TPS40345 降压控制器评估模块用户指南

摘要

TPS40345EVM-353 评估模块 (EVM) 是一款同步降压转换器,通过 12V 输入总线可提供高达 20A 电流的固定 1.2V 输出。该 EVM 设计为使用单电源启动,因此不需要额外的偏置电压即可启动。该模块使用 TPS40345 高性能、1/2 输入电压同步降压控制器和 TI 的 NexFET™ 高性能 MOSFET。

内容

1 说明	2
1.1 应用	
1.2 特性	2
2 TPS40345EVM-353 电气性能规格	2
3 TPS40345EVM-353 原理图	3
4 连接器和测试点说明	4
4.1 启用跳线 (JP2)	4
4.2 展频频谱 - FSS 跳线 (JP1)	
4.3 测试点说明	
5 测试设置	6
5.1 设备	6
5.2 设备设置	6
5.3 启动/关断步骤	8
5.4 输出波纹电压测量步骤	8
5.5 控制环路增益和相位测量步骤	8
5.6 设备停机	g
6 TPS40345EVM-353 测试数据	10
6.1 效率	
6.2 线路和负载调节	10
6.3 输出电压纹波	11
6.4 开关节点	11
6.5 控制环路波特图	12
6.6 其他波形	
7 TPS40345EVM-353 装配图和布局	
8 TPS40345EVM-353 物料清单	
9 修订历史记录	

商标

NexFET[™] is a trademark of TI.

所有商标均为其各自所有者的财产。

说明 www.ti.com.cn

1 说明

TPS40345EVM-353 设计成使用 12V (8V - 14V) 稳压总线电压,在高达 20A 的负载电流下提供 1.2V 稳压输出。 TPS40345EVM-353 旨在演示 TPS40345 控制器和 TI NexFET 在典型 12V 总线到低压应用中的工作原理,同时 提供许多非侵入式测试点来评估 TPS40345 和 TI NexFET 在特定应用中的性能。

1.1 应用

- · 大电流低电压 FPGA 或微控制器内核电源
- 大电流负载点模块
- 电信设备
- 计算机外设

1.2 特性

- 8V 至 14V 输入电压范围
- 1.2V ± 2% 输出电压范围
- 20A 稳定状态负载电流
- 600kHz 开关频率
- 可轻松访问 IC 功能,其中包括电源正常指示、使能、软启动和误差放大器
- 便捷的测试点,用于轻松对转换器的性能进行非侵入式测量

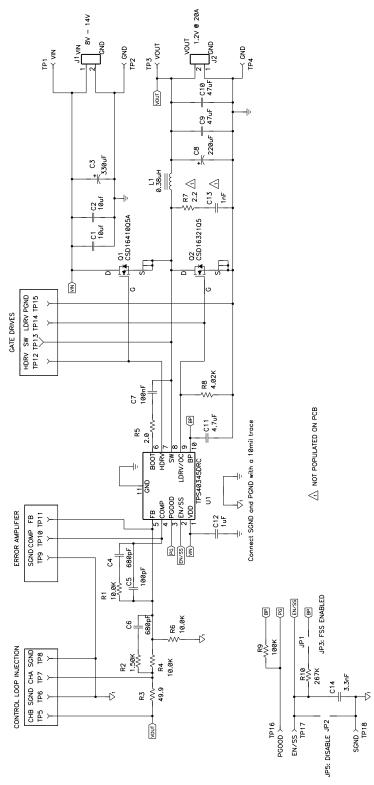

2 TPS40345EVM-353 电气性能规格

表 2-1. TPS40345EVM-353 电气和性能规格

	参数	注意事项和条件	最小值	典型值	最大值	单位
输入特性						
V _{IN}	输入电压		8	12	14	V
I _{IN}	输入电流	V _{IN} = 标称值,I _{OUT} = 最大值		2.3	2.5	Α
	空载输入电流	V _{IN} = 标称值,I _{OUT} = 0A		40	50	mA
V _{IN_UVLO}	输入 UVLO	I _{OUT} = 10A		3.0		V
输出特性			'			
V _{OUT1}	输出电压 1	V _{IN} = 12V , I _{OUT} = 20A	1.17	1.2	1.23	V
	线路调节	V _{IN} = 8V 至 14V			0.5%	
	负载调节	I _{OUT} = 0A 至 20A			0.5%	
V _{OUT_ripple}	输出电压纹波	V _{IN} = 12V , I _{OUT} = 20A			24	mVpp
I _{OUT1}	输出电流 1	V _{IN} = 8V 至 14V	0		20	Α
系统特性						
f _{SW}	开关频率		540	600	660	kHz
η pk	峰值效率	V _{IN} = 12V		88%		
η	满负载效率	V _{IN} = 12V , I _{OUT} = 20A		86%		

