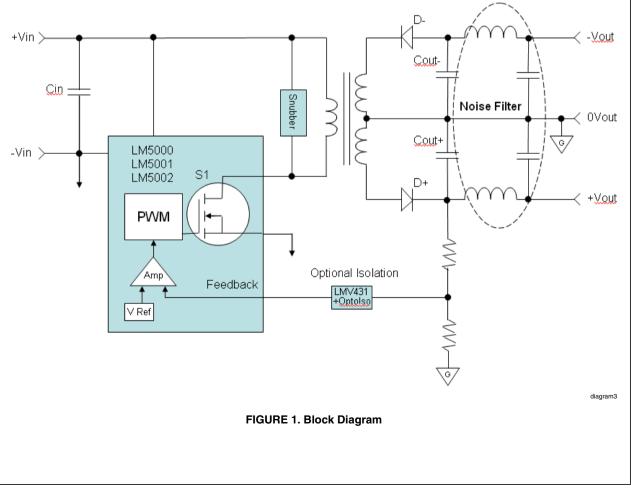
Low Noise Split Rail Non-Isolated Power Supply

National Semiconductor RD-184 Robert Hanrahan August 17, 2010

1.0 Design Specifications

Inputs	Output #1	Output #2
VinMin=4.5V	Vout1=12V	Vout2=-12V
VinMax=5.5V	lout1=.04A	lout2=.04A

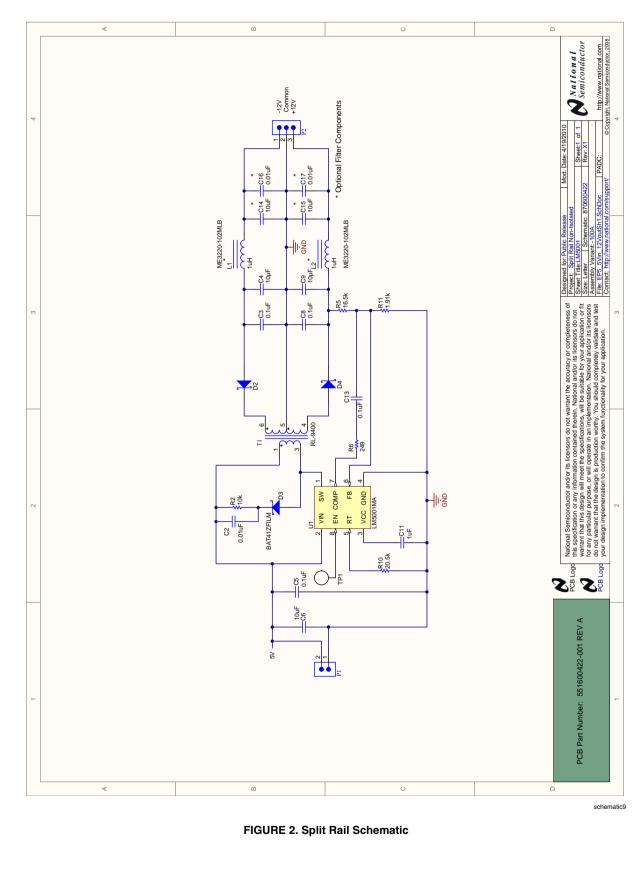

2.0 Design Description

This circuit boosts 5V to a low noise +/- 12V bias at 40mA for use in analog circuitry. This design uses the LM5001 fully integrated switch mode regulator in concert with a very small EP5 transformer to create a non-isolated positive and negative power rail (for isolation see RD-171). This design uses less than 1 square inch of double sided PCB with components on only one side. The same basic circuit can be used to develop other voltages such as +/- 15V or +/- 5V.

3.0 Features5V Input

- +/- 12V Outputs
- Over 40mA Output Current
- Low Ripple Noise for split rail analog circuits (< 2mV p-p)
- Small Size ~1" x 1"

