
1DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

Discovery is a trademark of Texas Instruments.
DLP is a registered trademark of Texas Instruments.
ActiveX is a trademark of ACTIVE NETWORK, LLC.

User's Guide
DLPU039–September 2016

DLP® Discovery™ 4100 Development Kit API
Programmer’s Guide

This manual describes the use of the application programming interface (API) for the DLP® Discovery™
4100 Development Kit evaluation module (EVM). The development kit combines hardware, software,
firmware, and documentation to form a stand-alone platform for use in developing and testing applications
designed for use with the Texas Instruments DLP Discovery 4100 Development Kit.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com

2 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

Contents
1 Notational Conventions ... 3
2 Overview .. 3
3 Terms and Definitions ... 4
4 API Overview ... 5

4.1 DMD Image Control .. 5
5 DLP Discovery 4100 Development Kit USB ActiveX API .. 6

5.1 Configuration/Status ActiveX Methods... 6
5.2 Low Level Control ActiveX Methods ... 7
5.3 DMD Display Operation ActiveX Methods ... 10
5.4 ActiveX Control Usage Examples ... 11

6 DLP Discovery 4100 Development Kit USB DLL API ... 13
6.1 Configuration/Status DLL Functions .. 13
6.2 Low Level Control DLL Functions ... 14

List of Figures

1 Revision Number Format ... 7
2 Graphical User Interface Layout.. 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com Notational Conventions

3DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

1 Notational Conventions
This document uses the following conventions:

The graphical user interface is referred to as GUI.

Program listings, program examples, and interactive displays are shown as a special typeface. Some
examples use a bold version of the special typeface for emphasis. Interactive displays also use a bold
version of the special typeface to distinguish between commands that you enter from items that the
system displays (such as prompts, command output, error messages, and so forth).

Here is a sample program listing:
0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

In syntax descriptions, the instruction, command, or directive is in a bold typeface, and parameters are in
an italic typeface. Portions of the syntax that are bold should be entered as shown; portions of syntax that
are in italics describe the type of information that should be entered. Syntax that is entered on a command
line is centered. Syntax that is used in a text file is left justified.

Square brackets ([example]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

2 Overview
This manual provides:
• A general description of the DLP Discovery 4100 Development Kit Board API
• An overview of the ActiveX™ interface commands
• Programming Examples

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

Terms and Definitions www.ti.com

4 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

3 Terms and Definitions
API —Application programming interface

Compliment Data — Inverts all incoming image data bits (1's to 0's and 0's to 1's)

D4100 —DLP Discovery 4100 Development Kit (EVM)

DLPC410 —DLPC410 DLP Digital Controller

DMD —Digital micromirror device

GUI —Graphical user interface

North/South Flip —Flips the DMD image data top to bottom (vertically but not horizontally)

USB —Universal serial bus

Variable Types:
NOTE: All variable types are assumed to be unsigned unless otherwise specified.

Char —An 8-bit value used as a text character

Int — An Integer value

Long —32-bit value

Short —16-bit value

Signed —An integer in the range between -2n-1 and +2n-1 -1 : where n is the number of bits in the
representation. For example, if n=8, then this is a number between -128 and +127.

Unsigned —An integer in the range between 0 and +2n - 1 : where n is the number of bits in the
representation. For example, if n=8, then this is a number between 0 and +255.

LPCTSTR —Long Pointer to a Constant TCHAR STRIng

UCHAR —A Char used as an 8-bit unsigned integer

* — denotes a pointer to a value (example: Char* is a pointer to the Char)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com API Overview

5DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

4 API Overview
The DLP Discovery 4100 Development Kit API provides a complete function library to support custom
programming of DLP Discovery 4100 Development Kit control applications. Windows 7, 8.x, and 10, as
well as both 32-bit and 64-bit Windows development platforms are supported. The API provides control of
the DLP Discovery 4100 Development Kit hardware via the USB port by interfacing with an ActiveX control
or directly to the D4100_usb.dll.

The ActiveX control is designed to transmit data, send commands, set flags and values, and read values
and the state of flags from the DLP D4100 APPS_FPGA via the USB interface. The API provides the
capability to control all functions of the DLPC410 controller as well as control the image load and display
of the DLP Discovery 4100 Development Kit through the APPS_FPGA.

NOTE: ActiveX™ is now an older technology and may not be compatible with some software. For
improved compatibility, direct use of the D4100_usb.dll functions is recommended and
typically results in faster execution.

4.1 DMD Image Control
Images are controlled and displayed in blocks on the digital micromirror device (DMD). The DMD is
logically divided into blocks: 16 blocks of 48 rows of mirrors with 1024 mirrors in each row for XGA DMDs
(DLP7000 & DLP7000UV), and 15 blocks of 72 rows of mirrors with 1920 mirrors in each row for 1080p
DMDs (DLP9500 & DLP9500UV). Blocks can be loaded and displayed individually, or as an entire image
(all blocks). Refer to the DLPC410 data sheet, DLPS024, for more information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039
http://www.ti.com/lit/pdf/DLPS024

DLP Discovery 4100 Development Kit USB ActiveX API www.ti.com

6 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5 DLP Discovery 4100 Development Kit USB ActiveX API
ActiveX is a Microsoft defined set of technologies that enables software components to interact with one
another regardless of the language in which they were created. ActiveX is built on the Component Object
Model (COM). ActiveX controls are distributed as .ocx files and are predated by .vbx and .dll files. Refer to
http://msdn.microsoft.com/ and search for ActiveX for additional information on ActiveX controls.

The DLP Discovery 4100 Development Kit ActiveX control provides a convenient mechanism for
communication between customer developed software applications and the DLP Discovery 4100
Development Kit driver software. The control is distributed in the DDC4100.ocx file and provides an
interface for configuration, control and display to the DLP Discovery 4100 Development Kit. When this
control is used to build applications in C, C++, or Visual Basic, control of the Discovery board is easily
accomplished using the methods documented in this chapter. The following sections describe the ActiveX
control features. For information on the us of various values that can be set (for example BlkMd) refer to
the DLPC410 data sheet, DLPS024.

NOTE: Before using any ActiveX™ methods or calls, ConnectDevice (see Section 5.1.5) must be
called to initialize a connection to the DLP Discovery 4100 Development kit USB interface.

5.1 Configuration/Status ActiveX Methods

5.1.1 Void AboutBox()
Displays an about box showing the ActiveX control version and copyright information.

5.1.2 Short AllowMessages(short value)
Controls the display of error messages by the ActiveX control. TRUE = nonzero = enable messages,
FALSE = 0 = disable messages. Default is TRUE.

5.1.3 Short DownloadAppsFPGACode(LPCTSTR FileName)
Loads the FPGA program (.bin format file) specified by FileName into the APPS_FPGA of the DLP
Discovery 4100 Development Kit. Returns 1 if successful or 0 if unsuccessful. The default file location is in
the DLP Discovery 4100 Explorer GUI installation directory and is named D4100_GUI_FPGA.bin.

5.1.4 Short GetNumDevices()
Returns the number of Discovery USB devices connected to the system. They are automatically
numbered starting at one. For example, if you have four devices plugged in, GetNumDev() will return a 4.
To access, these devices you will pass a 1, 2, 3, or a 4 to indicate the respective device to the
ConnectDevice function - see Section 5.1.5.

5.1.5 Short ConnectDevice(short DeviceNumber, LPCTSTR FileName)
Initializes a DLP Discovery 4100 Development Kit USB interface and must be called before any other
ActiveX functions that use USB communication. Devicenumber is used if multiple DLP D4100 boards are
connected to the PC, however in most cases only one device will be connected and a 1 will be passed. If
the board has not been previously initialized the application APPS_FPGA code (.bin format file) passed as
FileName will be loaded into the hardware.

Note: This differs from the equivalent .dll function which starts at 0 for numeration.

5.1.6 BOOL IsDeviceAttached()
Returns a TRUE (1) if a DLP Discovery 4100 Development Kit has been attached using the GetDevice
method. Otherwise a FALSE (0) value is returned.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039
http://msdn.microsoft.com/
http://www.ti.com/lit/pdf/DLPS024

Low ByteHigh Byte

1.2

www.ti.com DLP Discovery 4100 Development Kit USB ActiveX API

7DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5.1.7 Long GetActivexRev()
Returns the ActiveX (OCX) revision. Upper 16 bits contain major revision, lower 16 bits contain minor
revision.

5.1.8 Long GetDriverRev()
Returns the USB driver revision. Upper 16 bits contain major revision, lower 16 bits contain minor revision.

5.1.9 Short GetFirmwareRev()
Returns the USB firmware revision. The high byte contains all the digits before the decimal point and the
low byte of the returned value contains all the digits after the decimal point (See Figure 1).

Figure 1. Revision Number Format

5.1.10 Short GetSpeedMode()
Determines the speed at which the DLP Discovery 4100 Development Kit USB interface is operating. A
return value of 1 indicates that the device is operating at high speed (USB 2.0), a value of 0 means it is
operating at full speed (USB 1.1).

5.1.11 Long GetDLLRev()
Returns the version information for this DLL. The high byte contains all the digits before the decimal point
and the low byte of the returned value contains all the digits after the decimal point (See Figure 1).

5.1.12 Unsigned int GetFPGARev()
Returns the version of the firmware running on the D4100 APPS_FPGA. The high byte contains all the
digits before the decimal point and the low byte of the returned value contains all the digits after the
decimal point (See Figure 1).

5.1.13 short GetDDCVERSION()
Returns the DLPC410 Version in bits 2, 1, 0.

5.1.14 short GetDMDTYPE()
Returns DMD types as listed below:
• '0' - for DLP9500 / DLP9500UV [0.95" (Visible / UV) 1080p 2xLVDS Type A DMD]
• '1' - for DLP7000 / DLP7000UV [0.7" (Visible / UV) XGA 2xLVDS Type A DMD]
• ‘16’ – if a DMD is not attached or not recognized by the DLPC410 controller.

5.2 Low Level Control ActiveX Methods
Provides basic DLPC410 control. Any DMD function can be performed with the low level control methods.
Low level control methods do not utilize the ActiveX control image buffer, they directly send data and
commands over USB.

5.2.1 Short LoadControl()
Loads all control values to DLPC410 controller, which then loads the values to the DMD as needed. This
can be used for all non data transactions such as Micromirror Clocking Pulses (resets) and Clears.
Returns 1 if successful or 0 if unsuccessful.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

DLP Discovery 4100 Development Kit USB ActiveX API www.ti.com

8 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5.2.2 Int LoadData(UCHAR* RowData, long length)
Loads row data into the DLPC410 controller, which is then loaded into the DMD. RowData must be in a
UCHAR array of size length equal to the width of the DMD in pixels. No more than 500 rows can be
loaded at a time (96 Kb for 1080p, 51.2 Kb for XGA). To load an entire DMD, call this function multiple
times. Returns 1 if successful or 0 if unsuccessful. Row data is displayed in the row in the same order as
in RowData. Bit 0 will appear as the first pixel in the row and the last bit as the last bit in the row.

5.2.3 Short SetBlkMd (short value)
Sets the BLKMD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

5.2.4 Short GetBlkMd ()
Gets the BLKMD value from the D4100 APPS_FPGA.

5.2.5 Short SetBlkAd(short value)
Sets the BLKAD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

5.2.6 Short GetBlkAd ()
Gets the BLKAD value from the D4100 APPS_FPGA.

5.2.7 Short SetRST2BLKZ(short value)
Sets the Micromirror Clocking Pulse to 'by two' mode by setting the Reset Two Blocks flag in the D4100
APPS_FPGA. Active = 0, inactive = 1 (default). Returns 1 if successful or 0 if unsuccessful.

5.2.8 Short GetRST2BLKZ ()
Gets the value of the Reset Two Blocks flag value from the D4100 APPS_FPGA). 'By two' mode: 0 =
active, 1 = inactive.

5.2.9 Short SetRowMd(short value)
Sets the ROWMD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

5.2.10 Short GetRowMd()
Gets the ROWMD value from the D4100 APPS_FPGA.

5.2.11 Short SetRowAddr(short value)
Sets the ROWAD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

5.2.12 Short GetRowAddr()
Gets the ROWAD value from the D4100 APPS_FPGA.

5.2.13 short SetCOMPDATA(short value)
Sets the Complement Data flag in the D4100 APPS_FPGA. Active = 1, inactive = 0 (default). Returns 1 if
successful or 0 if unsuccessful.

5.2.14 short GetCOMPDATA()
Gets the current value of the Complement Data flag from the D4100 APPS_FPGA: 1 = active, 0 =
inactive.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com DLP Discovery 4100 Development Kit USB ActiveX API

9DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5.2.15 short SetNSFLIP(short value)
Sets the North/South Flip flag in the D4100 APPS_FPGA. Active = 1, inactive = 0 (default). Returns 1 if
successful or 0 if unsuccessful.

5.2.16 short GetNSFLIP()
Gets the current value of the North/South Flip flag from the D4100 APPS_FPGA: 1 = active, 0 = inactive.

5.2.17 short SetWDT(short value)
Sets the Watch Dog Timer flag in the D4100 APPS_FPGA. Active = 1 (default), inactive = 0 . Returns 1 if
successful or 0 if unsuccessful.

5.2.18 short GetWDT()
Gets the value of the Watch Dog Timer flag from the D4100 APPS_FPGA: 1 = active, 0 = inactive.

5.2.19 Short FloatMirrors()
Places the DMD in a safe state with the mirrors in the floated or flat condition, with no bias applied to the
DMD. Returns 1 if successful or 0 if unsuccessful.

5.2.20 short SetPWRFLOAT(short value)
Sets the Power Float flag in the D4100 APPS_FPGA. Active = 1, inactive = 0 (default). Returns 1 if
successful or 0 if unsuccessful.

5.2.21 short GetPWRFLOAT()
Gets the value of the Power Float flag from the D4100 APPS_FPGA: 0 = 1 = active, 0 = inactive.

5.2.22 short SetEXTRESETENBL(short value)
Enables or disables GPIOA.0 as an external Micromirror Clocking Pulse (reset) input. Enabled = 1,
disabled = 0 (default).

GPIOA.0 is a 2.5-V CMOS input. When enabled, all software control of the DMD Micromirror Clocking
Pulses (resets) is disabled. Reset operation as defined by RST2BLKZ, BLK_MD, and BLK_ADDR will be
initiated on rising edge of external Micromirror Clocking Pulse (reset) input. Returns 1 if successful or 0 if
unsuccessful.

5.2.23 short GetEXTRESETENBL()
Gets the current External Reset Enable value from the D4100 APPS_FPGA: 1 = enabled, 0 = disabled.

5.2.24 short SetGPIO(short value)
Sets the output values of GPIOA.2-4 to provide programmable digital outputs. Bits 4, 3, 2 of value control
the output state. Bits 7, 6, 5, 1, 0 of value are not used. GPIOA.2-4 are 2.5-V CMOS outputs.

5.2.25 short GetGPIO()
Returns the values of GPIOA.5-7 as digital inputs. Bits 7, 6, 5 of returned value are the input data. Bits 4,
3, 2, 1, 0 of returned value are not used. GPIOA.5-7 are 2.5-V CMOS inputs.

5.2.26 short GetRESETCOMPLETE(long waittime)
Enables global external Micromirror Clocking Pulses (resets) (see Section 5.2.22) and then loops waittime
in milliseconds for an external Micromirror Clocking Pulse (reset) trigger event to happen. If external
Micromirror Clocking Pulse (reset) occurs in the waittime windows this function will return a 1. Set waittime
to 0 to wait indefinitely.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

Image File

.bmp, .jpg,. gif

Binary Format

Image File .bin

User

Allocated

Memory

Buffer

Active X Control

Internal Frame

Buffer

DMD

FileToFrameBuffer

ConvertImage

FileToFrameBuffer

MemToFrameBuffer

LoadImageFileToBuffer

LoadToDMD

Clear
FloatMirrors

Reset

DLP Discovery 4100 Development Kit USB ActiveX API www.ti.com

10 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5.3 DMD Display Operation ActiveX Methods
DMD images may be sourced from an image file or constructed directly by software. Refer to Figure 2 for
an illustration of image display methods.

Image files should be 1024 × 768 pixels for XGA DMDs (DLP7000 & DLP7000UV), or 1920 × 1080 for
1080p DMDs (DLP9500 & DLP9500UV). An image file must be reformatted to a format which can be sent
to the DMD. This re-formatting first thresholds each pixel using a value of RGB (i.e. If, R, G, or B is ≥ 240
then the value of the pixel in the resulting binary image is set to 1) to convert from a grayscale image to a
binary image with 1 bit per pixel. The pixel values are stored in a binary format for DMD loading. Images
may be pre-converted and stored to disk file .bin format using ConvertImage or stored to the memory
images buffer using LoadImageFileToBuffer. The pre-converted images may be quickly displayed on the
DMD.

The converted image data is transferred to an Active Control Internal Memory buffer. The data is
transferred from this buffer to the DMD via the USB driver.

Figure 2. Graphical User Interface Layout

5.3.1 Short Clear(short BlockNum, short DoReset)
Clears the contents of an entire block on the DMD. Specify the block to be cleared in BlockNum. Block
numbers range from 1 to 16, a block number greater than 16 will signal a Global Clear. A Micromirror
Clocking Pulse (reset) is executed on the specified blocks if DoReset is nonzero. Returns 1 if successful
or 0 if unsuccessful.

5.3.2 Short ConvertImage (LPCTSTR SrcFile, LPCTSTR DestFile, short MirrorImage)
Converts a standard bmp, jpg, or gif image file, indicated by the file SrcFile, into a binary image file (.bin)
which may be sent directly to the display. The binary image is stored into the file indicated by DestFile. A
mirror image may be created by setting MirrorImage to a non-zero value. Returns 1 if successful or 0 if
unsuccessful.

A .bin file contains 1 bit per DMD pixel arranged starting with pixel (0,0) and arranged in row, column
format. For example, for an XGA DMD the first 1024 bits in the file contain the image data for the first row,
the second 1024 bits contains the image data for row 2, and so on.

5.3.3 short SetConversionThreshold(short threshold)
Will set the RGB (8,8,8) to binary (0 or 1) image conversion threshold to a value between 0 and 255. For
example, a value of 127 will threshold at a value of RGB (127,127,127).

5.3.4 Short FileToFrameBuffer(LPCTSTR ImageFile, short MirrorImage)
Processes an image file (ImageFile) into a binary format which may be sent directly to the display and
load the binary image into the ActiveX control image buffer. Setting MirrorImage to a non-zero value will
instruct the method to construct a mirrored image. The image file must be in the form of a Bitmap file
(*.bmp), a JPEG file (*.jpg), a GIF file (*.gif), or a binary file (*.bin). The converted image is stored in the
ActiveX control’s image buffer. Returns 1 if successful or 0 if unsuccessful.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com DLP Discovery 4100 Development Kit USB ActiveX API

11DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5.3.5 Short LoadToDMD (short BlockNum, short DoReset)
Loads a block of data from the ActiveX control image buffer to the DMD. Specify the block to be loaded in
BlockNum. Block numbers range from 1 to 16, a block number greater than 16 will load the entire DMD.
Image data is loaded from the ActiveX control’s image buffer. A Micromirror Clocking Pulse (reset) for
selected blocks is executed if DoReset is nonzero. Returns 1 if successful or 0 if unsuccessful.

5.3.6 Short MemToFrameBuffer (unsigned short* ImageBufferPtr)
Loads the ActiveX control image buffer with a binary image. The binary image may be read directly from a
file generated by the ConvertImage method or may be program generated. Returns 1 if successful or 0 if
unsuccessful.

5.3.7 Short LoadImageFileToBuffer(LPCTSTR FileName, unsigned short* ImageBufferPtr, short
MirrorImage)

Loads the memory buffer ImageBuffer with the desired image. The image is converted to a binary format.
The image is read a from a standard bmp, jpg, or gif image file, indicated by FileName. Setting
MirrorImage to a non-zero value will instruct the method to construct a mirrored image. Returns 1 if
successful or 0 if unsuccessful.

5.3.8 Short Reset(short BlockNum)
Executes a Micromirror Clocking Pulse (reset) operation for the block specified by BlockNum. Block
numbers range from 1 to 16, a block number greater than 16 will signal a Global Reset. Returns 1 if
successful or 0 if unsuccessful.

5.4 ActiveX Control Usage Examples
Control sequences for common Discovery operations are presented below in programming language-
independent examples:

5.4.1 Open USB Device
The USB device must be attached prior to performing any DMD operations. After connecting, the device
will remain open until the calling program ends.
DDC4100Ctrl.ConnectDevice(1,C:\usb_main.bin)
// Open channel to device

5.4.2 Display Single Image on DMD
A single image can be loaded from a standard image file and displayed on the DMD using the following
methods:
DDC4100Ctrl.FileToFrameBuffer(ImageFile, MirrorImage)
// Load ActiveX control’s frame buffer from specified standard .bmp, .jpg, .gif,
// or .bin image file.
DDC4100Ctrl.LoadResetFrame()
// Write Image to DMD and Micromirror Clocking Pulse (reset)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

DLP Discovery 4100 Development Kit USB ActiveX API www.ti.com

12 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

5.4.3 Display Multiple Images on DMD
To maximize display speed, images should be converted and loaded to memory buffer or buffers prior to
starting display.

Multiple images are first converted and loaded to memory buffers by repeating this method as needed:
DDC_DDC4100Ctrl_Ctrl.LoadImageFileToBuffer(FileName, ImageBuffer, MirrorImage)
// Convert image from specified standard .bmp, .jpg, or .gif image file to a format which
// can be directly written to the DMD. Store converted file in memory buffer ImageBuffer.

An image is displayed from memory by passing a pointer to the memory buffer:
DDC4100Ctrl.MemToFrameBuffer(VarPBuffer)
// load ActiveX control’s frame buffer from memory pointer VarPBuffer
DDC4100Ctrl.LoadResetFrame()
// Write Image to DMD and Micromirror Clocking Pulse (reset)

5.4.4 Clear Block on DMD
DDC4100Ctrl.Clear(BlockNum,0)
// Clear block without Reset
DDC4100Ctrl.Clear(BlockNum,1)
// Clear block and Reset
DDC4100Ctrl.Reset(BlockNum)
// Reset block

5.4.5 Clear Entire DMD Display
DDC4100CtrlCtrl.Clear(17,0)
// Global clear without Reset
DDC4100CtrlCtrl.Clear(17,1)
// Global clear and Reset
DDC4100CtrlCtrl.Reset(17)
// Global Micromirror Clocking Pulse (reset)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com DLP Discovery 4100 Development Kit USB DLL API

13DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

6 DLP Discovery 4100 Development Kit USB DLL API
Dynamic Link Libraries are Microsoft’s implementation of shared libraries. They contain functions that are
accessed on run time and have a .DLL extension. The DLP Discovery 4100 Development Kit DLL library
contains the necessary low level functions as an alternative to the ActiveX control. For information on the
us of various values that can be set (for example BlkMd), refer to the DLPC410 data sheet, DLPS024.

6.1 Configuration/Status DLL Functions

6.1.1 int program_FPGA(UCHAR* write_buffer, long write_size, short int DeviceNumber)
Programs the APPS_FPGA. The APPS_FPGA configuration file must first be loaded into a UCHAR (1
byte per element) array. The write_size is in bytes. Program control will remain with the DLL until the
board has finished programming the FPGA.

6.1.2 short GetNumDev()
Returns the number of DLP Discovery 4100 Development kits attached via USB to the system. They will
automatically be numbered starting at zero. For example, if you have four devices plugged in,
GetNumDev() will return a 4. To access these devices you will pass the other dll functions a 0, 1, 2, or a
3 for that respective device.

6.1.3 int GetDescriptor(int*, short DeviceNum);
Returns the USB device descriptor information. It will return the number of transferred bytes if successful,
a -1 if the USB device failed to open, and a -2 if the device descriptor request fails.

Integer Array information:

Array[0] = bLength

Array[1] = bDescriptorType

Array[2] = bcdUSB

Array[3] = bDeviceClass

Array[4] = bDeviceSubClass

Array[5] = bDeviceProtocol

Array[6] = bMaxPacketSize0

Array[7] = idVendor

Array[8] = idProduct

Array[9] = bcdDevice

Array[10] = iManufacturer

Array[11] = iProduct

Array[12] = iSerialNumber

Array[13] = bNumConfigurations

6.1.4 unsigned int GetDriverRev(short DeviceNumber)
Returns the USB driver revision. Upper 16 bits contain major revision, lower 16 bits contain minor revision.

6.1.5 unsigned int GetFirmwareRev(short DeviceNumber)
Returns the firmware revision on the USB (Cypress FX2) device. The high byte contains all the digits
before the decimal point and the low byte of the returned value contains all the digits after the decimal
point (See Figure 1).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039
http://www.ti.com/lit/pdf/DLPS024

DLP Discovery 4100 Development Kit USB DLL API www.ti.com

14 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

6.1.6 short int GetUsbSpeed(short DeviceNumber)
Determines if the device is plugged into a high-speed (USB 2.0) or full speed (USB 1.1) USB port. Returns
a 0 if the port is full speed, a 1 if the port is high-speed.

Negative values indicate errors:
• -1 = USB Device failed to open
• -2 = Device Descriptor request failed
• -3 = USB speed value differs from expected (not USB 2.0 or 1.1)

6.1.7 unsigned int GetDLLRev()
Returns the version information for this DLL. The high byte contains all the digits before the decimal point
and the low byte of the returned value contains all the digits after the decimal point (See Figure 1).

6.1.8 unsigned int GetFPGARev(short DeviceNumber)
Returns the version of the firmware running on the D4100 applications FPGA. The high byte contains all
the digits before the decimal point and the low byte of the returned value contains all the digits after the
decimal point (See Figure 1).

6.1.9 short GetDDCVERSION(short DeviceNumber)
Returns the DLPC410 Version in bits 2,1,0.

6.1.10 short GetDMDTYPE(short DeviceNumber)
Returns the DMD type as listed below:
• '0' - for DLP9500 / DLP9500UV [0.95" (Visible / UV) 1080p 2xLVDS Type A DMD]
• '1' - for DLP7000 / DLP7000UV [0.7" (VisibleF / UV) XGA 2xLVDS Type A DMD]
• ‘16’ – if a DMD is not attached or not recognized by the DLPC410 controller.

6.2 Low Level Control DLL Functions

6.2.1 short LoadControl(short DeviceNumber)
Loads all control flags to DMD. This can be used for all non data transactions such as Micromirror
Clocking Pulses (resets), and Clears. Returns 1 if successful or 0 if unsuccessful.

6.2.2 int LoadData(UCHAR* RowData, unsigned int length, short DMDType, short DeviceNumber)
Loads RowData into the DMD. Data must be in a UCHAR array of size length. The short DMDType should
be the Type returned by short GetDMDTYPE(short DeviceNumber) [see Section 6.1.10]. No more than
500 rows can be loaded at a time (96Kbit for 1080p, 51.2Kbit for XGA). To load an entire DMD call this
function multiple times. Returns 1 if successful or 0 if unsuccessful.

6.2.3 short ClearFifos(short DeviceNumber)
Resets hardware receiving FIFO buffers. This should be used to put the device into a known state before
sending DMD image data. Returns 1 if successful or 0 if unsuccessful.

6.2.4 short SetBlkMd(short value, short DeviceNumber)
Sets the BLKMD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

6.2.5 short GetBlkMd(short DeviceNumber)
Gets the BLKMD value from the D4100 APPS_FPGA.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

www.ti.com DLP Discovery 4100 Development Kit USB DLL API

15DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

6.2.6 short SetBlkAd(short value, short DeviceNumber)
Sets the BLKAD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

6.2.7 short GetBlkAd(short DeviceNumber)
Gets the BLKAD value from the D4100 APPS_FPGA.

6.2.8 short SetRST2BLKZ(short value, short DeviceNumber)
Sets the Micromirror Clocking Pulse to 'by two' mode by setting the Reset Two Blocks flag value in the
D4100 APPS_FPGA. Active = 0, inactive = 1 (default). Returns 1 if successful or 0 if unsuccessful.

6.2.9 short GetRST2BLKZ(short DeviceNumber)
Gets the value of the Reset Two Blocks flag value from the D4100 APPS_FPGA). 'By two' mode: 0 =
active, 1 = inactive.

6.2.10 short SetRowMd(short value, short DeviceNumber)
Sets the ROWMD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

6.2.11 short GetRowMd(short DeviceNumber)
Gets the ROWMD value from the D4100 APPS_FPGA.

6.2.12 short SetRowAddr(short value, short DeviceNumber)
Sets the ROWAD value in the D4100 APPS_FPGA. Returns 1 if successful or 0 if unsuccessful.

6.2.13 short GetRowAddr(short DeviceNumber)
Gets the ROWAD value from the D4100 APPS_FPGA.

6.2.14 short SetCOMPDATA(short value, short DeviceNumber)
Sets the Complement Data flag in the D4100 APPS_FPGA. Active = 1, inactive = 0 (default). Returns 1 if
successful or 0 if unsuccessful.

6.2.15 short GetCOMPDATA(short DeviceNumber)
Gets the current value of the Complement Data flag from the D4100 APPS_FPGA: 1 = active, 0 =
inactive.

6.2.16 short SetNSFLIP(short value, short DeviceNumber)
Sets the North/South Flip flag in the D4100 APPS_FPGA. Active = 1, inactive = 0 (default). Returns 1 if
successful or 0 if unsuccessful.

6.2.17 short GetNSFLIP(short DeviceNumber)
Gets the current value of the North/South Flip flag from the D4100 APPS_FPGA: 1 = active, 0 = inactive.

6.2.18 short SetWDT(short value, short DeviceNumber)
Sets the Watch Dog Timer flag on the D4100 APPS_FPGA. Active = 1 (default), inactive = 0. Returns 1 if
successful or 0 if unsuccessful.

6.2.19 short GetWDT(short DeviceNumber)
Gets the value of the Watch Dog Timer flag from the D4100 APPS_FPGA: 1 = active, 0 = inactive.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

DLP Discovery 4100 Development Kit USB DLL API www.ti.com

16 DLPU039–September 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

DLP® Discovery™ 4100 Development Kit API Programmer’s Guide

6.2.20 short SetPWRFLOAT(short value, short DeviceNumber)
Sets the Power Float flag in the D4100 APPS_FPGA. Active = 1, inactive = 0 (default). Returns 1 if
successful or 0 if unsuccessful.

6.2.21 short GetPWRFLOAT(short DeviceNumber)
Gets the value of the Power Float flag from the D4100 APPS_FPGA: 0 = 1 = active, 0 = inactive.

6.2.22 short SetEXTRESETENBL(short value, short DeviceNumber)
Enables or disables GPIOA.0 as an external Micromirror Clocking Pulse (reset) input. Enabled = 1,
disabled = 0 (default).

GPIOA.0 is a 2.5-V CMOS input. When enabled, all software control of the DMD Micromirror Clocking
Pulses (resets) is disabled. Reset operation as defined by RST2BLKZ, BLK_MD, and BLK_ADDR will be
initiated on rising edge of external Micromirror Clocking Pulse (reset) input. Returns 1 if successful or 0 if
unsuccessful.

6.2.23 short GetEXTRESETENBL(short DeviceNumber)
Gets the current External Reset Enable value from the D4100 APPS_FPGA: 1 = enabled, 0 = disabled.

6.2.24 short SetGPIO(short value, short DeviceNumber)
Sets the output values of GPIOA.2-4 to provide programmable digital outputs. Bits 4, 3, 2 of value control
the output state. Bits 7, 6, 5, 1, 0 of value are not used. GPIOA.2-4 are 2.5-V CMOS outputs.

6.2.25 short GetGPIO(short DeviceNumber)
Returns the values of GPIOA.5-7 as digital inputs. Bits 7, 6, 5 of returned value are the input data. Bits 4,
3, 2, 1, 0 of returned value are not used. GPIOA.5-7 are 2.5-V CMOS inputs.

6.2.26 short GetRESETCOMPLETE(int waittime, short int DeviceNumber)
Enables global external Micromirror Clocking Pulses (resets) (see Section 6.2.23) then loop waittime in
milliseconds for an external Micromirror Clocking Pulse (reset) trigger event to happen. If an external
Micromirror Clocking Pulse (reset) occurs in the waittime windows, returns a 1. If waittime is 0, loop will
run indefinitely until a Micromirror Clocking Pulse (reset) happens.

6.2.27 short GetGPIORESETCOMPLETE(short DeviceNumber)
Creates a 1 µs pulse on GPIOA.1. This can be used to trigger external hardware from the PC. Returns a 1
if successful.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPU039

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	DLP Discovery 4100 Development Kit API Programmer’s Guide
	1 Notational Conventions
	2 Overview
	3 Terms and Definitions
	4 API Overview
	4.1 DMD Image Control

	5 DLP Discovery 4100 Development Kit USB ActiveX API
	5.1 Configuration/Status ActiveX Methods
	5.1.1 Void AboutBox()
	5.1.2 Short AllowMessages(short value)
	5.1.3 Short DownloadAppsFPGACode(LPCTSTR FileName)
	5.1.4 Short GetNumDevices()
	5.1.5 Short ConnectDevice(short DeviceNumber, LPCTSTR FileName)
	5.1.6 BOOL IsDeviceAttached()
	5.1.7 Long GetActivexRev()
	5.1.8 Long GetDriverRev()
	5.1.9 Short GetFirmwareRev()
	5.1.10 Short GetSpeedMode()
	5.1.11 Long GetDLLRev()
	5.1.12 Unsigned int GetFPGARev()
	5.1.13 short GetDDCVERSION()
	5.1.14 short GetDMDTYPE()

	5.2 Low Level Control ActiveX Methods
	5.2.1 Short LoadControl()
	5.2.2 Int LoadData(UCHAR* RowData, long length)
	5.2.3 Short SetBlkMd (short value)
	5.2.4 Short GetBlkMd ()
	5.2.5 Short SetBlkAd(short value)
	5.2.6 Short GetBlkAd ()
	5.2.7 Short SetRST2BLKZ(short value)
	5.2.8 Short GetRST2BLKZ ()
	5.2.9 Short SetRowMd(short value)
	5.2.10 Short GetRowMd()
	5.2.11 Short SetRowAddr(short value)
	5.2.12 Short GetRowAddr()
	5.2.13 short SetCOMPDATA(short value)
	5.2.14 short GetCOMPDATA()
	5.2.15 short SetNSFLIP(short value)
	5.2.16 short GetNSFLIP()
	5.2.17 short SetWDT(short value)
	5.2.18 short GetWDT()
	5.2.19 Short FloatMirrors()
	5.2.20 short SetPWRFLOAT(short value)
	5.2.21 short GetPWRFLOAT()
	5.2.22 short SetEXTRESETENBL(short value)
	5.2.23 short GetEXTRESETENBL()
	5.2.24 short SetGPIO(short value)
	5.2.25 short GetGPIO()
	5.2.26 short GetRESETCOMPLETE(long waittime)

	5.3 DMD Display Operation ActiveX Methods
	5.3.1 Short Clear(short BlockNum, short DoReset)
	5.3.2 Short ConvertImage (LPCTSTR SrcFile, LPCTSTR DestFile, short MirrorImage)
	5.3.3 short SetConversionThreshold(short threshold)
	5.3.4 Short FileToFrameBuffer(LPCTSTR ImageFile, short MirrorImage)
	5.3.5 Short LoadToDMD (short BlockNum, short DoReset)
	5.3.6 Short MemToFrameBuffer (unsigned short* ImageBufferPtr)
	5.3.7 Short LoadImageFileToBuffer(LPCTSTR FileName, unsigned short* ImageBufferPtr, short MirrorImage)
	5.3.8 Short Reset(short BlockNum)

	5.4 ActiveX Control Usage Examples
	5.4.1 Open USB Device
	5.4.2 Display Single Image on DMD
	5.4.3 Display Multiple Images on DMD
	5.4.4 Clear Block on DMD
	5.4.5 Clear Entire DMD Display

	6 DLP Discovery 4100 Development Kit USB DLL API
	6.1 Configuration/Status DLL Functions
	6.1.1 int program_FPGA(UCHAR* write_buffer, long write_size, short int DeviceNumber)
	6.1.2 short GetNumDev()
	6.1.3 int GetDescriptor(int*, short DeviceNum);
	6.1.4 unsigned int GetDriverRev(short DeviceNumber)
	6.1.5 unsigned int GetFirmwareRev(short DeviceNumber)
	6.1.6 short int GetUsbSpeed(short DeviceNumber)
	6.1.7 unsigned int GetDLLRev()
	6.1.8 unsigned int GetFPGARev(short DeviceNumber)
	6.1.9 short GetDDCVERSION(short DeviceNumber)
	6.1.10 short GetDMDTYPE(short DeviceNumber)

	6.2 Low Level Control DLL Functions
	6.2.1 short LoadControl(short DeviceNumber)
	6.2.2 int LoadData(UCHAR* RowData, unsigned int length, short DMDType, short DeviceNumber)
	6.2.3 short ClearFifos(short DeviceNumber)
	6.2.4 short SetBlkMd(short value, short DeviceNumber)
	6.2.5 short GetBlkMd(short DeviceNumber)
	6.2.6 short SetBlkAd(short value, short DeviceNumber)
	6.2.7 short GetBlkAd(short DeviceNumber)
	6.2.8 short SetRST2BLKZ(short value, short DeviceNumber)
	6.2.9 short GetRST2BLKZ(short DeviceNumber)
	6.2.10 short SetRowMd(short value, short DeviceNumber)
	6.2.11 short GetRowMd(short DeviceNumber)
	6.2.12 short SetRowAddr(short value, short DeviceNumber)
	6.2.13 short GetRowAddr(short DeviceNumber)
	6.2.14 short SetCOMPDATA(short value, short DeviceNumber)
	6.2.15 short GetCOMPDATA(short DeviceNumber)
	6.2.16 short SetNSFLIP(short value, short DeviceNumber)
	6.2.17 short GetNSFLIP(short DeviceNumber)
	6.2.18 short SetWDT(short value, short DeviceNumber)
	6.2.19 short GetWDT(short DeviceNumber)
	6.2.20 short SetPWRFLOAT(short value, short DeviceNumber)
	6.2.21 short GetPWRFLOAT(short DeviceNumber)
	6.2.22 short SetEXTRESETENBL(short value, short DeviceNumber)
	6.2.23 short GetEXTRESETENBL(short DeviceNumber)
	6.2.24 short SetGPIO(short value, short DeviceNumber)
	6.2.25 short GetGPIO(short DeviceNumber)
	6.2.26 short GetRESETCOMPLETE(int waittime, short int DeviceNumber)
	6.2.27 short GetGPIORESETCOMPLETE(short DeviceNumber)

	Important Notice

