TEXAS INSTRUMENTS

摘要

本文档随 MCT8329 客户评估模块 (EVM) 一起提供,作为 MCT8329 数据表 (MCT8329 三相无传感器梯形控制 BLDC 栅极驱动器)的补充。本用户指南详细介绍了 EVM 的硬件实现以及如何对电路板进行设置和供电。

1 注意事项和警告	2
2引言	2
3 快速入门指南	3
4 硬件和软件概述	4
4.1 硬件连接概述 - MCT8329EVM	4
4.2 连接详细信息	5
4.3 MSP430FR2355 微控制器和用户界面	6
4.4 LED 指示灯	7
4.5 用户可配置设置	8
5 硬件设置	10
6 MCT8329 GUI 应用	11
6.1 运行 GUI	11
6.2 离线安装程序	11
7 MSP430FR2355 接口固件	12
7.1 下载 Code Composer Studio 并导入 MSP430FR2355 接口固件代码	12
7.2 使用 eZ-FET 对 MSP430FR2355 进行编程	13
8 原理图	14
8.1 主电源	14
8.2 连接器和接口	14
8.3 USB 转 UART	14
8.4 MCU 编程和调试	15
8.5 MSP430FR2355 MCU	15
8.6 MCT8329 三相无传感器梯形控制栅极驱动器	16
8.7 状态 LED	16
8.8 开关和速度输入	17
9 修订历史记录	18

商标

LaunchPad[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

1 注意事项和警告

请遵守 EVM 板上印刷的以下注意事项和警告。

CAUTION 表面高温!接触会导致烫伤。请勿触摸。操作时请采取 适当的预防措施。

2 引言

MCT8329 是一款具有无代码无传感器梯形控制的 4.5V 至 60V 三相 BLDC 栅极驱动器 IC,适用于电机驱动应用。MCT8329 具有三个半桥栅极驱动器,每个驱动器都能够驱动高侧和低侧 N 沟道功率 MOSFET。该器件使用内部电荷泵生成合适的栅极驱动电压,使用自举电路增强高侧 MOSFET。具有涓流电荷泵,支持 100% 占空比。此栅极驱动架构支持高达 1A 的峰值栅极驱动拉电流和 2A 的峰值栅极驱动灌电流。MCT8329 可由单电源供电,支持 4.5V 至 60V 的宽输入电源电压范围。I2C 接口型号 (MCT8329A1I) 还提供标准 I2C 接口,可通过外部控制器配置各种器件设置和读取故障诊断信息。

MCT8329EVM 包括板载 FTDI 芯片和板载 MSP430FR2355 MCU,前者用于将 USB 通信从 Micro-USB 连接器转 换为 UART,后者可与 MCT8329 连接。MCT8329EVM 还可以为 MCT8329 器件的 SPI 型号提供 SPI 通信。提供了许多可供用户选择的跳线、电阻器、连接器和测试点来评估器件的许多功能并配置器件专用设置。

本文档是 MCT8329EVM 配套的入门指南。本用户指南旨在方便工程师设计、实施和验证 MCT8329 器件的参考 硬件。

图 2-1. MCT8329EVM 印刷电路板 (PCB - 顶视图)

MCT8329EVM 需要一个建议工作电压范围为 4.5V 至 60V 的电源。若要设置 EVM 并为其供电,请按照以下顺序 操作:

- 1. 将电机相位连接到连接器 J11 上的 A、B、C。
- 2. 请勿打开电源。将电机电源连接到连接器 J10 上的 PVDD 和 GND。
- 3. 选择 J6 至 5V_USB 和 J8 至 3V3COM 以通过 USB 电源为 MSP430 供电。
- 4. 将 Micro-USB 线缆连接到计算机中。
- 5. 将电位计按顺时针旋转,使电机上电后速度为零。
- 6. 将开关 S1 切换至项部位置可配置 BRAKE = RUN,将 S2 切换至项部位置可配置 DRVOFF = ON,将 S3 切 换至底部位置可配置 DIR = ABC,并将 S4 切换至底部位置可配置为 WAKE。
- 7. 将开关 SW1 向左切换,可将 SPEED/WAKE 引脚配置为 SPEED 模式,并将 DACOUT/SOx/SPEED_ANA 引 脚配置为 DACOUT 模式。请注意,将开关 SW1 向右切换可将 SPEED/WAKE 引脚配置为 WAKE 模式,并将 DACOUT/SOx/SPEED_ANA 引脚配置为 SPEED_ANA 模式。当 SW1 向右切换时,开关 S4 可用于将器 件置于 SLEEP 或 WAKE 模式,电位计 R47 可用于向 DACOUT/SOx/SPEED_ANA 引脚施加模拟电压。
- 8. 选择 J12 至最左侧位置(靠近 C6),可将 AVDD 应用于 VREG。
- 9. 选择 J13 至中间位置,可将电位器 R47 的模拟电压施加到 SPEED/WAKE 引脚。
- 10. 打开电机电源。
- 11. 使用电位器 R47 来控制电机的速度,使用开关来禁用电机驱动器、改变方向或对电机施加制动。或者,使用 GUI(如节6所示)来监控电机的实时速度,将 MCT8329 置于低功耗睡眠模式,并读取 LED 的状态。

图 3-1. 快速入门指南参考

4 硬件和软件概述

4.1 硬件连接概述 - MCT8329EVM

图 4-1 展示了 MCT8329EVM 评估模块的主要模块。MCT8329EVM 可在 4.5V 至 60V 的输入电源电压范围内工 作。MCT8329EVM 包含具有六个外部 N 沟道功率 MOSFET 的功率级(MOSFET 器件型号:CSD18536KTTT) 和无源器件。MCT8329EVM 还具有一个 1mΩ 的电流检测分流电阻器和一个由 GCTRL 控制的用于生成 VREG 的外部 N 沟道 MOSFET。

图 4-1. MCT8329EVM 主要硬件模块

4.2 连接详细信息

图 4-2 展示了为驱动三相无传感器无刷直流电机旋转,需将电机与 MCT8329EVM 进行的连接。

4.5V 至 60V 电源连接到连接器 J10 上的 PVDD 和 GND 端子。

BLDC 电机的三相直接连接到 MCT8329EVM 上提供的螺钉端子连接器 J11 的 A、B 和 C 端子。

图 4-2. 从电机到 MCT8329EVM 的连接

图 4-3 展示了 MSP430FR2355 微控制器 micro-USB 电缆插入 MCT8329EVM 的位置,以便提供评估模块和 GUI 之间的通信。USB 数据和 USB 的 5V 电源转换为 UART 数据和 3.3V 电源,以为 MSP430FR2355 微控制器供 电。USB 电源在 5V 电压下电流被限制在 500mA,FTDI 芯片在 3.3V 电压下电流被限制在 30mA。如果用户希望 为这些电源轨提供更多电流,可以使用 5V_SEL 跳线 J3 和 3V3_SEL 跳线 J5 连接外部电源轨。

C14 R31

RST

图 4-3. MCT8329EVM 的 Micro-USB 连接器和 UART

4.3 MSP430FR2355 微控制器和用户界面

MCT8329EVM 包括 MSP430FR2355 低功耗 MCU (如图 4-4 所示),以便通过 I2C 与 MCT8329 通信。

要对 MSP430FR2355 进行编程,必须将外部 MSP430 FET 编程器连接到 Spy-Bi-Wire (SBW) 接口连接器 J4。 许多 MSP430 LaunchPad[™] 提供板载 eZ-FET 调试探针,可通过跳线连接到 MCT8329EVM,从而将固件刷写到 MSP430FR2355 微控制器中。

用户可以随时使用复位 (RST) 按钮进行复位并重启 MCU 程序。两个低电平有效 LED (D13 和 D14)也可用于调试目的。

最后,32 引脚连接器 J9 上的分流跳线桥连接微控制器和 MCT8329 之间的所有信号。可以根据需要插入或移除 这些跳线,将微控制器与栅极驱动器隔离。这可用于微控制器信号调试或将 MCT8329EVM 作为带有外部微控制 器的独立栅极驱动器使用。

图 4-4. MCT8329EVM 上的 MSP430FR2355 MCU 和用户界面

4.4 LED 指示灯

MCT8329EVM 具有 5 个状态 LED,可指示电源的状态和评估模块的功能。默认情况下,VM LED 和 3.3V 降压 LED 会在电路板通电且程序已刷入微控制器时亮起。表 4-1 显示 LED 说明,上电过程中点亮的 LED 以粗体显示,图 4-5 显示 LED 的位置。

表 4-1. MCT8329EVM LED 说明(上电后默认状态以粗体显示)

标识符	名称	颜色	说明
D1	AVDD 稳压器	绿色	接通 AVDD 时亮起。
D2	nFAULT	红色	MCT8329 发生故障时亮起
D3	PVDD	绿色	在 PVDD 上施加电压时亮起。
D13	MSP_LED1	红色	用于 UART 或调试
D14	MSP_LED2	红色	用于 UART 或调试

图 4-5. MCT8329EVM LED

4.5 用户可配置设置

MCT8329EVM 整个评估板上包含各种用户可选的跳线、开关和电阻器,用于配置设置。表 4-2 总结了所有这些可 配置设置。

标识符	设置名称	说明	层	位置	功能
J8	3V3_SEL	为 MCU 电源选择 3.3V	顶层	J8 = 3V3EXT	外部
				J8 = 3V3COM	来自 FTDI (30mA)
J6	5V_SEL	为 FTDI 电源选择 5V	顶层	J6 = 5V_EXT	外部
				J6 = 5V_USB	来自 USB 电源 (500mA)
J13	SPEED_SEL	选择 SPEED 输入源	顶层	J13 = EXT	外部 EXT_SPEED 测试点
				J13 = POT	来自电位计 R47。
				J13 = INT_PWM	来自内部 PWM。通 过旋转 POT R47 可 改变 PWM 占空比。
J9	MSP 到 MCx 分流跳	插入跳线时,将来自 MCU 和用户开	顶层	DRVOFF_SW	DRVOFF
	桥	关的信号连接到 MCT8329		DIR_SW	DIR
				BRAKE_SW	BRAKE
				SPEED_WAKE	SPEED/WAKE
				MSP_POCI/SCL	SCL
				MSP_PICO/SDA	SDA
				MSP_CLK	NC
				MSP_STE	NC
				DAC/SPEED	DAC/SPEED
				MSP_A2	NC
				MSP_A1	GCTRL
				NC	NC
				MSP_nFAULT	nFAULT
				MSP_FGOUT	FGOUT
				NC	NC
				GND	GND
J12	VREG_SEL	选择 VREG 电源	顶层	左侧位置	VREG 由 AVDD 供电
				中间位置	VREG 由外部供电。
				右侧位置	VREG 由 MOSFET Q7 供电
J1	AVDD LED	将 AVDD LED 连接到 3.3V 上拉电 阻。	顶层	连接	接通 AVDD 时,D1 亮起。
J2	nFAULT LED	将 nFAULT LED 连接至 3.3V 上拉电阻。	顶层	连接	nFAULT 被拉低时, D2 亮起。
J3	PVDD LED	将 PVDD LED 连接至 3.3V 上拉电 阻。	顶层	连接	向 PVDD 施加电压 时,D3 亮起。
S1	BRAKE	打开所有低侧 MOSFET	顶层	底层	启用制动
				顶层	禁用制动
S2	DRVOFF	禁用栅极驱动器	顶层	底层	禁用 MCT8329
				顶层	启用 MCT8329
S3	DIR	控制电机旋转方向。	最优	底层	ABC
				顶层	ACB

表 4-2. MCT8329EVM 上用户可选设置的说明(默认情况以粗体表示)

标识符	设置名称	说明	层	位置	功能
S4	SPEED/WAKE	将 SPEED/WAKE 引脚拉至 AVDD 和 GND	最优	底层	SPEED/WAKE 引脚 被拉至 AVDD。
				顶层	SPEED/WAKE 引脚 被拉至 GND。
SW1	不适用	将 SPEED/WAKE 引脚配置为 SPEED 模式并配置 DACOUT/SOx/ SPEED_ANA 引脚	顶层	左侧	将 SPEED/WAKE 引 脚配置为 SPEED 模 式,并将 DACOUT/SOx/ SPEED_ANA 引脚配 置为 DACOUT 模 式。
				右侧	将 SPEED/WAKE 引 脚配置为 WAKE 模 式,并将 DACOUT/SOx/ SPEED_ANA 引脚配 置为 SPEED_ANA 模式。

表 4-2. MCT8329EVM 上用户可选设置的说明(默认情况以粗体表示) (continued)

5 硬件设置

运行电机所需的硬件包含 MCT8329EVM、Micro-USB 电缆和具有 4.5V 至 60V 直流输出的电源。按照以下步骤 启动 MCT8329EVM:

- 1. 将直流电源连接到接头 J10。连接到 PVDD 和 GND。
- 2. 应用用户可配置的跳线设置。更多信息,请参阅节4.5。
- 3. 将程序刷入 MCU 中, 如节 4 中所述。在 GUI 编译器中启动 GUI 并断开 4 引脚 JTAG 连接。
- 4. 将 Micro-USB 电缆连接到 MCT8329EVM 和计算机。
- 5. 打开电源并为 PCB 上电。

如果将 MCT8329EVM 与外部微控制器一起使用,请从跳线桥 J9 上移除所有分流跳线。将外部跳线从外部 MCU 连接到跳桥的左侧。

6 MCT8329 GUI 应用

MCT8329EVM 提供 USB-UART 接口,作为主机 PC 和 MCT8329 器件之间的通信网桥,并通过使用 MSP430FR2355 微控制器,配置各种器件设置和读取故障诊断信息。可通过此通信接口,将 MCT8329 GUI 与 MCT8329 进行连接并对其进行配置。

通过 TI 云库访问 MCT8329A GUI。

6.1 运行 GUI

MCT8329A GUI 可以直接在 Web 浏览器 (支持 Google Chrome 和 Firefox)中运行。

Device connection status				
MCT8329AEVM		README.md		
This GUI supports MCT832SAEVM	1 all 1 all /	This demo requires the MCT8329A EVM.		
UICK ACTIONS		To start, please plug the EVM board into your compute close this README md file.	ers USB port and	
		The GUI should automatically connect with your EVM.		
✿ Start Guided Tuning →	Fer 1	 You can click the Sutton in the status bar al GUI to connect to the EVM. Once connected, clicking on the Sutton in t disconnect from the EVM. 	t the bottom of the the status bar will	
ot View All Tuning Settings →		SHORT-CUT KEY MAPPINGS Shift + 'O' => Open Memory Browser Shift + 'A' => Open NVM Programming		
		To see this readme again once it has been closed, ple	ase select Help / View	
		VERSION HISTORY		
✓ View Register Map →	an 1 m.	1.0.0		
		Initial release		
◄ View Virtual Oscilloscope →	User's Guide Tuning Guide			
1		1		
		-	0.055	
		Don't show again!	ULOUL.	

图 6-1. MCT8329A GUI

加载 GUI 后,按照 GUI 的指导调谐部分一步一步地配置器件。

6.2 离线安装程序

或者,可以使用 TI 云库中的下载功能来下载和离线安装 MCT8329A GUI。以下是 MCT8329A GUI 的离线安装步骤:

- 1. 访问 dev.ti.com/gallery 并搜索 MCT8329。
- 2. 将光标放在下载(向下箭头)按钮上。
- 3. 选择合适的操作系统(Linux、MAC 或 Windows),然后点击操作系统。(注意:请勿点击运行时)
- 4. 随后开始下载 zip 文件。解压缩文件并点击 .exe 文件,离线安装 MCT8329A GUI。

7 MSP430FR2355 接口固件

MCT8329EVM 上的 MSP430FR2355 进行了预编程,包含 PC GUI 与 MCT8329 通信所需的固件。若要对 MSP430FR2355 上的自定义代码进行重新编程或闪存处理,用户需要一个包含 eZ-FET 调试探针的外部 MSP430 LaunchPad[™]。在这个示例中,我们使用 <u>MSP-EXP430FR2355 LaunchPad 开发套件</u>来提供调试探针。按照以下 步骤下载 MCT8329EVM 代码,以便与 GUI 配合使用。

7.1 下载 Code Composer Studio 并导入 MSP430FR2355 接口固件代码

- 1. 将 "MCT8329EVM_MSP430FR2355_Firmware_GUI.zip" 解压到计算机上的某个位置。
- 2. 下载最新版本的 Code Composer Studio。此下载会在目录 C:\ti 中设置一个 ti 文件夹。
 - a. 接受所有协议,默认安装位置,然后点击 Next 继续完成菜单操作。
 - b. 在 *Select Components* 窗口中,确保选中 *MSP430 Low-Power MCUs*,安装 MSP430 LaunchPad 评估 套件所需的包。
- 3. 安装后,运行 CCS 并选择一个文件夹或默认文件夹作为工作区来存储任何新项目。可以根据用户的偏好更改 位置和命名规则。点击"OK"按钮以接受。
- 4. 在 CCS 中,点击"Project"选项卡并选择 Import CCS Projects。点击 Browse。
- 5. 选择在步骤 1 中安装的 MCT8329EVM_MSP430FR2355_Firmware_GUI 文件夹。
- 6. 将工程 MCT8329EVM_MSP430FR2355_Firmware_GUI 导入您的工作区,如图 7-1 所示。

图 7-1. Code Composer Studio 中的 MSP430FR2355 接口固件代码

7.2 使用 eZ-FET 对 MSP430FR2355 进行编程

MSP430FR2355 LaunchPad 上的 eZ-FET 调试探针使用 SPI-by-Wire JTAG 接口对 MCT8329EVM 上的 MSP430FR2355 MCU 进行编程。有关包含板载 eZ-FET 调试探针的 MSP430 LaunchPad,请参阅 MSP430 LaunchPad 开发套件。

- 1. 从 MSP430 LaunchPad 上移除 GND、3V3、SBWTDIO 和 SBWTCK 跳线。
- 2. 将 GND、3V3、SBWTCK 和 SBWTDIO 信号 LaunchPad eZ-FET 侧的顶部引脚连接到 MCT8329EVM 的 J7 上的相应引脚,如表 7-1 和图 7-2 所示。
- 3. 将 Micro-USB 电缆连接到 MSP430 LaunchPad 和 PC。
- **4.** 点击 "Build Project" 图标或 *Ctrl* + *B*,验证工程是否构建成功。如有需要,从 "Console" (控制台)上接受任 何更新。
- 5. 点击"Debug Project"(调试项目)以设置调试会话,然后按"Play"(播放)按钮运行代码。
- 6. 停止调试会话,关闭 Code Composer Studio,断开 SPI-by-Wire 跳线,并从 MSP430 LaunchPad 上拔下 Micro-USB 电缆。

表 7-1. 对 MSP430FR235	5 进行编程所需的	SPY-BI-Wire	接口
----------------------	-----------	-------------	----

MSP430 LaunchPad(eZ-FET 调试探针侧)(J101)	MCT8329EVM 4 引脚 SPI-by-Wire 接头 (J7)
GND	GND
3V3	3.3V
SBWTDIO	SBWTDIO
SBWTCK	SBWTCK

图 7-2. MSP430 LaunchPad eZ-FET 探针连接到 MCT8329EVM

原理图

8 原理图

8.1 主电源

8.2 连接器和接口

8.3 USB 转 UART

图 8-2. USB 转 UART 原理图

图 8-3. MCU 编程和调试原理图

8.5 MSP430FR2355 MCU

图 8-4. MSP430FR2355 MCU 原理图

8.6 MCT8329 三相无传感器梯形控制栅极驱动器

图 8-5. MCT8329A 三相无传感器梯形控制栅极驱动器原理图

8.7 状态 LED

8.8 开关和速度输入

图 8-7. 开关和速度输入

9 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

CI	hanges from Revision * (December 2022) to Revision A (May 2023)	Page
•	更新了整个文档中的图像质量	1
•	将提到 SPI 的旧术语的所有实例更改为 POCI 和 PICO	<mark>8</mark>

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1)针对您的应用选择合适的 TI 产品,(2)设计、验证并测试您的应用,(3)确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的TI产品的相关应用。严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受TI 的销售条款或ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改TI 针对TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2022,德州仪器 (TI) 公司

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司