

DS90Ux941AS-Q1EVM User's Guide

The DS90Ux941AS-Q1EVM (Evaluation Module) converts DSI to FPD-Link III. This kit will demonstrate the functionality and operation of the DS90Ux941AS-Q1. The DS90Ux941AS-Q1 is a DSI to FPD-Link III Serializer which, in conjunction with the DS90Ux940-Q1/DS90Ux948-Q1 Deserializers, takes the data from a DSI serial stream and translates it into either single- or dual-lane FPD-Link III interface. The DS90Ux941AS-Q1 serializes a MIPI DSI input supporting video resolutions up to 2K, WUXGA and 1080p60 with 24-bit color depth.

Contents

1	Genera	al Description	3
2	Feature	es	3
3	System	n Requirements	4
4	Conten	ts of the Demo Evaluation Kit	4
5	Applica	ations Diagram	4
6	Typical	I Configuration	4
7	Quick S	Start Guide	5
8	Default	t Jumper Settings	6
9	Default	t Switch Settings	6
10	Demo I	Board Connections	6
11	ALP So	oftware Setup	10
12	Trouble	eshooting ALP Software	19
13	Typical	I Connection and Test Equipment	23
14	Equipm	nent References	24
15	Cable I	References	24
Appen	dix A	EVM PCB Schematics	29
Appen	dix B	Board Layout	36

List of Figures

1	Applications Diagram	4
2	Typical Configuration	4
3	Interfacing to the EVM	5
4	Launching ALP	11
5	Initial ALP Screen	11
6	Follow-Up Screen	12
7	ALP Information Tab	13
8	ALP Pattern Generator Tab	14
9	ALP Registers Tab	15
10	ALP Device ID Selected	16
11	ALP Device ID Expanded	17
12	ALP Scripting Tab	18
13	USB2ANY Setup	19
14	Remove Incorrect Profile	19
15	Add Correct Profile	20
16	Finish Setup	20
17	ALP No Devices Error	21

1

40	We down 40, ALD LICD Debug	~
18	Windows 10, ALP USB Driver	21
19	ALP in Demo Mode	22
20	ALP Preferences Menu	22
21	Typical Test Setup for Video Application	23
22	Typical Test Setup for Evaluation	23
23	Top Level Schematic	29
24	Main Schematic	30
25	Configuration Schematic	31
26	Schematic Connectors	32
27	Power Schematic	33
28	Audio Schematic	34
29	USB2Any Schematic	35
30	Top Overlay	36
31	Top Solder	37
32	Layer1 Top	38
33	Layer 6 Bottom	39
34	Layer6 Solder Bottom	40
35	Layer6 Bottom Overlay	41
36	Drill Drawing	42
37	Board Dimensions	43

List of Tables

1	Default Board Jumper Settings	6
2	Default Board Switch Settings	6
3	Power Supply	6
4	FPD-Link III Output Signals P1	6
5	DSI Input Signals	7
6	USB2ANY Connector	7
7	I2C/CCI Interface Header	7
8	GPIO/Audio Interface	7
9	SPI/D_GPIO Interface	8
10	MODE_SEL[1:0] Settings	8
11	Configuration Select (MODE_SEL0) - SW-DIP8 - S2	8
12	Configuration Select (MODE_SEL1) - SW-DIP8 - S6	9
13	IDx SW-DIP8 - S3	9
14	Bill of Materials	25

Trademarks

2

All trademarks are the property of their respective owners.

1 General Description

The DS90Ux941AS-Q1EVM (Evaluation Module) converts DSI to FPD-Link III. This kit will demonstrate the functionality and operation of the DS90Ux941AS-Q1. The DS90Ux941AS-Q1 is a DSI to FPD-Link III Serializer which, in conjunction with the DS90Ux940-Q1/DS90Ux948-Q1 Deserializers, takes the data from a DSI serial stream and translates it into either single- or dual-lane FPD-Link III interface. The DS90Ux941AS-Q1 serializes a MIPI DSI input supporting video resolutions up to 2K, WUXGA and 1080p60 with 24-bit color depth.

The FPD-Link III interface supports video and audio data transmission and full duplex control, including I2C communication, over the same differential link. Consolidation of video data and control over two differential pairs reduces the interconnect size and weight and simplifies system design. EMI is minimized by the use of low voltage differential signaling, data scrambling, and randomization.

The demo board is not intended for EMI testing. The demo board was designed for easy accessibility to device pins with tap points for monitoring or applying signals, additional pads for termination, and multiple connector options.

2 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified for Automotive Applications With the Following Results:
 - Device Temperature Grade 2: -40°C to +105°C Ambient Operating Temperature
 - Device HBM ESD Classification Level 3A
 - Device CDM ESD Classification Level C5
- Supports Pixel Clock Frequency up to 210 MHz for 2K (2880x1080), WUXGA (1920x1200), or 1080p60 (1920x1080) Resolutions with 24-Bit Color Depth
- MIPI D-PHY / Display Serial Interface (DSI) Receiver Provides a High-Bandwidth Interface to Video Processor or FPGA
 - DSI Input Port with Up to 4 Data Lanes
 - Up to 1.5 Gbps Per Lane
 - ECC and CRC Generation
 - Virtual Channel Capability
- Single and Dual FPD-Link III Outputs
 - Single Link: Up to 105-MHz Pixel Clock
 - Dual Link: Up to 210-MHz Pixel Clock

З

General Description

System Requirements

3 System Requirements

To demonstrate, the following is required:

- 1. FPD-Link III compatible Deserializer
 - 1. DS90Ux940-Q1, DS90Ux948-Q1 up to 1080p60
- 2. DSI source
- 3. Optional I²C controller
- 4. Power supply for 12 V at 1 A (required)

4 Contents of the Demo Evaluation Kit

One EVM board with the DS90Ux941A-Q1

5 Applications Diagram

Figure 1. Applications Diagram

6 Typical Configuration

Figure 1 and Figure 2 show the use of the chipset in a display application.

4

7 Quick Start Guide

- 1. Configure switches S2, S3, S5 and S6 to set device's operating modes
 - S2: MODE_SEL0 = 4 (default factory setting)
 - S3: IDx = 1 (address 0x18 default factory setting)
 - S6: MODE_SEL1 = 1 (default factory setting)
 - S5: PDB and INTB = OFF (PDB and INTB will be pulled up to VDDIO default factory setting)
- 2. Connect P1 (DOUT[1:0]+/-) to a compatible Deserializer (for example, the DS90Ux940-Q1/DS90Ux948-Q1) using STP cable (default)
- 3. Connect J28 to 12V.
 - a. Optional power options available (see Table 3)
- 4. Plug in DSI source to J8
- 5. Connect J14 with miniUSB (5-pin_ to USB A (4-pin)) cable to PC USB port

For details of pin names and pin functions, refer to the DS90Ux941AS-Q1 data sheets.