4.0 Block Diagram



RD-

84

5.0 Schematic

Designator	Description	Manufacturer	Part Number	RoHS
AA	Printed Circuit Board	TBD		0
C2, C16, C17	Ceramic, X7R, 50V, 10%	TDK	C1608X7R1H103K	≻
C3, C8	Ceramic, X7R, 50V, 5%	Kemet	C0805C104J5RACTU	≻
C4, C9	CAP, CERM, 10uF, 16V, +/-20%, X5R, 0805	AVX	0805YD106MAT2A	Y
C5, C13	Ceramic, X7R, 25V, 10%	MuRata	GRM188R71E104KA01D	Y
CG	Ceramic, X5R, 10V, 10%	Kemet	C1210C106K8PACTU	Y
C11	Ceramic, X7R, 16V, 10%	MuRata	GRM188R71C105KA12D	≻
C14, C15	C14, C15 Ceramic, X5R, 16V, 10%	Taiyo Yuden	EMK212BJ106KG-T	≻
D2, D4	Diode, Schottky, 60V, 1A, SOD-123F	NXP Semiconductor	PMEG6010CEH,115	Y
D3	Vr = 100V, lo = 0.2A, Vf = 1V	ST Microelectronics	BAT41ZFILM	≻
L1, L2	Drum Core, 2.6A, 0.058 Ohm	Coilcraft Inc.	ME3220-102MLB	Y
P1	Header, TH, 100mil, 1x2, Tin plated, 230 mil above insulator	Samtec Inc.	TSW-102-07-T-S	≻
P2	Header, TH, 100mil, 1x3, Tin plated, 230 mil above insulator	Samtec Inc.	TSW-103-07-T-S	≻
R2	5%, 0.1W	Vishay-Dale	CRCW060310k0JNEA	Y
R5	1%, 0.1W	Vishay-Dale	CRCW060316k5FKEA	Y
RG	1%, 0.1W	Vishay-Dale	CRCW0603249RFKEA	≻
R10	1%, 0.1W	Vishay-Dale	CRCW060320k5FKEA	Y
R11	RES, 1.91k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031K91FKEA	Y
T1	Flyback Transfomer	Renco Electronics, Inc.	RL-9400	Y
U1	High Voltage Switch Mode Regulator	National Semiconductor LM5001MA	LM5001MA	≻

6.0 Bill of Materials

FIGURE 3. Reference Design Bill of Materials-5Vin12VOut_1(-100A)

schematic6

www.national.com

7.0 Other Operating Values

Operating Values

Description	Parameter	Value	Unit
Modulation Frequency	Frequency	600	KHz
Total output power	Pout	1.2	W
Steady State Efficiency	Efficiency	>80	%
Peak-to-peak ripple noise	Vout p-p	<2	mV

8.0 Board Photos

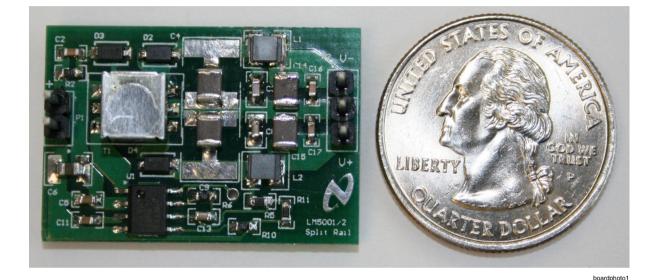
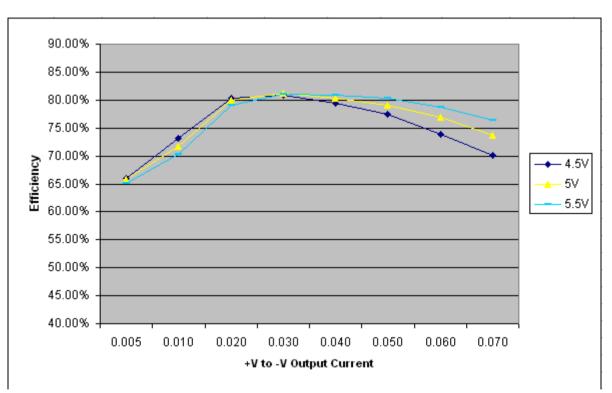


FIGURE 4. +/- Split Rail


9.0 Hardware Description

The circuit employs a LM5001 regulator in a flyback configuration to produce +12 and -12V (see fig. 2). During the first phase the switch within the regulator is turned on connecting U1 pin 1 to ground causing current to flow through the primary of the transformer (T1). During the second phase, the switch is open and the energy stored in the core is delivered to the secondary's. Also during this phase diode D3 is turned on and C2/R2 act as a snubber to limit transient noise while the primary field collapses. The output voltages are rectified by catch diodes D2 and D4 and filtered by C3, C4, C8, and C9. When D2 and D4 turn off one must be careful to ensure that the peak inverse voltage on the secondary does not exceed the maximum reverse voltage specification of the diodes (Vr). Although the average voltage across the diodes is about 28V, the peak voltage can be significantly higher. With this design transients were measured up to 47V when delivering 40mA. For this reason diodes with 60V Vr rating or higher are required unless a snubber circuit is employed. An RC across D2 and D4 would limit this transient voltage at the expense of additional power loss. Additional noise filtering is performed by L2/C15 for the positive and L1/C14 for the negative output. This additional filtering is not necessary but does significantly reduce the switching ripple and transient noise. C4 and C9 can be increased to 47uF ceramic capacitors to further decrease output noise.

10.0 Test Results

The test results were obtained at room temperature using the following equipment: Agilent E3632A Power Supply Kikusui PLZA 164W Electronic Load LeCroy 454 Oscilloscope LeCroy AP033 Differential Probe HP 3478A Multimeter Fluke 189 Multimeter

11.0 Appendix

image

FIGURE 5. Efficiency Graph

Vin	lout(A)	lin (A)	V+	V-	Vout Diff	Pin (W)	Pout (W)	Efficiency
4,500	0.005	0.041	12.184	-12.190	24.374	0.185	0.122	66.05%
4.500	0.005	0.041	12.104	-12.130	24.374	0.333	0.122	73.19%
4.500	0.020	0.135	12.185	-12.188	24.373	0.608	0.487	80.24%
4.500	0.030	0.201	12.186	-12.188	24.374	0.905	0.731	80.84%
4.500	0.040	0.273	12.188	-12.192	24.380	1.229	0.975	79.38%
4.500	0.050	0.350	12.187	-12.192	24.379	1.575	1.219	77.39%
4.500	0.060	0.439	12.166	-12.164	24.330	1.976	1.460	73.90%
4.500	0.070	0.459	10.309	-10.378	20.687	2.066	1.448	70.11%
5.000	0.005	0.037	12.180	-12.186	24.366	0.185	0.122	65.85%
5.000	0.010	0.068	12.180	-12.184	24.364	0.340	0.244	71.66%
5.000	0.020	0.122	12.180	-12.184	24.364	0.610	0.487	79.88%
5.000	0.030	0.180	12.182	-12.184	24.366	0.900	0.731	81.22%
5.000	0.040	0.243	12.183	-12.189	24.372	1.215	0.975	80.24%
5.000	0.050	0.308	12.183	-12.187	24.370	1.540	1.219	79.12%
5.000	0.060	0.380	12.184	-12.188	24.372	1.900	1.462	76.96%
5.000	0.070	0.463	12.184	-12.186	24.370	2.315	1.706	73.69%
5.500	0.005	0.034	12.176	-12.183	24.359	0.187	0.122	65.13%
5.500	0.010	0.063	12.184	-12.173	24.357	0.347	0.244	70.29%
5.500	0.020	0.112	12.184	-12.173	24.357	0.616	0.487	79.08%
5.500	0.030	0.164	12.180	-12.181	24.361	0.902	0.731	81.02%
5.500	0.040	0.219	12.180	-12.183	24.363	1.205	0.975	80.91%
5.500	0.050	0.276	12.180	-12.184	24.364	1.518	1.218	80.25%
5.500	0.060	0.338	12.181	-12.184	24.365	1.859	1.462	78.64%
5.500	0.070	0.406	12.181	-12.184	24.365	2.233	1.706	76.38%

image1

FIGURE 6. Measured Data

	_		
Vout+	lout+	Vout-	lout-
12.170	0.005	-7.160	0.036
12.181	0.010	12.020	0.036
12.181	0.025	12.182	0.036
12.181	0.050	12.251	0.036
12.182	0.070	12.363	0.036
12.181	0.036	-12.406	0.005
12.181	0.036	-12.358	0.010
12.182	0.036	-12.259	0.025
12.183	0.036	-12.120	0.050
12.183	0.036	-12.011	0.070

other

FIGURE 7. Cross Regulation

RD-184

National Semiconductor's design tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Reference designs are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the reference design is built. National and/or its licensors do not warrant the accuracy or completeness of the specifications or any information contained therein. National and/or its licensors do not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National and/or its licensors do not warrant that the designs are production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYS-TEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICON-DUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, 2.

 (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

RD-184

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tei: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated