.2 Shared FIFO

A 9-level DMA FIFO holding path facilitates bursting to high-performance
memories, such as internal program and data memory, as well as external
synchronous DRAM (SDRAM) or synchronous burst SRAM (SBSRAM).
When combined with a channel’s holding registers, this path effectively
becomes an 11-level FIFO. Only one channel controls the FIFO at any given
time. For a channel to gain control of the FIFO, all of the following conditions
must be met:

� The channel does not have read or write synchronization enabled. Since
split-channel mode requires read and write synchronization, a channel in
that mode cannot use the FIFO. If only frame synchronization is enabled,
that channel can still use the FIFO.

� The channel is running.

� The FIFO is void of data from any other channel.

� The channel is the highest priority channel of those that meet the preced-
ing three conditions.

The third restriction minimizes head-of-line blocking. Head-of-line blocking
occurs when a DMA request of higher priority waits for a series of lower priority
requests to come in before issuing its first request. If a higher priority channel
requests control of the DMA controller from a lower priority channel, only the

DMA Controller Structure

2-27Direct Memory Access (DMA) ControllerSPRU577A

last request of the previous channel must finish. After that, the higher priority
channel completes its requests through its holding registers. The holding
registers do not allow as high of a throughput through the DMA controller. The
lower priority channel begins no more read transfers, but flushes the FIFO by
completing its write transfers in the gaps. Because the higher priority channel
is not yet in control of the FIFO, there are gaps in its access where the lower
priority channel can drain its transfer from the FIFO. Once the FIFO is clear,
if the higher priority channel has not stopped, it gains control of the FIFO.

The DMA FIFO has two purposes:

� Increasing performance
� Decreasing arbitration latency

For increased performance the FIFO allows read transfers to get ahead of
write transfers. This feature minimizes penalties for variations in available
transfer bandwidth at either end of the element transfer. Thus, the DMA can
capitalize on separate windows of opportunity at the read and write portion of
an element transfer. If the requesting DMA channel is using the FIFO, the
resources are capable of sustaining read or write accesses at the CPU clock
cycle rate. However, there may be some latency in performing the first access.
The handshaking between a resource and the DMA controller controls the rate
of consecutive requests and the latency of received read transfer data.

The other function of the DMA FIFO is capturing read data from any pending
requests for a particular resource. For example, consider the situation in which
the DMA controller is reading data from external memory such as SDRAM or
SBSRAM into internal data memory. Assume that the CPU is given higher
priority over the DMA channel making requests, and that it makes a competing
program fetch request to the EMIF. Assume that simultaneously the CPU is
accessing all banks of internal memory, blocking out the DMA controller. In this
case, the FIFO allows the pending DMAs to finish and the program fetch to
proceed. Due to the pipelined request structure of the DMA controller, at any
time the DMA controller can have pending read transfer requests whose data
has not yet arrived. Once enough requests to fill the empty spots in the FIFO
are outstanding, the DMA controller stops making further read transfer
requests.

DMA Controller Structure

Direct Memory Access (DMA) Controller2-28 SPRU577A

2.9.1.3 Internal Holding Registers

Each channel has dedicated internal holding registers. If a DMA channel is
transferring data through its holding registers rather than the internal FIFO,
read transfers are issued consecutively. Depending upon whether the DMA
controller is in split-channel mode or not, additional restrictions can apply.

In split-channel mode, the two registers serve as separate transmit and
receive data stream holding registers for split-channel mode. For both the
transmit and receive-read transfer, no subsequent read transfer request is
issued until the associated write transfer request completes.

In nonsplit-channel mode, once the data arrives a subsequent read transfer
can be issued without waiting for the associated write transfer to finish. Howev-
er, because there are two holding registers, read transfers can get only one
transfer ahead of write transfers.

2.9.2 TMS320C6202B/C6203(B)/C6204/C6205 DMA Structure

The structure of the C6202B/C6203(B)/C6204/C6205 DMA was redesigned
to obtain performance improvements. By removing the arbitration for a single
burst FIFO, multiple bursting channels are more able to co-exist without loss
of throughput. Figure 2−5 shows the internal data movement paths of the DMA
controller, including data buses and internal FIFOs.

Figure 2−5. DMA Controller Data Bus Block Diagram (C6202B/C6203(B)/C6204/C6205 DSP)

Ch0 FIFO

Ch1 FIFO

Ch2 FIFO

Ch3 FIFO

Aux Holding

Expansion bus read
Data Memory read

Program Memory read
Peripheral bus read

Host write

EMIF write

Data Memory write
Program Memory w
Peripheral bus write
Host read

Expansion bus write
EMIF read

DMA Controller Structure

2-29Direct Memory Access (DMA) ControllerSPRU577A

2.9.2.1 Read and Write Buses

Each DMA channel can independently select one of these sources and
destinations:

� EMIF
� Expansion bus (C6202B/C6203(B)/C6204 DSP)/PCI (C6205 DSP only)
� Internal data memory
� Internal program memory, block 0
� Internal program memory, block 1 (C6202B/C6203(B) DSP)
� Internal peripheral bus

The auxiliary channel also has read and write buses. However, since the auxil-
iary channel provides address generation for the DMA, its buses have a differ-
ent naming convention. For example, data writes from the auxiliary channel
through the DMA controller are performed through the auxiliary write bus.
Similarly, data reads from the auxiliary channel through the DMA controller are
performed through the auxiliary read bus.

2.9.2.2 Channel FIFOs

Each DMA channel has a dedicated 9-deep FIFO to facilitate bursting to high-
speed memories. Each channel owns its own FIFO, which reduces the
arbitration required for switching between high-speed bursting channels. The
individual operation by any channel is unchanged from that of the
C6201/C6701/C6202 DMA. The benefit of multiple FIFOs comes into play only
when switching between channels.

Dedicated FIFOs allow for a seamless transition from one bursting DMA
channel to another. Since the C6201/C6701/C6202 DMA allows a higher-
priority channel to begin prior to the lower priority channel completing all
pending writes, potentially the higher-priority channel will not gain access to
the FIFO. When the source of the higher-priority transfer is the same as the
destination of the lower-priority channel, the FIFO will be unable to flush its
data. The priority scheme of the DMA considers the DMA channel number to
determine which channel gets access to a resource. Since the higher-priority
channel will own the common resource, the lower-priority channel will be
unable to access it for its pending writes. The data will remain in the shared
FIFO, which prevents the higher-priority channel from obtaining its use.

As with the shared FIFO DMA, a higher priority DMA channel can still be stalled
by a lower priority channel if the lower priority channel is unable to complete
its write to a resource. Arbitration of the higher priority channel occurs as soon
as the write from the DMA completes.

DMA Controller Structure

Direct Memory Access (DMA) Controller2-30 SPRU577A

The effect of this is that the interrupting high-priority channel is not able to burst
properly, as shown in Figure 2−6, since it does not have possession of the
FIFO. Instead it will use its holding registers as a 2-deep FIFO, which is not
deep enough to facilitate bursting. Instead of a continuous burst of data, only
two elements will be transmitted at a time.

Figure 2−6. Shared FIFO Resource Problem

DMEM EMIF

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

DMEM
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ

EMIF

ÌÌÌÌ
ÌÌÌÌ

EMIF

ÑÑ
ÑÑ
ÓÓ
ÓÓ

ÎÎÎÎ
ÎÎÎÎ

DMEM ÏÏÏÏ
ÏÏÏÏEMIF

ÌÌÌÌ
ÌÌÌÌEMIF

ÔÔÔÔ
ÔÔÔÔXBUS

Source Shared FIFO Destination

Channel 0

Channel 1

Channel 0

Channel 1

Channel 0

Channel 1

1. Channel 1 currently
bursting from internal
data memory to
external memory.

2. Channel 0 obtains
the EMIF as a data
source. Channel 1 is
unable to empty the
shared FIFO.

3. Channel 0 does not
gain the use of the
shared FIFO due to the
presence of channel
1’s data.

Registers
Holding

The new structure of this DMA removes this bandwidth-limiting aspect of the
C6201/C6701/C6202 DMA. By providing each channel with its own FIFO, it is
not necessary for the lower priority channel to flush all of its pending data for
the higher priority channel to be capable of high-speed bursts. The lower priority
channel will maintain its data within its FIFO until the higher priority transfer
completes. When it once again gains access to its destination resource, the
transfer will resume.

In all other situations, the behavior of these DMA channels is identical to those
of the C6201/C6701/C6202 device.

2.9.2.3 Split-Channel Mode

When operating in split-channel mode, these DMA channels behave identically
to a C6201/C6701/C6202 DMA. Only the first two cells of the channel’s FIFO
are used, effectively becoming the two holding registers. Each cell serves as
a holding register for the separate transmit data stream, and receive data
stream. For both the transmit-read and receive-read transfer, no subsequent
read transfer request is issued until the associated write transfer request
completes.

DMA Action Complete Pins

2-31Direct Memory Access (DMA) ControllerSPRU577A

2.9.3 Operation

Reads and writes by the DMA are independent from one another. This allows
for a source to be accessed even if the destination is not ready, and vice versa.
A DMA channel continues to issue read requests until its holding registers are
full, or in the case of a burst transfer until the FIFO is full. Likewise the channel
issues write requests until its holding registers are empty. In the situation
where the DMA is both reading from and writing to the same resource, the write
will have priority.

2.9.4 Performance

The DMA controller can perform element transfers with single-cycle
throughput if it accesses separate resources for the read transfer and write
transfer, and both of these resources have single-cycle throughput. An
example is an unsynchronized block transfer from single-cycle external
SBSRAM to internal data memory without any competition from any other
channels or the CPU. The DMA controller performance can be limited by:

� The throughput and latency of the resources it requests
� Waiting for read, write, or frame synchronization
� Interruptions by higher priority channels
� Contention with the CPU for resources

For a detailed description, see Chapter 3, DMA and CPU Data Access
Performance.

2.10 DMA Action Complete Pins

The DMA action complete pins (DMAC0−DMAC3) provide a method of
feedback to external logic by generating an event for each channel. If it is
specified by the DMACEN field in the DMA channel secondary control register
(SECCTL), the DMAC pin can reflect the status of RSYNCSTAT,
WSYNCSTAT, BLOCKCOND, or FRAMECOND or be treated as a high or low
general-purpose output. If the DMAC pin reflects RSYNCSTAT or
WSYNCSTAT externally, then once a synchronization event has been
recognized, DMAC transitions from low-to-high. Once that event has been
serviced as indicated by the status bit being cleared, DMAC changes from
high-to-low. Before being sent off chip, the DMAC signals are synchronized by
CLKOUT1. The active period of these signals is a minimum of two CLKOUT1
periods wide.

DMA Controller Structure / DMA Action Complete Pins

Emulation

Direct Memory Access (DMA) Controller2-32 SPRU577A

2.11 Emulation

When you are using the emulator for debugging, you can halt the CPU on an
execute packet boundary for single-stepping, benchmarking, profiling, or
other debugging purposes. You can configure the DMA controller to pause
during this time or to continue running by setting the EMOD bit in the DMA
channel primary control register (PRICTL). If the DMA controller is paused, the
STATUS field reflects the paused state of the channel. The auxiliary channel
continues running during an emulation halt. This emulation closely simulates
single-stepping DMA transfers. DMA channels with EMOD = 1 can couple
multiple transfers between single steps; a successful step can require multiple
outstanding transfers to finish first.

2.12 DMA Controller Registers

The DMA controller registers are listed in Table 2−5. See the device-specific
datasheet for the memory address of these registers.

Table 2−5. DMA Controller Registers

Acronym Register Name Section

AUXCTL DMA auxiliary control register 2.12.1

PRICTL0−3 DMA channel primary control registers 2.12.2

SECCTL0−3 DMA channel secondary control registers 2.12.3

SRC0−3 DMA channel source address registers 2.12.4

DST0−3 DMA channel destination address registers 2.12.5

XFRCNT0−3 DMA channel transfer counter registers 2.12.6

GBLCNTA−B DMA global count reload registers 2.12.7

GBLIDXA−B DMA global index registers 2.12.8

GBLADDRA−D DMA global address registers 2.12.9

Emulation / DMA Controller Registers

DMA Controller Registers

2-33Direct Memory Access (DMA) ControllerSPRU577A

2.12.1 DMA Auxiliary Control Register (AUXCTL)

The DMA auxiliary control register (AUXCTL) shown in Figure 2−7 and
described in Table 2−6 affects the auxiliary channel. The priority assigned to
each DMA channel determines which DMA channel performs a read or write
transfer first, when two or more channels are ready to perform transfers.

A channel’s priority field should be modified only when that channel is paused
or stopped.

Figure 2−7. DMA Auxiliary Control Register (AUXCTL)

31 16

Reserved

R/W-0

15 5 4 3 0

Reserved AUXPRI CHPRI

R/W-0 R/W-0 R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−6. DMA Auxiliary Control Register (AUXCTL) Field Descriptions

Bit field† symval† Value Description

31−5 Reserved − 0 Reserved. The reserved bit location is always read as 0. A value
written to this field has no effect.

4 AUXPRI OF(value) Auxiliary channel priority mode bit.

DEFAULT

CPU

0 CPU priority

DMA 1 DMA priority

3−0 CHPRI OF(value) 0−Fh DMA channel priority mode bits.

DEFAULT

HIGHEST

0 Fixed channel priority mode auxiliary channel highest priority

2ND 1h Fixed channel priority mode auxiliary channel 2nd-highest priority

3RD 2h Fixed channel priority mode auxiliary channel 3rd-highest priority

4TH 3h Fixed channel priority mode auxiliary channel 4th-highest priority

LOWEST 4h Fixed channel priority mode auxiliary channel lowest priority

− 5h−Fh Reserved

† For CSL implementation, use the notation DMA_AUXCTL_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-34 SPRU577A

2.12.2 DMA Channel Primary Control Registers (PRICTL0−3)

The DMA channel primary control register (PRICTL) shown in Figure 2−8 and
described in Table 2−7 controls each DMA channel independently.

Figure 2−8. DMA Channel Primary Control Register (PRICTL)

31 30 29 28 27 26 25 24

DSTRLD SRCRLD EMOD FS TCINT PRI

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

23 19 18 14 13 12

WSYNC RSYNC INDEX CNTRLD

R/W-0 R/W-0 R/W-0 R/W-0

11 10 9 8 7 6 5 4 3 2 1 0

SPLIT ESIZE DSTDIR SRCDIR STATUS START

R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0

Legend: R = Read only; R/W = Read/write; -n = value after reset

Table 2−7. DMA Channel Primary Control Register (PRICTL) Field Descriptions

Bit field† symval† Value Description

31−30 DSTRLD OF(value) 0−3h Destination address reload for autoinitialization bits.

DEFAULT

NONE

0 Do not reload during autoinitialization.

B 1h Use DMA global address register B as reload.

C 2h Use DMA global address register C as reload.

D 3h Use DMA global address register D as reload.

29−28 SRCRLD OF(value) 0−3h Source address reload for autoinitialization bits.

DEFAULT

NONE

0 Do not reload during autoinitialization.

B 1h Use DMA global address register B as reload.

C 2h Use DMA global address register C as reload.

D 3h Use DMA global address register D as reload.

† For CSL implementation, use the notation DMA_PRICTL_field_symval

DMA Controller Registers

2-35Direct Memory Access (DMA) ControllerSPRU577A

Table 2−7. DMA Channel Primary Control Register (PRICTL) Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

27 EMOD OF(value) Emulation mode bit.

DEFAULT

NOHALT

0 DMA channel keeps running during an emulation halt.

HALT 1 DMA channel pauses during an emulation halt.

26 FS OF(value) Frame synchronization bit.

DEFAULT

DISABLE

0 Disable

RSYNC 1 RSYNC event used to synchronize entire frame

25 TCINT OF(value) Transfer controller interrupt enable bit.

DEFAULT

DISABLE

0 Interrupt is disabled.

ENABLE 1 Interrupt is enabled.

24 PRI OF(value) Priority mode bit.

DEFAULT

CPU

0 CPU priority

DMA 1 DMA priority

23−19 WSYNC OF(value) 0−1Fh Write transfer synchronization bit.

DEFAULT

NONE

0 No synchronization

TINT0 1h Timer 0 interrupt event

TINT1 2h Timer 1 interrupt event

SDINT 3h EMIF SDRAM timer interrupt event

EXTINT4 4h External interrupt event 4

EXTINT5 5h External interrupt event 5

EXTINT6 6h External interrupt event 6

EXTINT7 7h External interrupt event 7

† For CSL implementation, use the notation DMA_PRICTL_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-36 SPRU577A

Table 2−7. DMA Channel Primary Control Register (PRICTL) Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

DMAINT0 8h DMA channel 0 interrupt event

DMAINT1 9h DMA channel 1 interrupt event

DMAINT2 Ah DMA channel 2 interrupt event

DMAINT3 Bh DMA channel 3 interrupt event

XEVT0 Ch McBSP 0 transmit event

REVT0 Dh McBSP 0 receive event

XEVT1 Eh McBSP 1 transmit event

REVT1 Fh McBSP 1 receive event

DSPINT 10h DSP interrupt event

XEVT2 11h McBSP 2 transmit event

REVT2 12h McBSP 2 receive event

− 13h−1Fh Reserved

18−14 RSYNC OF(value) 0−1Fh Read synchronization bit.

DEFAULT

NONE

0 No synchronization

TINT0 1h Timer 0 interrupt event

TINT1 2h Timer 1 interrupt event

SDINT 3h EMIF SDRAM timer interrupt event

EXTINT4 4h External interrupt event 4

EXTINT5 5h External interrupt event 5

EXTINT6 6h External interrupt event 6

EXTINT7 7h External interrupt event 7

DMAINT0 8h DMA channel 0 interrupt event

DMAINT1 9h DMA channel 1 interrupt event

DMAINT2 Ah DMA channel 2 interrupt event

† For CSL implementation, use the notation DMA_PRICTL_field_symval

DMA Controller Registers

2-37Direct Memory Access (DMA) ControllerSPRU577A

Table 2−7. DMA Channel Primary Control Register (PRICTL) Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

DMAINT3 Bh DMA channel 3 interrupt event

XEVT0 Ch McBSP 0 transmit event

REVT0 Dh McBSP 0 receive event

XEVT1 Eh McBSP 1 transmit event

REVT1 Fh McBSP 1 receive event

DSPINT 10h DSP interrupt event

XEVT2 11h McBSP 2 transmit event

REVT2 12h McBSP 2 receive event

− 13h−1Fh Reserved

13 INDEX OF(value) Selects the DMA global data register to use as a
programmable index.

DEFAULT

A

0 Use DMA global index register A.

B 1 Use DMA global index register B.

12 CNTRLD OF(value) Transfer counter reload for autoinitialization and
multiframe transfers.

DEFAULT

A

0 Reload with DMA global count reload register A.

B 1 Reload with DMA global count reload register B.

11−10 SPLIT OF(value) 0−3h Split-channel mode enable bits.

DEFAULT

DISABLE

0 Split-channel mode is disabled.

A 1h Split-channel mode is enabled; use DMA global
address register A as split address.

B 2h Split-channel mode is enabled; use DMA global
address register B as split address.

C 3h Split-channel mode is enabled; use DMA global
address register C as split address.

† For CSL implementation, use the notation DMA_PRICTL_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-38 SPRU577A

Table 2−7. DMA Channel Primary Control Register (PRICTL) Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

9−8 ESIZE OF(value) 0−3h Element size bits.

DEFAULT

32BIT

0 32 bit

16BIT 1h 16 bit

8BIT 2h 8 bit

− 3h Reserved

7−6 DSTDIR OF(value) 0−3h Destination address modification after element
transfers.

DEFAULT

NONE

0 No modification.

INC 1h Increment by element size in bytes.

DEC 2h Decrement by element size in bytes.

IDX 3h Adjust using DMA global index register selected by
INDEX bit.

5−4 SRCDIR OF(value) 0−3h Source address modification after element transfers.

DEFAULT

NONE

0 No modification.

INC 1h Increment by element size in bytes.

DEC 2h Decrement by element size in bytes.

IDX 3h Adjust using DMA global index register selected by
INDEX bit.

3−2 STATUS OF(value) 0−3h DMA channel status bit.

DEFAULT

STOPPED

0 Stopped

RUNNING 1h Running without autoinitialization

PAUSED 2h Paused

AUTORUNNING 3h Running with autoinitialization

† For CSL implementation, use the notation DMA_PRICTL_field_symval

DMA Controller Registers

2-39Direct Memory Access (DMA) ControllerSPRU577A

Table 2−7. DMA Channel Primary Control Register (PRICTL) Field Descriptions (Continued)

DescriptionValuesymval†field†Bit

1−0 START OF(value) 0−3h DMA channel operation mode bit.

DEFAULT

STOP

0 Stop

NORMAL 1h Start without autoinitialization

PAUSE 2h Pause

AUTOINIT 3h Start with autoinitialization

† For CSL implementation, use the notation DMA_PRICTL_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-40 SPRU577A

2.12.3 DMA Channel Secondary Control Registers (SECCTL0−3)

The DMA channel secondary control register (SECCTL) shown in Figure 2−9
and described in Table 2−8 controls each DMA channel independently.

The SECCTL of the C6202(B)/C6203(B)/C6204/C6205 DSP has been
expanded to include three new fields: WSPOL, RSPOL, and FSIG. These
fields are used to add control to a frame-synchronized data transfer.

Figure 2−9. DMA Channel Secondary Control Register (SECCTL)

31 24

Reserved

R/W-0

23 22 21 20 19 18 16

Reserved WSPOL† RSPOL† FSIG† DMACEN

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8

WSYNCCLR WSYNCSTAT RSYNCCLR RSYNCSTAT WDROPIE WDROPCOND RDROPIE RDROPCOND

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

BLOCKIE BLOCKCOND LASTIE LASTCOND FRAMEIE FRAMECOND SXIE SXCOND

R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
† Available only on C6202(B)/C6203(B)/C6204/C6205 devices; on C6201/C6701 devices, these bits are reserved, read only, with

a default value of 0.
Legend: R/W = Read/write; -n = value after reset

Table 2−8. DMA Channel Secondary Control Register (SECCTL)
Field Descriptions

No. field† symval† Value Description

31−22 Reserved − 0 Reserved. The reserved bit location is always read as 0.
A value written to this field has no effect.

21 WSPOL OF(value) For C6202(B)/C6203(B)/C6204/C6205 DSP: Write
synchronization event polarity bit. This bit is valid only if
EXT_INTn is selected.

DEFAULT

ACTIVEHIGH

0 Active high

ACTIVELOW 1 Active low

† For CSL implementation, use the notation DMA_SECCTL_field_symval

DMA Controller Registers

2-41Direct Memory Access (DMA) ControllerSPRU577A

Table 2−8. DMA Channel Secondary Control Register (SECCTL)
Field Descriptions (Continued)

No. DescriptionValuesymval†field†

20 RSPOL OF(value) For C6202(B)/C6203(B)/C6204/C6205 DSP: Read and
frame synchronization event polarity bit. This bit is valid
only if EXT_INTn is selected.

DEFAULT

ACTIVEHIGH

0 Active high

ACTIVELOW 1 Active low

19 FSIG OF(value) For C6202(B)/C6203(B)/C6204/C6205 DSP: Level/
edge detect mode bit. This bit must be cleared to 0 for
nonframe-synchronized transfers.

DEFAULT

NORMAL

0 Edge detect mode (FS = 1 or FS = 0).

IGNORE 1 Level detect mode (valid only when FS = 1). In level
detect mode, synchronization inputs received during a
frame transfer are ignored unless still set after the frame
transfer completes.

18−16 DMACEN OF(value) 0−7h DMA action complete pins reflect status and condition.

DEFAULT

LOW

0 DMAC pin is held low.

HIGH 1h DMAC pin is held high.

RSYNCSTAT 2h DMAC reflects RSYNCSTAT.

WSYNCSTAT 3h DMAC reflects WSYNCSTAT.

FRAMECOND 4h DMAC reflects FRAMECOND.

BLOCKCOND 5h DMAC reflects BLOCKCOND.

− 6h−7h Reserved

15 WSYNCCLR OF(value) Write synchronization status clear bit.

DEFAULT

NOTHING

0 No effect.

CLEAR 1 Clear write synchronization status.

† For CSL implementation, use the notation DMA_SECCTL_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-42 SPRU577A

Table 2−8. DMA Channel Secondary Control Register (SECCTL)
Field Descriptions (Continued)

No. DescriptionValuesymval†field†

14 WSYNCSTAT OF(value) Write synchronization status bit.

DEFAULT

CLEAR

0 Synchronization is not received.

SET 1 Synchronization is received.

13 RSYNCCLR OF(value) Read synchronization status clear bit.

DEFAULT

NOTHING

0 No effect.

CLEAR 1 Clear read synchronization status.

12 RSYNCSTAT OF(value) Read synchronization status bit.

DEFAULT

CLEAR

0 Synchronization is not received.

SET 1 Synchronization is received.

11 WDROPIE OF(value) Write synchronization dropped interrupt enable bit.

DEFAULT

DISABLE

0 WDROP condition does not enable DMA channel
interrupt.

ENABLE 1 WDROP condition enables DMA channel interrupt.

10 WDROPCOND OF(value) Write drop condition bit.

DEFAULT

CLEAR

0 WDROP condition is not detected.

SET 1 WDROP condition is detected.

9 RDROPIE OF(value) Read synchronization dropped interrupt enable bit.

DEFAULT

DISABLE

0 RDROP condition does not enable DMA channel
interrupt.

ENABLE 1 RDROP condition enables DMA channel interrupt.

† For CSL implementation, use the notation DMA_SECCTL_field_symval

DMA Controller Registers

2-43Direct Memory Access (DMA) ControllerSPRU577A

Table 2−8. DMA Channel Secondary Control Register (SECCTL)
Field Descriptions (Continued)

No. DescriptionValuesymval†field†

8 RDROPCOND OF(value) Read drop condition bit.

DEFAULT

CLEAR

0 RDROP condition is not detected.

SET 1 RDROP condition is detected.

7 BLOCKIE OF(value) Block transfer finished interrupt enable bit.

DISABLE 0 BLOCK condition does not enable DMA channel
interrupt.

DEFAULT

ENABLE

1 BLOCK condition enables DMA channel interrupt.

6 BLOCKCOND OF(value) Block transfer finished condition bit.

DEFAULT

CLEAR

0 BLOCK condition is not detected.

SET 1 BLOCK condition is detected.

5 LASTIE OF(value) Last frame finished interrupt enable bit.

DEFAULT

DISABLE

0 LAST condition does not enable DMA channel interrupt.

ENABLE 1 LAST condition enables DMA channel interrupt.

4 LASTCOND OF(value) Last frame finished condition bit.

DEFAULT

CLEAR

0 LAST condition is not detected.

SET 1 LAST condition is detected.

3 FRAMEIE OF(value) Frame complete interrupt enable bit.

DEFAULT

DISABLE

0 FRAME condition does not enable DMA channel
interrupt.

ENABLE 1 FRAME condition enables DMA channel interrupt.

† For CSL implementation, use the notation DMA_SECCTL_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-44 SPRU577A

Table 2−8. DMA Channel Secondary Control Register (SECCTL)
Field Descriptions (Continued)

No. DescriptionValuesymval†field†

2 FRAMECOND OF(value) Frame complete condition bit.

DEFAULT

CLEAR

0 FRAME condition is not detected.

SET 1 FRAME condition is detected.

1 SXIE OF(value) Split transmit overrun receive interrupt enable bit.

DEFAULT

DISABLE

0 SX condition does not enable DMA channel interrupt.

ENABLE 1 SX condition enables DMA channel interrupt.

0 SXCOND OF(value) Split transmit condition bit.

DEFAULT

CLEAR

0 SX condition is not detected.

SET 1 SX condition is detected.

† For CSL implementation, use the notation DMA_SECCTL_field_symval

DMA Controller Registers

2-45Direct Memory Access (DMA) ControllerSPRU577A

2.12.4 DMA Channel Source Address Registers (SRC0−3)

The DMA channel source address (SRC) register shown in Figure 2−10 and
described in Table 2−9 holds the address for the next read transfer.

Figure 2−10. DMA Channel Source Address Register (SRC)

31 0

Source Address (SRC)

R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−9. DMA Channel Source Address Register (SRC) Field Descriptions

Bit Field symval† Value Description

31−0 SRC OF(value) 0−FFFF FFFFh This 32-bit source address specifies the address for the
next read transfer.

DEFAULT 0

† For CSL implementation, use the notation DMA_SRC_SRC_symval

2.12.5 DMA Channel Destination Address Registers (DST0−3)

The DMA channel destination address register (DST) shown in Figure 2−11
and described in Table 2−10 holds the address for the next write transfer.

Figure 2−11.DMA Channel Destination Address Register (DST)

31 0

Destination Address (DST)

R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−10. DMA Channel Destination Address Register (DST) Field Descriptions

Bit Field symval† Value Description

31−0 DST OF(value) 0−FFFF FFFFh This 32-bit destination address specifies the address for the
next write transfer.

DEFAULT 0

† For CSL implementation, use the notation DMA_DST_DST_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-46 SPRU577A

2.12.6 DMA Channel Transfer Counter Registers (XFRCNT0−3)

The DMA channel transfer counter register (XFRCNT) shown in Figure 2−12
and described in Table 2−11 contains fields that represent the number of
frames and the number of elements per frame to be transferred.

Frame Count (FRMCNT) field: This 16-bit unsigned value sets the total
number of frames in the block transfer. The maximum number of frames per
block transfer is 65535. This counter is decremented upon the completion of
the last read transfer in a frame transfer. Once the last frame is transferred,
FRMCNT is reloaded with the 16 MSBs in the DMA global count reload
register (GBLCNT) selected by the CNTRLD field in the DMA channel primary
control register (PRICTL). Initial values of 0 and 1 in FRMCNT have the same
effect of transferring a single frame.

Element Count (ELECNT) field: This 16-bit unsigned value sets the number
of elements per frame. The maximum number of elements per frame transfer
is 65535. This counter is decremented after the read transfer of each element.
Once the last element in each frame is reached, ELECNT is reloaded with the
16 LSBs in the DMA global count reload register (GBLCNT) selected by the
CNTRLD field in the DMA channel primary control register (PRICTL). This
reloading is unaffected by autoinitialization mode. Before a block transfer
begins, the counter and selected DMA global count reload register must be
loaded with the same 16 LSBs to assure that the first and remaining frames
have the same number of elements per frame. In any multiframe transfer, a
reload value must always be specified, not just when autoinitialization is
enabled. If ELECNT is initialized as 0, operation is undefined.

DMA Controller Registers

2-47Direct Memory Access (DMA) ControllerSPRU577A

Figure 2−12. DMA Channel Transfer Counter Register (XFRCNT)

31 16

Frame Count (FRMCNT)

R/W-0

15 0

Element Count (ELECNT)

R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−11. DMA Channel Transfer Counter Register (XFRCNT) Field Descriptions

Bit field† symval† Value Description

31−16 FRMCNT OF(value) 0−FFFFh A 16-bit unsigned value specifies the number of frames in a block
transfer. Values of 0 and 1 have the same effect of transferring
a single frame.

DEFAULT 0

15−0 ELECNT OF(value) 0−FFFFh A 16-bit unsigned value that specifies the number of elements
in a frame.

DEFAULT 0

† For CSL implementation, use the notation DMA_XFRCNT_field_symval

DMA Controller Registers

Direct Memory Access (DMA) Controller2-48 SPRU577A

2.12.7 DMA Global Count Reload Registers (GBLCNTA−B)

Figure 2−13. DMA Global Count Reload Register (GBLCNT)

31 16

Frame Count Reload (FRMCNT)

R/W-0

15 0

Element Count Reload (ELECNT)

R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−12. DMA Global Count Reload Register (GBLCNT) Field Descriptions

Bit field† symval† Value Description

31−16 FRMCNT OF(value) 0−FFFFh This 16-bit value reloads the FRMCNT bits in the DMA
channel transfer counter register (XFRCNT).

DEFAULT 0

15−0 ELECNT OF(value) 0−FFFFh This 16-bit value reloads the ELECNT bits in the DMA channel
transfer counter register (XFRCNT).

DEFAULT 0

† For CSL implementation, use the notation DMA_GBLCNT_field_symval

DMA Controller Registers

2-49Direct Memory Access (DMA) ControllerSPRU577A

2.12.8 DMA Global Index Registers (GBLIDXA−B)

The DMA global index register (GBLIDX) shown in Figure 2−14 and described
in Table 2−13 is selected by the INDEX field in the DMA channel primary con-
trol register (PRICTL).

� Element Index (ELEIDX) field: This 16-bit signed value specifies the
element index used for an address offset to the next element in a frame.
The index value can range from −32768 to 32767. For element transfers,
except the last one in a frame, ELEIDX determines the amount to be
added to the DMA channel source or the destination address register; as
selected by the SRCDIR or DSTDIR field in PRICTL after each read or
write transfer, respectively.

� Frame Index (FRMIDX) field: This 16-bit signed value specifies the frame
index used for an address modification. The index value can range from
−32768 to 32767. If the read or write transfer is the last in a frame,
FRMIDX (and not ELEIDX) is used for address adjustment. This
adjustment occurs in both single frame and multiframe transfers, including
transfers after the last frame in a block.

DMA Controller Registers

Direct Memory Access (DMA) Controller2-50 SPRU577A

Figure 2−14. DMA Global Index Register (GBLIDX)

31 16

Frame Index (FRMIDX)

R/W-0

15 0

Element Index (ELEIDX)

R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−13. DMA Global Index Register (GBLIDX) Field Descriptions

Bit field† symval† Value Description

31−16 FRMIDX OF(value) 0−FFFFh This 16-bit signed value specifies the frame index used for an
address modification. This value is used by the DMA for address
updates in both single frame and multiframe transfers.

DEFAULT 0

15−0 ELEIDX OF(value) 0−FFFFh This 16-bit signed value specifies the element index used for an
address offset to the next element in a frame.

DEFAULT 0

† For CSL implementation, use the notation DMA_GBLIDX_field_symval

DMA Controller Registers

2-51Direct Memory Access (DMA) ControllerSPRU577A

2.12.9 DMA Global Address Registers (GBLADDRA−D)

The DMA global address register (GBLADDR) shown in Figure 2−15 and
described in Table 2−14 is selected by the SPLIT field in the DMA channel
primary control register (PRICTL). The GBLADDR determines the address of
the peripheral that is to be accessed for split transfer:

� Split source address: This address is the source for the input stream to
the C6000 DSP. The selected GBLADDR contains this split source
address.

� Split destination address: This address is the destination for the output
data stream from the C6000 DSP. The selected GBLADDR contains this
split destination address. The split destination address is assumed to be
one word address (four byte addresses) greater than the split source
address.

The two LSBs should be fixed at 0 to force alignment at a word address. The
third LSB should also be 0, because the split source address is assumed to
be on an even-word boundary. Thus, the split destination address is assumed
to be on an odd-word boundary. These relationships hold regardless of the
width of the transfer. For external peripherals, you must design address
decoding appropriately to adhere to this convention.

Split-channel mode cannot be used with the expansion bus. The source
address, destination address, nor the split address can be within the expan-
sion bus I/O memory range.

Figure 2−15. DMA Global Address Register (GBLADDR)

31 0

Global Address (GBLADDR)

R/W-0

Legend: R/W = Read/write; -n = value after reset

Table 2−14. DMA Global Address Register (GBLADDR) Field Descriptions

Bit Field symval† Value Description

31−0 GBLADDR OF(value) 0−FFFF FFFFh This 32-bit address specifies the address of the
peripheral that is to be accessed for the split transfer.

DEFAULT 0

† For CSL implementation, use the notation DMA_GBLADDR_GBLADDR_symval

3-1DMA and CPU Data Access PerformanceSPRU577A

DMA and CPU Data Access Performance

This chapter describes the DMA and CPU data access performance to the
internal memory, the peripherals, and the external memory.

In a real-time system, it is important to understand data flow and control it to
achieve high performance. By analyzing the timing characteristics for access-
ing data and switching between data requestors, it is possible to maximize the
achievable bandwidth in any system. In general, one important guideline is to
use the DMA controller for background off-chip data accesses. The CPU
should only be used for sporadic (nonperiodic) accesses to individual
locations, otherwise the system can incur performance degradation. Although
the CPU and the DMA controller function independently of one another, when
both are performing simultaneous data accesses it is necessary to properly
schedule and configure them in order to minimize conflict and waiting while
meeting real-time requirements. This chapter provides the necessary informa-
tion to understand how the different data requestors affect one another, as well
as the amount of time required to perform data accesses. Due to the flexibility
of the CPU and the DMA, code structure and DMA activity can be tailored to
maximize data I/O bandwidth for particular situations. This chapter also
provides guidelines on how to maximize the available bandwidth.

Topic Page

3.1 Accessing Data 3-2.

3.2 Bandwidth Calculation 3-13.

3.3 Bandwidth Optimization 3-20.

Chapter 3

Accessing Data

DMA and CPU Data Access Performance3-2 SPRU577A

3.1 Accessing Data

The data to be accessed by the CPU and the DMA can be located in internal
data memory, on-chip peripherals, or in external memory. Whenever the CPU
data paths and the DMA contend for any of these resources, arbitration deter-
mines the order in which the requests are serviced. Data path A always has
priority over data path B, and the priority level of the DMA with respect to the
CPU is based on the priority (PRI) bit of the DMA channel primary control regis-
ter (PRICTL). This arbitration is valid for all resources. Figure 3−1 shows the
CPU, data memory controller, and peripheral bus connections.

Figure 3−1. Data Paths

Data Memory Controller

Data
Memory

CPU

EMIF
data

DMA
data

Bank 1

Bank 3

Bank 2

...

...

Bank n

DA1 Address

ST1 Store Data

LD1 Load Data

DA2 Address

ST2 Store Data

LD2 Load Data

Solid line indicates data

Dashed line indicates request

Arrowheads indicate direction of data or request

EMIF
control

DMA
control

Peripheral
bus controller

3.1.1 Internal Data Memory

Internal data memory consists of high-speed SRAMs, which are divided into
several 16-bit wide banks. Each bank can be accessed once per cycle, with
distinct banks accessible in parallel. An access takes more than one cycle only
if multiple requestors contend for the same memory bank. In this case a lower-
priority requestor will be stalled until all of the banks it requests are free. For
example during a CPU access to data memory bank1 and bank 2, a DMA
access (configured to be lower priority) to bank 2 will be stalled until the CPU
access to bank 2 is completed. Arbitration for each bank occurs every cycle.
The physical arrangement, as well as the number, of data memory banks
varies slightly between the DSPs.

Accessing Data

3-3DMA and CPU Data Access PerformanceSPRU577A

3.1.2 Peripheral Bus

The on-chip peripherals are configured via memory-mapped control registers
accessible through the peripheral bus controller. The peripheral bus controller
performs word accesses only, which affects writes to a peripheral register. A
write of a byte or halfword is treated as a 32-bit word. The values written to the
non-selected bytes are undefined. On reads, individual bytes can be
accessed, as the CPU or DMA extracts the appropriate bytes.

Accesses across the peripheral bus occur in multiple cycles, and all accesses
are serialized. A CPU access to the peripheral bus results in a CPU stall of
several cycles, as shown in Table 3−1. A single CPU access to the peripheral
bus stalls the CPU for 5 cycles, and parallel CPU accesses stall the CPU for
9 cycles.

DMA accesses to the peripheral bus are pipelined, allowing the DMA to access
peripheral bus every 3 cycles.

Table 3−1. CPU Stalls For Peripheral Register Accesses

CPU Access CPU Stall

Single 5

Parallel 9

3.1.3 External Memory Interface (EMIF)

The external memory interface (EMIF) connects the DSP to external memory,
such as synchronous dynamic RAM (SDRAM), synchronous burst static RAM
(SBSRAM), and asynchronous memory. The EMIF also provides 8-bit-wide
and 16-bit-wide memory read capability to support low-cost ROM memories
(flash, EEPROM, EPROM, and PROM).

The EMIF supports burst capability to facilitate data transfers to/from high-
speed memories. The DMA exercises this functionality through the use of its
internal FIFO. Using the DMA, it is possible to access external memories at
the rate of one data element per memory clock cycle. The CPU must wait for
each data element required by the current execute packet before proceeding
to the next execute packet. Thus data requests to the EMIF by the CPU are
done one at a time, rather than in bursts, and do not take advantage of the burst
capability of the EMIF.

To achieve its high-throughput for burst transfers, the EMIF has multiple internal
pipeline stages. Due to this pipeline, there is latency incurred for a data transfer
request both at the beginning of the burst request and at the end of the burst
request. The number of cycles required for the actual data access depends on
the type of memory being accessed.

Accessing Data

DMA and CPU Data Access Performance3-4 SPRU577A

To lessen the effects of memory access latencies, frequent data accesses to
the EMIF should be performed by the DMA in bursts. Also, if there is potential
for a frequent number of interruptions to burst activity by a higher priority
requestor, the arbitration bit (RBTR8) can be set in the EMIF global control
register. Setting this bit ensures that a minimum of eight accesses of a current
burst is serviced before a higher priority requestor can use the EMIF. This func-
tionality reduces the number of cycles lost to arbitration.

The number of cycles required to access an external memory location
depends on two factors:

� Type of external memory: Different memory types have different cycle
timings for data accesses.

� Current EMIF activity: If another resource is currently accessing external
memory, the EMIF requires multiple cycles to flush its pipeline.

3.1.3.1 Memory Timings

The cycle timings for each memory type are provided in the data sheet for the
particular C6000 device.

The access latency required for an external memory to be able to either return
or receive a data element is defined in the datasheet, and it is specific to the
type of memory. The beginning of the access is marked by the transition of the
memory’s chip enable (CE) to active (low).

The time used by the EMIF at the end of an external data access is provided
in Table 3−2. Table 3−2 shows the number of CLKOUT1 cycles between the
external strobe for a particular memory (AOE, AWE, SSOE, SSWE, or
SDCAS) and CE returning high for each of the memory types. These cycle
counts are referred to as CE_READ_HOLD for reads, and CE_WRITE_HOLD
for writes.

Access times to asynchronous memory are user-defined using programmable
setup, strobe, and hold values. Read and write accesses can use different
settings for each field.

Note:

The SBSRAM data provided in all the tables in this chapter are for the 1/2×
rate SBSRAM. The TMS320C6201 and C6701 devices also support a 1×
SBSRAM interface, the data for which can vary by 1-2 cycles. The 1× speed
SBSRAM option is not commonly used. It is currently difficult to find devices
that conform to the timing requirements. Therefore, the 1×-specific timing are
not included in this chapter.

Accessing Data

3-5DMA and CPU Data Access PerformanceSPRU577A

Table 3−2. EMIF Data Access Completion Timings in CLKOUT1 (CPU Clock) Cycles

Memory Type CE_READ_HOLD CE_WRITE_HOLD

Asynchronous 7 – READ_HOLD 4 if WRITE_HOLD = 0
3 if WRITE_HOLD > 0

SDRAM 0 0

SBSRAM 4 4

After the CE is reasserted high at the end of a memory access, multiple cycles
occur before another external access can begin due to arbitration within the
EMIF. When the EMIF switches between requestors (or requests by the same
requestor) there can be multiple cycles between external accesses (between
active CE signals). These timings vary slightly depending on the memory type,
the requestors, and the situation of the switching request.