Figure 3. Interfacing to the EVM

Default Jumper Settings

8 Default Jumper Settings

Ensure that the board has the default board jumper settings:

Table 1. Default Board Jumper Settings

JUMPER	JUMPER SETTINGS
J3	Connect 2 and 3
J22/J23	Connect J22 pin 2 to J23 pin 2
J24	Connect 1 and 2
J25	Connect 1 and 2
J32	Connect 1 and 2

9 Default Switch Settings

Ensure that the board has the default board switch settings:

Table 2. Default Board Switch Settings

SWITCH	SWITCH SETTINGS
S1	1-3 ON
S2	4 ON, 1-3, 5-8 OFF
S3	1 ON, 2-8 OFF
S5	1-2 OFF
S6	1 ON, 2-8 OFF

10 Demo Board Connections

Table 3. Power Supply

DESIGNATOR	SIGNAL	DESCRIPTION
J28	+12 V	12 V \pm 5% Main Power Single +12V power connector that supplies power to the entire board.
J27.1 (Optional)	+1.1 V	1.1 V ±5% Alternative to Main Power. If used, remove R103.
J30.1 (Optional)	+1.8 V	1.8 V ±5% Alternative to Main Power. If used, remove R109.
J31.1 (Optional)	+3.3 V	3.3 V ±5% Alternative to Main Power. If used, remove R113.
J23.1 (Optional)	+5 V	5 V ±5% Alternative to Main Power. If used, remove jumper to J22.

Table 4. FPD-Link III Output Signals P1

DESIGNATOR	PORT	SIGNAL
P1.1	EPD Link III Port 0	DOUT0-
P1.3		DOUT0+
P1.2	EPD Link III Port 1	DOUT1-
P1.4		DOUT1+

6

Table	5.	DSI	Input	Signals
-------	----	-----	-------	---------

DESIGNATOR	SIGNAL	DESCRIPTION
J8.33 J8.35	DSI0_D0_P DSI0_D0_N	DSI0 D0 input
J8.25 J8.27	DSI0_D1_P DSI0_D1_N	DSI0 D1 input
J8.17 J8.19	DSI0_CLK_P DSI0_CLK_N	DSI0 CLK input
J8.9 J8.11	DSI0_D2_P DSI0_D2_N	DSI0 D2 input
J8.1 J8.3	DSI0_D3_P DSI0_D3_N	DSI0 D3 input
J8.34 J8.36	DSI1_D0_P DSI1_D0_N	DSI1 D0 input
J8.26 J8.28	DSI1_D1_P DSI1_D1_N	DSI1 D1 input
J8.18 J8.20	DSI1_CLK_P DSI1_CLK_N	DSI1 CLK input
J8.10 J8.12	DSI1_D2_P DSI1_D2_N	DSI1 D2 input
J8.2 J8.4	DSI1_D3_P DSI1_D3_N	DSI1 D3 input

Table 6. USB2ANY Connector

DESIGNATOR	DESCRIPTION
J14	mini USB 5 pin

Table 7. I2C/CCI Interface Header

DESIGNATOR	SIGNAL
J11.1	VDDI2C
J11.2	SCL
J11.3	SDA
J1.4	GND

Table 8. GPIO/Audio Interface

DESIGNAT OR	SIGNAL	DESCRIPTION
J12.2	I2S_DC/GPIO2	Slave Mode I2S Data Input / Remote or Local I/O
J12.4	I2S_DD/GPIO3	Slave Mode I2S Data Input / Remote or Local I/O
J12.8	I2S_DB/GPIO5_REG	Slave Mode I2S Data Input / Remote or Local I/O
J12.10	I2S_DA/GPIO6_REG	Slave Mode I2S Data Input / Remote or Local I/O
J12.12	I2S_WC/GPIO7_REG	Slave Mode I2S Word Clock Input / Remote or Local I/O
J12.14	I2S_CLK/GPIO8_REG	Slave Mode I2S Clock Input / Remote or Local I/O
J12.18	SDIN/GPIO0	Master I2S Data Input / Remote or Local I/O
J12.20	SWC/GPIO1	Master I2S Word Clock Input / Remote or Local I/O
J12.22	SCLK	Master I2S Clock Input
J12.24	MCLK	Master Mode I2S System Clock

7

Table 9. SPI/D_GPIO Interface

DESIGNATOR	SIGNAL	DESCRIPTION
J12.26	D_GPIO0/MOSI	I/O in FPD-Link III mode / Master Out, Slave In
J12.28	D_GPIO1/MISO	I/O in FPD-Link III mode / Master In, Slave Out
J12.30	D_GPIO2/SPLK	I/O in FPD-Link III mode / Serial Clock
J12.32	D_GPIO3/SS	I/O in FPD-Link III mode / Slave Select

Configuration of the device may be done through the MODE_SEL[1:0]. These modes are latched into register location during power-up:

MODE	SETTING	FUNCTION	
Split	0	Disable	
Spiit	1	Enable	
	00	ETTINGFUNCTION0Disable1Enable01 DSI Lane012 DSI Lanes103 DSI Lanes114 DSI Lanes0Continuous mode1Non-continuous mode0Enable FPD-Link III for twisted pair cabling1Enable FPD-Link III for coaxial cabling0Enable DSI	
DSLLanos	01	2 DSI Lanes	
DSI Lanes	10	3 DSI Lanes	
	11	4 DSI Lanes	
Non continuous Clock Mode	0	Continuous mode	
Non-continuous Clock Mode	Split 0 Disa DSI Lanes 00 1 Disa 00 1 Disa 00 1 Disa 01 2 DSI 01 2 DSI 10 3 DSI 11 4 DSI 11 4 DSI 0 Con ntinuous Clock Mode 0 Con COAX 0 Ena Disable DSI 0 Ena 1 Disa Disable DSI	Non-continuous mode	
COAY	0	Enable FPD-Link III for twisted pair cabling	
COAA	1	Enable FPD-Link III for coaxial cabling	
Dicable DSI	0	Enable DSI	
	1	Disable DSI	

