User's Guide TSW1418EVM 高速数据采集卡

本用户指南介绍了 TSW1418 评估模块 (EVM) 入门级数据采集卡的特性、操作和使用。除非另有说明,否则本用 户指南中的缩写词 EVM 和术语 评估模块 均指 TSW1418EVM。

内容

1 引言	3
1.1 REACH 合规性	3
2 功能	4
2.1 ADC EVM 数据采集	5
3 硬件	6
3.1 电源连接	6
3.2 开关、按钮、跳线和 LED	6
3.3 连接器	7
4 软件	10
4.1 安装说明	10
4.2 USB 接口和驱动程序	11
4.3 下载固件	13
5 修订历史记录	

插图清单

图 2-1.	TSW1418EVM 方框图	4
图 4-1.	TSW1418EVM 序列号	.11
图 4-2.	高速数据转换器专业版 GUI:顶级	11
图 4-3.	硬件设备管理器	12
图 4-4.	选择要加载的 ADC 固件	13
图 4-5.	下载固件错误消息	13

表格清单

表 1-1.	. SVHC 汇总	.3
表 3-1.	开关描述	6
表 3-2	跳线说明	6
表 3-3		7
表 3-4	SMA 连接器说明	7
表 3-5	FMC 连接器说明	8
		. •

商标

Xilinx[®], Artix[®], and Vivado[®] are registered trademarks of Xilinx, Inc. Windows[®] is a registered trademark of Microsoft Corporation. 所有商标均为其各自所有者的财产。

1 引言

TSW1418EVM 是一款入门级低成本 FMC 接口数据采集卡,用于评估 TI 高速模数转换器 (ADC) 系列的性能。 TSW1418EVM 用于演示数据表性能规格,方法是在使用高质量、低抖动时钟和高质量输入频率时利用低电压差 分信号 (LVDS) 或互补金属氧化物半导体 (CMOS) 接口捕获采样的数据。使用基于 Xilinx[®] 的固件, TSW1418EVM 可进行动态配置,以支持高达 950Mbps 的 LVDS 速度和高达 18 路数据输出。TSW1418EVM 附 带*高速数据转换器专业版图形用户界面*(HSDC 专业版 GUI),是可从 ADC EVM 采集数据样本并进行评估的完 整系统。

1.1 REACH 合规性

按照 EU REACH 法规第 33 条的规定,我们特此告知,此 EVM 的元件中至少含有一种含量高于 0.1% 的高度关注物质 (SVHC)。在德州仪器 (TI),这类物质的年使用量不超过 1 吨。表 1-1 中列出了 SVHC 摘要。

元件制造商	元件器件型号	SVHC 物质	SVHC CAS (推出后)
Abracon	ABM8G-12.000MHZ-B4Y-T	三氧化二硼	1303-86-2
Abracon	ABM8G-12.000MHZ-B4Y-T	氧化铅	1317-36-8

表 1-1. SVHC 汇总

2 功能

TSW1418EVM 具有一个业界通用 FMC 连接器,可使用 FMC 连接器直接与 TI 非 JESD204B/C ADC EVM 连接。与 ADC EVM 结合使用时,LVDS 或 CMOS 数据由 Xilinx Artix[®] 7 XC7A100T 现场可编程门阵列 (FPGA) 进行采集和格式化。然后,数据存储到 FPGA 内部存储器中,使 TSW1418EVM 能够存储多达 64K 的 16 位数据样本。为了在主机 PC 上采集数据,FPGA 通过高速 8 位并行接口传输数据。连接至并行转换器的板载 USB 可将FPGA 接口与主机 PC 和 GUI 桥接在一起。

TSW1418EVM 的主要特性包括:

- 入门级低成本数据采集平台
- USB 供电
- 21 个差分 LVDS 对,速度高达 950Mbps 双数据速率 (DDR)
- 64K 的 16 位内部 FPGA 存储器样本
- 支持 1.8V CMOS IO 标准
- 板载 FTDI USB 器件,用于将 JTAG 和 SPI 连接到 FPGA
- 可通过 FMC 端口或 SMA 提供备用时钟和通用 I/O
- 由 TI HSDC PRO 软件支持
- 使用 Xilinx Vivado[®] v17.2 开发的 FPGA 固件
- Digilent JTAGHS2 FPGA 编程电缆, PN: 410-249

图 2-1 展示了 TSW1418EVM 的方框图。

图 2-1. TSW1418EVM 方框图

2.1 ADC EVM 数据采集

新型 TI 高速 ADC 现在具有高达 18 位的 LVDS 输出。这些器件可用于与 TSW1418EVM 直接相连的 EVM。EVM 与 TSW1418EVM 之间的通用连接器是 Samtec 400 引脚高速、高密度 FMC 连接器 (SEAF-40-05.0-S-10-2-A-K-TR),非常适合运行速率高达 28Gbps 的大量差分对。针对整个 EVM 系列连接器的通用引脚排列已经确定。目前,EVM 与 TSW1418EVM 之间的接口已定义了以下连接:

- 21 个差分 LVDS 对或 42 个单端 CMOS 信号
- 3个数据时钟对
- 5个 SPI 信号
- 1个 I²C 接口
- 2个 FPGA 可选采样时钟对
- 4个 GPIO 信号

电路板具有:

- 四个用于连接 FPGA 的 SMA 接口
- 按钮式硬件复位开关
- 路由到 FPGA 的多个备用测试点
- 五个状态 LED

TSW1418EVM 上 FPGA 中的固件旨在适应任何在 CMOS 或 LVDS 模式下运行且具有高达 18 位的非基于 JESD204B/C FMC 的 TI ADC。

GUI 根据在器件下拉窗口中选择的 ADC 器件,为 FPGA 加载适当的固件。此窗口中出现的每个 ADC 器件都有一个与之关联的初始化文件 (.ini)。此.ini 文件包含通道数、最大采样速率、输出接口类型、位数以及其他参数等信息。用户点击采集按钮后,此信息将加载到 FPGA 寄存器中。加载参数后,将有效数据采集到 FPGA 内部存储器中。有关详细信息,请参阅 高速数据采集专业版 GUI 软件用户指南中的第 2.3 节器件 ini 文件。提供了多个.ini 文件,以供用户加载预先确定的 ADC 接口。例如,如果用户选择名为 ADC3683_2w_18bit 的 ADC,则 FPGA 配置为从 ADC3683EVM 采集数据,且 ADC 接口配置为逐位 DDR 模式,18 位 LVDS,2 个转换器,最大数据速率为 65MHz。

TSW1418EVM 能够以高达 950Mbps 的最大数据速率采集多达 64K 的 16 位样本,这些样本存储在 FPGA 内部存储器中。为了在主机 PC 上采集数据,FPGA 从存储器读取数据,并将并行数据传输到板载高速并行转 USB 转换器。

3 硬件

本节介绍 TSW1418EVM 硬件的各个部分。

3.1 电源连接

TSW1418EVM 硬件设计为以 5V 直流单电源电压运行。电源输入可以来自 USB 接口或测试点 TP10 (5V) 以及任何黑色测试点 (5V 返回)。具体选择由跳线 J10 控制。默认情况下,该电路板设置为由 USB 电源供电。例如, TSW1418EVM 在上电时消耗大概 0.120A 的电流,而在从采样率为 65Msps 的 ADC3683EVM 采集数据时消耗大概 0.3A 的电流。另一种输入电源选择是通过连接器 J4 (默认情况下未安装)。

3.2 开关、按钮、跳线和 LED

3.2.1 开关和按钮

TSW1418EVM 包含一个用于执行 FPGA 硬件复位的开关。有关开关的说明,请参阅表 3-1。

表 3-1. 开关描述

组件	说明
SW1	FPGA 硬件复位

3.2.2 跳线

TSW1418EVM 包含多个跳线 (JP),用于在电路板上实现某些功能。有关跳线的说明,请参阅表 3-2。

组件	说明	默认值
J13	设置 FPGA 组的 VADJ 电压电平以与 LVDS 或 CMOS 电平输入一起使用。 默认设置是针对 LVDS 接口	1至2
J10	电源输入选择。选项是 USB 接口或测试点。默认为 USB 接口。	2至3

表 3-2. 跳线说明

3.2.3 LED

3.2.3.1 *电源 LED*

TSW1418EVM 上的一个 LED 用于指示电路板上是否存在电源。有关此 LED 的说明,请参阅表 3-3。

表 3-3. 电源和配置 LED 说明

组件	说明
D2	如果该灯亮起,则表明电路板上存在 5V 电压。

3.2.3.2 状态 LED

TSW1418EVM 包含五个状态 LED。每个 LED 的状态说明如下:

- **D3** 未使用
- **D4** 未使用
- **D5** 未使用
- **D6**-未使用
- **D7** 未使用

3.3 连接器

3.3.1 SMA 连接器

TSW1418EVM 有四个 SMA 连接器。表 3-4 中对这些连接器进行了定义。

表 3-4. SMA 连接器说明

跳线编号	跳线名称	说明
J5	TRIG_IN	当前不受支持。未来的固件会将此跳线用作交流耦合触发器输入。默认电平为 3.3V。
J7	SYNC-OUT-1	当前不受支持。未来的固件会将此跳线用作 CMOS 同步输出。默认电平为 3.3V。通过安装 R98 并移除 R44,该输出电平由跳线 J13 设置确定。引脚 1-2 之间的分流电压为 2.5V。引脚 2-3 之间的分流电压为 1.8V。
J8	SYNC-OUT-0	当前不受支持。未来的固件会将此跳线用作 CMOS 同步输出。默认电平为 3.3V。通过安装 R99 并移除 R46,该输出电平由跳线 J13 设置确定。引脚 1-2 之间的分流电压为 2.5V。引脚 2-3 之间的分流电压为 1.8V。
J6	AC_CLK	到 FPGA 的备用交流耦合输入时钟。

备注

在固件中实现后,SYNC-OUT-0和 SYNC-OUT-1 SMA 用于提供输出 SYNC 信号。为每个 SYNC 信号 使用相同长度的电缆,以确保 SYNC 信号同时到达所有电路板。

3.3.2 FPGA 夹层卡 (FMC) 连接器

TSW1418EVM 具有一个连接器,可直接插入新型 TI LVDS 和 CMOS 接口 ADC EVM。FMC 连接器 J12 提供 TSW1418EVM 与受测 ADC EVM 之间的接口。

除了多个时钟和 21 个 LVDS 信号对或 42 个 CMOS 单端信号(取决于 FPGA 的配置方式)外,FMC 和 FPGA 之间还有多个 CMOS 单端信号,并连接了备用 LVDS 差分信号。以后,这些信号可供 HSDC 专业版 GUI 用于控制对支持此特性的 ADC EVM 进行 SPI 串行编程。表 3-5 展示了连接器引脚排列说明。

FMC 信号名称	FMC 引脚	说明
FPGA_REFCLK_P/N	G6 和 G7	来自 ADC EVM (LVDS 或 CMOS)的可选输入采样时钟
FPGA_CLK_P/N	H4 和 H5	到 ADC EVM (LVDS 或 CMOS)的可选输出采样时钟
FCLK_P/N	E2 和 E3	来自 ADC EVM (LVDS 或 CMOS)的输入帧时钟
DCLKIN_FPGA_P/N	K16 和 K17	到 ADC EVM (LVDS 或 CMOS)的输出数据时钟
DCLK_P/N	F4 和 F5	来自 ADC EVM (LVDS 或 CMOS)的输入数据时钟
HA05_P/N	E6 和 E7	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA09_P/N	E9 和 E10	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA013_P/N	E12 和 E13	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA016_P/N	E15 和 E16	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA20_P/N	E18 和 E19	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA04_P/N	F7 和 F8	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA08_P/N	F10 和 F11	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA12_P/N	F13 和 F14	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA15_P/N	F16 和 F17	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA19_P/N	F19 和 F20	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA03_P/N	J6 和 J7	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA07_P/N	J9 和 J10	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA11_P/N	J12 和 J13	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA14_P/N	J15 和 J16	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA18_P/N	J18 和 J19	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA22_P/N	J21 和 J22	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA02_P/N	K7 和 K8	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA06_P/N	K10 和 K11	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
HA10_P/N	K13 和 K14	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA21_P/N	K19 和 K20	来自 ADC EVM (LVDS 或 CMOS)的输入数据
HA23_P/N	K22 和 K23	来自 ADC EVM (LVDS 或 CMOS) 的输入数据
FMC_GPIO_0	G21	通用 I/O
FMC_GPIO_1	G22	通用 I/O
FMC_GPIO_2	G24	通用 I/O
FMC_GPIO_3	G25	通用 I/O
FMC_SCLK	G27	来自 FMC 连接器的 SPI 的 ADC 时钟 (SCLK)
FMC_SEN	G28	来自 FMC 连接器的 SPI 的 ADC 使能 (SEN)
FMC_POCI	G30	来自 FMC 连接器的 SPI 的 ADC 输入数据 (POCI)
FMC_PICO	G31	来自 FMC 连接器的 SPI 的 ADC 输出数据 (PICO)
FMC_PICO_EN	G33	来自 FMC 连接器 SPI 的 FPGA 输出数据使能
FMC_SCL	G34	来自 FMC 连接器的 I2C 使能
FMC_SDA_OUT	G36	来自 FMC 连接器的 I2C 数据输出

表 3-5. FMC 连接器说明

8 TSW1418EVM 高速数据采集卡

表 3-5. FMC 连接器说明 (续)

	•••	
FMC 信号名称	FMC 引脚	说明
FMC_SDA_IN	G37	来自 FMC 连接器的 I2C 数据输入

3.3.3 JTAG 连接器

TSW1418EVM 包含一个业界通用 JTAG 连接器,用于连接到 FPGA 的 JTAG 端口。FPGA JTAG 端口还连接到 USB 接口器件 U4(来自 FTDI 的 FT2232HL)。此 USB 接口是对 FPGA 进行编程的默认方法。此配置允许通过 HSDC 专业版软件 GUI 对 FPGA 进行编程。每次 TSW1418EVM 断电时,都会删除 FPGA 配置。每次电路板上 电后,用户都必须通过 GUI 对 FPGA 进行编程。

3.3.4 USB I/O 连接

通过 USB 连接器 J2 来控制 TSW1418EVM。此连接器提供了在使用 Windows[®] 操作系统的 PC 上运行的 HSDC 专业版 GUI 与 FPGA 之间的接口。对于计算机,访问 USB 端口所需的驱动程序包含在 HSDC 专业版 GUI 安装 软件(可从德州仪器 (TI) 网站下载)中。驱动程序会在软件安装过程中自动安装。在 TSW1418EVM 上,USB 端 口用于为 EVM 加电,识别受测 EVM 的类型和序列号,加载所需的 FPGA 配置文件,以及从 ADC EVM 采集数 据。

4 软件

4.1 安装说明

- 将最新版本的 HSDC 专业版 GUI 下载到主机 PC 上的本地位置。该文件可在 TI 网站上找到,方法是搜索高速 数据转换器专业版 GUI 安装程序。
- 解压软件包可生成一个名为 High Speed Data Converter Pro Installer v6.0.exe 的文件夹,其中 6.0 是版本 号。运行此程序即可开始安装。
- 在安装软件之前,请确保从各 EVM 电路板上拔下所有 USB 电缆。
- 在安装过程中,按照屏幕上的说明进行操作。
- 点击 Install (安装) 按钮。
- 此时会打开一个新窗口。点击 Next 按钮。
- 接受许可协议。点击 Next 按钮以开始安装。
- 安装完毕后,最后再点击一次 Next 按钮。
- 至此完成安装。GUI 可执行文件及关联文件的当前版本位于以下目录中: C:\Program Files (x86)\Texas Instruments\High Speed Data Converter Pro。将来的版本可能位于其他位置。
- 在 TSW1418EVM 的 J2 与主机 PC 之间连接 USB 电缆。LED D2 现在亮起。
- 要启动 GUI,请点击以下目录中名为 High Speed Data Converter Pro.exe 的文件: C:\Program Files\Texas Instruments\High Speed Data Converter Pro。

备注

如果已安装较旧版本的 GUI,请确保先将其卸载,然后再加载较新版本。

备注

当最新版本的高速数据转换器专业版 GUI 目前不支持新推出的 TI 高速数据转换器 EVM 或新接口模式时,将有一个可用的路径文件。HSDCProv_xpxx_Patch_setup 可执行文件允许用户将这些新的 EVM 和模式添加到 GUI 器件列表中。可以在 TI 网站上的高速数据转换器专业版软件产品文件夹下获取该补丁文件:http://www.ti.com.cn/tool/cn/DATACONVERTERPRO-SW。

下载补丁后,按照屏幕上的说明运行补丁。该软件会显示将要添加的文件。运行补丁后,打开 HSDC 专业版,ADC 器件下拉选择框中会显示新的器件和模式。该补丁始终特定于核心 GUI 版本,并且不适用于未明确创建补丁的 GUI 版本。

4.2 USB 接口和驱动程序

点击桌面上创建的 High-Speed Data Converter Pro 图标,或转到 C:\Program Files (x86)\Texas Instruments\High Speed Data Converter Pro, 然后双击名为 High Speed Data Converter Pro.exe 的可执行文件以启动 GUI。

GUI 首先尝试连接到 EVM USB 接口。如果 GUI 识别出一个有效的电路板序列号,则将打开一个显示该序列号的 弹出窗口,如图 4-1 所示。用户可以将多个 TSW1418EVM 连接到一台主机 PC,但 GUI 一次只能连接到一个 EVM。当多个电路板连接到 PC 时,弹出窗口会显示识别的所有序列号。然后,用户选择将 GUI 与哪个电路板关 联。GUI 的未来版本允许在一台 PC 上同时打开 GUI 的多个副本。

F	T2UVAVE-T	SW1418		
5	Select/Enter	r IP Address - F	Port Number	
	5	Select/Enter	Select/Enter IP Address - F	Select/Enter IP Address - Port Number

图 4-1. TSW1418EVM 序列号

点击 OK 以将 GUI 连接到电路板。将打开并显示 GUI 首页,如图 4-2 所示。

图 4-2. 高速数据转换器专业版 GUI:顶级

如果显示 No Board Connected 消息,则:

- 1. 仔细检查 USB 电缆连接
- 2. 确认跳线 J10 在引脚 2 和 3 之间安装了分流器
- 3. 从电路板上移除 USB 电缆
- 4. 重新安装
- 5. 点击 GUI 左上角的 Instrument Option 选项卡
- 6. 选择 Connect to the Board

如果此过程无法解决此问题,请检查主机 USB 端口的状态。

安装软件并将 USB 电缆连接到 TSW1418EVM 和 PC 后,TSW1418EVM USB 转换器将出现在硬件设备管理器中的通用串行总线控制器下,如图 4-3 所示(标记为 USB Serial Converter A 和 USB Serial Converter B)。拔下 USB 电缆后,设备管理器中不再显示此驱动程序。如果器件管理器窗口中显示了驱动程序,但软件仍然无法连接,请从电路板上拔下 USB 电缆,然后重新连接。尝试连接到电路板。如果问题仍然存在,请尝试另一个 USB 端口。

📩 Device Manager	-	×
File Action View Help		
		_
> 🦢 Batteries		^
> O Bluetooth		
> 🗶 Cameras		
> 🛄 Computer		
> Disk drives		
> 🜄 Display adapters		
> Firmware		
> pip Human Interface Devices		
> 🚅 Jungo		
> 🛄 Keyboards		
> 🔛 Memory technology devices		
> 🕘 Mice and other pointing devices		
> 💷 Monitors		
> 💇 Network adapters		
> Ø Ports (COM & LPT)		
> 🕾 Print queues		
> Processors		
> 🛐 Security devices		
> P Software components		
> Software devices		
> 💐 Sound, video and game controllers		
> Sa Storage controllers		
> 🐚 System devices		
✓ [↓] Universal Serial Bus controllers		
Generic SuperSpeed US8 Hub		
Generic USB Hub		
Generic USB Hub		
Intel(R) USS 3.0 eXtensible Host Controller - 1.0 (Microsoft)		
Intel(R) USB 3.1 eXtensible Host Controller - 1.10 (Microsoft)		
USB Composite Device		
US8 Composite Device		
US8 Composite Device		
USB Composite Device		
US8 Composite Device		
USB Root Hub (USB 3.0)		
US8 Root Hub (US8 3.0)		
USB Serial Converter		
USB Serial Converter A		
USB Serial Converter B		~
		-

图 4-3. 硬件设备管理器

4.3 下载固件

TSW1418EVM 具有一个 Xilinx Artix 7 器件,该器件要求在每次下电上电运行时下载固件。所需的固件文件是随 软件包提供的特殊.bin 格式的文件。GUI 使用的文件当前位于以下目录中:C:\Program Files (x86)\Texas Instruments\High Speed Data Converter Pro\1418 Details\Firmware。

要加载固件,在 GUI 建立连接后,点击 GUI 左上角的 *Select ADC* 窗口,然后选择要评估的器件;例如 *ADC3683_2CH_2W_18bit*,如图 4-4 所示。

GUI 会提示用户更新 ADC 的固件。点击 Yes。GUI 将显示消息 *Downloading Firmware, Please Wait*。软件现在 将固件从 PC 加载到 FPGA,这一过程大约需要 3 秒。完成后,GUI 会在右下角报告接口类型。

图 4-4. 选择要加载的 ADC 固件

有关将 TSW1418EVM 与 ADC EVM 结合使用的信息,请参阅 www.ti.com 上提供的*高速数据转换器专业版 GUI* 用户指南和单独的 ADC EVM 用户指南。

如果显示如图 4-5 所示的消息,请验证所有跳线均处于默认位置,并且所有电源状态 LED D2 亮起。如果某些跳 线未安装在正确位置,则 USB 控制器不会从闪存存储器引导。如果电源状态 LED 熄灭,则 USB 端口的电源可能 存在问题,这可能会阻止下载固件。拔下并重新安装 USB 连接器,然后尝试连接到电路板。如果此过程失败,则 尝试另一个 USB 端口,或使用额定电流为 1A 的外部 5V 直流电源,并连接到测试点 TP10 (5V) 以及 TP1、TP2 或 TP3 (5V 返回)来尝试纠正此问题。在尝试此选项之前,首先将 J10 上的分流器移至引脚 1 和 2,以将输入电 源路径重新路由至此测试点。

No Boar Connect	d ted!	
OK		
· · · · · · · · · · · · · · · · · · ·	Connect OK	Connected! OK

图 4-5. 下载固件错误消息

5 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision * (September 2018) to Revision A (November 2023)	Page
•	将提到 SPI 的旧术语的所有实例更改为 POCI 和 PICO	8
•	更新了 <i>安装说明</i>	10

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司