3.1.3.2 CPU Accesses

The CPU uses the load and store operations to access data in external
memory. Since accesses to external memory require multiple cycles to complete,
the CPU stalls during the E3 stage of the pipeline. The data memory controller
handles CPU accesses to the EMIF, with each request passed individually to
the EMIF. The data memory controller waits until previous accesses have
completed before issuing subsequent requests. This protocol prevents the
CPU from bursting data accesses.

Table 3−3 provides the number of cycles for which the CPU stalls for an
external access. SETUP, STROBE, and HOLD values are user-programmable
fields of each CE control register in the EMIF. The CE_HOLD values
(CE_READ_HOLD or CE_WRITE_HOLD) are provided in Table 3−2. TRP
and TRCD are user-programmable fields of the SDRAM control register in the
EMIF. The SDRAM and SBSRAM timings have a range of two cycles due to
the fact that the CPU request may have to wait until the appropriate phase of
the external memory clock, which is half the rate of the CPU clock.

Table 3−3. CPU Stalls for Single External Data Accesses

Memory Type Load Store

Asynchronous SETUP + STROBE + HOLD + CE_HOLD – 5 6

SDRAM (active row) 17 or 18 7 or 8

SDRAM (inactive row) 2 × (TRP + TRCD) + (25 or 26) 2 × (TRP + TRCD) + (15 or 16)

SBSRAM 15 or 16 7 or 8

Accessing Data

DMA and CPU Data Access Performance3-6 SPRU577A

The number of CPU stall cycles is at least the number given in Table 3−3.
However, the number of CPU stall cycles increases if the EMIF is currently
completing a previous access. The number of cycles of additional delay
depends upon whether the CPU has a higher priority than the current access,
as well as how close the access is to completion. If the current access is a CPU
store to asynchronous memory, the maximum number of additional cycles for
which the CPU is stalled is SETUP + STROBE + HOLD + CE_HOLD – 5.
This maximum is obtained if both CPU accesses are submitted in parallel. For
every cycle of delay between the two accesses, subtract one from the addition-
al stall value (until the additional delay is zero). All other loads and stores do
not result in an additional delay to a CPU access.

3.1.3.3 DMA Accesses

The DMA can burst data to and from external memory at the rate of one
element per memory clock cycle. The DMA’s internal FIFO allows for data
reads to be pipelined. Provided that the FIFO does not completely fill (which
occurs if DMA writes are held off by a higher priority requestor), the DMA does
not need to wait for a request to complete before issuing another.

A DMA access to external memory can achieve the maximum throughput rate
for any external memory. By pipelining accesses, the time required to access
a frame of data is equal to one memory clock per element for synchronous
memories and the user-programmed settings for asynchronous memory.

3.1.4 Resource Contention

When multiple requestors (DMA or CPU) access the same resource, the
resource’s memory controller arbitrates which accesses the memory location
first. Data resources that can have multiple requestors include internal data
memory banks, peripheral registers, and external memory (EMIF). The expan-
sion bus is only accessible with the DMA.

Arbitration is performed every cycle within the memory controllers for each
resource. For internal data memory and peripheral register accesses there is
no delay when switching between requestors. A lower-priority request will take
place on the cycle immediately following the high-priority request.

For accesses to external memory through the EMIF, the number of cycles in
between accesses depends on the memory type and the direction of the
accesses. Since memory timings and latencies vary according to different
memory types, and since the external memories do not run off the CPU clock,
the switching times are not uniform across all memory types. The delay times
between external accesses are provided in Table 3−4. These switching times are
valid for CPU/CPU, DMA/CPU, CPU/DMA, and DMA/DMA access boundaries.

Accessing Data

3-7DMA and CPU Data Access PerformanceSPRU577A

Table 3−4. External Switching Time between Accesses by Different Requestors

Subsequent Access

ASRAM SDRAM SBSRAM

Current Access Read Write Read Write Read Write

ASRAM Read
Write

1–2
1

1–2
1

5–7
1

5–7
1

2–3
2−3

2–3
2−3

SDRAM Read
Write

12–15
4−5

12–15
4−5

16–18
10

18–20
8

13–17
5−7

13–17
5−7

SBSRAM Read
Write

2–4
2−3

2–4
2−3

7–9
5−7

7–9
5−7

4–6
4

4–6
4

The switching times signify the number of CLKOUT1 (CPU clock) cycles
between the end of one access and the beginning of another. Within this chapter,
the beginning of an access is the rising edge of CLKOUT1 (CPU clock) imme-
diately preceding the rising edge of the memory clock used in the data sheet
to reference the CE transition from 1 to 0. The end of an access is the rising
edge of CLKOUT1 (CPU clock) immediately preceding the rising edge of the
memory clock used in the datasheet to reference the CE transition from 0 to
1. Figure 3−2 shows an example of the beginning and the end of an SBSRAM
transfer. For the C6201 SBSRAM, the memory clock SSCLK is used to refer-
ence the CE transitions.

Figure 3−2. 1/2× Rate SBSRAM Read Cycle Timing Diagram

CE

READ READ READ READ

ÉÉÉÉÉ
ÉÉÉÉÉ

BE1 BE2 BE3 BE4
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉ A1 A2 A3 A4ÉÉÉÉÉÉÉÉÉÉÉ
Q1 Q2 Q3 Q4

Cycle EndCycle Begin
CLKOUT1

SSCLK

BE_ [3:0]

EA [21:2]

ED [31:0]

SSADS

SSOE

SSWE

Accessing Data

DMA and CPU Data Access Performance3-8 SPRU577A

3.1.4.1 Switching Between DMA Channels

Switching between DMA channels is different than switching between CPU
data paths or between the CPU and the DMA. Arbitration is handled within the
DMA for channels that are active at the same time. Arbitration is done in two
places: the read port and the write port. Only one DMA channel can read at
a time, and only one channel can write at a time. Priority is always granted to
the lowest-numbered DMA channel. The auxiliary channel’s priority is
programmable.

A DMA channel requests a read access as soon as it is started by the CPU,
or when its read-synchronization event is received. A write access is
requested as soon as data arrives at one of the channel’s holding registers,
and after any write-synchronization event. A channel’s request to either the
read- or write-controller is either passed to the desired resource or held due
to a higher priority channel using the port. Arbitration is handled every cycle.

This arbitration takes only one cycle and has virtually no impact for internal
transfers. For transfers to or from external memory, this is more noticeable.
The number of cycles between accesses by different channels depends on
three factors:

� Memory type
� Transfer direction
� Channel priority

Switching times between accesses depends on memory type and direction.
The time varies from the values in Table 3−4, depending on whether one channel
interrupts another, or one channel completes and a suspended channel
resumes (or begins). The switching time between accesses by different
channels is equal to the values given in Table 3−4, plus an additional offset
shown in Table 3−5.

If a DMA channel’s request is passed to the read- or write-controller when a
lower priority channel is transmitting data, the lower priority channel’s new
requests are suspended and the higher priority channel is permitted to transfer.

Table 3−5. Additional Switching Time between External DMA Accesses

Subsequent DMA Access

Higher-Priority Channel Lower-Priority Channel

Current DMA Access Read Write Read Write

Read 2−4 11−15 2−4 8−15

Write 0−4 0−4 4−8 0−4

Accessing Data

3-9DMA and CPU Data Access PerformanceSPRU577A

Since most data accesses to external memory use the DMA, knowledge of the
time required to switch between DMA channels is important. A DMA channel
accessing external memory will hold off all other requests for external memory
until that access is complete. The switching time depends on the type of
memory accessed, the directions of both the current and subsequent trans-
fers, and whether or not either DMA channel uses the internal FIFO to burst.

3.1.4.2 Burst Interruptions

External DMA bursts can be interrupted without another requestor taking over
the EMIF. Examples of this include transfer frame boundaries, servicing of a
McBSP by a higher-priority channel, or internal auxiliary channel accesses.

Multiple Frames and Autoinitialization

The DMA channels can be configured to transmit multiple frames of equal
length, constituting a block. Also each channel can be optionally configured
to perform autoinitialization, where some or all address and counter registers
are reloaded at the end of each block, in order to continue transmission without
CPU intervention. These functions of the DMA complete quickly, each requir-
ing only one cycle within the DMA block.

Once a frame or block boundary is reached, the current burst ends and a new
burst begins. As shown in Table 3−6 the number of inactive cycles during an
external burst depends on the type of memory being accessed, as well as the
direction of the transfer.

Table 3−6. CLKOUT1 (CPU Clock) Cycles Between External Frame Bursts

Memory Type Cycles Between Reads Cycles Between Writes

Asynchronous 1 1

SDRAM 16 10

SBSRAM 4 4

Servicing a McBSP or Host Access

When a higher priority channel services a McBSP, or when the auxiliary chan-
nel (higher priority) services a host access, it temporarily assumes control of
the read port and the write port of the DMA from the currently bursting channel.
The amount of time lost from this interruption depends on the memory type
being accessed, as well as the direction of the current burst. Table 3−7 shows
the time between memory accesses (CE inactive) for each type of external
memory. The cycle counts assume that the data source and destination for the
McBSP or host transfers are internal data memory.

Accessing Data

DMA and CPU Data Access Performance3-10 SPRU577A

Table 3−7. Burst Interruption by McBSP/Host Service

Burst Cycles Idle When Servicing McBSP/Host

Current Access

McBSP Read/
Host Write

McBSP Write/
Host Read

McBSP Read and Write/
Host Peripheral Access

ASRAM Read
Write

12
2

14
2

22
13

SDRAM Read
Write

28
16

30
14

38
28

SBSRAM Read
Write

16
10

18
8

26
22

Internal Auxiliary Channel Access

External accesses by the DMA auxiliary channel act as a DMA channel that
is interrupting another DMA channel. This is described in section 3.1.4.1,
Switching Between DMA Channels.

3.1.5 DMA Synchronization

Each DMA channel can be synchronized by a variety of events to control its
data movement. There is latency involved with performing a synchronized
transfer that should be understood when computing response time of a
system. Table 3−8 shows the time delay from a synchronization event to the
beginning of a data access.

Table 3−8. DMA Synchronization Timings

CLKOUT1 (CPU Clock) Cycles for Memory Type

Timing ASRAM SDRAM SBSRAM

Internal event to setting of (R/W)SYNC_STAT bit 1 1 1

External event to setting of (R/W)SYNC_STAT bit 4 4 4

RSYNC_STAT bit set to beginning of external read 9 12 11

RSYNC_STAT bit set to beginning of external write† 16 20 17

WSYNC_STAT bit set to beginning of external write 7 11 8

† Measurement valid for read-synchronized or frame-synchronized internal-to-external DMA transfer.

