User's Guide TPS40077 降压控制器评估模块用户指南

TEXAS INSTRUMENTS

摘要

TPS40077EVM-001 评估模块(EVM)是一款同步降压转换器,通过 12V 输入总线可提供高达 10A 电流的固定 1.8V 输出。该 EVM 设计为使用单电源启动,因此不需要额外的偏置电压即可启动。该 EVM 中使用的 TPS40077 低引脚数同步降压控制器采用 Predictive Gate Drive。该特性通过消除击穿开关电流和尽可能减少同步整流器 FET 的反向导通时间来提高效率。

内容				
1 引言	2			
1.1 说明	2			
1.2 应用	2			
1.3 特性	2			
2 TPS40077EVM-001 电气性能规格	3			
3 原理图	4			
3.1 调节输出电压(R3 和 R13)	5			
3.2 禁用(J3)	5			
3.3 测试设置	5			
3.4 设备设置	6			
3.5 启动/关断步骤				
3.6 控制环路增益和相位测量步骤	8			
3.7 设备停机	8			
4 TPS40077EVM 典型性能数据和特性曲线				
4.1 效率	9			
4.2 线性和负载调整率	9			
4.3 输出纹波	10			
4.4 瞬态响应	10			
4.5 波特图	11			
5 EVM 装配图和布局				
6 物料清单	14			
7 修订历史记录				

商标

所有商标均为其各自所有者的财产。

1 引言

1.1 说明

TPS40077EVM-001 旨在使用 12V (8V 至 16V) 总线在高达 10A 的负载电流下产生大电流、1.8V 稳压输出。 TPS40077EVM-001 演示了 TPS40077 在典型的 12V 总线至低压应用中的使用,同时提供了多个测试点来评估 TPS40077 的性能。通过更换单个电阻,可将该 EVM 修改为支持 0.9V 至 3.3V 的输出电压。

1.2 应用

- 非隔离中电流负载点和低压总线转换器
- 网络设备
- 电信设备
- 分布式直流电源系统

1.3 特性

- 8V 至 16V 输入范围
- 1.8V 固定输出电压,可通过单个电阻进行调节
- 10A 直流稳态输出电流
- 300kHz 开关频率
- 单个主开关 N 沟道 MOSFET 和单个同步整流器 N 沟道 MOSFET
- 双面 PCB,所有元件都位于顶面
- 有源转换器所占面积小于 2.4 平方英寸 1.0 英寸 × 2.4 英寸
- 便捷的测试点,用于探测临界波形和非侵入式环路响应测试

2 TPS40077EVM-001 电气性能规格

表 2-1. TPS40077EVM-001 电气和性能规格

	参数	说明和条件	最小值	标称值	最大值	单位
输入特性			1			
V _{IN}	输入电压		8	12	16	V
I _{IN}	输入电流	V _{IN} = 标称值,I _{OUT} = 最大值		1.7	1.8	А
	空载输入电流	V _{IN} = 标称值,I _{OUT} = 0A		80	100	mA
V _{IN_UVLO}	输入 UVLO	I _{OUT} = 最小值至最大值	5.4	6	6.6	V
V _{IN_ONV}	输入 ONV	I _{OUT} = 最小值至最大值	6.3	7	7.7	V
输出特性		1	1	L I		
V _{OUT}	输出电压	V _{IN} = 标称值,I _{OUT} = 标称值	1.75	1.8	1.85	V
	线性调整率	V _{IN} = 最小值至最大值, I _{OUT} = 标称值			0.5%	
	负载调整率	V _{IN} = 标称值, I _{OUT} = 最小值至最大值			0.5%	
	输出纹波电压	V _{OUT} _ripple V _{IN} = 标称值,I _{OUT} = 最大值			40	mVpp
	输出电流	I _{OUT} V _{IN} = 最小值至最大值	0	5	10	А
	输出过流启动点	I _{OCP} V _{IN} = 标称值,V _{OUT} = V _{OUT} - 5%	12.25	19.4	34	А
	瞬态响应					
ΔΙ	负载阶跃	I _{OUT_max} 至 0.2 × I _{OUT_max}		8		А
	负载压摆率			1		A/ µ sec
	过冲			300		mV
	建立时间			0.1		msec
系统特性						
f _{SW}	开关频率		240	300	360	kHz
ת pk	峰值效率	V _{IN} = 标称值, I _{OUT} = 最小值至最大值		90%		
η	满负载效率	V _{IN} = 标称值,I _{OUT} = 最大值		89%		
顶层	工作温度范围	V _{IN} = 最小值至最大值, I _{OUT} = 最小值至最 大值	- 40	25	85	°C
机械特性						
W	尺寸(工作区域)	宽度		1		ins
L		长度		2.4		ins
h		元件高度		0.41		ins
注1:电阻	容差影响电压精度。					

原理图

3 原理图

仅供参考。具体值请参阅表 6-1。

图 3-1. TPS40077EVM-001 原理图

通过改变反馈电阻分压器(R3、R13)中的接地电阻,可以在有限范围内调整稳压输出电压。

表 3-1 包含用于生成常用输出电压的 R3 和 R13 的常见值。TPS40077EVM-001 在这些输出电压下保持稳定,但 效率可能会受到影响,因为功率级针对 1.8V 输出进行了优化。

V _{OUT}	R3	R13		
1.2V	9.53kΩ	62.0kΩ		
1.5V	5.36kΩ	140kΩ		
1.8V	4.42kΩ	24.9kΩ		
2.5V	2.37kΩ	71.5kΩ		
3.3V	1.60kΩ	220kΩ		

表 3-1. 借助 R3 调整 Vout

3.2 禁用(J3)

TPS40077EVM-001 提供禁用输入(J3),可使用户评估 TPS40077 的启用/禁用功能。当短接 J3 引脚时, TPS40077 控制器禁用并且 EVM 关闭。当禁用 TPS40077 时,两个 FET 驱动器都关闭。

3.3 测试设置

3.3.1 设备

3.3.1.1 电压源

 $V_{12V_{IN}}$

输入电压源(V_{12V_IN})应是能够提供 5 A_{DC}的 0V 至 16V 可变直流电源。将 V_{12V_IN} 连接到 J1, 如图 3-3 所示。

3.3.1.2 仪表

- A1:0-5 A_{DC},电流表
- V1: V_{12V IN}, 0V 至 16V 电压表
- V2:V_{1V5 OUT}, 0V 至 5V 电压表

LOAD1

输出负载(LOAD1)必须是一个恒定电流模式电子负载,在1.8V电压下支持0A至15A直流电流。

3.3.1.4 示波器

数字或模拟示波器可用于测量 VOUT 上的纹波电压。按如下设置示波器以测量输出纹波:

- 1MΩ 阻抗
- 20MHz 带宽
- 交流耦合
- 1 µ s/div 水平分辨率
- 20mV/div 垂直分辨率

TP9 和 TP10 可用于测量输出纹波电压,方法是将示波器探头尖端穿过 TP9 并将接地筒固定在 TP10 上,如图 3-2 所示。要实现免手动方式,可以切割并打开 TP10 中的回路以支撑探头筒。必须避免使用带引线的接地连接,因为它会由于接地回路面积较大而产生额外的噪声。

图 3-2. 输出纹波测量 - 使用 TP9 和 TP10 的尖端和接地筒

3.3.1.5 建议线规

V_{12V_IN} 到 J1

源极电压 V_{12V_N} 和 J1 之间的连接最多可以承载 3A_{DC}。最低建议线规是 AWG #16,导线总长度小于 4 英尺(2 英尺用于输入,2 英尺用于返回)。

J2 到 LOAD1(电源)

J2 和 LOAD1 之间的电源连接最多可以承载 15A_{DC}。最低建议线规是 2 × AWG #16,导线总长度不到 4 英尺(2 英尺用于输出,2 英尺用于返回)。

3.4 设备设置

图 3-3 显示了用于评估 TPS40077EVM-001 的建议基本测试装置。请注意,虽然 J1 和 J2 的回路相同,但连接应保持独立,如图 3-2 所示。

3.4.1 过程

- 1. 在 ESD 工作站工作时,请确保在为 EVM 加电之前已连接所有腕带、靴带或垫子使用户接地。还应穿戴防静电工作服和护目镜。
- 在连接直流输入源 V_{12V_IN} 之前,建议将来自 V_{12V_IN} 的源电流限制为最大 5.0A。确保 V_{12V_IN} 初始设置为 0V 并按图 3-3 所示进行连接。
- 3. 连接电流表 A1, 如图 3-3 所示。
- 4. 将电压表 V1 连接到 TP1 和 TP2, 如图 3-3 所示。
- 5. 将 LOAD1 连接到 J2,如图 3-3 所示。在施加 V_{12V_IN} 之前,确保将 LOAD1 设置为恒流模式以实现 0A 直流 灌电流。
- 6. 将电压表 V2 连接到输出 J2, 如图 3-3 所示。
- 7. 将示波器探头连接到 TP9 和 TP10, 如图 3-2 所示。

图 3-3. TPS40077EVM-001 建议测试装置

图 3-4. 控制环路测量设置

3.5 启动/关断步骤

- 将 V_{12V_IN} 从 0V_{DC} 增大到 12V_{DC}。 将 LOAD1 从 0A_{DC} 改为 10A_{DC}。 1.
- 2.

- 3. 将 V_{12V_IN} 从 8V_{DC} 改为 16V_{DC}。
- 4. 将 LOAD1 降至 0A。

3.6 控制环路增益和相位测量步骤

- 1. 将 1kHz 至 1MHz 隔离变压器连接到 TP3 和 TP6, 如图 3-4 所示。
- 2. 将输入信号幅度测量探头 (通道 A) 连接到 TP3, 如图 3-4 所示。
- 3. 将输出信号幅度测量探头 (通道 B) 连接到 TP6, 如图 3-4 所示。
- 4. 将通道 A 和通道 B 的地线连接到 TP8, 如图 3-4 所示。
- 5. 通过隔离变压器在 TP3 和 TP6 上注入 25mV 或更低的信号。
- 6. 使用 10Hz 或更低的后置滤波器在 1kHz 至 1MHz 范围内扫频。
 - $20 \times \text{LOG}\left(\frac{\text{ChannelB}}{\text{ChannelA}}\right)$
- 7. 可通过此公式测量控制环路增益: ChannelA
- 8. 控制环路相位通过通道 A 和通道 B 之间的相位差测量。
- 9. 在进行其他测量之前,从 TP3 和 TP6 断开隔离变压器(信号注入反馈可能会干扰其他测量的准确性)。

3.7 设备停机

- 1. 关闭示波器。
- 2. 关闭 LOAD1。
- 3. 关断 V_{12V_IN}。

Texas

STRUMENTS

www.ti.com.cn

4 TPS40077EVM 典型性能数据和特性曲线

图 4-1 至图 4-6 显示了 TPS40077EVM-001 的典型性能曲线。由于实际性能数据可能会受到测量技术和环境变量的影响,这些曲线仅供参考,可能与实际现场测量结果有所不同。

4.1 效率

图 4-1. TPS40077EVM-001 效率

4.2 线性和负载调整率

图 4-2. TPS40077EVM-001 线性和负载调整率

4.3 输出纹波

图 4-3. TPS40077EVM-001 典型输出纹波

4.4 瞬态响应

5 EVM 装配图和布局

图 5-1 至图 5-3 显示了 TPS40077EVM-001 印刷电路板的设计。该 EVM 采用双面型 2oz 覆铜电路板设计,所有元件均位于顶面,可使用户在实际应用中轻松地查看、探测和评估 TPS40077。将元件移动到 PCB 的两面或使用额外的内部层可以对空间受限的系统额外缩减尺寸。

图 5-1. TPS40077EVM-001 元件放置(俯视图)

图 5-2. TPS40077EVM-001 顶部铜层(俯视图)

图 5-3. TPS40077EVM-001 底部铜层(X 射线俯视图)

6 物料清单

表 6-1 列出了根据图 3-1 所示原理图配置的 EVM 元件。

数量	参考指示符	值	说明	尺寸	产品型号	制造商
1	C1	470 µ F	电容,铝,470 μ F,25V,20%	0.457 x 0.406	EEVFK1E471P	Panasonic(松 下)
3	C12、C14、 C15	22 µ F	电容,陶瓷,22 μ F,16V,X5R,20%	1812	C4532X5R1C226MT	TDK
2	C6、C13	2.2nF	电容,陶瓷,25V,X7R,20%	0603	Std	Vishay(威世)
1	C16	470 μ F	电容,铝,SM,6.3V,300mΩ(FK 系列)	8mm x 10mm	FK 系列	Panasonic(松 下)
1	C17	47 μ F	电容,陶瓷,47 μ F,6.3V,X5R,20%	1812	C4532X5R0J476MT	TDK
2	C2、C10	0.1 µ F	电容,陶瓷,25V,X7R,20%	0603	Std	Vishay(威世)
1	C3	15nF	电容,陶瓷,25V,X7R,20%	0603	Std	Vishay(威世)
1	C4	680pF	电容,陶瓷,25V,X7R,20%	0603	Std	Vishay(威世)
1	C5	3900 pF	电容,陶瓷,25V,X7R,20%	0603	Std	Vishay(威世)
1	C7	10pF	电容,陶瓷,25V,COG 20%	0603	Std	Vishay(威世)
2	C8、C11	0.1 µ F	电容,陶瓷,25V,X7R,20%	0603	Std	Vishay(威世)
1	C9、C18	1 µ F	电容,陶瓷,25V,X7R,20%	0805	Std	Vishay(威世)
1	D1		二极管,肖特基,200mA,30V	SOT23	BAT54	Vishay(威世)
1	L1	2.5 µ H	电感器,SMT,2.5 μ H,16.5A,3.4mΩ	0.515 × 0.516	MLC1550-252ML	Coiltronics
1	Q1		MOSFET,N 沟道,30V,18A,8.0m Ω	PWRPAK S0-8	Si7860DP	Vishay(威世)
1	Q2		MOSFET,N 沟道,30V,18A,40m Ω	PWRPAK S0-8	Si7886ADP	Vishay(威世)
1	R1	10kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
1	R10	330kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
1	R12	51Ω	电阻,贴片,1/16W,1%	0603	Std	Std
1	R13	24.9kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
2	R2、R6	165kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
1	R3	4.42kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
2	R4、R11	0Ω	电阻,贴片,1/16W,1%	0603	Std	Std
1	R5	3.48kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
1	R7	5.90kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
1	R8	953Ω	电阻,贴片,1/16W,1%	0603	Std	Std
1	R9	1.80kΩ	电阻,贴片,1/16W,1%	0603	Std	Std
1	U1		IC	PWP16	TPS40077PWP	德州仪器 (TI)

表 6-1. 物料清单

7 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Cł	hanges from Revision A (March 2006) to Revision B (January 2022)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式。	2
•	更新了用户指南标题	2

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司