3 TPS40345EVM-353 原理图

请参阅表 8-1 查看具体值,仅供参考

图 3-1. TPS40345EVM-353 原理图

4 连接器和测试点说明

4.1 启用跳线 (JP2)

TPS40345EVM-353 设计有使用 0.1 英寸间距接头和分流器的禁用跳线 (JP2)。在 JP2 位置安装分流器会将 EN/SS 引脚连接到 GND,将软启动电容器放电并禁用 TPS40304 控制器。这会强制输出进入高阻抗状态 (对地阻抗约为 $20k\Omega$)。

4.2 展频频谱 - FSS 跳线 (JP1)

TPS40345EVM-353 设计有使用 0.1 英寸间距接头和分流器的展频频谱 (FSS) 启用跳线 (JP1)。在 JP1 位置安装分流器会通过 267k Ω 电阻器 (R10) 将 EN/SS 引脚连接到 BP,以启用展频频谱。

FSS 可将开关频率调制到 30kHz 下标称值的 ±10%,从而减少开关频率下的 EMI 及其谐波,但可能会有 30kHz 的输出纹波分量(请参阅图 6-6)。

TPS40345EVM-353 不会为进行 FSS 编程而动态监控 JP1 状态。若要拆卸或安装 JP1,必须通过 JP2 禁用 TPS40345EVM-353,或通过将 VIN 降低到 3V 以下将其断电。

4.3 测试点说明

表 4-1. 测试点说明

测试点	标签	用途	章节
TP1	VIN	输入电压的测量测试点	4.3.1
TP2	GND	输入电压的接地测试点	4.3.1
TP3	VOUT	输出电压的测量测试点	4.3.1
TP4	GND	输出电压的接地测试点	4.3.2
TP5	СНВ	环路响应通道 B 的测量测试点	4.3.3
TP6	SGND	环路响应通道 B 的接地测试点	4.3.3
TP7	CHA	环路响应通道 A 的测量测试点	4.3.3
TP8	SGND	环路响应通道 A 的接地测试点	4.3.3
TP9	SGND	误差放大器测量的接地测试点	4.3.4
TP10	COMP	误差放大器输出电压的测量测试点	4.3.4
TP11	FB	误差放大器输入电压的测量测试点	4.3.4
TP12	HDRV	高侧栅极驱动器电压的测量测试点	4.3.5
TP13	SW	开关节点电压的测量测试点	4.3.5
TP14	LDRV	低侧栅极驱动器电压的测量测试点	4.3.5
TP15	PGND	开关节点和栅极驱动电压的接地测试点	4.3.5
TP16	PGOOD	电源正常指示的测量测试点	4.3.6
TP17	EN/SS	使能/软启动的测量测试点	4.3.7
TP18	SGND	电源正常状态指示和使能/软启动的接地测试点	4.3.6 和 4.3.7

www.ti.com.cn 连接器和测试点说明

4.3.1 输入电压监控(TP1 和 TP2)

TPS40345EVM-353 提供两个测试点,用于测量施加到模块的输入电压。这使用户能够在没有输入电缆和连接器 损耗的情况下测量实际的输入模块电压。所有输入电压测量都应在 TP1 和 TP2 之间进行。若要使用 TP1 和 TP2,请将电压表正极输入连接到 TP1,将输入端子连接到 TP2。

4.3.2 输出电压监控(TP3 和 TP4)

TPS40345EVM-353 提供两个测试点,用于测量模块产生的输出电压。这使用户能够在没有输入电缆和连接器损 耗的情况下测量实际输出模块电压。所有输入电压测量都应在 TP3 和 TP4 之间进行。若要使用 TP3 和 TP4,请 将电压表正极输入连接到 TP3,将负极输入连接到 TP4。

4.3.3 环路响应测试 (TP5、TP6、TP7、TP8 和 R3)