Accessing Data

3-11DMA and CPU Data Access PerformanceSPRU577A

3.1.6 Transferring To/From Same Resource

The DMA can transfer data to and from the same resource. Two primary
applications for this would be to restructure data in internal memory, or to burst
data between its external source and an external buffer.

Using the same resource reduces the throughput achievable by the DMA. This
situation results because the DMA cannot read from and write to the same
resource simultaneously.

DMA writes are given a higher priority than DMA reads. A DMA channel issues
write requests as long as there is data in its holding registers. Because of this,
a channel that attempts to burst to the same resource from which it is reading
cannot capitalize on the DMA FIFO. Since the write requests begin as soon
as data is in the channel’s holding registers, and the write request has priority
over the read requests, the number of elements buffered during the read burst
depends solely on the speed of the memory being read. If a slow memory is
being read (for example, asynchronous memory) then only a few elements
burst at a time. If a high-speed memory is being read (for example, internal
data memory) then more of the FIFO is used.

Table 3−9 lists the number of elements per burst when reading from, and
writing to, the same resource.

Table 3−9. Burst Size for Shared Resource

Read Memory Elements/Burst

Internal Data Memory 5

Asynchronous 3*

SDRAM 6

SBSRAM 5

Note: Burst size is 2 when READ_HOLD = 3

Accessing Data

DMA and CPU Data Access Performance3-12 SPRU577A

When the DMA uses the same resource for both source and destination,
switching latency exists between reading and writing. This latency depends on
the transition. Table 3−10 lists the number of cycles between reads and writes
for transfers between external memories, in addition to those provided in
Table 3−4.

Table 3−10. Additional Switching Time for External-to-External Transfers

Burst Transition Additional Cycles

Read to Write 0 − 4

Write to Read 1 − 4

Latencies also exist between read bursts and write bursts when transferring
between locations in internal data memory. While each data access can be
performed in a single cycle, there is switching time between the read requests
and the write requests, as provided in Table 3−11.

Table 3−11. Switching Time for Internal-to-Internal Transfers

Burst Transition CLKOUT1 Cycles

Read to Write 8

Write to Read 9

Due to the burst sizes and the latencies in Table 3−10 and Table 3−11, the
throughput of a transfer with a shared resource for the source and destination
is maximized for frame sizes equal to a multiple of the above burst sizes.

3.1.7 DMA Port Crossing

The DMA has 4−6 master ports, all of which are listed below:

� Data Memory

� Program Memory Block 0

� Program Memory Block 1 (on C6202/C6203 DSP only)

� Expansion Bus (XBUS) I/O (on C6202/C6203/C6204 DSP only)

� External Memory Interface (EMIF)

� Internal Peripheral Bus (peripheral control registers including McBSP data
registers)

The DMA auxiliary port is a slave port and should be considered a requestor
much like a programmed DMA channel. DMA accesses/bursts are not permitted
to cross a port boundary.

Bandwidth Calculation

3-13DMA and CPU Data Access PerformanceSPRU577A

3.2 Bandwidth Calculation

If the system activity is known, then the total bandwidth required by the system
can be derived from the information presented in this section. Such an analysis
allows a designer to make sure that all data processing can be performed in
the time allotted for it.

3.2.1 Simple Bandwidth Calculation Example Using Timing Information

The following example shows how to use the timing information in this chapter.
Consider the following:

� DMA channel 0 performs an unsynchronized transfer of 32-bit data from
1/2× SBSRAM to internal data memory with a frame count of 2 and an
element count of 20.

� DMA channel 1 performs an unsynchronized transfer of 32-bit data from
internal data memory to 1/2× clock rate SBSRAM with a frame count of 1
and an element count of 40.

� DMA channel 1 is started immediately after channel 0.

First it is necessary to determine the bandwidth requirements for the individual
data streams. All of the timing parameters used in the calculations, along with
their location in this chapter, are described in Table 3−12.

Table 3−12. Timing Parameter Descriptions for Simple Bandwidth Calculation
Example

Parameter Value Location Description

element_count0 20 N/A Number of elements per frame for channel 0

element_count1 40 N/A Number of elements per frame for channel 1

CE_read_setup 4 N/A Cycle count from the beginning of the access to
beginning of the first read data phase.

CE_read_hold 4 Table 3−2,
page 3-5

Cycle count from the last strobe in a read burst from
SBSRAM to the end of the access

CE_write_hold 4 Table 3−2,
page 3-5

Cycle count from the last strobe in a write burst to
SBSRAM to the end of access

read_frame_gap 4 Table 3−6,
page 3-9

Time between read bursts for multi-frame transfer

read_to_write 6 Table 3−4,
page 3-7

Switching time between a SBSRAM read access and a
SBSRAM write access

Bandwidth Calculation

DMA and CPU Data Access Performance3-14 SPRU577A

Table 3−12. Timing Parameter Descriptions for Simple Bandwidth Calculation
Example (Continued)

Parameter DescriptionLocationValue

DMA_hp_read_to_lp_write 15 Table 3−5,
page 3-8

Additional switching time between a high priority read
access and a low priority write access

start_to_sync 1 Table 3−8,
page 3-10

Time from setting START = 01b to the setting of
RSYNC_STAT

RSYNC_STAT_to_read 11 Table 3−8,
page 3-10

Latency from the setting of RSYNC_STAT to beginning
of a read access

Since channel 1 is started after channel 0, it waits until channel 0’s transfer
completes before beginning its data transfer. The total transfer time equals the
transfer time of channel 0 plus the transfer time of channel 1 plus the time
between transfers, or:

Channel 0 Burst Time + Channel 0 Overhead + Channel 1 Burst Time
+ Channel 1 Overhead

The functions of each are summarized as follows:

� Channel 0 Burst Time: DMA channel 0 performs two burst transfers, one
for each frame. The cycle time required for all bursts is:

2 × [CE_read_setup + (2 × element_count0) + CE_read_hold]

= 2 × [4 + (2 × 20) + 4] = 96 cycles

� Channel 0 Overhead: The first frame starts after the RSYNC_STAT bit
is set. Since channel 0 performs an unsynchronized transfer,
RSYNC_STAT is set 1 cycles after START = 01b is written to the channel’s
primary control register. The time between frames must also be included
in the overhead calculation, since there is a small number of cycles
between bursts. This delay is calculated as:

Start_to_sync + RSYNC_STAT_to_read + read_frame_gap

= 1 + 11 + 4 = 16 cycles

� Channel 1 Burst Time: DMA channel 1 performs only a single burst,
which requires the following number of cycles to complete:

(2 × element_count1) + CE_write_hold

= (2 × 40) + 4 = 84 cycles

Bandwidth Calculation

3-15DMA and CPU Data Access PerformanceSPRU577A

� Channel 1 Overhead: Since channel 1 is started during channel 0’s
transfer, the delay from starting the channel to the actual beginning of the
transfer is not apparent. Rather than the time delay from the setting of the
START field to the beginning of the transfer (as for Channel 0), the over-
head consists only on the delay between channel 0’s transfer and channel
1’s transfer. This delay is calculated by:

read_to_write + DMA_hp_read_to_lp_write

= 6 + 15 = 21 cycles

� Total Transfer Time: The total time required for these transfers, from the
setting of START = 01b in channel 0’s primary control register to the end
of the CE period for channel 1 is:

Channel 0 Burst Time + Channel 0 Overhead + Channel 1 Burst Time
+ Channel 1 Overhead

= 96 + 16 + 84 + 21 = 217 cycles

3.2.2 Complex Bandwidth Calculation Example

A more complex example involves calculating the bandwidth requirement of
a system, ensuring that the system requirements do not exceed the capabili-
ties of the device. The system involves the following transfers:

� Full-duplex serial data transferred to/from a McBSP at 48 kHz

� Data input from an asynchronous memory source with setup = 2,
strobe = 4, hold = 1. Data arrives in frames of 128 elements every 10 µs.

� Data output from an asynchronous memory source with setup = 2,
strobe = 4, hold = 1. Data is output in frames of 128 elements every 15 µs.

� The CPU is restricted to internal memory and is running at 200 MHz.

First, calculate the bandwidth requirements for the individual data streams.
Then, consideration for the interaction between the DMA transfers should be
included. Table 3−13 describes all of the timing parameters used in the
calculations, along with their location in this chapter.

Bandwidth Calculation

DMA and CPU Data Access Performance3-16 SPRU577A

Table 3−13. Timing Parameter Descriptions For Complex Bandwidth Calculation Example

Parameter Value Location Description

element_count 128 N/A Number of elements per frame

Setup 2 Memory Timings,
page 3-4

Read/write setup time (same in this example)

Strobe 4 Memory Timings,
page 3-4

Read/write strobe time (same in this example)

Hold 1 Memory Timings,
page 3-4

Read/write hold time (same in this example)

CE_read_hold 6 Table 3−2,
page 3-5

Cycle count from the last strobe in a read burst
from asynchronous memory to the end of
access

CE_write_hold 3 Table 3−2,
page 3-5

Cycle count from the last strobe in a write burst
to asynchronous memory to the end of access

mcbsp_read_interruption 12 Table 3−7,
page 3-10

ASRAM burst interruption caused by a McBSP
read

mcbsp_write_interruption 14 Table 3−7,
page 3-10

ASRAM burst interruption caused by a McBSP
write

write_to_read 1 Table 3−4,
page 3-7

Switching time between an asynchronous write
access to an asynchronous read access

read_to_write 2 Table 3−4,
page 3-7

Switching time between an asynchronous read
access to an asynchronous write access

DMA_lp_write_to_hp_read 4 Table 3−5,
page 3-8

Additional switching time between a low priority
write access and a high priority read access

DMA_hp_read_to_lp_write 15 Table 3−5,
page 3-8

Additional switching time between a high
priority read access and a low priority write
access

RSYNC_STAT_to_read 9 Table 3−8,
page 3-10

Latency from the setting of RSYNC_STAT to
beginning of an ASRAM read access

Bandwidth Calculation

3-17DMA and CPU Data Access PerformanceSPRU577A

Since this is a bandwidth calculation, rather than a latency (or completion time)
calculation, the worst case interaction of the DMA transfers must be taken into
account. The bandwidth requirement of the system will be equal to the transfer
time required by each of the channels plus any arbitration latency introduce
by channel interaction during a timing window of the least common denominator
of the transfer times. This calculation is represented by:

(Input data transfer time + Output data transfer time + McBSP data
transfer overhead + Input data transfer overhead + Output data transfer
overhead) / Timeslice × 100%

McBSP Data Transfer Time: The serial output data requires a transfer from
internal data memory to the McBSP once per 4167 cycles.

The serial input data requires a transfer from the McBSP to internal data
memory once per 4167 cycles.

Input Data Transfer Time: The parallel input data requires the following
number of cycles every 2000 cycles:

[(setup + strobe) × element_count] + [hold × (element_count – 1)]
+ CE_read_hold

= [(2 + 4) × 128] + [1 × (128 – 1)] + 6 = 901 cycles

Output Data Transfer Time: The parallel output data requires the following
number of cycles every 3000 cycles:

[(setup + strobe) × element_count] + [hold × (element_count – 1)]
+ CE_write_hold

= [(2 + 4) × 128] + [1 × (128 − 1)] + 3 = 898 cycles

Timeslice Calculation: The serial sync event arrives roughly every 4000
cycles, the parallel input every 2000 cycles, and the parallel output every 3000
cycles. Considering all events in a 12000 window is therefore adequate for the
entire system. The least common denominator of the transfer times is 12000.

3.2.2.1 DMA Channel Selection

The DMA channels used for each of the data transfers directly impacts the per-
formance of the system. Typically the transfers in a system should be ranked
in priority such that short bursts (such as McBSP servicing) are given the high-
est priority and long bursts (typically background paging) are given the lowest
priority. For transfers that are of similar burst lengths, the more-frequent trans-
fer is given priority. This ensures that data being sampled at a high frequency
is never missed. System constraints and special cases can require that a
different priority scheme be used. For the example in Table 3−14, transfer
priority is ranked according to frequency. Based on the numbers shown in the
timeslice calculation the priority ranking is as shown.

Bandwidth Calculation

DMA and CPU Data Access Performance3-18 SPRU577A

Table 3−14. DMA Channel Selection Priority

Data Transfer Burst Size Event Frequency DMA channel

McBSP 1 1/4000 cycles 0

Parallel Input 128 1/2000 cycles 1

Parallel Output 128 1/3000 cycles 2

Based on this, channel 0 should be used for the serial data, channel 1 for the
parallel input data, and channel 2 for the parallel output data.

McBSP Data Transfer Overhead: DMA channel 0 will interrupt either channel
1 or 2 twice if serial frames are synchronized at the same time, but potentially
four separate times. This worst-case results in the following number of addi-
tional cycles:

2 × (CE_read_hold + mcbsp_read_interruption) for McBSP reads and
2 × (CE_write_hold + mcbsp_write_interruption) for McBSP writes

= 2 × [(6 + 12) +(3 + 14)] = 70 cycles every 12000 cycles

Input Data Transfer Overhead: DMA channel 1 interrupts channel 2 four
times, resulting in the following number of additional cycles:

4 × (CE_write_hold + write_to_read + DMA_lp_write_to_hp_read)

= 4 × (3 + 1 + 4) = 32 cycles every 12000 cycles

Output Data Transfer Time: DMA channel 2 trails channel 1 six times, result-
ing in the following number of additional cycles:

6 × (read_to_write + DMA_hp_read_to_lp_write)

= 6 × (2 + 15) = 102 cycles every 12000 cycles

Total Bandwidth Utilization: Again, this is the total bandwidth required by the
system:

(Input data transfer time + Output data transfer time + McBSP data
transfer overhead + Input data transfer overhead + Output data transfer
overhead) / Timeslice × 100%

= ((6 × 901) + (4 × 898) + 70 + 32 + 102)/12000 × 100%
= (9202/12000) × 100%
= 77%

Bandwidth Calculation

3-19DMA and CPU Data Access PerformanceSPRU577A

3.2.2.2 Comparison of 1.8V/2.5V Devices to 1.5V Device

For the 1.5 V C6000 devices (such as C6202B/C6203(B)/C6204/C6205 DSP),
the bandwidth analysis ends here. Since only 9132 out of every 12000 cycles
are required for the transfers in the system, or 76%, there is no problem servic-
ing the I/O data streams.

For the 1.8 V (such as C6201/C6701/C6202 DSP) devices, however, some
additional steps must be taken due to the shared FIFO present in the DMA.
As described in section 2.9.2.2, Channel FIFOs, having the shared FIFO can
reduce throughput when a high-priority burst transfer interrupts a lower-priority
burst transfer, when the source of the high-priority transfer is the same
resource as the destination of the low-priority transfer. This condition exists in
the above example when channel 1 interrupts channel 2. To solve this
problem, the CPU must be used to control the burst interruption to insure that
channel 1 always has use of the shared FIFO when active.

To do this, the channel should no longer be synchronized on the external
event, but rather on an unused synchronization event. The CPU should be
configured to receive an interrupt from the external event (previously used to
synchronized channel 1). The ISR for the interrupt should perform the following
tasks:

� Pause channel 2
� Set RSYNC_STAT for channel 1
� Unpause channel 2

The ISR executes six times per 12000 cycles. This switching time replaces the
32 cycles previously described for channel 1 interrupting channel 2. Instead,
the number of cycles will be:

6 × (RSYNC_STAT_to_read)

= 6 × 9
= 54 cycles every 12000 cycles

This changes the total cycle requirement to 9202 – 32 + 54 = 9224 cycles
every 12000 cycles, which is still 77% bandwidth utilization. The required
cycle count will grow, however, if the ISR for channel 1 is delayed from execu-
tion. 2846 cycles remain in each 12000 window for the ISR to occur six times.
In order to provide the CPU intervention, the ISR must complete (CPU interrupt
{external event} to the setting of RSYNC_STAT) within 2846/6 = 475 cycles.

Note:

This cycle count can be an average if it is guaranteed that the completion
time for six ISRs not exceed 2846 cycles, the “free” cycles accounted for in
the calculation.

Bandwidth Optimization

DMA and CPU Data Access Performance3-20 SPRU577A

3.3 Bandwidth Optimization

Understanding the time requirements of a system is crucial to building it
successfully. By knowing the time requirements for data I/O, and utilizing the
DSP timing information presented in the previous sections, it is possible to
design CPU and DMA activity to work as efficiently as possible to meet perfor-
mance goals.

There are typically multiple ways to implement tasks, both with the CPU and
with the DMA. Understanding the implications of the different options can allow
the best to be chosen.

3.3.1 Maximize DMA Bursts

The most important things to consider when accessing external memory is that
bursts are the most efficient way to access data. Data bursts are performed
through a non-synchronized or frame-synchronized DMA transfer. Each frame
is one continuous burst. To maximize data bandwidth, data should always be
transferred using the largest frame size possible, and should be transferred
as 32-bit elements regardless of the data size that will be used by the CPU.

Accessing 32-bit data with the DMA can be accomplished when the data
source is 16-bit or 8-bit by adding or organizing system hardware. If multiple
16-bit codecs are providing data I/O for the system, then two codecs can be
located per word address, with one on the lower 16-bits and the other on the
upper 16-bits, as shown in Figure 3−3. This allows for both to be accessed
simultaneously. This requires synchronization of the data streams to insure
that valid data is always read.

Figure 3−3. Combining External Peripherals

0

0 0

15

15 15

1631

16-bit codec 16-bit codec

C6x0x EMIF

Bandwidth Optimization

3-21DMA and CPU Data Access PerformanceSPRU577A

If only one 16-bit data I/O source is present, the system bandwidth is greatly
improved by providing an external latch, as shown in Figure 3−4. When an odd
16-bit data element arrives, latch it into one halfword on the data bus. When
an even 16-bit data element arrives, access both elements with a 32-bit transfer.
Thus, the bandwidth is effectively doubled.

If the cost is acceptable, an external FIFO could be placed between the data
source and the DSP to buffer a frame of data. A DMA channel could then burst
a full frame of data elements when the FIFO fills. By bursting data the band-
width of the system is maximized.

Figure 3−4. Converting a 16-Bit Peripheral to 32-Bit

1516 031

C6x0x EMIF

015

16-bit latch

015

16-bit codec

3.3.2 Minimizing CPU/DMA Conflict

As the CPU is optimized for internal accesses, it cannot burst data from external
memory. CPU data accesses should therefore be restricted to internal data
memory as much as possible. Using the DMA to page data in and out of internal
memory allows better processing speeds to be achieved.

Conflict between DMA channels, and between the CPU and DMA should be
minimized. When a high-priority DMA or CPU access interrupts a DMA burst,
cycles are lost as the burst is broken. By performing all CPU data accesses
in a single block (that is, one after the next in a small section of code), rather
than dispersed throughout a section of code, each data requestor can have
the full system bandwidth. The DMA burst is only interrupted a single time the
transfer rate is not heavily impacted.

In some systems the above solutions may not be practical, particularly if band-
width is restricted by hardware or by asynchronous events. If conflict cannot
be completely avoided, then bandwidth can still be efficiently used.

Bandwidth Optimization

DMA and CPU Data Access Performance3-22 SPRU577A

Sometimes the CPU must be used to access external memory. The most
frequent example is when all DMA channels are heavily used to perform other
tasks. In this case, it is more inefficient to save the context of a DMA channel,
then page data to internal memory, then restore the channel’s context.

If the CPU must be used to access external memory, the accesses should be
performed consecutively—either one serial instruction after another or in
parallel. This reduces the effect of interrupting a DMA burst to/from external
memory. Since there is a loss of several cycles in between accesses by the
DMA and CPU, these “lost” cycles can be minimized if the DMA burst is inter-
rupted only once per group of CPU accesses.

A-1Revision HistorySPRU577A

Appendix A

Revision History

Table A−1 lists the changes made since the previous version of this document.

Table A−1. Document Revision History

Page Additions/Modifications/Deletions

1-11 Changed the title in section 1.2.4.2 to Cache Invalidation.

Changed section 1.2.4.2 to: The tag RAM contains a valid bit for each line of the cache. When
a program enables the cache, tee PMEMC clears the valid bit for each tag entry. This invali-
dates the entire contents of the program cache and prepares it for use.

Programs can change the current cache mode by writing to the PCC field in CSR. The PMEMC
only invalidates its contents when it transitions out of the mapped-memory mode. In other
words, the PMEMC invalidates the cache’s contents when programs write 010b to PCC and the
PCC previous value was 000b.

The PMEMC halts the CPU while it initializes its tags. On the C6202(B) and C6203(B) DSPs,
the PMEMC allows DMA accesses to proceed to Block 0 during this initialization.

2-33−2-51 Updated symbolic values (symval) of the bits in Table 2−6 through Table 2−14.

