

Reference Design

Lighting Power Products Longmont Design Center

LM3444 MR16 Boost Reference Design for Non-Dimming & Dimming LED Applications

Feb 13, 2012 Revision 3.0

Table of Contents

MR16 Halogen/SSL Retro-Fit Analysis	3
Differences between Magnetic and Electronic Transformers	3
SSL MR16 lamps compatibility concerns with ELVT and ELV dimmers (true retro-fit)	3
Halogen vs SSL MR16 waveforms	4
Halogen MR16	5
LM3444 MR16 Boost Reference Design	7
Operating Specifications	7
Schematic	8
PCB Layout	8
Bill of Materials	9
Typical Performance	
Dimming Waveforms	13
Thermal Analysis	15
Reference Design Transformer Compatibility	16
Performance with and without Transformer	17
Revision History	20

MR16 Halogen/SSL Retro-Fit Analysis

Differences between Magnetic and Electronic Transformers

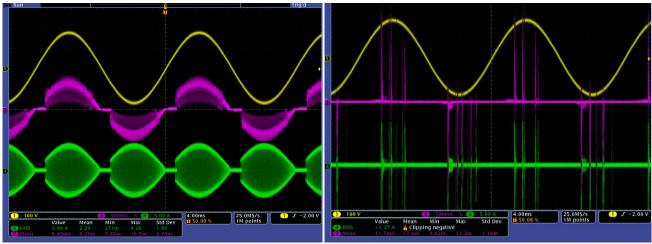
Magnetic Transformers

Magnetic transformers step down 120VAC line voltage to 12VAC. Magnetic transformers consist only of magnetic core, and copper wire, no electronics are used to step down the voltage from 120VAC to 12VAC. Due to the fact that the frequency of operation is 50Hz or 60Hz, the size of the Magnetic transformers is large and heavy. Magnetic transformers are primarily available in two types of construction; torroidal and laminated EI core.

With existing Halogen MR16 systems that require dimming, Magnetic Low Voltage Dimmers are required to be used.

Electronic Transformers

Electronic transformers also step down 120VAC line voltage to 12VAC. Electronic transformers are much smaller and more efficient than magnetic transformers. Electronic transformers are more common than magnetic transformers in existing Halogen MR16 system. Electronic Low Voltage Transformers (ELVT) consists of a small self resonant tank power supply. Electronic Low Voltage Dimmers (ELV dimmers) are used with ELVT for dimming systems.


Although electronic transformers are more complex, with many more components, that their magnetic counterparts, electronic transformers are far less expensive and smaller. The shear amount of core material and copper within a magnetic transformer adds cost, and the weight of the product makes it expensive to manufacture, and ship.

SSL MR16 lamps compatibility concerns with ELVT and ELV dimmers (true retro-fit)

Electronic transformers modulate (PWM) the input AC voltage with a frequency of 35 kHz to150 kHz. This waveform is step-down from 120V or 230V (typical) to 12VAC with a transformer. The higher switching frequency allows for the smaller magnetic components, and the overall smaller design. As mentioned earlier, the electronic transformer is a self driven resonant half bridge topology. The self resonance half-bridge topology requires the converter to have a minimal load at all times to function properly. Common minimum loads for ELV dimmers are from 6W – 12W depending on manufacture, and maximum power rating of the ELVT. With traditional Halogen lamps, the minimal load is of no concern, common Halogen MR16 lamps use about 50W of power per lamp. These lamps are very inefficient, and 10W of Halogen power produces very little light.

With the current efficacy of the LEDs above 100 lumens per watt, 6W of SSL power is equivalent to about 40W to 50W of Halogen power. One can quickly see the compatibility issue of SSL MR16 lamps and the ELVT's. If the output power of the ELVT reduces below the minimum requirement, the ELV dimmer will stop operating. The turning on, and off of the ELVT will cause visible flicker from the SSL MR16 lamp, and could also cause reliability issues with the lamp or ELVT.

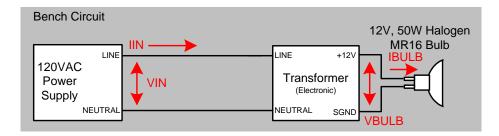
Halogen vs SSL MR16 waveforms

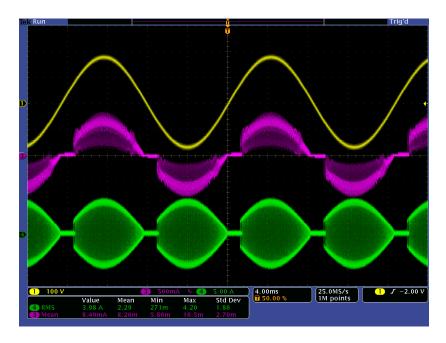
Halogen MR16 waveforms

Improper SSL MR16 operating waveform

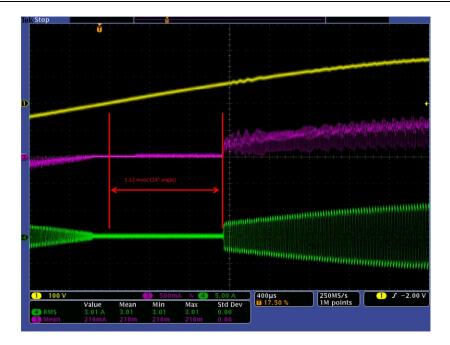
- Channel 1 (yellow trace) = Input line voltage
- > Channel 3 (purple trace) = Input line current
- Channel 4 (green trace) = bulb current

Issue #1 - The two scope captures above illustrate the SSL MR16 technical challenges. Figure one shows typical Halogen MR16 waveforms, and figure two is common MR16 replacement bulbs waveforms. The SSL replacement bulb looks capacitive to the ELVT; therefore large current spikes charge the energy storage device within the SSL MR16 bulb. The switching converter within the bulb then processes the input power from the energy storage element to the LED load. At this time the minimum load requirement of the ELVT is not satisfied, and the ELVT turns off. Once the energy is depleted within the MR16 converter, the ELVT will start up, and the process cycles. The turning off/on of the ELVT will manifest itself as visible flicker.

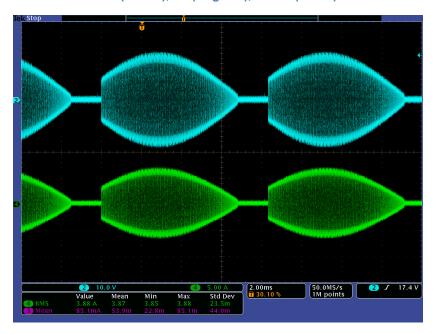

Issue #2 – The maximum input current to the Halogen bulb is approximately 4.25A. The maximum input current to the SSL bulb is approximately 12A. The large magnitude spike associated with charging the SSL MR16 input capacitor can cause premature failures within the SSL bulb, or even the ELVT.


Halogen MR16

<u>Summary:</u> No flickering observed. There is a delay (1.12ms, 24° angle) from when the supply voltage starts ramping up from zero volts to when the electronic transformer starts to operate and the bulb turns on. This delay shows up on the LED MR16s as well although the magnitude of delay does vary from bulb to bulb. No current spikes observed out of the transformer.



The bench set-up diagram below was used in the evaluation of the halogen MR16 bulb. The following scope plots show voltage and current waveforms designated by the labels indicated in the bench set-up diagram. The electronic transformer used was the Lightech LET-75.



VIN (Yellow), IIN (Magenta), IBULB (Green)

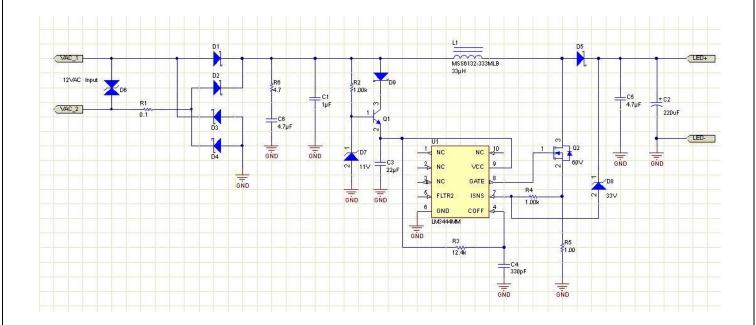
VIN (Yellow), IIN (Magenta), IBULB (Green)

VBULB (Blue), IBULB (Green)

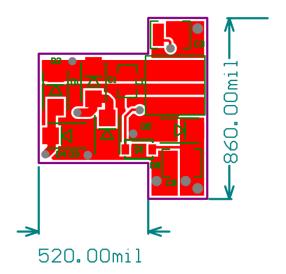
LM3444 Boost MR16 Reference Design

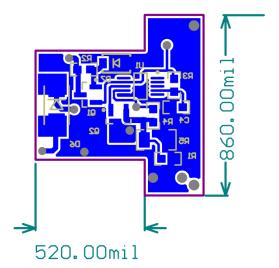
This reference design was based on the released LM3444 IC from National Semiconductor.

This design was developed to minimize the current spikes coming out of an electronic transformer to less than 5A, which is a typical transformer rating, when driving an LED MR16 circuit. The off the shelf LED MR16 solutions exhibit spikes that significantly exceed a transformer's maximum rated output current which will degrade the reliability of the transformer and reduce its operating lifetime.


This design generates a continuous LED current when a 220uF 35V electrolytic capacitor is placed across the output. The circuit operates in a constant output power mode. The output power is fixed at about 6W.

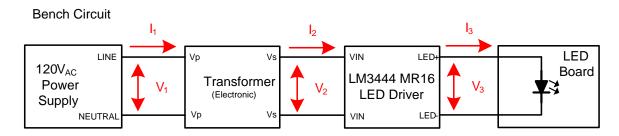
Operating Specifications

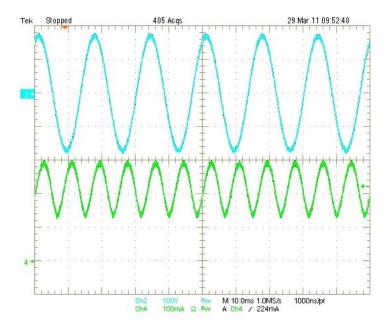

NOTE: The following specifications are typical values based on the LED driver being <u>powered directly by a 12VAC supply</u> (i.e. no electronic or magnetic step-down transformer).


Input Voltage, V _{IN} :	12 VAC
Output Voltage, V _{OUT} :	
Input Current, I _{IN}	
LED Output Current, I _{LED}	
Input Power, P _{IN}	
Output Power, P _{OUT}	
Efficiency	
Power Factor	
1 OWCI I doloi	
Input Voltage, V _{IN} :	12 VAC
Output Voltage, V _{OUT} :	
Input Current, I _{IN}	, , ,
LED Output Current, I _{LED}	240mA
Input Power, P _{IN}	~ 7.7W
Output Power, Pout	~ 6.4W
Efficiency	~ 83 %
Power Factor	~ 0.95
Lee (Mallere M	401/40
Input Voltage, V _{IN} :	
Output Voltage, V _{OUT} :	
Input Current, I _{IN}	
LED Output Current, I _{LED}	
Input Power, P _{IN}	
Output Power, P _{OUT}	
Efficiency	
Power Factor	~ 0.95
SMPS Topology	Boost

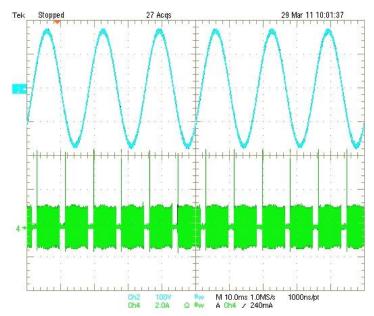
PCB Schematic

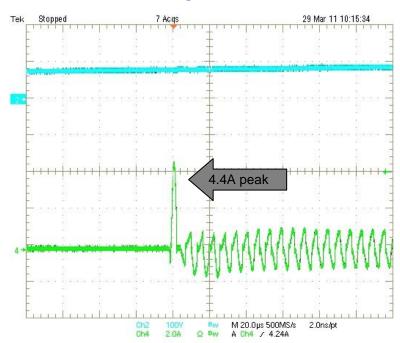
PCB Layout

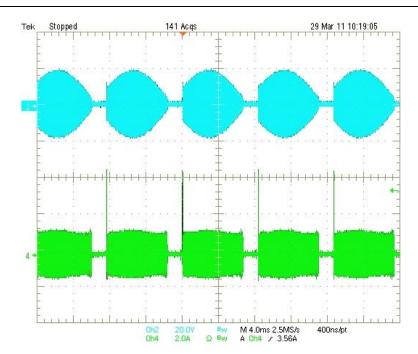



Bill of Materials

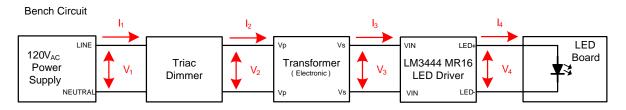
Designator	Description	MFG	Part Number
C1	CAP, CERM, 1.0uF, 25V, +/-10%, X5R, 0805	MuRata	GRM216R61E105KA12D
C2	CAP, ELECT, 220uF, 35V, +/-20%, Radial 8x11.5mm	Panasonic	ECA-1VHG221
C3	CAP, CERM, 22uF, 25V, +/-10%, X5R, 1210	MuRata	GRM32ER61E226KE15L
C4	CAP, CERM, 330pF, 100V, +/-5%, X7R, 0603	AVX	06031C331JAT2A
C5	CAP, CERM, 4.7uF, 50V, +/-10%, X7R, 1210	MuRata	GRM32ER71H475KA882
C6	CAP, CERM, 4.7uF, 25V, +/-10%, X5R, 0805	MuRata	GRM21BR61E475KA12L
D1-D4	Diode, Schottky, 30V, 3A, SMA	Diodes Inc.	B330A-13-F
D5	Diode, Schottky, 60V, 1A, SMA	Diodes Inc.	B160-13-F
D6	TVS BI-DIR 24V 400W SMA (Optional)	Diodes Inc	SMAJ24CA-13-F
D7	Diode, Zener, 11V, 500mW, SOD-123	Central Semiconductor	CMHZ4698
D8	Diode, Zener, 33V, 500mW, SOD-123	Central Semiconductor	CMHZ4714
D9	Diode, Schottky, 75V, 150mA, SOD-323	Fairchild	1N4148WS
L1	Ind, Shielded Drum Core, Ferrite, 33uH, 1.1A, 0.31 ohm, SMD	Coilcraft	MSS6132-333MLB
Q1	Transistor, NPN, 80V, 500mA, SOT-23	Central Semiconductor	CMPTA06
Q2	MOSFET, N-CH, 60V, 1.2A, SOT-23	Diodes Inc.	ZXMN6A07FTA
R1	RES, 0.1 ohm, 5%, 0.125W, 0805	Panasonic	ERJ-6RSJR10V
R2, R4	RES, 1.00k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031K00FKEA
R3	RES, 12.4k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060312k4FKEA
R5	RES, 1.00 ohm, 1%, 0.5W, 1206	Stackpole Electronics Inc	CSR1206FK1R00
R6	RES, 4.7 ohm, 5%, 0.125W, 0805	Yageo	RC0805JR-074R7L
U1	AC-DC Off Line LED Driver	National Semiconductor	LM3444MM


Typical Performance (Eight series LEDs)


The following scope plots show voltage and current waveforms designated by the labels indicated in the following bench set-up diagram. The electronic transformer used was the Lightech LET-75.

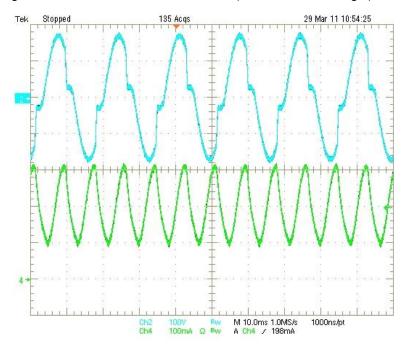

CH2 V1 Voltage, CH4 I3 Current

CH2 V1 Voltage, CH4 I2 Current

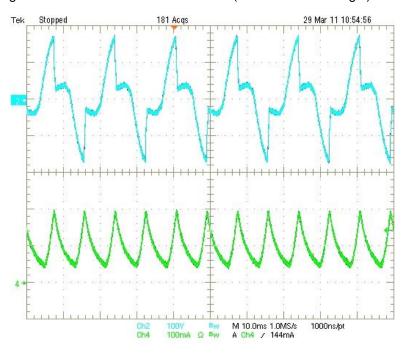


CH2 V1 Voltage, CH4 I2 Current

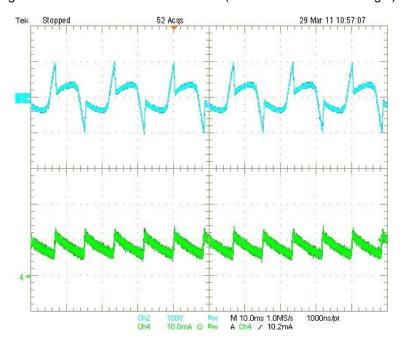
CH2 V2 Voltage, CH4 I2 Current


LM3444 MR16 Boost evaluation board Dimming Waveforms

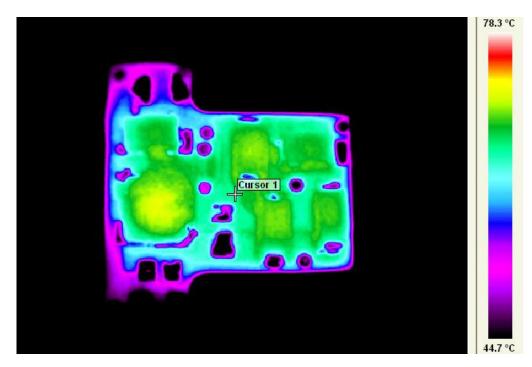
This LM3444 MR16 Boost evaluation board is designed to operate (flicker-free) with common Electronic Low Voltage dimmers, and Electronic Transformers.

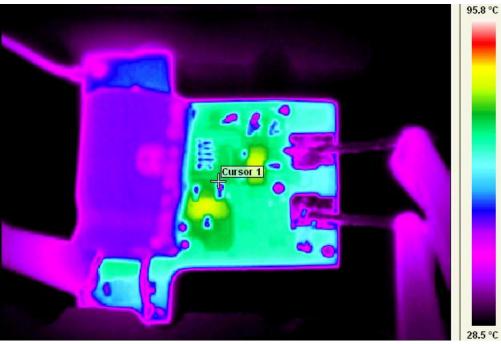

- Dimmer Used Lutron SELV-300P-GR
- Electronic Transformer Lightech LET75
- 20:1 dimming ratio

LM3444 MR16 Boost - Eight series connected LEDs at 200mA (90° Conduction Angle)


CH2 V2 Voltage, CH4 I4 Current

LM3444 MR16 Boost - Eight series connected LEDs at 100mA (45° Conduction Angle)


CH2 V2 Voltage, CH4 I4 Current


LM3444 MR16 Boost - Eight series connected LEDs at 10mA (minimum Conduction Angle)

CH2 V2 Voltage, CH4 I4 Current

Thermal Analysis

Reference Design Transformer Compatibility

The following transformers were tested with the National LED driver designs described in this document. A compatibility matrix is shown below which describes which driver/transformer combinations are suitable (i.e. no flicker, stable operation).

Electronic Transformers (120VAC to 12VAC):

Lightech, Model: LET-60, 60W Lightech, Model: LET-75, 75W Lightech, Model: LET-60 LW, 60W Hatch, Model: RS12-80M, 80W Hatch, Model: RS12-60, 60W Pony, Model: PET-120-12-60, 60W Eurofase, Model: 0084 CLASS 2, 60W

Magnetic Transformers (120VAC to 12VAC):

Hatch, Model: LS1275EN, 75VA

Performance with 7 LEDs

Performance without transformer

The table below compares the performance of each reference design when powered directly by a 12VAC source

Specs	LM3441 BOOST 7 LEDs	Units
V _{IN}	11.91	VAC
I _{IN}	0.708	Α
P _{IN}	7.97	W
V _{OUT} ⁽¹⁾	23.55	VDC
I _{LED} (1)	0.281	Α
P _{OUT} (2)	6.62	W
Efficiency	83.0%	-
Power Factor	0.948	-

Performance with transformer

LET-75

Specs	LM3444 BOOST 7 LEDs	Units
V _{IN}	120	VAC
I _{IN}	0.07	Α
P _{IN}	8.18	W
V _{OUT} (1)	23.5	VDC
I _{LED} ⁽¹⁾	0.270	Α
P _{OUT} (2)	6.23	W
Efficiency	77.6%	-
Power Factor	0.970	-

HATCH RS12-80M

Specs	LM3444 BOOST 7 LEDs	Units
V _{IN}	120	VAC
I _{IN}	0.072	Α
P _{IN}	8.13	W
V _{OUT}	23.5	VDC
I _{LED}	0.270	Α
P _{OUT}	6.23	W
Efficiency	78.0%	-
Power Factor	0.934	-

Performance with 8 LEDs

Performance without transformer

The table below compares the performance of each reference design when powered directly by a 12VAC source

Specs	LM3441 BOOST 8 LEDs	Units
V _{IN}	11.91	VAC
I _{IN}	0.682	Α
P _{IN}	7.66	W
V _{OUT} (1)	26.64	VDC
I _{LED} (1)	0.238	Α
P _{OUT} (2)	6.34	W
Efficiency	82.8%	-
Power Factor	0.946	-

Performance with transformer

LET-75

Specs	LM3444 BOOST 8 LEDs	Units
V_{IN}	120	VAC
I _{IN}	0.067	Α
P _{IN}	7.86	W
V _{OUT}	26.5	VDC
I _{LED}	0.230	Α
P _{OUT}	6.10	W
Efficiency	77.5%	-
Power Factor	0.970	-

HATCH RS12-80M

Specs	LM3444 BOOST 8 LEDs	Units
V _{IN}	120	VAC
I _{IN}	0.069	Α
P _{IN}	7.82	W
V _{OUT}	26.5	VDC
I _{LED}	0.230	Α
P _{OUT}	6.10	W
Efficiency	77.9%	-
Power Factor	0.930	-

Performance with 9 LEDs

Performance without transformer

The table below compares the performance of each reference design when powered directly by a 12VAC source

Specs	LM3441 BOOST 9 LEDs	Units
V _{IN}	11.92	VAC
I _{IN}	0.668	Α
P _{IN}	7.51	W
V _{OUT} ⁽¹⁾	28.25	VDC
I _{LED} (1)	0.220	Α
P _{OUT} (2)	6.22	W
Efficiency	82.8%	-
Power Factor	0.946	-

Performance with transformer

LET-75

Specs	LM3444 BOOST 9 LEDs	Units
V _{IN}	120	VAC
I _{IN}	0.066	Α
P _{IN}	7.74	W
V _{OUT}	28.0	VDC
I _{LED}	0.215	Α
P _{OUT}	6.02	W
Efficiency	77.8%	-
Power Factor	0.970	-

HATCH RS12-80M

Specs	LM3444 BOOST 9 LEDs	Units
V _{IN}	120	VAC
I _{IN}	0.068	Α
P _{IN}	7.64	W
V _{OUT}	28.0	VDC
I _{LED}	0.212	Α
P _{OUT}	5.94	W
Efficiency	77.7%	-
Power Factor	0.930	-

Revision History

Date	Author	Revision	Description
10/14/2011	David Zhang	2	Added D9
02/13/2012	David Zhang	3	Change D9 P/N

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors**

TI E2E Community Home Page

www.ti.com/omap

www.ti.com/wirelessconnectivity

e2e.ti.com