Table 10. MODE_SEL[1:0] Settings

Table 11. Configuration Select (MODE_SEL0) - SW-DIP8 - S2⁽¹⁾

MODE	V _{TARG}	TARGET VOLTAGE RANGE VTARGET SUGGESTEI VOLTAGE RANGE VOLTAGE RESISTORS		VTARGET VOLTAGE RANGE VTARGET SUGGESTED STRAP VOLTAGE STRAP RESISTORS (1% TOL)			V _{TARGET} STRAP VOLTAGE SUGGESTED STRAP RESISTORS (1% TOL)			DSI LANES
MODE NO. 0 1 2 3 4 5	V _{MIN}	V _{TYP}	V _{MAX}	(V); V _(VDD18) = 1.8 V	R_3 (k Ω)	R₄ (kΩ)				
0	0	0	0.126 × V _(VDD18)	0	OPEN	10.0	0	1		
1	0.179 × V _(VDD18)	0.211 × V _(VDD18)	0.244 × V _(VDD18)	0.380	73.2	20.0	0	2		
2	0.272 × V _(VDD18)	0.325 × V _(VDD18)	0.364 × V _(VDD18)	0.585	60.4	30.1	0	3		
3	0.404 × V _(VDD18)	0.441 × V _(VDD18)	0.472 × V _(VDD18)	0.794	51.1	40.2	0	4		
4	0.526 × V _(VDD18)	0.556 × V _(VDD18)	0.590 × V _(VDD18)	1.001	40.2	51.1	1	1		
5	0.643 × V _(VDD18)	0.673 × V _(VDD18)	0.708 × V _(VDD18)	1.211	30.1 61.9		1	2		
6	0.763 × V _(VDD18)	0.790 × V _(VDD18)	0.825 × V _(VDD18)	1.421	18.7 71.5		1	3		
7	0.880 × V _(VDD18)	V _(VDD18)	V _(VDD18)	1.8	10	OPEN	1	4		

(1) Only set one high

Demo Board Connections

	V _{TARGET} VOLTAGE RANGE		V _{TARGET} STRAP VOLTAGE	SUGGESTED STRAP RESISTORS (1% TOL)		CLOCK	COAX	DISABLE	
	V _{MIN}	V _{TYP}	V _{MAX}	(V); V _(VDD18) = 1.8 V	R_{5} (k Ω)	R ₆ (kΩ)			
0	0	0	0.126 × V _(VDD18)	0	OPEN	10.0	0	0	0
1	0.179 × V _(VDD18)	0.211 × V _(VDD18)	0.244 × V _(VDD18)	0.380	73.2	20.0	0	0	1
2	0.272 × V _(VDD18)	0.325 × V _(VDD18)	0.364 × V _(VDD18)	0.585	60.4	30.1	0	1	0
3	0.404 × V _(VDD18)	0.441 × V _(VDD18)	0.472 × V _(VDD18)	0.794	51.1	40.2	0	1	1
4	0.526 × V _(VDD18)	0.556 × V _(VDD18)	0.590 × V _(VDD18)	1.001	40.2	51.1	1	0	0
5	0.643 × V _(VDD18)	0.673 × V _(VDD18)	0.708 × V _(VDD18)	1.211	30.1	61.9	1	0	1
6	0.763 × V _(VDD18)	0.790 × V _(VDD18)	0.825 × V _(VDD18)	1.421	18.7	71.5	1	1	0
7	0.880 × V _(VDD18)	V _(VDD18)	V _(VDD18)	1.8	10	OPEN	1	1	1

Table 12.	Configuration	Select (I	MODE SEL1) - SW-DIP8 -	- S6 ⁽¹⁾
				/	

⁽¹⁾ Only set one high

The strapped values can be viewed and/or modified in the following register locations:

- SPLIT : Latched into DUAL_CTL(0x5B[2:0]).
- DSI LANES : Latched into BRIDGE_CTL (0x4F[3:2]).
- CLOCK : Latched into BRIDGE_CTL (0x4F[7]).
- COAX : Latched into DUAL_CTL(0x5B[7]).
- DISABLE DSI : Latched into RESET (0x01[3]).

Table 13. IDx SW-DIP8 - S3⁽¹⁾

DESIGNATOR	7-BIT ADDRESS	8-BIT ADDRESS
S3.1 (Default)	0x0C	0x18
S3.2	0x0E	0x1C
S3.3	0x10	0x20
\$3.4	0x12	0x24
S3.5	0x14	0x28
S3.6	0x16	0x2C
S3.7	0x18	0x30
S3.8	0x1A	0x34

⁽¹⁾ Only set one high.

9

11 ALP Software Setup

11.1 System Requirements

Operating System:	Windows 10 64-bit
USB:	USB2ANY
USB2ANY Firmware Version:	2.7.0.0

11.2 Download Contents

TI Analog LaunchPAD can be downloaded from: http://www.ti.com/tool/alp.

Download and extract the "snlc048.zip" file to a temporary location that can be deleted later.

Make sure J14 on the DS90Ux941AS-Q1 is connected to a PC USB port with USB cable and power is applied to the DS90Ux941AS-Q1 EVM.

The following installation instructions are for the Windows 10 64-bit Operating System.

11.3 Installation of the ALP Software

Execute the ALP Setup Wizard program called "ALPF_setup_v_x_x.exe" that was extracted to a temporary location on the local drive of your PC.

There are 7 steps to the installation once the setup wizard is started:

- 1. Select the "Next" button.
- 2. Select "I accept the agreement" and then select the "Next" button.
- 3. Select the location to install the ALP software and then select the "Next" button.
- 4. Select the location for the start menu shortcut and then select the "Next" button.
- 5. There will then be a screen that allows the creation of a desktop icon. After selecting the desired choices select the "Next" button.
- 6. Select the "Install" button, and the software will then be installed to the selected location.
- 7. Uncheck "Launch Analog LaunchPAD" and select the "Finish" button. The ALP software will start if "Launch Analog LaunchPAD" is checked, but it will not be useful until the USB driver is installed and board is attached.

Connect J14 USB jack of the DS90Ux941AS-Q1Q EVM board to a PC/laptop USB port using a Type A

VDC power supply. The "Found New Hardware Wizard" will open on the PC/laptop.

11.4 Installation of the Device Profiles

There are 2 steps to add the DS90Ux941AS-Q1 profile:

- 1. Download the ALP-PROFILE-UPDATE, snlc062.zip, from the TI Analog LaunchPAD page: http://www.ti.com/tool/alp.
- Extract the files and run the executable file ALP_PROFILE_UPDATE_v02_setup_v_x_x.exe. The profile will be installed to the profile folder found at: C:\Program Files (x64)\Texas Instruments\Analog LaunchPAD vx.x.x\Profiles\.

11.5 Start-Up - Software Description

Make sure all the software has been installed and the hardware is powered on and connected to the PC. Execute "Analog LaunchPAD" shortcut from the start menu. The default start menu location is under All Programs > Texas Instruments > Analog LaunchPAD vx.x.x > Analog LaunchPAD to start MainGUI.exe.

Figure 4. Launching ALP

The application should come up in the state shown in the figure below. If it does not, see Section 12, "Troubleshooting ALP Software".

Under the Devices tab click on "DS90Ux941AS-Q1" to select the device and open up the device profile and its associated tabs.

ALP Software Setup

www.ti.com

After selecting the DS90Ux941AS-Q1, the screen shown in Figure 6 should appear.

🐻 Texas Instruments - Analog LaunchPAD	-	×
Tasks	(USB2ANY 867D1B5110000D00/1) - D590UB941A5_ENG	×
Texas Instruments - Analog LaunchPAD Tasks Devices USB2ANY 867D1B5110000D00 D590UB941AS_ENC Tools System Scripting Plug-in Management LPT Configuration USB2ANY/Ardvark Setup Dewice Profiles EEPROM Setup Preferences Y Help	Current Link Status Linked to Deserializer: Yes	×
ALB Framework - Hardware Connected		

Figure 6. Follow-Up Screen

11.6 Information Tab

The Information tab is shown in Figure 7. Note that the device revision could be different.

🚦 Texas Instruments - Analog LaunchPAD									-	×
Tasks	(USB2ANY 867D1B51100	00D00/1) - D590UB94	1AS_ENG							×
Devices	Information Control/Status	HDCP Authentication	System Topology	Pattern Generator	Registers	Scripting	Remote Registers	Patgen Registers		
USB2ANY 867D1B5110000D00 S90UB941AS_ENC Tools System Scripting Plug-in Management LUT Configuration USB2ANY/Aardvark Setup Device Profiles EEPROM Setup Preferences Help S	Device Information Device: Revision: I2C Address (8-bit): Pixel Clock: Repeater Mode: Audio Mode: Partner Information Device: Revision: I2C Address (8-bit): Pixel Clock: Repeater Mode: Serial Link Mode: Audio Mode: Current Link Status Linked to Deserializer: Linked to Video Source:	DS90UH941AS DSI-to-f 2 0x18 33.288 MHz Disabled FPD-Link III 0x58 37.015 MHz Disabled FPD-Link III 2-channel Yes No	PD-Link III Serialize	r with HDCP						
ALP Framework - Hardware Connected			v1.57.0	010			👋 Texas	INSTRUMENTS		

Figure 7. ALP Information Tab

ALP Software Setup

11.7 Pattern Generator Tab

The SER Pattern Generator tab is shown in Figure 8.

Tasks	(USB2ANY 867D1B5110000D00/1) - D590UB941A5_ENG		
🙀 Devices	Information Control/Status HDCP Authentication System Topology	Pattern Generator Degisters Scripting Remot	e Registers Patgen Registers
 USB2ANY 867D185110000000 DS90UB941AS_ENG Tools System Scripting Plug-in Management LPT Configuration USB2ANY/Aardvark Setup Demo Mode Setup Device Profiles EEPROM Setup Preferences Help 	Pattern Generator Controlystatus Proc. Public Induction System Topology Pattern Generator Control V2 Enable Generator Invert Video Color Bars Enable Scrolling 18-bit Color Checkerboard/VCOM Control Scale by 16 Reverse VCOM Use Custom Color Fixed Pattern White Custom Color # 000000 Auto-Scrolling Control Number of Patterns 14 Frames per Pattern 60 Pattern 1 White Pattern 9 H Black/Blue Pattern 2 Black Pattern 10 V Black/Mhite Pattern 3 Red Pattern 11 V Black/Mhite Pattern 4 Green Pattern 12 V Black/Green Pattern 5 Blue Pattern 14 Custom Pattern 7 H Black/Red Pattern 15 VCOM Pattern 8 H Black/Green Pattern 16 Checker	Wideo Control Timing Source External Internal Timing Spec HD 720p 60Hz M 1 N 3 Pixel Clock: 66.7 MH Hsync Pos Vsync Parameter Horizontal Vertical Total Area 1648 750 Active Area 1280 720 Sync Width 80 5 Apply Default Status Approximate Frames/Second: N/A Detected Dimensions: 0x0	z
	- Ni		h Truce burren marte

Figure 8. ALP Pattern Generator Tab

ALP Software Setup

11.8 Registers Tab

The Register tab is shown in Figure 9.

Figure 9. ALP Registers Tab

ALP Software Setup

11.9 Registers Tab - Address 0x00 Selected

Figure 10 shows the Address 0x00 selected. Note that the "Value:" box (Value: 18) will now show the hex value of that register.

U Texas Instruments - Analog LaunchPA	D			×
lasks	(USB2ANY 86/D185110000D00/1) - D5900B941A5_ENG			3
ta Devices	🆄 Information Control/Status HDCP Authentication System Topology Pattern Generator Registers Scripting Remote Registers Patgen Registers			
🖶 USB2ANY 867D1B5110000D00	Value: 18 Apply Refresh Refresh All			
• Tools	S 0x00 - 12C_DEVICE_ID S	^	Displa	У
System Scripting	23 0x01-RESET_CTL *			
Plug-in Management	43 0x02 - DEVICE_CFG 😵		Load	
IPT Configuration	😫 0x03 - GENERAL_CFG 🛞		Save	
S USB2ANY/Aardvark Setup	83 0x04 - GENERAL_CFG2		0.0057	
Demo Mode Setup	😫 0x05 - I2C_MASTER_CFG 🛞			
Device Profiles	43 0x06 - DES_ID / DES_ID_1 😵			
E FEPROM Setup	23 0x07 - SlaveID[0]			
	23 0x08 - SlaveAlias[0]			
Preferences	3 23 0x09 - SDA_SETUP 3			
(2) Help	3 42 0x0A - CRC_ERRORO 3			
	23 0x08 - CRC_ERROR1			
	22 0x0C - GENERAL_STS			
	20 0x0D - GPIO[0] Config			
	ka 0x0E - GPIO[1] and GPIO[2] Config 😵			
	23 0x0F - GPI0[3] Config			
	23 0x10 - GPIO[5] and GPIO[6] Config 😵			
	23 0x11 - GPI0[7] and GPI0[8] Config 😵			
	43 0x12 - DATAPATH_CTL 😵			
	22 0x13 - TX_MODE_STS			
	83 0x14-TX_BIST_CTL 8			
	(2) 0x15 - RESERVED	~		
ALP Framework - Hardware Connected	v1.57.0010 🍓 Texas Instruments	_		_

Figure 10. ALP Device ID Selected

2

11.10 Registers Tab - Address 0x00 Expanded

To expand Address 0x00, double-click the Address bar

🗱 0x00 - I2C_DEVICE_ID

or single-click the 🔯 . The expanded Address 0x00 reveals the content for each bits. Any register address displayed can be expanded.

fasks	(USB2ANY 867D1B5110000D00/1) - DS90UB941A5_ENG		
Devices	Information Control/Status HDCP Authentication System Topology Pattern Generator Registers Scr	ipting Remote Registers Patgen Registers	
CUSB2ANY 867D1B5110000D00	Value: 18 Apply Refresh Refresh All Verbose Descriptions		
💩 Tools 🔹 🛞	\$3 0x00 - I2C_DEVICE_ID	8	Display
System Scripting	Bit(s) Type Default Name Description		Load
Plug-in Management	7 6 5 RW Strap DEVICE_ID 7-bit address of Serializer;		
LPT Configuration	4 3 2 1 1 DEVICE_U_P1 Defaults to address configured by the IDx strap pin		Save
USB2ANY/Aardvark Setup	If PORT 1_12C_EN is set, this value		
Demo Mode Setup	Port1		
Device Profiles	When programming this value, the least significant bit of the DEVICE. ID value		
EEPROM Setup	should be set to 0 to allow proper		
Preferences (*)	address.		
)) Help 🔹 😵	0 RW 0 SER_ID 0: Device ID is from CAD 1: Register I2C Device ID overrides CAD		
	錢 0x01 - RESET_CTL	*	
	🗱 0x02 - DEVICE_CFG	8	
	🗱 0x03 - GENERAL_CFG	8	
	段 0x04 - GENERAL_CFG2	8	
	段 0x05 - I2C_MASTER_CFG	*	
	🗱 0x06 - DES_ID / DES_ID_1	8	
	段 0x07 - SlaveID[0]	8	
	없 0x08 - SlaveAlias[0]	8	
	🗱 0x09 - SDA_SETUP	(8) 	

Figure 11. ALP Device ID Expanded

<u>Type</u>

Users can change any RW Type register (RW) by writing the hex value into the "Value:" box (Value: 00) as her elicities the charle based part to each register bit. A charle mark indicates a "1" of

^{Value: 00}) or by clicking the checkboxes next to each register bit. A check mark indicates a "1" or R, while a blank checkbox indicates a "0" or W. Click the "Apply" button to write to the register, and "refresh" to see the new value of the selected (highlighted) register.

<u>Bit(s)</u>
7 6 5 4 3 3 2 1 1
0 🕅

The box toggles on every mouse click.

ALP Software Setup

www.ti.com

11.11 Scripting Tab

The Scripting tab is shown in Figure 12.

Trale		2002	
h Devices	(USD2AH1 80/D1D31100000011) - US3000341K3_EHG		
USB2ANY 867D1B5110000D00 System Scripting Plug-in Management USB2ANY/Aardvark Setup Demo Mode Setup Dewice Profiles EEPROM Setup Preferences Help	Information Control/Status HDCP Authentication System Topology Pattern Generator Registers Scripting Remote Registers Patgen I Texas Instruments - Analog LaunchPAD © 2007-2019 Texas Instruments Inc. All Rights Reserved The variable "board" contains the selected daughter board object. The variable "alpBoards" contains a list of ALP Board objects present on this machine. >	Registers Run Setup Run PreDef:	Script
ALD Examples Hardware Connect	LI LI ST 0010	ENTS	

Figure 12. ALP Scripting Tab

The script window provides a full Python scripting environment to run scripts and interact with the device in an interactive or automated fashion.

WARNING

Directly interacting with devices either through register modifications or calling device support library functions can effect the performance and/or functionality of the user interface and may even crash the ALP Framework application.

12 Troubleshooting ALP Software

12.1 ALP Loads the Incorrect Profile

If ALP opens with the incorrect profile loaded the correct profile can be loaded from the USB2ANY/Aardvark Setup found under the tools menu.

🛂 Texas Instruments - Analog Launc		
Tosks Devices USB2ANY 175F99461A000600	3	
DS90UB927	Ør	·©`
 System Scripting Plug-in Management IDT Configuration USB2ANY/Aardvark Self Demo Mode Setup Device Profiles EEPRCM Setup 	Connector 4	
Preferences O Help	USB Connector 2	Analog Launch/AD AL P100 Derror 1 00 The sum Connector 1
ALP Framework		

Figure 13. USB2ANY Setup

Highlight the incorrect profile in the Defined ALP Devices list and press the remove button.

asks Devices	*	ALP Profiles Setup for Aardvark/USB2ANY			
Tools System Scripting	۲	Aardvark/USB2ANY Setup This dialog provides a method to setup the Framework. Each emulated device must be Nano board or LPT Phy MDIO board. Defined ALP Devices	types of devices desired for emula attached to a virtual ALP FPGA boa Select a Daughter Board	ion inside the ALP rd (base board), ALP	
LPT Configuration		C USB2ANY 175F99461A000600	Name	Short Name	
USB2ANY/Aardvark Setup Demo Mode Setup Device Profiles EEPROM Setup			AVS_Demo CP104_Nano DP83640 DP83640_Nano D\$100BR210_111 D\$100BR210_111	AVS_Demo CP 104 - Nano DP83640 DP83640 DS 100BRxxx Duals DS 100BRxxx Duals	SMA Donnector SMA Connector
/] Preferences)) Help	8	Add FPGA Remove Add Nano Add LPT MDIO	DS100KR800_401 DS100MB203 DS110DF410 DS110DF410Standalone	DS100KR800_401 DS100MB203 MUX DS110DF410 EVK DS110DF410 Retimer	- İ
AIP Framework			Add Ok Cancel		

Figure 14. Remove Incorrect Profile

Find the correct profile under the Select a Daughter Board list, highlight the profile and press Add.

Troubleshooting ALP Software

www.ti.com

Texas Instruments - Analog LaunchPAD Tasks	ALP Profiles Setup for Aardvark/USB2ANY			×	- 🗆 X
Tools System Scripting Plug-in Management	Aardvark/USB2ANY Setup This dialog provides a method to setup the Framework. Each emulated device must be Nano board or LPT Phy MDIO board. Defined ALP Devices	types of devices desired for emu attached to a virtual ALP FPGA b Select a Daughter Board	lation inside the ALP voard (base board), ALP		• 🔘
LPT Configuration USB2ANY/AardVark Setup Demio Mode Setup Device Profiles EEPROM Setup Preferences Help Control C	Add FPGA Remove Add Nano Add LPT MDIO	Name DS90UB9410 DS90UB941A5_ENG DS90UB941A_ENG DS90UB947 DS90UB948 DS90UB949 DS90UB948 DS90UB948 DS90UB949 DS90UB946 DS90UB954 DS90UB954 Obj000000000000000000000000000000000000	Short Name DS90UB940 DS90UB941AS_ENG DS90UB941A_ENG DS90UB947 DS90UB947 DS90UB949 DS90UB949 DS90UB954 DS90UB954 DS90UB954 DS90UB960 DS90UB964 DS90UB964	×	SMA Connector
ALP Framework - Hardware Connected	v1.57.0010	1	No. 10 Texas In	STRUMENTS	

Select Ok and the correct profile should now be loaded.

Tasks	ALF	Profiles Setup for Aardvark/USB2ANY			×	
Tools System Scripting Upg-in Management		Aardvark/USB2ANY Setup This dialog provides a method to setup the Framework. Each emulated device must be Nano board or LPT Phy MDIO board. Defined ALP Devices	ypes of devices desired for emu ttached to a virtual ALP FPGA b Select a Daughter Board	ilation inside the ALP board (base board), ALP		• 🔍
LPT Configuration UBS2ANY/Aardvark Setup Demo Mode Setup Device Profiles EEPROM Setup Preferences Help S	Power Connector	Add FPGA Remove	Name DS90U8940 DS90U8941AS_ENG DS90U8941A_ENG DS90U8947 DS90U8948 DS90U8949 DS90U8949 DS90U8954 DS90U8954 DS90U8954 DS90U8950 DS90U8960	Short Name DS90UB940 DS90UB941AS_ENG DS90UB941A_ENG DS90UB947 DS90UB947 DS90UB947 DS90UB949 DS90UB954 DS90UB954 DS90UB960 DS90UB960	<	SMA Connector SMA Connector
		Add LPT MDIO	Ok Cancel	DEUNIMOJE		© . ⊙

12.2 ALP Does Not Detect the EVM

If the window shown in Figure 17 opens after starting the ALP software, double-check the hardware setup.

Figure 17. ALP No Devices Error

It may also be that the USB driver is not installed. Check the device manager. There should be a "HIDcompliant device" under the "Human Interface Devices" as shown in Figure 18.

🕌 Device Manager	
File Action View Help	
A 🚔 CNA	
Batteries	
D 📲 Computer	
D - State ControlVault Device	
🔈 👝 Disk drives	
Display adapters	
DVD/CD-ROM drives	
🖌 🕼 Human Interface Devices	
HID-compliant device	
USB Input Device	
🔉 🚟 Imaging devices	
b - Keyboards	
Mice and other pointing devices	
🔉 🛄 Modems	
Monitors	
👂 💇 Network adapters	
Ports (COM & LPT)	
Processors	
b Smart card readers	
Sound, video and game controllers	
b Storage controllers	
⊳ - <mark>1</mark> ₩ System devices	
🔈 🚽 🖟 Universal Serial Bus controllers	
🔈 – 🖶 USB Virtualization	

Figure 18. Windows 10, ALP USB Driver

The software should start with only "DS90Ux941AS-Q1" in the "Devices" drop-down menu. If there are more devices then the software is most likely in demo mode. When the ALP is operating in demo mode there is a "(Demo Mode)" indication in the lower left of the application status bar as shown in Figure 19.

Figure 19. ALP in Demo Mode

Disable the demo mode by selecting the "Preferences" drop-down menu and un-checking "Enable Demo Mode".

💩 Tools	8
Preferences	۲
Enable Demo Mode	
(a) Hala	8

Figure 20. ALP Preferences Menu

After demo mode is disabled, the ALP software will poll the ALP hardware. The ALP software will update and have only "DS90Ux941AS-Q1" under the "Devices" drop-down menu.

13

Typical Connection and Test Equipment

The following is a list of typical test equipment that may be used to generate signals for the Serializer inputs:

- 1. Digital Video Source for generation of specific display timing such as Digital Video Processor or Graphics Controller (GPU) with OpenLDI output.
- Any other signal generator / video source This video generator may be used for video signal sources for DVI or DP++
- 3. Any other signal / video generator that provides the correct input levels as specified in the data sheet.

Figure 21 shows a typical test setup using a Graphics Controller and display.

Video Processor Board

Figure 21. Typical Test Setup for Video Application

Figure 22 shows a typical test setup using a video generator and logic analyzer.

Figure 22. Typical Test Setup for Evaluation

14 Equipment References

NOTE: The following references are supplied only as a courtesy to our valued customers. It is not intended to be an endorsement of any particular equipment or supplier.

Digital Video Pattern Generator:

Astrodesign

www.astro-americas.com

Logic Analyzer:

Keysight

www.keysight.com

Corelis CAS-1000-I2C/E I2C Bus Analyzer and Exerciser Products:

www.corelis.com/products/I2C-Analyzer.htm

Aardvark I2C/SPI Host Adapter Part Number: TP240141

www.totalphase.com/products/aardvark_i2cspi

15 Cable References

For optimal performance, TI recommends a Shielded Twisted-Pair (STP), 100- Ω differential impedance and 24 AWG (or larger diameter) cable for high-speed data applications.

Leoni Dacar 538 series cable:

www.leoni-automotive-cables.com

Rosenberger HSD connector:

www.rosenberger.de/en/Products/35_Automotive_HSD.php

Bill of Materials

ITEM	DESIGNATOR	DESCRIPTION	MANUFACTURER	PART NUMBER	QTY
1	!PCB1	Printed Circuit Board	Any	HSDC031	1
2	C1, C5, C6, C10, C11, C13, C17, C32, C36, C43, C53, C68, C72	CAP, CERM, 10 uF, 10 V, +/- 10%, X7R, 0805	MuRata	GRM21BR71A106KE51L	13
3	C2, C7, C12, C14, C15, C16, C18, C19, C22, C23, C24, C27, C28, C29, C35, C37, C38, C41, C42, C52, C55, C58, C61, C64, C67, C70, C71	CAP, CERM, 0.1 uF, 16 V, +/- 10%, X7R, 0402	MuRata	GRM155R71C104KA88D	27
4	C3, C9, C62	CAP, CERM, 0.01 uF, 100 V, +/- 5%, X7R, 0603	AVX	06031C103JAT2A	3
5	C4, C8	CAP, TA, 1 uF, 16 V, +/- 10%, 9.3 ohm, SMD	Vishay-Sprague	293D105X9016A2TE3	2
6	C20, C21	CAP, CERM, 4.7 pF, 25 V, +/- 5%, C0G/NP0, 0402	MuRata	GRM1555C1E4R7CA01D	2
7	C25, C26	CAP, CERM, 220 pF, 50 V, +/- 1%, C0G/NP0, 0603	AVX	06035A221FAT2A	2
8	C30, C31	CAP, CERM, 30 pF, 100 V, +/- 5%, C0G/NP0, 0603	MuRata	GRM1885C2A300JA01D	2
9	C33	CAP, CERM, 2200 pF, 50 V, +/- 10%, X7R, 0603	Kemet	C0603X222K5RACTU	1
10	C34	CAP, CERM, 0.47 uF, 16 V, +/- 10%, X7R, 0603	MuRata	GRM188R71C474KA88D	1
11	C39	CAP, CERM, 1.8 pF, 50 V, +/- 5%, C0G/NP0, 0402	MuRata	GRM1555C1H1R8CA01D	1
12	C40, C51, C66	CAP, CERM, 10 pF, 50 V, +/- 5%, C0G/NP0, 0402	MuRata	GRM1555C1H100JA01D	3
13	C44	CAP, CERM, 47 uF, 16 V, +/- 20%, X5R, 1210	MuRata	GRM32ER61C476ME15L	1
14	C45	CAP, TA, 100 uF, 16 V, +/- 20%, 0.1 ohm, SMD	Kemet	T495D107M016ATE100	1
15	C46	CAP, CERM, 1 uF, 16 V, +/- 10%, X7R, 0603	TDK	C1608X7R1C105K080AC	1
16	C47	CAP, CERM, 3300 pF, 50 V, +/- 10%, X7R, 0402	MuRata	GRM155R71H332KA01D	1
17	C48, C50	CAP, CERM, 1 uF, 16 V, +/- 10%, X5R, 0603	MuRata	GRM185R61C105KE44D	2
18	C49, C56	CAP, TA, 22 uF, 25 V, +/- 20%, 0.7 ohm, SMD	Vishay-Sprague	293D226X0025D2TE3	2
19	C54, C60, C63, C69	CAP, CERM, 4.7 µF, 25 V,+/- 10%, X7R, AEC- Q200 Grade 1, 0805	TDK	CGA4J1X7R1E475K125A C	4
20	C57	CAP, TA, 2.2 uF, 25 V, +/- 10%, 6.3 ohm, SMD	Vishay-Sprague	293D225X9025A2TE3	1
21	C59, C65	CAP, CERM, 20 pF, 50 V, +/- 5%, C0G/NP0, 0402	MuRata	GRM1555C1H200JA01D	2
22	C75, C83, C90, C97, C104, C112	CAP, CERM, 10 uF, 10 V, +/- 10%, X5R, 0805	Kemet	C0805C106K8PACTU	6
23	C76, C84, C91, C93, C98, C105, C106, C107, C108, C109, C110, C111, C113	CAP, CERM, 1 uF, 16 V, +/- 10%, X5R, 0603	Kemet	C0603C105K4PACTU	13
24	C77, C78, C79, C80, C85, C86, C87, C92, C94, C99, C100, C101, C114	CAP, CERM, 0.1 uF, 25 V, +/- 10%, X7R, 0603	AVX	06033C104KAT2A	13
25	C115, C116, C117, C118	CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, 0402	TDK	C1005X7R1H104K050BB	4
26	C119, C120	CAP, CERM, 0.012 uF, 16 V, +/- 10%, X7R, 0402	MuRata	GRM155R71C123KA01D	2
27	D1	LED, Green, SMD	Lite-On	LTST-C190GKT	1
28	D2	Diode, Schottky, 40 V, 1 A, SOD-123	Diodes Inc.	1N5819HW-7-F	1
29	D3, D4	LED, Orange, SMD	Lite-On	LTST-C190KFKT	2

Table 14. Bill of Materials

ITEM	DESIGNATOR	DESCRIPTION			ΟΤΥ
30	F1		Littelfuse		1
31		Terminal Turret TH Double	Keystone	1502-2	3
32	H1, H4, H6, H8	Machine Screw, Round, #4-40 x 1/4, Nylon, Philips paphead	B and F Fastener	NY PMS 440 0025 PH	4
33	H2 H3 H5 H7	Standoff Hex 0.5" #4-40 Nylon	Keystone	19020	4
34	.11	Audio Jack 35mm Stereo R/A SMT	CULInc	SJ-3523-SMT	1
35	J2, J4, J5, J6, J7, J9, J10, J15, J16, J17, J18, J19, J21, J24, J25, J26, J27, J30, J31, J32	Header, 100mil, 2x1, Gold, TH	TE Connectivity	5-146261-1	20
36	J3, J22, J23, J29	Header, 100mil, 3x1, Gold, TH	Samtec	TSW-103-07-G-S	4
37	J8	Receptacle, Differential, 0.5mm, 10 pair x2, Gold, SMT	Samtec	QSH-020-01-H-D-DP-A	1
38	J11	Header (friction lock), 100mil, 4x1, Gold, TH	Molex	0022112042	1
39	J12	Header, 100mil, 16x2, Gold, TH	Samtec	TSW-116-07-G-D	1
40	J13	Header, 100mil, 4x1, Gold, TH	Samtec	TSW-104-07-G-S	1
41	J14	Connector, Receptacle, Mini-USB Type B, R/A, Top Mount SMT	TE Connectivity	1734035-2	1
42	J28	Connector, DC Jack 2.1X5.5 mm, TH	CUI Inc.	PJ-102A	1
43	L1, L2, L5	Ferrite Bead, 330 ohm @ 100 MHz, 1.5 A, 0603	MuRata	BLM18SG331TN1D	3
44	L6	Inductor, Shielded Drum Core, Ferrite, 4.7 uH, 4.2 A, 0.02 ohm, SMD	Wurth Elektronik	7440650047	1
45	L7	Ferrite Bead, 1000 ohm @ 100 MHz, 0.3 A, 0805	Taiyo Yuden	BK2125HS102-T	1
46	L8, L9, L10	Ferrite Bead, 120 ohm @ 100 MHz, 3 A, 0603	MuRata	BLM18SG121TN1D	3
47	LBL 1	Thermal Transfer Printable Labels, 1.250" W x 0.250" H - 10,000 per roll	Brady	THT-13-457-10	1
48	P1	HSD Right Angle Plug, 4-Leads, 2mm Pitch, TH	Rosenberger	D4S20F-40MA5-Z	1
49	Q1, Q2, Q3	MOSFET, N-CH, 50 V, 0.22 A, SOT-23	Fairchild Semiconductor	BSS138	3
50	R1, R2	RES, 100, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW0402100RFKED	2
51	R3, R7, R8, R10, R67, R70, R71, R72, R73, R74, R75, R76, R77, R78, R79, R105, R112, R114, R115, R121, R122, R123, R124, R125, R126, R127, R129, R130, R131, R132, R133, R134, R135, R136, R137, R138, R139, R140	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0402	Panasonic	ERJ-2GE0R00X	38
52	R4, R5, R6, R9, R18, R27, R29, R38, R54, R56, R66, R85, R86, R95, R98, R101	RES, 10.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040210K0FKED	16
53	R12, R21, R35, R44, R48, R62	RES, 64.9 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040264K9FKED	6
54	R13, R22, R34, R43, R49, R61	RES, 40.2 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040240K2FKED	6
55	R14, R23, R33, R42, R50, R60	RES, 41.2 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040241K2FKED	6
56	R15, R24, R32, R41, R51, R59	RES, 30.9 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040230K9FKED	6
57	R16, R25, R31, R40, R52	RES, 16.2 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040216K2FKED	5
58	R17, R26, R30, R39, R53, R57	RES, 10.7 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040210K7FKED	6
59	R65	RES, 1.00 k, 1%, 0.1 W, 0402	Panasonic	ERJ-2RKF1001X	1
60	R68, R69, R116, R117, R118, R128	RES, 4.7 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW04024K70JNED	6
61	R80, R81	RES, 33, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040233R0JNED	2
62	R82, R87, R88	RES, 1.5 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW04021K50JNED	3

Table 14. Bill of Materials (continued)

ITEM	DESIGNATOR	DESCRIPTION	MANUFACTURER	PART NUMBER	QTY
63	R83, R90	RES, 33 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040233K0JNED	2
64	R84	RES, 1.2 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	Vishay-Dale	CRCW06031M20JNEA	1
65	R89	RES, 200, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW0402200RJNED	1
66	R91	RES, 22.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040222K1FKED	1
67	R92	RES, 121 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW0402121KFKED	1
68	R93, R102, R110, R111	RES, 100 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW0402100KJNED	4
69	R94, R96, R103, R109, R113	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	Vishay-Dale	CRCW06030000Z0EA	5
70	R97	RES, 29.4 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040229K4FKED	1
71	R99, R100	RES, 3.24 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW04023K24FKED	2
72	R104	RES, 1.87 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW04021K87FKED	1
73	R106	RES, 4.99 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW04024K99FKED	1
74	R107	RES, 23.2 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040223K2FKED	1
75	R108	RES, 12.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW040212K1FKED	1
76	R119, R120	RES, 470, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	Vishay-Dale	CRCW0402470RJNED	2
77	S1	Switch, Slide, SPST 3 poles, SMT	CTS Electrocomponents	219-3LPST	1
78	S2, S3, S6	Switch, Slide, SPST 8 poles, SMT	CTS Electrocomponents	219-8MST	3
79	S4, S7, S8	SWITCH TACTILE SPST-NO 0.02A 15V, TH	Panasonic	EVQ-PAD04M	3
80	S5	Switch, 2 SPST, 0.15 A, 30 V, TH	Grayhill	78B02ST	1
81	SH-J1, SH-J2, SH-J3, SH-J4, SH-J5	Shunt, 2mm, Gold plated, Black	Samtec	2SN-BK-G	5
82	U1	99dB SNR Stereo ADC with Single-Ended Inputs, PW0014A (TSSOP-14)	Texas Instruments	PCM1808PWR	1
83	U2	ESD-Protection Array for High-Speed Data Interfaces, 4 Channels, -40 to +85 degC, 6-pin SON (DRY), Green (RoHS and no Sb/Br)	Texas Instruments	TPD4E004DRYRG4	1
84	U3	6-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing and +/-15-kV ESD Protect, PW0016A (TSSOP-16)	Texas Instruments	TXB0106PWR	1
85	U4	TCA9406 Dual Bidirectional 1-MHz I2C-BUS and SMBus Voltage Level-Translator, 1.65 to 3.6 V, -40 to 85 degC, 8-pin US8 (DCU), Green (RoHS and no Sb/Br)	Texas Instruments	TCA9406DCUR	1
86	U5	25 MHz Mixed Signal Microcontroller with 128 KB Flash, 8192 B SRAM and 63 GPIOs, -40 to 85 degC, 80-pin QFP (PN), Green (RoHS and no Sb/Br)	Texas Instruments	MSP430F5529IPN	1
87	U6	4.5V to 18V Input, 2A Synchronous Step-Down Converter, PWP0014E (TSSOP-14)	Texas Instruments	TPS54225PWPR	1
88	U7	1A Low Dropout Adjustable Regulator, NGN0008A (WSON-8)	Texas Instruments	LM2941LD/NOPB	1
89	U8	Single Output LDO, 500 mA, Adjustable 0.8 to 3.6 V Output, 0.8 to 5.5 V Input, with Programmable Soft Start, 10-pin SON (DRC), -40 to 125 degC, Green (RoHS and no Sb/Br)	Texas Instruments	TPS74701DRCR	1
90	U9	Dual Output LDO, 1 A, Fixed 1.8, 3.3 V Output, 2.7 to 10 V Input, 28-pin HTSSOP (PWP), -40 to 125 degC, Green (RoHS and no Sb/Br)	Texas Instruments	TPS767D318PWP	1

Table 14. Bill of Materials (continued)

ITEM	DESIGNATOR	DESCRIPTION	MANUFACTURER	PART NUMBER	QTY
91	U10	Ultra-Low Jitter Programmable Oscillator with Internal EEPROM, SIA0008B (QFM-8)	Texas Instruments	LMK61E0M-SIAR	1
92	U11	DSI to FPD-Link III Bridge Serializer with HDCP, RTD0064F (VQFNP-64)	Texas Instruments	DS90UH941ASRTDRQ1 or DS90UB941ASRTDRQ1	1
93	Y1	OSC, 12.288 MHz, 3.3 Vdc, SMD	ECS Inc.	ECS-8FA3X-122.8-TR	1
94	Y2	Crystal, 24.000 MHz, 20pF, SMD	ECS Inc.	ECS-240-20-5PX-TR	1

Table 14. Bill of Materials (continued)

Appendix A SNLU241A–December 2018–Revised April 2019

EVM PCB Schematics

Figure 23. Top Level Schematic

Figure 25. Configuration Schematic

Figure 26. Schematic Connectors

Figure 28. Audio Schematic

Appendix A

Figure 29. USB2Any Schematic

Appendix B SNLU241A–December 2018–Revised April 2019

Board Layout

Figure 30. Top Overlay

Figure 31. Top Solder

Figure 32. Layer1 Top

Figure 33. Layer 6 Bottom

Figure 34. Layer6 Solder Bottom

Figure 35. Layer6 Bottom Overlay

Revision History

www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Ch	Changes from Original (December 2018) to A Revision				
	Changed Typical Connection and Test Equipment Images				

Page

•	Changed Typical Connection and Test Equipment Images	23
•	Changed Bill of Materials	25
•	Changed schematics, layouts and board shots	29

STANDARD TERMS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- 3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

- 3.3 Japan
 - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
 - 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて

いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 EVM Use Restrictions and Warnings:

- 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
- 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
- 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and handling and use of the EVM by User or its employees, and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
- 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
- 6. Disclaimers:
 - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
 - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated