EVM User's Guide: UCC27332Q1EVM **UCC27332-Q1** *评估模块*

TEXAS INSTRUMENTS

说明

UCC27332Q1EVM 旨在为评估 UCC27332-Q1 性能提供易于使用的工具。UCC27332-Q1 是一款 20V 单通 道低侧驱动器,具有 9A 峰值拉电流和 9A 峰值灌电流,用于驱动 Si/IGBT 和 GaN FET。 UCC27332Q1EVM 板可用于评估 3x3mm MSOP 封装中的其他引脚对引脚兼容器件。

开始使用

- 1. 在 ti.com 上订购 EVM。
- 2. 查看用户指南。
- 3. 从产品文件夹下载综合参考设计文件。
- 4. 请参阅最新数据表 (SLUSEW3)。

特性

- 适用于 UCC27332-Q1 栅极驱动器低电压特性的 EVM。
- 4.5 至 18V VCC 电源电压范围。
- 9A 拉电流, 9A 灌电流。
- IN 输入引脚具有 -5V 输入电压能力。
- TTL 兼容的输入。
- PCB 布局针对辅助电源旁路电容器放置、栅极驱动 电阻网络选型进行了优化。
- 评估容性负载、外部栅极驱动电阻网络。
- 采用 3mm x 3mm MSOP8 封装。
- 测试点可用于探测 UCC27332-Q1 的所有关键引 脚。

应用

- 汽车直流/直流转换器
- 车载充电器
- 电信直流/直流转换器
- 功率因数校正 (PFC) 电路

1 评估模块概述

1.1 引言

UCC27332Q1EVM 主要用于评估 UCC27332-Q1 的性能。UCC27332Q1EVM 板可用于评估 3x3mm MSOP 封装中的其他引脚对引脚兼容器件。

本用户指南介绍了 UCC27332-Q1 评估模块 (EVM) 的特性、运行和使用情况。本文档包含完整的原理图、PCB 布局和 BOM。该器件系列提供高拉电流和灌电流驱动器,用于驱动 Si MOSFET 和 IGBT。

1.2 套件内容

数量	
1	UCC27332Q1EVM

1.3 规格

有关驱动负载的全系列建议运行规格和设计指南,请参阅 UCC27332 20V、9A 单通道低侧驱动器数据表 (SLUSEW3)。

1.4 器件信息

UCC27332-Q1 是一款 20V 单通道低侧驱动器,具有 9A 峰值拉电流和 9A 峰值灌电流,用于驱动 Si FET、IGBT 和 GaN FET。UCC27332-Q1 具有低传播延迟以及快速上升 (13ns) 和下降 (9ns) 的特性,可驱动 10nF 负载,为 栅极驱动信号提供可靠时序。高驱动强度可有效驱动各种终端设备应用中的高 Qg MOSFET 负载。4.5V 至 18V 的宽工作电压范围可驱动功率器件,包括 GaN FET、Si FET 和 IGBT 的功率器件。

2 硬件

2.1 其他图像

图 2-1. 顶部图像

图 2-2. 底部图像

2.2 硬件说明

UCC27332Q1EVM 主要用于评估 UCC27332-Q1。可以在驱动具有 TO-220 封装的配置的容性负载和/或功率器件 时评估驱动器的性能。UCC27332Q1EVM 评估板具有表面贴装测试点,允许连接到 IN、EN、VDD 和 OUT 引 脚,以评估 3x3 MSOP 封装中的 UCC27332-Q1。该 EVM 设置为评估同相配置中的 UCC27332-Q1 DGN,以通 过使用 1.8nF 容性负载的默认配置驱动各种电容和电阻负载。

UCC27332-Q1 具有低传播延迟以及快速上升 (13ns) 和下降 (9ns) 的特性,可驱动 10nF 负载,为栅极驱动信号 提供可靠时序。有关详细的器件信息,请参阅 UCC27332 20V、9A 单通道低侧驱动器数据表 (SLUSEW3)。

2.2.1 I/O 说明

表 2-1 详细介绍了连接说明。

引脚	说明		
VCC	V _{CC} 正输入测试点。为 IC VDD 引脚供电,使用 4.5V 至 18V 电压范围		
VDD	UCC27332-Q1 IC 的 V _{DD} 正输入		
GND	多个测试点。UCC27332-Q1 IC 的 V _{CC} 负输入、IN、EN、OUT 和栅极接地参考		
IN_IN	IN PWM 信号		
EN_IN	EN PWM 信号		
IN	IN 输入引脚		
EN	EN 输入引脚		
栅极	容性负载下的 OUT 输出		
OUT	驱动器引脚上的 OUT 输出		

表 2-1. 连接说明

3 实现结果

3.1 电气规格

有关驱动负载的全系列建议运行规格和设计指南,请参阅 UCC27332 20V、9A 单通道低侧驱动器数据表 (SLUSEW3)。

小心

UCC27332Q1EVM 仅适用于低压评估,未经认证可在超出电气规格中列出的绝对最大值的电压下进行评估。请勿使用此电路板评估高压参数。

3.2 测试总结

3.2.1 定义

该过程详细说明了如何配置 UCC27332Q1EVM 评估板。该测试过程中遵循了以下命名约定。有关详细信息,请参阅 UCC27332Q1EVM 工作台设置图和配置(图 3-1)。

DMM:数字万用表

EVM:评估模块

3.2.2 设备

3.2.2.1 电源

电压和电流高于 20V 和 1A 的直流电源,例如: Agilent E3634A。

3.2.2.2 函数发生器

超过 10MHz 的双通道函数发生器,例如:Tektronics AFG3252。

3.2.2.3 DMM

电压和电流分别高于 30V 和 1A 的 DMM,例如:Fluke 187。

3.2.2.4 示波器

具有 500MHz 或更高带宽的四通道示波器,例如:DPO 7054。

3.2.3 设备设置

3.2.3.1 直流电源设置

- 直流电源 1
 - 电压设置:12V
 - 电流限值:0.05A

3.2.3.2 数字万用表设置

- DMM #1
 - 直流电流测量,自动量程。预期电流在 1mA 至 15mA 范围内。

3.2.3.3 双通道函数发生器设置

UCC27332Q1EVM 在将 EN 接地时需要一个函数发生器设置。

表 3-1. 双通道函数发生器设置

	模式	频率	宽度	延迟	高	低	输出阻抗
通道 A	脉冲	100kHz	2.5µs	0us	5V	0V	高阻抗

3.2.3.4

3.2.3.5 示波器设置

表 3-2 详细介绍了示波器设置。

	带宽	耦合	端接	比例设置	反相
通道 A	500M日7 武以上	直流	1MΩ 或自动	10× 或自动	关闭
通道 B	- SOUMHZ 或以上				

表 3-2. 示波器设置

3.2.3.6 工作台设置图

工作台设置图中展示了函数发生器和示波器的连接。

使用以下连接过程,请参阅图 3-1。

对于 UCC27332Q1EVM, 连接过程如下:

- 首先,连接前请确保禁用函数发生器输出以及电源。
- 将函数发生器通道 A 的正极连接到 IN,负极连接到 GND。

请参阅图 3.1。

- 电源 #1:正节点连接至 DMM #1 的输入, DMM #1 的输出连接至标有 VCC 的测试点, 电源 #1 的负节点直接 连接至标有 GND 的测试点; 如图 3-1 所示。
- 将示波器 Ch-1 探头连接到标记为 Gate 和 GND 的测试点,优选较小的测量环路;如图 3-1 所示。

图 3-1. 工作台设置图和配置

3.3.1 上电

- 1. 在开始上电测试过程之前,请验证图 3-1 中的连接。
- 2. 启用电源 #1,如果 DMM1 上的电流大于 0.05mA 且小于 0.3mA,则一切设置正确。
- 3. 打开函数发生器的通道 A。
- 4. 应观察到以下行为:
 - a. 示波器通道 1 和通道 2 上具有稳定脉冲输出,请参阅图 3-2。
 - b. 频率测量值为 100kHz ±5kHz 或等于已编程的函数发生器频率。
 - c. DMM 1 显示约 2.9mA ±0.75mA (默认负载电容 1.8nF)。有关工作电流的更多信息,请参阅 UCC27332Q1 单通道 20V 9A 高速低侧栅极驱动器数据表。

图 3-2. 输入和输出波形示例(蓝色是 PWM 输入,红色是驱动器输出)

3.3.2 断电

请按照以下步骤关闭 EVM:

- 1. 禁用函数发生器。
- 2. 禁用电源 1。
- 3. 断开电缆和探头的连接。

3.4 典型性能波形 (C_L = 1800pF)

3.4.1 传播延迟

以下波形展示了 IN 输入和 OUT 输出。

为了评估传播延迟以及上升和下降细节,TI建议使用短接地线连接示波器探头。

图 3-3. 上升时间和上升传播延迟

备注 要评估数据表时序参数,请将 C6 更改为 10nF。

图 3-4. 下降时间和下降传播延迟

备注

要评估数据表时序参数,请将 C6 更改为 10nF。

4 硬件设计文件

4.1 原理图

图 4-1 展示了 UCC27332Q1EVM 原理图。

图 4-1. UCC27332Q1EVM 原理图

4.2 PCB 布局

图 4-2 至图 4-5 展示了 UCC27332Q1EVM 的 PCB 布局信息。

图 4-4. 底层

图 4-3. 顶层

图 4-5. 底部覆盖层

4.3 物料清单

表 4-1 提供了 UCC27332Q1EVM 物料清单。

表 4-1.	UCC27332Q1EVM	物料清单
- m		

数量	名称	说明
1	C1	电容,铝,47μF,50V,+/-20%,0.68 Ω,SMD
1	C2	电容,陶瓷,1uF,50V,+/-10%,X7R,0603
1	C3	电容,陶瓷,1.0μF,50V,+/-10%,X7R,0402
2	C4、	电容,陶瓷,10pF,50V,+/-5%,COG/NPO,0603
	C7	
1	C5	电容,陶瓷,0.22uF,50V,+/-10%,X7R,0805
1	C6	电容,陶瓷,1800pF,50V,+/-10%,X7R,0805
1	D1	二极管,肖特基,30V,1A,AEC-Q101,MicroSMP
1	J1	接头,2.54mm,2x1,锡,TH
1	J2	接头,2.54mm,3x1,锡,TH
1	R1	电阻,0,5%,0.125W,AEC-Q200 0 级,0805
2	R2、R4	电阻,0,5%,0.125W,0805
1	R3	电阻,49.9,1%,0.1W,AEC-Q200 0 级,0603
2	R5、	电阻,10.0k,1%,0.2W,0805
	R6	
1	R7	电阻,100,1%,0.1W,0603
14	TP1 - TP14	测试点,微型,SMT
1	TP10	测试点,微型,SMT
1	TP17	测试点,微型,SMT
1	U1	UCC27332-Q1 具有 - 5V 输入能力、适用于汽车应用的 20V、9A 单通道低侧栅极驱动器

5 其他信息

商标

所有商标均为其各自所有者的财产。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司