TPS40345EVM-353 提供四个用于测量控制环路频率响应的测试点(两个信号测试点,两个接地测试点)。这使 用户能够在不修改评估板的情况下测量实际模块环路响应。可以在 TP5 和 TP7 之间注入高达 30mV 的变压器隔 离信号。注入信号的幅度可通过 CHA (TP7) 上的交流耦合幅度进行测量,产生的输出电压偏差可在 CHB (TP5) 上测量。更多详细信息,请参阅图 5-3。

4.3.4 误差放大器电压监控(TP9、TP10 和 TP11)

TPS40345EVM-353 提供三个用于测量误差放大器输入和输出电压的测试点。这使用户能够直接测量 TPS40304 控制器的反馈和控制电压,还可以使用控制电压 (TP10) 来测量控制到输出/功率级的频率响应,或输出到控制/误 差放大器的频率响应。更多详细信息,请参阅 # 5.5。

4.3.5 开关波形监控(TP12、TP13、TP14 和 TP15)

TPS40345EVM-353 提供三个测试点和一个本地电源接地端,用于测量模块功率级的开关波形。这使用户能够在 运行期间监控实际开关波形。TP13 是 PCB 上的 0.040 英寸方形裸铜焊盘,旨在减少开关节点上由于高瞬态电压 而产生的 EMI 辐射。应在使用电源接地端 (TP15) 作为接地基准的情况下进行开关波形测量,以获得更准确的测 量结果。

4.3.6 电源正常电压监控(TP16 和 TP18)

TPS40345EVM-353 提供用于测量电源正常输出电压的测试点和本地接地端。包含一个上拉至 BP (R9) 的 100k Ω 电阻器以便能够在不需要外部上拉电阻的情况下监控电源正常信号。若要在不使用上拉电阻的情况下进行真正的 开漏操作,请移除 R9。移除 R9 后,可以将 TP16 连接到另一个 TPS40345EVM-353 的 TP17 以使两个 TPS40345EVM-353 转换器按顺序启动。

4.3.7 使能和软启动电压监控(TP17 和 TP18)

TPS40345EVM-353 提供用于测量启用和软启动电压的测试点和本地接地端。可以使用 TP17 和 TP18 或 JP2 来 提供外部使能信号。鉴于软启动功能的性质,外部信号必须是无上拉电阻的集电极开路或漏极开路输出。

5 测试设置

5.1 设备

5.1.1 电压源

 V_{IN} — 输入电压源 (V_{IN}) 必须是能够提供 5Adc 的 0V 至 15V 可变直流电源。

5.1.2 仪表

A1: 一 输入电流计。0ADC 至 5ADC 电流表

V1: 一 输入电压计。0V 至 15V 电压表

V2: 一输出电压计。0V至2V电压表

5.1.3 负载

LOAD1: 一输出负载。针对恒定电流或恒定电阻设置的电子负载,能够在 1.2VDC 下提供 0ADC - 20ADC 的直流电流。

5.1.4 示波器

对于输出电压纹波:— 无论是模拟示波器还是数字示波器,都必须使用 20MHz 带宽限制针对交流耦合测量进行设置。使用 20mV/div 垂直分辨率和 1μs/div 水平分辨率。

对于开关波形:一 无论是模拟示波器还是数字示波器,都必须根据 20MHz 带宽限制针对直流耦合测量进行设置。使用 2V/div 或 5V/div 垂直分辨率和 1µs/div 水平分辨率。

5.1.5 建议线规

VIN 到 J1: — TPS40345EVM-353 的源极电压 (V_{IN}) 和 J1 之间的连接最多可以承载 3.5ADC 电流。最低建议线规是 AWG 16,导线总长度不到 2 英尺 (1 英尺用于输入, 1 英尺用于返回)。

J2 到 LOAD1: — TPS40345EVM-353 的源极电压 (V_{IN}) 和 J1 之间的连接最多可以承载 20ADC 电流。最低建议 线规是 AWG 12,导线总长度不到 2 英尺 (1 英尺用于输入 , 1 英尺用于返回)。

5.1.6 其他

风扇: — TPS40345EVM-353 评估模块包含运行时会发烫的元件。由于此评估模块为进行电路节点探测而未封闭, TI 建议使用一个 200lfm - 400lfm 的小型风扇来降低运行时的元件温度。

5.2 设备设置

图 5-1 显示了推荐用于评估 TPS40345EVM-353 的基本测试设置。请注意,虽然 J1 和 JP2 的返回点是相同的系统接地端,但连接应保持独立,如图 5-1 所示。

5.2.1 过程

- 在 ESD 工作站上工作时,请确保在为 EVM 加电之前已连接所有腕带、靴带或垫子以使用户接地。还应穿戴 防静电工作服和护目镜。
- 2. 在连接直流输入源 V_{IN} 之前,建议将来自 V_{IN} 的拉电流限制为最大 4A。确保 V_{IN} 初始设置为 0V 并按图 5-1 所示进行连接。
- 3. 将 VIN 连接到 J1, 如图 5-1 所示。
- 4. 在 VIN 和 J1 之间连接电流表 A1,如图 5-1 中所示。
- 5. 将电压表 V1 连接到 TP1 和 TP2, 如图 5-1 中所示。
- 6. 将电压表 V2 连接到 TP3 和 TP4,如图 5-1 中所示。
- 7. 按照表 4-1 将示波器探针连接到所需的测试点。
- 8. 按照图 5-1 所示放置风扇并将其打开,确保将空气直接吹过评估模块。

www.ti.com.cn 测试设置

5.2.2 示意图

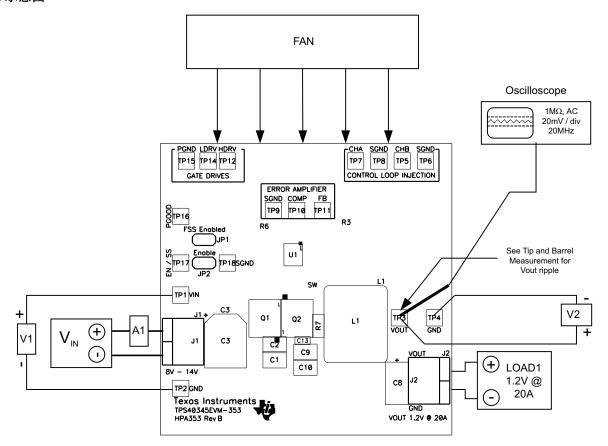


图 5-1. 建议用于 TPS40345EVM-353 的测试设置

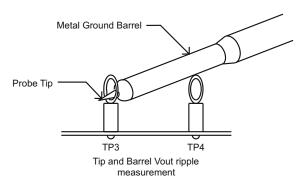


图 5-2. 输出纹波测量 - 使用 TP3 和 TP4 的尖端和接地筒

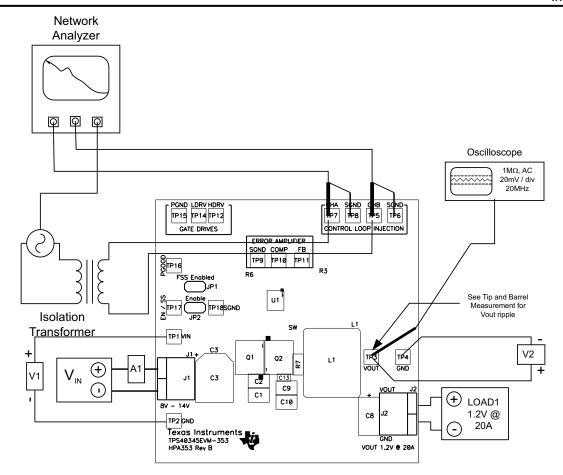


图 5-3. 控制环路测量设置

5.3 启动/关断步骤

- 1. 按照节 4.2 验证 JP1 的分流器位置以实现所需的 FSS 状态。
- 2. 从 JP2 位置移除分流器 (如果存在)。
- 3. 将 V_{IN} 从 0VDC 增大到 12VDC。
- 4. 将 LOAD1 从 0ADC 改为 20ADC。
- 5. 将 V_{IN} 从 8V 改为 14V。
- 6. 将 V_{IN} 降至 0V。
- 7. 将 LOAD1 降至 0A。

5.4 输出波纹电压测量步骤

- 1. 按照 # 5.3 中的步骤 1 5 进行操作,根据所需的运行条件设置 V_{IN} 和 LOAD1。
- 2. 按照图 5-2 将具有裸露金属接地筒的示波器探针连接到 TP3 和 TP4。
- 3. 按照 # 5.1.4 中用于输出电压纹波测量的示波器,对示波器进行设置。
- 4. 按照节 5.3 中的步骤 6 和步骤 7 进行断电。

5.5 控制环路增益和相位测量步骤

- 1. 按照节 5.3 中的步骤 1 − 5 进行操作,根据所需的运行条件设置 V_{IN} 和 LOAD1:
 - a. 如果安装了 JP1 (已启用 FSS),则有关调制频率 (30kHz)的环路响应数据可能会受影响。
- 2. 将 1kHz 至 1MHz 隔离变压器连接到 TP5 和 TP7,如图 5-3 所示。
- 3. 将输入信号幅度测量探头(通道A)连接到TP7,如图5-3所示
- 4. 将输出信号幅度测量探头(通道B)连接到TP5,如图5-3所示。
- 5. 将通道 A 和通道 B 的接地引线连接到 TP6 和 TP8, 如图 5-3 所示
- 6. 通过隔离变压器在 R3 上注入 30mV (或更低)的信号。

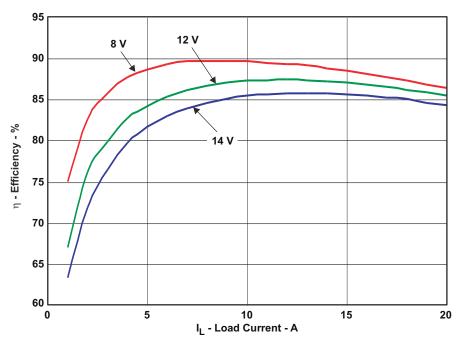
www.ti.com.cn 测试设置

7. 扫描频率从 1kHz 到 1MHz,使用 10-Hz 或更低的后置滤波器。

$$20 \times LOG\left(\frac{Channel B}{Channel A}\right)$$

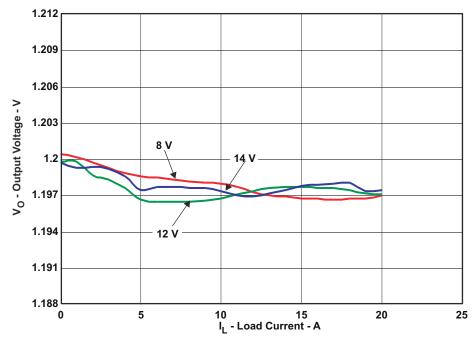
- 8. 通过此公式测量控制环路增益:
- 9. 控制环路相位可由通道 A 和通道 B 之间的相位差进行测量。
- 10. 控制到输出响应(功率级传递函数)可以通过将通道 A 和通道 B 探头分别连接到 TP10 (COMP) 和 TP5 (CHB) 来测量。
- 11. 输出到控制响应(补偿误差放大器传递函数)可以通过将通道 A 和通道 B 探头分别连接到 TP7 (CHA) 和 TP10 (COMP) 来测量。
- 12. 按照节5.3中的步骤6和步骤7进行断电。

5.6 设备停机


- 1. 关闭示波器
- 2. 关断 LOAD1
- 3. 关断 V_{IN}
- 4. 关闭风扇

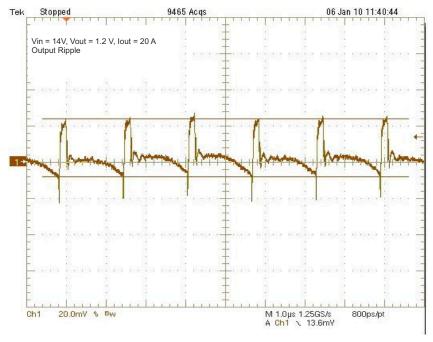
6 TPS40345EVM-353 测试数据

图 6-1 至图 6-6 显示了 TPS40345EVM-353 的典型性能曲线。实际性能数据可能会受到测量技术和环境变量的影响,因此这些曲线仅供参考,并可能与实际现场测量结果有所不同。


6.1 效率

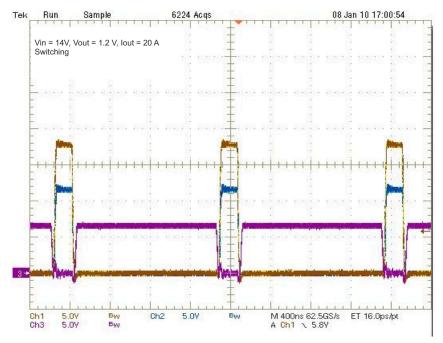
 V_{IN} = 8.0V - 14V , V_{OUT} = 1.2V , I_{OUT} = 0A - 20A

图 6-1. TPS40345EVM-353 效率和负载电流间的关系


6.2 线路和负载调节

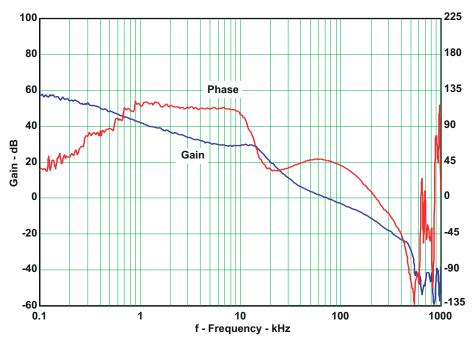
 V_{IN} = 8.0V $^-$ 14V , V_{OUT} = 1.2V , I_{OUT} = 0A $^-$ 20A

图 6-2. TPS40345EVM-353 输出电压与负载电流间的关系


6.3 输出电压纹波

 V_{IN} = 14V , V_{OUT} = 1.2V , I_{OUT} = 20A

图 6-3. TPS40345EVM-353 输出电压纹波


6.4 开关节点

 V_{IN} = 12V, V_{OUT} = 1.2V, I_{OUT} = 20A 通道 1:TP12 (HDRV),通道 2:13 TP (SW),通道 3:TP14 (LDRV)

图 6-4. TPS40345EVM-353 开关波形

6.5 控制环路波特图

 V_{IN} = 14 V , V_{OUT} = 1.2 V , I_{OUT} = 20 A , 带宽:73 kHz , 相位裕度:47°

图 6-5. TPS40345EVM-353 增益和相位与频率间的关系

6.6 其他波形

6.6.1 启用展频频谱 (FSS) 后的输出纹波

FSS 会改变输出开关频率。开关频率的改变会在调制频率下使输出电压产生微小变化。图 6-6 显示了启用 FSS 后对输出电压进行约 10mV 的调制。

图 6-6. TPS40345EVM-353 启用 FSS 后的输出纹波

7 TPS40345EVM-353 装配图和布局

下图(图 7-1 至图 7-6)显示了 TPS40345EVM-353 印刷电路板的设计。该 EVM 采用 4 层 2 盎司覆铜电路板(3 英寸×3 英寸)设计,所有元件均焊接在项层,让用户能够在实际双侧应用中轻松地查看、探测和评估 TPS40305 控制 IC。将元件移动到 PCB的两侧或使用额外的内部层,可进一步缩小空间受限系统的尺寸。

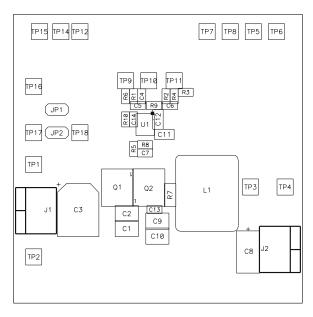


图 7-1. TPS40345EVM-353 元件放置(顶视图)

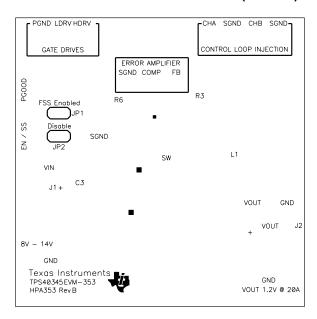


图 7-2. TPS40345EVM-353 丝网印刷层(顶视图)

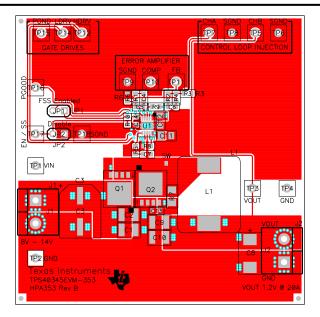


图 7-3. TPS40345EVM-353 顶层铜(顶视图)

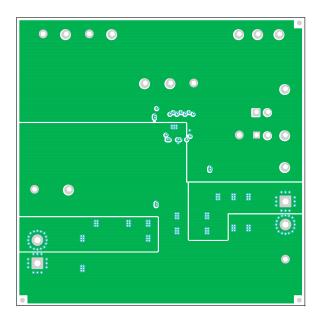


图 7-4. TPS40345EVM-353 底层铜(顶视图)