Appendix A

Index

Index-1SPRU577A

Index

A
accessing data 3-2

DMA port crossing 3-12
DMA synchronization 3-10
external memory interface (EMIF) 3-3

CPU accesses 3-5
DMA accesses 3-6
memory timings 3-4

internal data memory 3-2
peripheral bus 3-3
resource contention 3-6

burst interruptions 3-9
switching between DMA channels 3-8

transferring to/from same resource 3-11
action complete pins 2-31
address adjustment with the global index registers

(GBLIDX) 2-14
address generation 2-14

address adjustment with the global index
registers (GBLIDX) 2-14

basic address adjustment 2-14
element size, alignment, and endianness 2-15
sorting 2-17
transferring a large single block 2-16
using a frame index to reload addresses 2-15

autoinitialization 2-7
AUXCTL 2-33
auxiliary control register (AUXCTL) 2-33
AUXPRI bit 2-33

B

bandwidth calculation 3-13
complex example 3-15
simple example using timing information 3-13

bandwidth optimization 3-20
maximize DMA bursts 3-20
minimizing CPU/DMA conflict 3-21

block diagrams
C620x/C670x DSP 1-2
data bus

C6201/C6701/C6202 DSP 2-25
C6202B/C6203(B)/C6204/C6205 DSP 2-28

data memory controller interconnect to other
banks
C6201/C6204/C6205 DSP 1-15
C6202(B) DSP 1-18
C6203(B) DSP 1-19
C6701 DSP 1-17

data paths 3-2
DMA controller 2-3
program memory controller

C6201/C6204/C6205/C6701 DSP 1-4
C6202(B)/C6203(B) DSP 1-5

BLOCKCOND bit 2-40

BLOCKIE bit 2-40

bootload operation 1-11

Index

Index-2 SPRU577A

C

cache
architecture 1-9
cache invalidation 1-11
miss 1-11
operation 1-9
usage of CPU address 1-10

cache architecture 1-9

cache operation 1-9

channel condition 2-23

CHPRI bits 2-33

CNTRLD bit 2-34

D

data memory
alignment 1-20
DMA accesses to 1-23
dual CPU access of 1-20
endianness 1-23
illegal access 1-23
internal 1-14
organization

C6201/C6204/C6205 DSP 1-14
C6202(B) DSP 1-18
C6203(B) DSP 1-19
C6701 DSP 1-15

data memory controller 1-13

destination address register (DST) 2-45

DMA auxiliary control register (AUXCTL) 2-33

DMA channel destination address register
(DST) 2-45

DMA channel primary control register
(PRICTL) 2-34

DMA channel secondary control register
(SECCTL) 2-40

DMA channel source address register (SRC) 2-45

DMA channel transfer counter register
(XFRCNT) 2-46

DMA controller, access to program memory 1-12

DMA controller structure 2-25
C6201/C6701/C6202 DSP 2-25

internal holding registers 2-28
read and write buses 2-26
shared FIFO 2-26

C6202B/C6203(B)/C6204/C6205 DSP 2-28
channel FIFOs 2-29
read and write buses 2-29
split-channel mode 2-30

operation 2-31
performance 2-31

DMA global address register (GBLADDR) 2-51

DMA global count reload register (GBLCNT) 2-48

DMA global index register (GBLIDX) 2-49

DMA terminology 2-4

DMACEN bits 2-40

DST 2-45

DST bits 2-45

DSTDIR bits 2-34

DSTRLD bits 2-34

E
ELECNT bits

in GBLCNT 2-48
in XFRCNT 2-47

ELEIDX bits 2-50

EMOD bit 2-34

emulator mode 2-32

endianness, data memory 1-23

ESIZE bits 2-34

F
FRAMECOND bit 2-40

FRAMEIE bit 2-40

FRMCNT bits
in GBLCNT 2-48
in XFRCNT 2-47

FRMIDX bits 2-50

FS bit 2-34

FSIG bit 2-40

Index

Index-3SPRU577A

G
GBLADDR 2-51
GBLADDR bits 2-51
GBLCNT 2-48
GBLIDX 2-49
global address register (GBLADDR) 2-51
global count reload register (GBLCNT) 2-48
global index register (GBLIDX) 2-49

I
illegal access to data memory 1-23
illegal access to program memory 1-12
INDEX bit 2-34
initiating a block transfer 2-6

DMA autoinitialization 2-7
DMA channel reload registers 2-8
register access protocol 2-6

internal data memory 1-14
internal data RAM address mapping 1-17
internal program memory 1-3
internal program memory modes 1-6

L
LASTCOND bit 2-40
LASTIE bit 2-40

M
memory

internal data 1-14
internal program 1-3

memory mapped operation 1-8
modes, internal program memory 1-3

O

operation
bootload 1-11
cache 1-9
memory mapped 1-8

overview
data memory controller 1-13
DMA and CPU data access performance 3-1
DMA controller 2-2
program memory controller 1-2

P

peripheral bus 1-26
byte and halfword access 1-26
causing CPU wait states 1-27
CPU/DMA arbitration 1-27

PRI bit 2-34

PRICTL 2-34

primary control register (PRICTL) 2-34

priority configuration 2-21
priority between DMA channels 2-21
switching channels 2-22

program memory
DMA controller access 1-12
illegal access 1-12
internal 1-3

program memory controller 1-2

Index

Index-4 SPRU577A

R
RDROPCOND bit 2-40
RDROPIE bit 2-40
registers 2-32

DMA auxiliary control register (AUXCTL) 2-33
DMA channel destination address register

(DST) 2-45
DMA channel primary control register

(PRICTL) 2-34
DMA channel secondary control register

(SECCTL) 2-40
DMA channel source address register

(SRC) 2-45
DMA channel transfer counter register

(XFRCNT) 2-46
DMA global address register (GBLADDR) 2-51
DMA global count reload register

(GBLCNT) 2-48
DMA global index register (GBLIDX) 2-49

resource arbitration 2-21
priority between DMA channels 2-21
switching channels 2-22

revision history A-1
RSPOL bit 2-40
RSYNC bits 2-34
RSYNCCLR bit 2-40
RSYNCSTAT bit 2-40

S
SECCTL 2-40
secondary control register (SECCTL) 2-40
source address register (SRC) 2-45
SPLIT bits 2-34
split-channel operation 2-19
SRC 2-45
SRC bits 2-45
SRCDIR bits 2-34
SRCRLD bits 2-34
START bits 2-34
STATUS bits 2-34
SXCOND bit 2-40
SXIE bit 2-40
synchronization 2-9

T
TCINT bit 2-34
transfer counter register (XFRCNT) 2-46
transferring a large single block 2-16
triggering DMA transfers 2-9

automated event clearing 2-11
latching of DMA channel event flags 2-11
synchronization control 2-12
synchronization events 2-10

U
using a frame index to reload addresses 2-15

W
WDROPCOND bit 2-40
WDROPIE bit 2-40
WSPOL bit 2-40
WSYNC bits 2-34
WSYNCCLR bit 2-40
WSYNCSTAT bit 2-40

X
XFRCNT 2-46

	Title Page - SPRU577A
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Chapter 1: TMS320C620x/C670x Internal Memory
	1.1 Program Memory Controller
	1.2 Internal Program Memory
	1.2.1 Internal Program Memory Modes
	1.2.2 Memory Mapped Operation
	1.2.3 Cache Operation
	1.2.4 Cache Architecture
	1.2.4.1 Cache Usage of CPU Address
	1.2.4.2 Cache Invalidation
	1.2.4.3 Line Replacement

	1.2.5 Bootload Operation
	1.2.6 DMA Controller Access to Program Memory
	1.2.7 Illegal Access to Program Memory

	1.3 Data Memory Controller
	1.3.1 Data Memory Access

	1.4 Internal Data Memory
	1.4.1 TMS320C6201/C6204/C6205 DSP
	1.4.2 TMS320C6701 DSP
	1.4.3 TMS320C6202(B) DSP
	1.4.4 TMS320C6203(B) DSP
	1.4.5 Data Alignment
	1.4.6 Dual CPU Accesses to Internal Memory
	1.4.7 DMA Accesses to Internal Memory
	1.4.8 Illegal Access to Data Memory
	1.4.9 Data Endianness

	1.5 Peripheral Bus
	1.5.1 Byte and Halfword Access
	1.5.2 CPU Wait States
	1.5.3 Arbitration Between the CPU and the DMA Controller

	Chapter 2: Direct Memory Access (DMA) Controller
	2.1 Overview
	2.2 DMA Terminology
	2.3 Initiating a Block Transfer
	2.3.1 Register Access Protocol
	2.3.2 DMA Autoinitialization
	2.3.3 DMA Channel Reload Registers

	2.4 Synchronization: Triggering DMA Transfers
	2.4.1 Latching of DMA Channel Event Flags
	2.4.2 Automated Event Clearing
	2.4.3 Synchronization Control

	2.5 Address Generation
	2.5.1 Basic Address Adjustment
	2.5.2 Address Adjustment with the Global Index Registers
	2.5.3 Element Size, Alignment, and Endianness
	2.5.4 Using a Frame Index to Reload Addresses
	2.5.5 Transferring a Large Single Block
	2.5.6 Sorting

	2.6 Split-Channel Operation
	2.7 Resource Arbitration and Priority Configuration
	2.7.1 Priority Between DMA Channels
	2.7.2 Switching Channels

	2.8 DMA Channel Condition Determination
	2.9 DMA Controller Structure
	2.9.1 TMS320C6201/C6701/C6202 DMA Structure
	2.9.1.1 Read and Write Buses
	2.9.1.2 Shared FIFO
	2.9.1.3 Internal Holding Registers

	2.9.2 TMS320C6202B/C6203(B)/C6204/C6205 DMA Structure
	2.9.2.1 Read and Write Buses
	2.9.2.2 Channel FIFOs
	2.9.2.3 Split-Channel Mode

	2.9.3 Operation
	2.9.4 Performance

	2.10 DMA Action Complete Pins
	2.11 Emulation
	2.12 DMA Controller Registers
	2.12.1 DMA Auxiliary Control Register (AUXCTL)
	2.12.2 DMA Channel Primary Control Registers (PRICTL0-3)
	2.12.3 DMA Channel Secondary Control Registers (SECCTL0-3)
	2.12.4 DMA Channel Source Address Registers (SRC0-3)
	2.12.5 DMA Channel Destination Address Registers (DST0-3)
	2.12.6 DMA Channel Transfer Counter Registers (XFRCNT0-3)
	2.12.7 DMA Global Count Reload Registers (GBLCNTA-B)
	2.12.8 DMA Global Index Registers (GBLIDXA-B)
	2.12.9 DMA Global Address Registers (GBLADDRA-D)

	Chapter 3: DMA and CPU Data Access Performance
	3.1 Accessing Data
	3.1.1 Internal Data Memory
	3.1.2 Peripheral Bus
	3.1.3 External Memory Interface (EMIF)
	3.1.3.1 Memory Timings
	3.1.3.2 CPU Accesses
	3.1.3.3 DMA Accesses

	3.1.4 Resource Contention
	3.1.4.1 Switching Between DMA Channels
	3.1.4.2 Burst Interruptions
	Multiple Frames and Autoinitialization
	Servicing a McBSP or Host Access
	Internal Auxiliary Channel Access

	3.1.5 DMA Synchronization
	3.1.6 Transferring To/From Same Resource
	3.1.7 DMA Port Crossing

	3.2 Bandwidth Calculation
	3.2.1 Simple Bandwidth Calculation Example Using Timing Information
	3.2.2 Complex Bandwidth Calculation Example
	3.2.2.1 DMA Channel Selection
	3.2.2.2 Comparison of 1.8V/2.5V Devices to 1.5V Device

	3.3 Bandwidth Optimization
	3.3.1 Maximize DMA Bursts
	3.3.2 Minimizing CPU/DMA Conflict

	Appendix A: Revision History
	Index