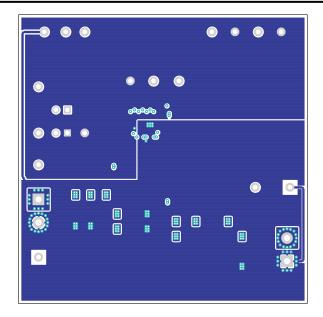


图 7-5. TPS40345EVM-353 内层 1 (X射线顶视图)

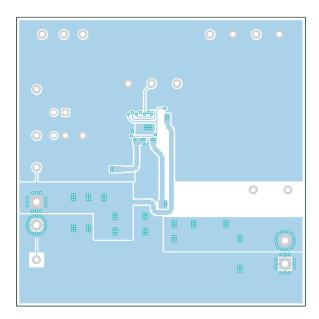


图 7-6. TPS40345EVM-353 内层 2 (X 射线顶视图)

8 TPS40345EVM-353 物料清单

表 8-1. TPS40345EVM-353 物料清单

数量	参考指示符	值	次 6-1. I P 340343E V IVI-353 初 说明	尺寸	产品型号	制造商
2	C1 , C2	10µF	电容器,陶瓷,25V,X7R,10%	1210	Std	Std
1	C11	4.7µF	电容器,陶瓷,10V,X7R,20%	0805	Std	Std
1	C12	1µF	电容器,陶瓷,25V,X7R,20%	0805	Std	Std
0	C13	1nF	电容器,陶瓷, 25V, X5R, 20%	0603	Std	Std
1	C14	3.3nF	电容器,陶瓷,16V,X7R,20%	0603	Std	Std
1	C3	330µF	电容器,铝,25V,±20%,160mΩ	0.328 x 0.390 英寸	EEEFK1E331P	PANASONIC (松下)
2	C4, C6	680pF	电容器,陶瓷, 25V, COG, 10%	0603	Std	Std
1	C5	100pF	电容器,陶瓷,25V,COG,10%	0603	Std	Std
1	C7	100nF	电容器,陶瓷,16V,X7R,20%	0603	Std	Std
1	C8	220µF	电容器,POSCAP,6.3V,25mΩ,105C,20%	7343(D)	6TPE220M	Sanyo(三洋)
2	C9、C10	47µF	电容器,陶瓷,6.3V,X5R,20%	1210	Std	Std
2	J1 , J2	ED120/2DS	端子块,2 引脚,15A,5.1mm	0.40 x 0.35 英寸	ED120/2DS	OST
2	JP1 , JP2	PEC02SAAN	接头,2引脚,100mil 间距	0.100 英寸 x 2	PEC02SAAN	Sullins(赛凌 思)
1	L1	0.38µH	电感器,SMT,35A	0.512 x 0.571 英寸	PG0077.401NLT	Pulse (普思)
1	Q1*	CSD16410Q5A	MOSFET, N 沟道, 25V, 59A, 9.6m Ω	QFN-8 电源	CSD16410Q5A	TI
1	Q2*	CSD16321Q5	MOSFET, N 沟道, 25V, 31A	QFN-8 电源	CSD16321Q5	TI
3	R1、R4、R6	10.0k Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
1	R10	267k Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
1	R2	1.50k Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
1	R3	49.9 Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
1	R5	2Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
0	R7	2.2 Ω	电阻器,贴片,1/8W,5%	1206	Std	Std
1	R8	4.02k Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
1	R9	100k Ω	电阻器,贴片,1/16W,1%	0603	Std	Std
2	TP1、TP3	5000	测试点,红色,通孔式颜色编码	0.100 x 0.100 英寸	5000	Keystone
0	TP13	不适用	测试点,SM,2×3mm	0.118 x 0.079 英寸		
6	TP2、TP4、TP6、 TP8、TP15、TP18	5001	测试点,黑色,通孔式颜色编码	0.100 x 0.100 英寸	5001	Keystone
9	TP5、TP7、 TP9 - TP12、 TP14、TP16、 TP17	5002	测试点,白色,通孔式颜色编码	0.100 x 0.100 英寸	5002	Keystone
1	U1*	TPS40345DRC	IC, 3V - 20V 同步降压控制器/启用轻负载/Fq 展频	DRC10	TPS40345DRC	TI
2	-		分流器,100mil,黑色	0.1	929950-00	3M
1	-		PCB, 2.5 x 2.5 x 0.062 英寸		HPA353	不限

9 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision * (November 2017) to Revision A (August 2021)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式。	2
•	更新了用户指南的标题	2

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司